Almost Perfect Nonlinear Functions

Samed Bajrić

UNIVERSITY OF PRIMORSKA

FAMNIT
23. January 2012.

Boolean function

- A Boolean function f in n variables is an \mathbb{F}_{2}-valued function on \mathbb{F}_{2}^{n}
- more formally $f: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}$ maps

$$
\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n} \mapsto f(x) \in \mathbb{F}_{2}
$$

- unique representation of f as a polynomial over \mathbb{F}_{2} in n variables of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathbb{F}_{2}^{n}} a_{u}\left(\prod_{i=1}^{n} x^{u_{i}}\right), \quad a_{u} \in \mathbb{F}_{2}
$$

is called the algebraic normal form of f

Vectorial Boolean function

- Any function F from \mathbb{F}_{2}^{n} into \mathbb{F}_{2}^{n} can be considered as a vectorial Boolean function, i.e. F can be presented in the form

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where the Boolean functions f_{1}, \ldots, f_{n} are called the coordinate or component functions of the function F

- A function F is affine if $\operatorname{deg}(F) \leq 1$
F is called linear if it is affine and $F(0)=0$
The functions of the algebraic degree 2 are called quadratic functions

Vectorial Boolean function

- A function $F: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{m}$ is called balanced if it takes every value on \mathbb{F}_{2}^{m} the same number 2^{n-m} of times.
The balanced functions from \mathbb{F}_{2}^{n} to itself are the permutations of \mathbb{F}_{2}^{n}
- Let $F: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{n}$. The function $W_{F}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \mapsto \mathbb{Z}$ defined by

$$
W_{F}(a, b)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{b \cdot F(x)+a \cdot x}, \quad a \in \mathbb{F}_{2}^{n}, b \in \mathbb{F}_{2}^{n^{*}}
$$

is called the Walsh transform of the function F

- the set

$$
\Lambda_{F}=\left\{W_{F}(a, b): a \in \mathbb{F}_{2}^{n}, b \in \mathbb{F}_{2}^{n^{*}}\right\}
$$

is called the Walsh spectrum of F

Vectorial Boolean function

- the nonlinearity of a function $F: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{n}$ is the value

$$
\mathcal{N} \mathcal{L}(F)=2^{n-1}-\frac{1}{2} \max _{a, b \in \mathbb{F}_{2}^{n}, b \neq 0}\left|W_{F}(a, b)\right|
$$

which equals the minimum Hamming distance between all nonzero linear combinations of the coordinate functions of F and all affine Boolean functions on n variables.

- the nonlinearity of any function $F: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{n}$ has the same upper bound

$$
\mathcal{N} \mathcal{L}(F) \leq 2^{n-1}-2^{\frac{n}{2}-1}
$$

as a Boolean functions
the functions for which equality holds are called bent

Vectorial Boolean function

Proposition

A function $F: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{n}$ is bent if and only if one of the following conditions holds:
(1) for any nonzero $c \in \mathbb{F}_{2}^{n}$ the Boolean function $c \cdot F$ is bent
(1) $\Lambda_{F}=\left\{ \pm 2^{\frac{n}{2}}\right\}$
(1) for any nonzero $a \in \mathbb{F}_{2}^{n}$ the function $F(x+a)+F(x)$ is balanced

- A function $F: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{n}$ is called perfect nonlinear if for any nonzero $a \in \mathbb{F}_{2}^{n}$ the function $F(x+a)+F(x)$ is balanced

Clearly, a function F is bent if and only if it is perfect nonlinear

$A P N$ and $A B$ functions

Definiton

Let F be a function from \mathbb{F}_{2}^{n} into \mathbb{F}_{2}^{n}. For any $a \in \mathbb{F}_{2}^{n}$, derivative of F is the function $D_{a} F$ from \mathbb{F}_{2}^{n} into \mathbb{F}_{2}^{n} defined by

$$
D_{a} F(x)=F(x+a)+F(x), \quad \forall x \in \mathbb{F}_{2}^{n}
$$

If $D_{a} F(x)$ is constant then a is said to be a linear structure of F.

$A P N$ and $A B$ functions

Definiton

Let F be a function from \mathbb{F}_{2}^{n} into \mathbb{F}_{2}^{n}. For any $a, b \in \mathbb{F}_{2}^{n}$, we denote

$$
\delta(a, b)=\#\left\{x \in \mathbb{F}_{2}^{n}: D_{a} F(x)=b\right\},
$$

where $\# E$ is cardinality of any set E. Then, we have

$$
\delta(F)=\max _{a \neq 0, b \in \mathbb{F}_{2}^{n}} \delta(a, b) \geq 2,
$$

and the functions for which equality holds are said to be Almost Perfect Nonlinear (APN)

$A P N$ and $A B$ functions

The APN property can be equivalently defined as follows.

Proposition

Let F be any function on \mathbb{F}_{2}^{n}. Then, F is Almost Perfect Nonlinear (APN) IF AND ONLY IF, for any nonzero $a \in \mathbb{F}_{2}^{n}$, the set

$$
\left\{D_{a} F(x): x \in \mathbb{F}_{2}^{n}\right\}
$$

has cardinality 2^{n-1}.

$A P N$ and $A B$ functions

- a better bound for the nonlinearity exists

$$
\mathcal{N} \mathcal{L}(F) \leq 2^{n-1}-2^{\frac{n-1}{2}}
$$

in case of equality the function F is called almost bent ($A B$) or maximum nonlinear

- AB functions exist only for n odd
- when n is even, functions with the nonlinearity

$$
2^{n-1}-2^{\frac{n}{2}}
$$

are known and it is conjectured that this value is the highest possible nonlinearity for the case n even

$A P N$ and $A B$ functions

- the correspondence between functions in the finite field and functions in the vector space
- any function F from \mathbb{F}_{2}^{n} into \mathbb{F}_{2}^{n} can be expressed as a polynomial in $\mathbb{F}_{2^{n}}[x]$

```
Example
\(F: \mathbb{F}_{2^{3}} \mapsto \mathbb{F}_{2^{3}}, F(x)=x^{3}\).
```


Characterizations of $A B$ functions

Proposition

A function $F: \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2^{n}}$ is $A B$ if and only if one of the following conditions is satisfied:
(1) $\Lambda_{F}=\left\{0, \pm 2^{\frac{n+1}{2}}\right\}$;
(1) for every $a, b \in \mathbb{F}_{2^{n}}$ the system of equations

$$
\left\{\begin{array}{cll}
x+y+z & = & 0 \\
F(x)+F(y)+F(z) & = & b
\end{array}\right.
$$

has $3 \cdot 2^{n}-2$ solutions (x, y, z) if $b=F(a)$, and $2^{n}-2$ solutions otherwise;
(11) the function $\gamma_{F}: \mathbb{F}_{2}^{2 n} \mapsto \mathbb{F}_{2}$ defined by equality

$$
\gamma_{F}(a, b)=\left\{\begin{array}{cc}
1 & \text { if } a \neq 0 \text { and } \delta_{F}(a, b) \neq 0 \\
0 & \text { otherwise }
\end{array}\right. \text { is bent. }
$$

Characterizations of APN functions

Proposition

A function $F: \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2^{n}}$ is APN if and only if one of the following conditions is satisfied:
(1) $\Delta_{F}=\left\{\delta_{F}(a, b): a, b \in \mathbb{F}_{2^{n}}, a \neq 0\right\}=\{0,2\}$
(1) for every $(a, b) \neq 0$ the system

$$
\left\{\begin{array}{cc}
x+y & =0 \\
F(x)+F(y) & =b
\end{array}\right.
$$

admits 0 or 2 solutions;
(II) for any nonzero $a \in \mathbb{F}_{2^{m}}$ the derivative $D_{a} F$ is a two-to-one mapping;
(0) the Boolean function γ_{F} has the weight $2^{2 n-1}-2^{n-1}$;
(v) F is not affine on any 2-dimensional affine subspace \mathbb{F}_{2}^{n}

Relationship between AB and APN functions

Lemma

Every $A B$ function is $A P N$ function.

Example
 $F: \mathbb{F}_{2^{3}} \mapsto \mathbb{F}_{2^{3}}, F(x)=x^{3}$, is AB and APN .

- the converse is not true in general, even in the n odd case (counter-examples: inverse function, Dobbertin function)
- if n is odd, then every quadratic APN function is $A B$

Relationship between $A B$ and APN functions

- sufficient conditions for APN functions to be AB :

Proposition

An APN function $F: \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2^{n}}$ is $A B$ if and only if one of the following conditions is fulfilled:
(1) all the values in Λ_{F} are divisible by $2^{\frac{n+1}{2}}$
(1) for any $c \in \mathbb{F}_{2^{n}}$ the Walsh transform of the function $c \cdot F$ takes three values $\left\{0, \pm 2^{r}\right\}, \quad \frac{n}{2} \leq r \leq n$

APN permutations

- the balanced functions from \mathbb{F}_{2}^{n} to itself are the permutations of \mathbb{F}_{2}^{n}
- if F is APN power function with $F(x)=x^{d}$, then $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$ for odd n, and F is a permutation

APN permutations

- the balanced functions from \mathbb{F}_{2}^{n} to itself are the permutations of \mathbb{F}_{2}^{n}
- if F is APN power function with $F(x)=x^{d}$, then $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$ for odd n, and F is a permutation

Example

$$
d=3, n=6
$$

APN permutations

- the balanced functions from \mathbb{F}_{2}^{n} to itself are the permutations of \mathbb{F}_{2}^{n}
- if F is APN power function with $F(x)=x^{d}$, then $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$ for odd n, and F is a permutation

Example

$$
\begin{aligned}
& d=3, n=6 \\
& \Rightarrow \operatorname{gcd}\left(3,2^{6}-1\right)=\operatorname{gcd}(3,63)=3 \neq 1
\end{aligned}
$$

APN permutations

- the balanced functions from \mathbb{F}_{2}^{n} to itself are the permutations of \mathbb{F}_{2}^{n}
- if F is APN power function with $F(x)=x^{d}$, then $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$ for odd n, and F is a permutation

Example

$$
\begin{aligned}
& d=3, n=6 \\
& \Rightarrow \operatorname{gcd}\left(3,2^{6}-1\right)=\operatorname{gcd}(3,63)=3 \neq 1 \\
& \alpha^{21} \Rightarrow\left(\alpha^{21}\right)^{3}=\alpha^{63}=1, \text { since } \alpha^{2^{n}-1}=1 \text { in every } \mathbb{F}_{2^{n}}
\end{aligned}
$$

APN permutations

- the balanced functions from \mathbb{F}_{2}^{n} to itself are the permutations of \mathbb{F}_{2}^{n}
- if F is APN power function with $F(x)=x^{d}$, then $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$ for odd n, and F is a permutation

Example

$$
\begin{aligned}
& d=3, n=6 \\
& \Rightarrow \operatorname{gcd}\left(3,2^{6}-1\right)=\operatorname{gcd}(3,63)=3 \neq 1 \\
& \alpha^{21} \Rightarrow\left(\alpha^{21}\right)^{3}=\alpha^{63}=1, \text { since } \alpha^{2^{n}-1}=1 \text { in every } \mathbb{F}_{2^{n}} \\
& \alpha^{42} \Rightarrow\left(\alpha^{42}\right)^{3}=\alpha^{126}=\left(\alpha^{63}\right)^{2}=1
\end{aligned}
$$

APN permutations

- the balanced functions from \mathbb{F}_{2}^{n} to itself are the permutations of \mathbb{F}_{2}^{n}
- if F is APN power function with $F(x)=x^{d}$, then $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$ for odd n, and F is a permutation

Example

$$
\begin{aligned}
& d=3, n=6 \\
& \Rightarrow \operatorname{gcd}\left(3,2^{6}-1\right)=\operatorname{gcd}(3,63)=3 \neq 1 \\
& \alpha^{21} \Rightarrow\left(\alpha^{21}\right)^{3}=\alpha^{63}=1, \text { since } \alpha^{2^{n}-1}=1 \text { in every } \mathbb{F}_{2^{n}} \\
& \alpha^{42} \Rightarrow\left(\alpha^{42}\right)^{3}=\alpha^{126}=\left(\alpha^{63}\right)^{2}=1 \\
& 1 \Rightarrow 1^{3}=1
\end{aligned}
$$

APN permutations

- the balanced functions from \mathbb{F}_{2}^{n} to itself are the permutations of \mathbb{F}_{2}^{n}
- if F is APN power function with $F(x)=x^{d}$, then $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$ for odd n, and F is a permutation

Example

$$
\begin{aligned}
& d=3, n=6 \\
& \Rightarrow \operatorname{gcd}\left(3,2^{6}-1\right)=\operatorname{gcd}(3,63)=3 \neq 1 \\
& \alpha^{21} \Rightarrow\left(\alpha^{21}\right)^{3}=\alpha^{63}=1, \text { since } \alpha^{2^{n}-1}=1 \text { in every } \mathbb{F}_{2^{n}} \\
& \alpha^{42} \Rightarrow\left(\alpha^{42}\right)^{3}=\alpha^{126}=\left(\alpha^{63}\right)^{2}=1 \\
& 1 \Rightarrow 1^{3}=1
\end{aligned}
$$

Conclusion: F is not a permutation!

Vectorial Boolean function $A P N$ and $A B$ functions

APN permutations

- if F is APN power function with $F(x)=x^{d}$, then $\operatorname{gcd}\left(d, 2^{n}-1\right)=3$ for even n, and F is three-to-one

Fact

There are $A P N$ permutations on $\mathbb{F}_{2^{6}}$

Open Problem

Are there $A P N$ permutations on $\mathbb{F}_{2^{2 n}}, n>3$?

APN permutations

Theorem

If F is $A P N$ permutation, then F^{-1} is $A P N$.

Proof

Prove F^{-1} is is APN where F is an APN permutation.
Since F is a permutation, F is bijective and since F is APN, if is $b \in D_{a} F$, then $F(x+a)+F(x)=b$ has exactly 2 solutions. Let $y=F(x)$ and $y^{\prime}=F(x+a)$, then $y^{\prime}=y+b$. So, for given a and $b, F(x+a)+F(x)=b$ has exactly 0 or 2 solutions. But, $x+a=F^{-1}(y+b)$ and $x=F^{-1}(y)$, so $F^{-1}(y+b)+F^{-1}(y)=a$ which has exactly 0 or 2 solutions since $F(x+a)+F(x)=b$ has exactly 0 or 2 solutions. That means, F^{-1} is APN.

Known APN power functions x^{d} on $\mathbb{F}_{2^{n}}$ up to EA-equivalence and inverse

	Exponents d	Conditions
Gold functions	$2^{i}+1$	$\operatorname{gcd}(\mathrm{i}, \mathrm{n})=1$
Kasami functions	$2^{2 i}-2^{i}+1$	$\operatorname{gcd}(\mathrm{i}, \mathrm{n})=1$
Welch function	$2^{t}+3$	$n=2 t+1$
Niho function	$2^{t}-2^{\frac{t}{2 t}}-1, \mathrm{t}$ even	
$2^{t}-2^{\frac{3++1}{2}}-1, \mathrm{t}$ odd	$n=2 t+1$	
Inverse function	$2^{2 t}-1$	$n=2 t+1$
Dobbertin function	$2^{4 t}+2^{3 t}+2^{2 t}+2^{t}-1$	$n=5 t$

Known APN power functions x^{d} on $\mathbb{F}_{2^{n}}$ up to EA-equivalence and inverse

	Exponents d	Conditions
Gold functions	$2^{i}+1$	$\operatorname{gcd}(\mathrm{i}, \mathrm{n})=1$
Kasami functions	$2^{2 i}-2^{i}+1$	$\operatorname{gcd}(\mathrm{i}, \mathrm{n})=1$
Welch function	$2^{t}+3$	$n=2 t+1$
Niho function	$2^{t}-2^{\frac{t}{2 t}}-1, \mathrm{t}$ even	$n=2 t+1$
	$2^{t}-2^{\frac{3++1}{2}}-1, \mathrm{t}$ odd	
Inverse function	$2^{2 t}-1$	$n=2 t+1$
Dobbertin function	$2^{4 t}+2^{3 t}+2^{2 t}+2^{t}-1$	$n=5 t$

Conjecture

This list of APN power functions is complete. (Dobbertin)

Known APN power functions x^{d} on $\mathbb{F}_{2^{n}}$ up to EA-equivalence and inverse

	Exponents d	Conditions
Gold functions	$2^{i}+1$	$\operatorname{gcd}(\mathrm{i}, \mathrm{n})=1$
Kasami functions	$2^{2 i}-2^{i}+1$	$\operatorname{gcd}(\mathrm{i}, \mathrm{n})=1$
Welch function	$2^{t}+3$	$n=2 t+1$
Niho function	$2^{t}-2^{\frac{t}{2}}-1, \mathrm{t}$ even	$n=2 t+1$
	$2^{t}-2^{\frac{3 t+1}{2}}-1, \mathrm{t}$ odd	
Inverse function	$2^{2 t}-1$	$n=2 t+1$
Dobbertin function	$2^{4 t}+2^{3 t}+2^{2 t}+2^{t}-1$	$n=5 t$

Conjecture

This list of APN power functions is complete. (Dobbertin)
proved by Dobbertin: APN power functions are permutations of $\mathbb{F}_{2^{n}}$ if n is odd, and are three-to-one if n is even

Thank you for your Attention!

