Automorphism groups of non-edge transitive Rose Windows graphs

Štefko Miklavič

University of Primorska UP IAM and UP FAMNIT

November 28, 2011

For an integer $n \ge 3$ and integers $1 \le a, r \le n - 1$, $r \ne n/2$, the Rose Window graph $R_n(a, r)$ has vertex set $V = \{A_i, B_i \mid i \in \mathbb{Z}_n\}$ and four types of edges:

ヨッ イヨッ イヨッ

For an integer $n \ge 3$ and integers $1 \le a, r \le n - 1$, $r \ne n/2$, the Rose Window graph $R_n(a, r)$ has vertex set $V = \{A_i, B_i \mid i \in \mathbb{Z}_n\}$ and four types of edges:

- Rim edges $\{\{A_i, A_{i+1}\} \mid i \in \mathbb{Z}_n\};$
- In-Spoke edges $\{\{A_i, B_i\} \mid i \in \mathbb{Z}_n\};$
- Out-Spoke edges $\{\{B_i, A_{i+a}\} \mid i \in \mathbb{Z}_n\};$
- Hub edges $\{\{B_i, B_{i+r}\} \mid i \in \mathbb{Z}_n\}$.

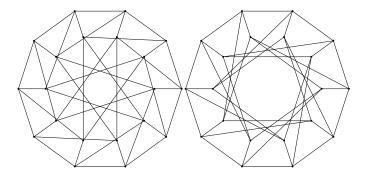
伺下 イヨト イヨト ニヨ

For an integer $n \ge 3$ and integers $1 \le a, r \le n - 1$, $r \ne n/2$, the Rose Window graph $R_n(a, r)$ has vertex set $V = \{A_i, B_i \mid i \in \mathbb{Z}_n\}$ and four types of edges:

- Rim edges $\{\{A_i, A_{i+1}\} \mid i \in \mathbb{Z}_n\};$
- In-Spoke edges $\{\{A_i, B_i\} \mid i \in \mathbb{Z}_n\};$
- Out-Spoke edges $\{\{B_i, A_{i+a}\} \mid i \in \mathbb{Z}_n\};$
- Hub edges $\{\{B_i, B_{i+r}\} \mid i \in \mathbb{Z}_n\}$.

All arithmetics with a, r and vertex subscripts is assumed to be done in \mathbb{Z}_n . Note that $R_n(a, r) = R_n(a, -r)$.

Rose window graphs



æ

御 と くきと くきと

- Introduced by Steve Wilson in 2008
- Motivation: maps, generalization of GPG(n, r)

(*) *) *) *)

э

Rose window graphs - general problem

Given n, a, r, find the automorphism group of $R_n(a, r)$.

ヨト イヨト イヨト

Let G be the automorphism group of $R_n(a, r)$. Define $\rho: V \to V$ and $\mu: V \to V$ by

$$\rho(A_i) = A_{i+1} \text{ and } \rho(B_i) = B_{i+1} \quad (i \in \mathbb{Z}_n),$$

$$\mu(A_i) = A_{-i} \text{ and } \mu(B_i) = B_{-a-i} \quad (i \in \mathbb{Z}_n).$$

Let G be the automorphism group of $R_n(a, r)$. Define $\rho: V \to V$ and $\mu: V \to V$ by

$$\rho(A_i) = A_{i+1} \text{ and } \rho(B_i) = B_{i+1} \quad (i \in \mathbb{Z}_n),$$

$$\mu(A_i) = A_{-i} \text{ and } \mu(B_i) = B_{-a-i} \quad (i \in \mathbb{Z}_n).$$

Note that $\rho, \mu \in G$, and therefore $\langle \rho, \mu \rangle \leq G$. The action of $\langle \rho, \mu \rangle$ on the set of edges of $R_n(a, r)$ has three orbits: the set of rim edges, the set of hub edges and the set of spoke edges.

Lemma

Let $R_n(a, r)$ denote a Rose Window graph. Then the following (i)–(iii) are equivalent:

- (i) $R_n(a, r)$ is edge-transitive.
- (ii) There is an automorphism of $R_n(a, r)$ which sends a rim edge to a spoke edge.
- (iii) There is an automorphism of $R_n(a, r)$ which sends a spoke edge to a hub edge.

伺 ト く ヨ ト く ヨ ト

Theorem

Let $R_n(a, r)$ denote a Rose Window graph and let G be its group of automorphisms. Then there exists $\sigma \in G$ sending rim edges to hub edges and vice-versa if and only if one of the following (i), (ii) holds:

(i)
$$r^2 \equiv \pm 1 \pmod{n}$$
 and $ra \equiv ta \pmod{n}$, where $t \in \{-1, 1\}$,

(ii) n is divisible by 4,
$$a = n/2$$
 and $(r^2 + n/2) \equiv \pm 1 \pmod{n}$.

Let N = gcd(n, r) denote the number of "inner" cycles of $R_n(a, r)$, and let L = n/N denotes the length of these inner cycles. Assume for a moment that n is even. For $0 \le \ell \le n/2 - 1$ let

$$\alpha_{\ell} = (B_{\ell}, B_{\ell+n/2}).$$

• • = • • = •

Let N = gcd(n, r) denote the number of "inner" cycles of $R_n(a, r)$, and let L = n/N denotes the length of these inner cycles. Assume for a moment that n is even. For $0 \le \ell \le n/2 - 1$ let

$$\alpha_{\ell} = (B_{\ell}, B_{\ell+n/2}).$$

For $0 \leq \ell \leq N-1$ let

$$\beta_{\ell} = (B_{\ell}, B_{\ell+n/2})(B_{\ell+N}, B_{\ell+N+n/2})\cdots(B_{\ell+n/2-N}, B_{\ell+n-N}).$$

A 35 A 35 A

Let N = gcd(n, r) denote the number of "inner" cycles of $R_n(a, r)$, and let L = n/N denotes the length of these inner cycles. Assume for a moment that n is even. For $0 \le \ell \le n/2 - 1$ let

$$\alpha_{\ell} = (B_{\ell}, B_{\ell+n/2}).$$

For $0 \leq \ell \leq N-1$ let $\beta_{\ell} = (B_{\ell}, B_{\ell+n/2})(B_{\ell+N}, B_{\ell+N+n/2})\cdots(B_{\ell+n/2-N}, B_{\ell+n-N}).$ For $0 \leq \ell \leq N/2 - 1$ let

$$\gamma_{\ell} = (B_{\ell}, B_{\ell+n/2})(B_{\ell+N}, B_{\ell+N+n/2}) \cdots (B_{\ell+n-N}, B_{\ell+n-N+n/2}).$$

A + + = + + = + - =

Lemma

Let $R_n(a, r)$ denote a Rose Window graph and let G be its group of automorphisms. Assume n is even. Then the following (i)-(iii) hold.

(i)
$$\alpha_{\ell} = \rho^{\ell} \alpha_0 \rho^{-\ell}$$
 for $0 \le \ell \le n/2 - 1$.
(ii) $\beta_{\ell} = \rho^{\ell} \beta_0 \rho^{-\ell}$ for $0 \le \ell \le N - 1$.
(iii) $\gamma_{\ell} = \rho^{\ell} \gamma_0 \rho^{-\ell}$ for $0 \le \ell \le N/2 - 1$.

向 ト イヨ ト イヨト

Lemma

- Let $R_n(a, r)$ denote a Rose Window graph. Assume n is even and a = n/2. Then the following (i)-(iii) hold.
 - (i) If L = 4 then α_{ℓ} is an automorphism or $R_n(n/2, r)$ for $0 \le \ell \le n/2 1$.
- (ii) If L is even, then β_{ℓ} is an automorphism or $R_n(n/2, r)$ for $0 \le \ell \le N 1$.
- (iii) If L is odd then γ_{ℓ} is an automorphism or $R_n(n/2, r)$ for $0 \le \ell \le N/2 1$.

(4月) (4日) (4日) 日

Lemma

Let $R_n(a, r)$ denote a Rose Window graph and let G be its group of automorphisms. Let G_A be the point-wise stabiliser of $\{A_0, A_1, \ldots, A_{n-1}\}$ in G. Then the following (i)–(iv) hold. (i) If $a \neq n/2$ then G_A is trivial. (ii) If a = n/2 and L = 4, then $G_A = \langle \alpha_0, \alpha_1, \ldots, \alpha_{n/2-1} \rangle$. (iii) If a = n/2, L is even and $L \neq 4$, then $G_A = \langle \beta_0, \beta_1, \ldots, \beta_{N-1} \rangle$. (iv) If a = n/2 and L is odd, then $G_A = \langle \gamma_0, \gamma_1, \ldots, \gamma_{N/2-1} \rangle$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma

Let $R_n(a, r)$ denote a Rose Window graph and let G be its group of automorphisms. Let $G_{\{A\}}$ be the set-wise stabiliser of $\{A_0, A_1, \ldots, A_{n-1}\}$ in G. Then the following (i)–(iv) hold. (i) If $a \neq n/2$ then $G_{\{A\}} = \langle \rho, \mu \rangle$. (ii) If a = n/2 and L = 4, then $G_{\{A\}} = \langle \rho, \mu, \alpha_0 \rangle$. (iii) If a = n/2, L is even and $L \neq 4$, then $G_{\{A\}} = \langle \rho, \mu, \beta_0 \rangle$. (iv) If a = n/2 and L is odd, then $G_{\{A\}} = \langle \rho, \mu, \gamma_0 \rangle$.

Corollary

Let $R_n(a, r)$ denote a Rose Window graph and let G be its group of automorphisms. Assume G has three orbits on edge-set of $R_n(a, r)$ (that is, $R_n(a, r)$ does not satisfy non of the conditions (i) and (ii) of Theorem 2). Then the following (i)–(iv) hold. (i) If $a \neq n/2$ then $G = \langle \rho, \mu \rangle$. (ii) If a = n/2 and L = 4, then $G = \langle \rho, \mu, \alpha_0 \rangle$. (iii) If a = n/2, L is even and $L \neq 4$, then $G = \langle \rho, \mu, \beta_0 \rangle$. (iv) If a = n/2 and L is odd, then $G = \langle \rho, \mu, \gamma_0 \rangle$.

(4月) (日) (日) 日

Rose window graphs - automorphism group

Theorem

Let $R_n(a, r)$ denote a Rose Window graph and let G be its group of automorphisms. Assume $a \neq n/2$, $r^2 \equiv \pm 1 \pmod{n}$ and $ra \equiv -a \pmod{n}$. Then $G = \langle \rho, \mu, \delta \rangle$, where δ is defined by $\delta(A_i) = B_{ri}$ and $\delta(B_i) = A_{ri}$.

伺 と く ヨ と く ヨ と …

Rose window graphs - automorphism group

Theorem

Let $R_n(a, r)$ denote a Rose Window graph and let G be its group of automorphisms. Assume a = n/2, $r^2 \equiv \pm 1 \pmod{n}$ and $ra \equiv -a \pmod{n}$. Then $G = \langle \rho, \mu, \beta_0, \delta \rangle$.

向 ト イヨ ト イヨト

Rose window graphs - automorphism group

Theorem

Assume n is divisible by 4, r is odd, a = n/2 and $(r^2 + n/2) \equiv \pm 1 \pmod{n}$. Then $G = \langle \rho, \mu, \beta_0, \gamma \rangle$, here γ is defined by $\gamma(A_i) = B_{ri}$ and $\gamma(B_i) = A_{(r+n/2)i}$.

伺 と く ヨ と く ヨ と … ヨ