Pythagorean-hodograph curves

V. Vitrih

Raziskovalni matematični seminar
20. 2. 2012
(1) Definition
(2) Properties
(3) Cubic PH curves

4 Planar PH curves and complex numbers
(5) Spatial PH curves and quaternions

Planar PH curves and complex numbers

Let $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{2}$ be a planar polynomial parametric curve

$$
\mathbf{r}(t)=\binom{x(t)}{y(t)}
$$

where

$$
x(t)=\sum_{k=0}^{n} a_{k} t^{k} \quad \text { and } \quad y(t)=\sum_{k=0}^{n} b_{k} t^{k}
$$

are polynomials of degree $\leq n$.

Hodograph of a curve \mathbf{r} is a vector field

$$
\mathbf{r}^{\prime}(t)=\binom{x^{\prime}(t)}{y^{\prime}(t)} .
$$

Hodograph of a curve \mathbf{r} is a vector field

$$
\mathbf{r}^{\prime}(t)=\binom{x^{\prime}(t)}{y^{\prime}(t)}
$$

Curve \mathbf{r} is a Pythagorean-hodograph curve, if there exists a polynomial σ, such that

$$
x^{\prime}(t)^{2}+y^{\prime}(t)^{2}=\sigma(t)^{2}
$$

Such a curve will be (shortly) called a PH curve.

PH curves have several important properties:

- If a curve is a regular one (the derivative never vanishes), then

$$
\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}=\sigma(t)
$$

PH curves have several important properties:

- If a curve is a regular one (the derivative never vanishes), then

$$
\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}=\sigma(t)
$$

- Their arc length

$$
\int_{a}^{b}\left\|r^{\prime}(t)\right\| d t=\int_{a}^{b} \sigma(t) d t
$$

can be computed exactly (without quadrature rules).

- Unit tangent \mathbf{t} is a rational curve

$$
\mathbf{t}(t)=\frac{\left(x^{\prime}(t), y^{\prime}(t)\right)}{\sigma(t)}
$$

- Unit tangent t is a rational curve

$$
\mathbf{t}(t)=\frac{\left(x^{\prime}(t), y^{\prime}(t)\right)}{\sigma(t)}
$$

Application:

- Any orthonormal adapted frame (first vector is a unit tangent) of a spatial curve may define the motion of a rigid body.
- It is important to have a rational rotation minimizing frame.
- To have a rational unit tangent, the curve must be a PH curve.

- Their offset curves

$$
\mathbf{r}_{d}(t):=\mathbf{r}(t)+d \mathbf{n}(t)
$$

where $d>0$ and $\mathbf{n}(t)$ is a unit normal to \mathbf{r} at parameter t,

$$
\mathbf{n}(t):=\frac{\left(-y^{\prime}(t), x^{\prime}(t)\right)}{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}},
$$

are rational curves.

- Their offset curves

$$
\mathbf{r}_{d}(t):=\mathbf{r}(t)+d \mathbf{n}(t)
$$

where $d>0$ and $\mathbf{n}(t)$ is a unit normal to \mathbf{r} at parameter t,

$$
\mathbf{n}(t):=\frac{\left(-y^{\prime}(t), x^{\prime}(t)\right)}{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}},
$$

are rational curves.

- If the degree of \mathbf{r} is n, then the degree of \mathbf{r}_{d} is $2 n-1$.

Theorem (Kubota)

The Pythagorean condition

$$
a^{2}(t)+b^{2}(t)=c^{2}(t)
$$

is satisfied by polynomials a, b and c iff there exist polynomials u, v and w, such that

$$
\begin{aligned}
& a(t)=w(t)\left(u^{2}(t)-v^{2}(t)\right), \\
& b(t)=2 w(t) u(t) v(t), \\
& c(t)=w(t)\left(u^{2}(t)+v^{2}(t)\right),
\end{aligned}
$$

where u and v are relatively prime.

From the theorem it follows that the hodograph of a PH curve has to be of the form

$$
\begin{aligned}
& x^{\prime}(t)=w(t)\left(u^{2}(t)-v^{2}(t)\right), \\
& y^{\prime}(t)=2 w(t) u(t) v(t)
\end{aligned}
$$

(the order is not important, since PH curves are rotational invariant).

We will now eliminate some uninteresting cases:

- $w=0$ or $u=v=0 ; \mathrm{PH}$ curve r is a point,

We will now eliminate some uninteresting cases:

- $w=0$ or $u=v=0 ;$ PH curve \mathbf{r} is a point,
- u, v and $w \neq 0$ are constants and at least one of u or v is nonzero; PH curve is uniformly parameterized straight line.

We will now eliminate some uninteresting cases:

- $w=0$ or $u=v=0 ;$ PH curve \mathbf{r} is a point,
- u, v and $w \neq 0$ are constants and at least one of u or v is nonzero; PH curve is uniformly parameterized straight line.
- u and v are nonzero constants, w is not a constant; PH curve is nonuniformly parameterized straight line.

We will now eliminate some uninteresting cases:

- $w=0$ or $u=v=0 ; \mathrm{PH}$ curve r is a point,
- u, v and $w \neq 0$ are constants and at least one of u or v is nonzero; PH curve is uniformly parameterized straight line.
- u and v are nonzero constants, w is not a constant; PH curve is nonuniformly parameterized straight line.
- $w \neq 0$ and $u= \pm v$ or at least one of u, v equals zero; PH curve is nonuniformly parameterized straight line.

We will now eliminate some uninteresting cases:

- $w=0$ or $u=v=0 ; \mathrm{PH}$ curve r is a point,
- u, v and $w \neq 0$ are constants and at least one of u or v is nonzero; PH curve is uniformly parameterized straight line.
- u and v are nonzero constants, w is not a constant; PH curve is nonuniformly parameterized straight line.
- $w \neq 0$ and $u= \pm v$ or at least one of u, v equals zero; PH curve is nonuniformly parameterized straight line.

Therefore, we will only consider cases, where $u, v, w \neq 0$, and u, v not both constants.

Such PH curves are of degree at least 3.

PH curves have clearly less degrees of freedom than general polynomial curves

Lema

PH curve of degree n has (at most) $n+3$ degrees of freedom ($n-1$ less than general polynomial curve of degree n).

PH curves have clearly less degrees of freedom than general polynomial curves

Lema

PH curve of degree n has (at most) $n+3$ degrees of freedom ($n-1$ less than general polynomial curve of degree n).

Conjecture:

PH curve can interpolate $n+1$ points in the geometric sense.
For prescribed parameters PH curve can interpolate at most $\lfloor(n+3) / 2\rfloor$ points.

- First interesting case are cubic PH curves, where $w=1$, $\max \{\operatorname{deg}(u), \operatorname{deg}(v)\}=1$.
- Non-constant $w(t)$ may produce irregular curves, if w has real roots within the curve parameter domain. Therefore, we take $w(t)=1$. Then the PH curve is always of odd degree.
- First interesting case are cubic PH curves, where $w=1$, $\max \{\operatorname{deg}(u), \operatorname{deg}(v)\}=1$.
- Non-constant $w(t)$ may produce irregular curves, if w has real roots within the curve parameter domain. Therefore, we take $w(t)=1$. Then the PH curve is always of odd degree.
- Let us write u and v in the Bernstein-Bézier form

$$
\begin{aligned}
& u(t)=u_{0} B_{0}^{1}(t)+u_{1} B_{1}^{1}(t), \\
& v(t)=v_{0} B_{0}^{1}(t)+v_{1} B_{1}^{1}(t),
\end{aligned}
$$

where

$$
B_{k}^{n}(t)=\binom{n}{k}(1-t)^{n-k} t^{k}
$$

and assume $u_{0}: u_{1} \neq v_{0}: v_{1}$.

We obtain the cubic PH curve

$$
\mathbf{r}(t)=(x(t), y(t))^{T}=\sum_{k=0}^{3} \mathbf{p}_{k} B_{k}^{n}(t)
$$

as

$$
\begin{aligned}
& x(t)=\int_{0}^{t}\left(u^{2}(t)-v^{2}(t)\right) d t \\
& y(t)=\int_{0}^{t} 2 u(t) v(t) d t
\end{aligned}
$$

Theorem

Control points of a cubic Bézier PH curve satisfy

$$
\begin{aligned}
& \mathbf{p}_{1}=\mathbf{p}_{0}+\frac{1}{3}\left(u_{0}^{2}-v_{0}^{2}, 2 u_{0} v_{0}\right)^{T}, \\
& \mathbf{p}_{2}=\mathbf{p}_{1}+\frac{1}{3}\left(u_{0} u_{1}-v_{0} v_{1}, u_{0} v_{1}+u_{1} v_{0}\right)^{T}, \\
& \mathbf{p}_{3}=\mathbf{p}_{2}+\frac{1}{3}\left(u_{1}^{2}-v_{1}^{2}, 2 u_{1} v_{1}\right)^{T},
\end{aligned}
$$

where \mathbf{p}_{0} is an arbitrary control point, satisfying constants from integration.

Theorem (Characterization)

Let \mathbf{r} be a cubic Bézier curve with control points $\mathbf{p}_{k}, k=0, \ldots, 3$. Moreover let $L_{i}:=\left\|\Delta \mathbf{p}_{i}\right\|, i=0,1,2$ and let θ_{1} and θ_{2} be the control polygon angles at the interior vertices \mathbf{p}_{1} and \mathbf{p}_{2}. Then \mathbf{r} is a PH curve iff

$$
L_{1}=\sqrt{L_{0} L_{2}} \quad \text { and } \theta_{1}=\theta_{2}
$$

Planar PH curves are connected with complex numbers.

Planar PH curves are connected with complex numbers.

Let us identify

$$
(x, y)^{T} \in \mathbb{R}^{2} \rightarrow x+\mathbf{i} y
$$

Planar curve \mathbf{r} therefore becomes

$$
\mathbf{r}(t)=(x(t), y(t))^{T} \rightarrow \mathbf{z}(t):=x(t)+\mathbf{i} y(t) .
$$

Planar PH curves are connected with complex numbers.

Let us identify

$$
(x, y)^{T} \in \mathbb{R}^{2} \rightarrow x+\mathbf{i} y
$$

Planar curve \mathbf{r} therefore becomes

$$
\mathbf{r}(t)=(x(t), y(t))^{T} \rightarrow \mathbf{z}(t):=x(t)+\mathbf{i} y(t) .
$$

Notation:

- П... regular polynomial curves in \mathbb{R}^{2},
- $\widehat{\Pi}$. . . regular PH curves in \mathbb{R}^{2}.
- Clearly

$$
\hat{\Pi} \subset \Pi,
$$

since there exist regular curves, which are not PH curves, e.g.,

$$
\mathbf{z}(t)=t+\mathrm{i} t^{2}
$$

- Let us define the mapping $\mathcal{P}: \mathbf{z}(t) \rightarrow \widehat{\mathbf{z}}(t)$ as:
- $\mathbf{w}(t):=\mathbf{z}^{\prime}(t)$,
- Clearly

$$
\hat{\Pi} \subset \Pi,
$$

since there exist regular curves, which are not PH curves, e.g.,

$$
\mathbf{z}(t)=t+\mathrm{i} t^{2}
$$

- Let us define the mapping $\mathcal{P}: \mathbf{z}(t) \rightarrow \widehat{\mathbf{z}}(t)$ as:
- $\mathbf{w}(t):=\mathbf{z}^{\prime}(t)$,
- $\widehat{\mathbf{w}}(t):=\mathbf{w}^{2}(t)$,
- Clearly

$$
\hat{\Pi} \subset \Pi,
$$

since there exist regular curves, which are not PH curves, e.g.,

$$
\mathbf{z}(t)=t+\mathrm{i} t^{2}
$$

- Let us define the mapping $\mathcal{P}: \mathbf{z}(t) \rightarrow \widehat{\mathbf{z}}(t)$ as:
- $\mathbf{w}(t):=\mathbf{z}^{\prime}(t)$,
- $\widehat{\mathbf{w}}(t):=\mathbf{w}^{2}(t)$,
- $\widehat{\mathbf{Z}}(t):=\int \widehat{\mathbf{w}}(\tau) d \tau$.

Here we assume $\mathbf{z}(0)=\widehat{\mathbf{z}}(0)=0$.

Theorem

Mapping \mathcal{P} is a bijection from Π to $\hat{\Pi}$.

Remark: Sets Π and $\hat{\Pi}$ have the same cardinality.

Lemma:

If n is the degree of \mathbf{z} and \hat{n} is the degree of $\hat{\mathbf{z}}$, then

$$
\hat{n}=2 n-1 .
$$

Corollary:
There are no regular PH curves of even degree.

Let $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{3}$ be a spatial polynomial parametric curve

$$
\mathbf{r}(t)=\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)
$$

Curve \mathbf{r} is a spatial Pythagorean-hodograph curve, if there exists a polynomial σ, such that

$$
x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}=\sigma(t)^{2}
$$

Theorem (Kubota)

The Pythagorean condition

$$
a^{2}(t)+b^{2}(t)+c^{2}(t)=d^{2}(t)
$$

is satisfied by relatively prime polynomials a, b, c and d iff there exist polynomials u, v, p and q, such that

$$
\begin{aligned}
& a(t)=u^{2}(t)+v^{2}(t)-p^{2}(t)-q^{2}(t) \\
& b(t)=2[u(t) q(t)+v(t) p(t)] \\
& c(t)=2[v(t) q(t)-u(t) p(t)] \\
& d(t)=u^{2}(t)+v^{2}(t)+p^{2}(t)+q^{2}(t)
\end{aligned}
$$

From the theorem it follows that the hodograph of a spatial PH curve has to be of the form

$$
\begin{aligned}
& x^{\prime}(t)=u^{2}(t)+v^{2}(t)-p^{2}(t)-q^{2}(t), \\
& y^{\prime}(t)=2[u(t) q(t)+v(t) p(t)], \\
& z^{\prime}(t)=2[v(t) q(t)-u(t) p(t)] .
\end{aligned}
$$

From the theorem it follows that the hodograph of a spatial PH curve has to be of the form

$$
\begin{aligned}
& x^{\prime}(t)=u^{2}(t)+v^{2}(t)-p^{2}(t)-q^{2}(t), \\
& y^{\prime}(t)=2[u(t) q(t)+v(t) p(t)], \\
& z^{\prime}(t)=2[v(t) q(t)-u(t) p(t)] .
\end{aligned}
$$

If the polynomials u, v, p, q are of degree n, then the PH curve is of degree $2 n+1$.

Spatial PH curves are connected with quaternions.

Spatial PH curves are connected with quaternions.
Quaternions:

- They form a 4-dimensional vector space \mathbb{H} with standard basis $\{\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$,

$$
\mathbf{1}=(1,0,0,0), \mathbf{i}=(0,1,0,0), \mathbf{j}=(0,0,1,0), \mathbf{k}=(0,0,0,1) .
$$

- First component is a scalar part, other three components form a vector part.
- Let $\mathcal{A}=(a, \mathbf{a})$ and $\mathcal{B}=(b, \mathbf{b}), \quad a, b \in \mathbb{R}, \mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$, then

$$
\mathcal{A}+\mathcal{B}=(a+b, \mathbf{a}+\mathbf{b}), \quad \mathcal{A B}=(a b-\mathbf{a} \cdot \mathbf{b}, \mathbf{a} \mathbf{b}+b \mathbf{a}-\mathbf{a} \times \mathbf{b}) .
$$

- $\mathcal{A}^{*}:=(a,-\mathbf{a})$
- Let $\mathcal{A}(t)=u(t)+v(t) \mathbf{i}+p(t) \mathbf{j}+q(t) \mathbf{k} \in \mathbb{H}$.
- Then

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t) \\
& =\left[u^{2}(t)+v^{2}(t)-p^{2}(t)-q^{2}(t)\right] \mathbf{i} \\
& +2[u(t) q(t)+v(t) p(t)] \mathbf{j} \\
& +2[v(t) q(t)-u(t) p(t)] \mathbf{k} .
\end{aligned}
$$

Procedure:

$$
\mathbf{r}(t):=\int_{0}^{t} \mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t) d t
$$

Thank you!

