Almost Perfect Nonlinear Functions

Samed Bajrić

UNIVERSITY OF PRIMORSKA
FAMNIT

A **Boolean function** f in n variables is an \mathbb{F}_2-valued function on \mathbb{F}_2^n

more formally $f : \mathbb{F}_2^n \mapsto \mathbb{F}_2$ maps

$$(x_1, \ldots, x_n) \in \mathbb{F}_2^n \mapsto f(x) \in \mathbb{F}_2$$

unique representation of f as a polynomial over \mathbb{F}_2 in n variables of the form

$$f(x_1, \ldots, x_n) = \sum_{u \in \mathbb{F}_2^n} a_u (\prod_{i=1}^{n} x_{u_i}), \quad a_u \in \mathbb{F}_2$$

is called the **algebraic normal form** of f
Any function F from \mathbb{F}_2^n into \mathbb{F}_2^n can be considered as a \textit{vectorial Boolean function}, i.e. F can be presented in the form

$$F(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n))$$

where the Boolean functions f_1, \ldots, f_n are called the \textit{coordinate} or \textit{component functions} of the function F.

A function F is \textit{affine} if $\deg(F) \leq 1$.

F is called \textit{linear} if it is affine and $F(0) = 0$.

The functions of the algebraic degree 2 are called \textit{quadratic functions}.
A function $F : \mathbb{F}_2^n \mapsto \mathbb{F}_2^m$ is called \textit{balanced} if it takes every value on \mathbb{F}_2^m the same number 2^{n-m} of times.

The balanced functions from \mathbb{F}_2^n to itself are the permutations of \mathbb{F}_2^n.

Let $F : \mathbb{F}_2^n \mapsto \mathbb{F}_2^n$. The function $W_F : \mathbb{F}_2^n \times \mathbb{F}_2^n \mapsto \mathbb{Z}$ defined by

$$W_F(a, b) = \sum_{x \in \mathbb{F}_2^n} (-1)^{b \cdot F(x) + a \cdot x}, \quad a \in \mathbb{F}_2^n, b \in \mathbb{F}_2^n^*$$

is called the \textit{Walsh transform} of the function F.

The set

$$\Lambda_F = \{ W_F(a, b) : a \in \mathbb{F}_2^n, b \in \mathbb{F}_2^n^* \}$$

is called the \textit{Walsh spectrum} of F.

Samed Bajrić

Almost Perfect Nonlinear Functions
the nonlinearity of a function $F : \mathbb{F}_2^n \mapsto \mathbb{F}_2^n$ is the value

$$\mathcal{N}\mathcal{L}(F) = 2^{n-1} - \frac{1}{2} \max_{a,b \in \mathbb{F}_2^n, b \neq 0} |W_F(a, b)|$$

which equals the minimum Hamming distance between all nonzero linear combinations of the coordinate functions of F and all affine Boolean functions on n variables.

the nonlinearity of any function $F : \mathbb{F}_2^n \mapsto \mathbb{F}_2^n$ has the same upper bound

$$\mathcal{N}\mathcal{L}(F) \leq 2^{n-1} - 2^{\frac{n}{2}-1}$$

as a Boolean functions

the functions for which equality holds are called bent
Vectorial Boolean function

Proposition

A function $F : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$ is bent if and only if one of the following conditions holds:

1. for any nonzero $c \in \mathbb{F}_2^n$ the Boolean function $c \cdot F$ is bent

2. $\Lambda_F = \{ \pm 2^{n/2} \}$

3. for any nonzero $a \in \mathbb{F}_2^n$ the function $F(x + a) + F(x)$ is balanced

A function $F : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$ is called perfect nonlinear if for any nonzero $a \in \mathbb{F}_2^n$ the function $F(x + a) + F(x)$ is balanced

Clearly, a function F is bent if and only if it is perfect nonlinear
APN and AB functions

Definition

Let F be a function from \mathbb{F}_2^n into \mathbb{F}_2^n. For any $a \in \mathbb{F}_2^n$, the **derivative** of F is the function $D_a F$ from \mathbb{F}_2^n into \mathbb{F}_2^n defined by

$$D_a F(x) = F(x + a) + F(x), \quad \forall x \in \mathbb{F}_2^n$$

If $D_a F(x)$ is constant then a is said to be a linear structure of F.

Samed Bajrić
Almost Perfect Nonlinear Functions
Definition

Let F be a function from \mathbb{F}_2^n into \mathbb{F}_2^n. For any $a, b \in \mathbb{F}_2^n$, we denote

$$\delta(a, b) = \# \{x \in \mathbb{F}_2^n : D_a F(x) = b\},$$

where $\# E$ is cardinality of any set E. Then, we have

$$\delta(F) = \max_{a \neq 0, b \in \mathbb{F}_2^n} \delta(a, b) \geq 2,$$

and the functions for which equality holds are said to be **Almost Perfect Nonlinear (APN)**.
The APN property can be equivalently defined as follows.

Proposition

Let F be any function on \mathbb{F}_2^n. Then, F is Almost Perfect Nonlinear (APN) IF AND ONLY IF, for any nonzero $a \in \mathbb{F}_2^n$, the set

$$\{ D_a F(x) : x \in \mathbb{F}_2^n \}$$

has cardinality 2^{n-1}.
a better bound for the nonlinearity exists

\[\mathcal{NL}(F) \leq 2^{n-1} - 2^{\frac{n-1}{2}} \]

in case of equality the function \(F \) is called \textit{almost bent (AB)} or \textit{maximum nonlinear}

- AB functions exist only for \(n \) odd

- when \(n \) is even, functions with the nonlinearity

\[2^{n-1} - 2^{\frac{n}{2}} \]

are known and it is conjectured that this value is the highest possible nonlinearity for the case \(n \) even
APN and AB functions

- the correspondence between functions in the finite field and functions in the vector space

- any function F from \mathbb{F}_2^n into \mathbb{F}_2^n can be expressed as a polynomial in $\mathbb{F}_{2^n}[x]$

Example

$F : \mathbb{F}_{2^3} \rightarrow \mathbb{F}_{2^3}, F(x) = x^3$.
Characterizations of AB functions

Proposition

A function $F : \mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^n}$ is AB if and only if one of the following conditions is satisfied:

1. $\Lambda_F = \{0, \pm 2^{\frac{n+1}{2}}\}$;

2. for every $a, b \in \mathbb{F}_{2^n}$ the system of equations

$$\begin{align*}
 x + y + z &= 0 \\
 F(x) + F(y) + F(z) &= b
\end{align*}$$

has $3 \cdot 2^n - 2$ solutions (x, y, z) if $b = F(a)$, and $2^n - 2$ solutions otherwise;

3. the function $\gamma_F : \mathbb{F}_{2^n}^2 \mapsto \mathbb{F}_2$ defined by equality

$$\gamma_F(a, b) = \begin{cases}
1 & \text{if } a \neq 0 \text{ and } \delta_F(a, b) \neq 0 \\
0 & \text{otherwise}
\end{cases}$$

is bent.
Characterizations of APN functions

Proposition

A function \(F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n} \) is APN if and only if one of the following conditions is satisfied:

\[
\begin{align*}
\text{I} & \quad \Delta_F = \{ \delta_F(a, b) : a, b \in \mathbb{F}_{2^n}, a \neq 0 \} = \{0, 2\} \\
\text{II} & \quad \text{for every } (a, b) \neq 0 \text{ the system} \\
& \quad \begin{cases}
 x + y = 0 \\
 F(x) + F(y) = b
\end{cases} \\
& \quad \text{admits 0 or 2 solutions;}
\text{III} & \quad \text{for any nonzero } a \in \mathbb{F}_{2^m} \text{ the derivative } D_aF \text{ is a two-to-one mapping;}
\text{IV} & \quad \text{the Boolean function } \gamma_F \text{ has the weight } 2^{2n-1} - 2^{n-1};
\text{V} & \quad F \text{ is not affine on any 2-dimensional affine subspace } \mathbb{F}_{2}^n
\end{align*}
\]
Relationship between AB and APN functions

Lemma

Every AB function is APN function.

Example

\[F : \mathbb{F}_{2^3} \rightarrow \mathbb{F}_{2^3}, F(x) = x^3, \text{ is AB and APN.} \]

- the converse is not true in general, even in the \(n \) odd case
 (counter-examples: inverse function, Dobbertin function)

- if \(n \) is odd, then every quadratic APN function is AB
sufficient conditions for APN functions to be AB:

Proposition

An APN function $F : \mathbb{F}_{2^n} \leftrightarrow \mathbb{F}_{2^n}$ is AB if and only if one of the following conditions is fulfilled:

1. all the values in Λ_F are divisible by $2^{\frac{n+1}{2}}$

2. for any $c \in \mathbb{F}_{2^n}$ the Walsh transform of the function $c \cdot F$ takes three values $\{0, \pm 2^r\}$, $\frac{n}{2} \leq r \leq n$
Vectorial Boolean functions

APN and AB functions

APN permutations

- the balanced functions from \mathbb{F}_2^n to itself are the permutations of \mathbb{F}_2^n
- if F is APN power function with $F(x) = x^d$, then $\gcd(d, 2^n - 1) = 1$ for odd n, and F is a permutation
APN permutations

- The balanced functions from \mathbb{F}_2^n to itself are the permutations of \mathbb{F}_2^n.

- If F is APN power function with $F(x) = x^d$, then $\gcd(d, 2^n - 1) = 1$ for odd n, and F is a permutation.

Example

$d = 3, n = 6$
APN permutations

- The balanced functions from \mathbb{F}_2^m to itself are the permutations of \mathbb{F}_2^m.

- If F is APN power function with $F(x) = x^d$, then $\gcd(d, 2^n - 1) = 1$ for odd n, and F is a permutation.

Example

$d = 3$, $n = 6$

$\Rightarrow \gcd(3, 2^6 - 1) = \gcd(3, 63) = 3 \neq 1$
the balanced functions from \mathbb{F}_2^n to itself are the permutations of \mathbb{F}_2^n

if F is APN power function with $F(x) = x^d$, then $gcd(d, 2^n - 1) = 1$ for odd n, and F is a permutation

Example

$d = 3, n = 6$

$\Rightarrow gcd(3, 2^6 - 1) = gcd(3, 63) = 3 \neq 1$

$\alpha^{21} \Rightarrow (\alpha^{21})^3 = \alpha^{63} = 1$, since $\alpha^{2^n-1} = 1$ in every \mathbb{F}_{2^n}
APN permutations

- the balanced functions from \mathbb{F}_2^n to itself are the permutations of \mathbb{F}_2^n

- if F is APN power function with $F(x) = x^d$, then $gcd(d, 2^n - 1) = 1$ for odd n, and F is a permutation

Example

$d = 3, n = 6$

$\Rightarrow gcd(3, 2^6 - 1) = gcd(3, 63) = 3 \neq 1$

$\alpha^{21} \Rightarrow (\alpha^{21})^3 = \alpha^{63} = 1$, since $\alpha^{2^n-1} = 1$ in every \mathbb{F}_{2^n}

$\alpha^{42} \Rightarrow (\alpha^{42})^3 = \alpha^{126} = (\alpha^{63})^2 = 1$
the balanced functions from \mathbb{F}_2^n to itself are the permutations of \mathbb{F}_2^n.

if F is APN power function with $F(x) = x^d$, then $gcd(d, 2^n - 1) = 1$ for odd n, and F is a permutation.

Example

d = 3, n = 6
$
⇒ gcd(3, 2^6 - 1) = gcd(3, 63) = 3 \neq 1$

$\alpha^{21} ⇒ (\alpha^{21})^3 = \alpha^{63} = 1$, since $\alpha^{2^n - 1} = 1$ in every \mathbb{F}_{2^n}

$\alpha^{42} ⇒ (\alpha^{42})^3 = \alpha^{126} = (\alpha^{63})^2 = 1$

$1 ⇒ 1^3 = 1$
the balanced functions from \mathbb{F}_2^n to itself are the permutations of \mathbb{F}_2^n

if F is APN power function with $F(x) = x^d$, then $gcd(d, 2^n - 1) = 1$ for odd n, and F is a permutation

Example

$d = 3, n = 6$

$\Rightarrow gcd(3, 2^6 - 1) = gcd(3, 63) = 3 \neq 1$

$\alpha^{21} \Rightarrow (\alpha^{21})^3 = \alpha^{63} = 1$, since $\alpha^{2^n-1} = 1$ in every \mathbb{F}_{2^n}

$\alpha^{42} \Rightarrow (\alpha^{42})^3 = \alpha^{126} = (\alpha^{63})^2 = 1$

$1 \Rightarrow 1^3 = 1$

Conclusion: F is not a permutation!
if \(F \) is APN power function with \(F(x) = x^d \), then
\[\gcd(d, 2^n - 1) = 3 \text{ for even } n, \text{ and } F \text{ is three-to-one} \]

Fact

There are APN permutations on \(\mathbb{F}_{2^6} \)

Open Problem

Are there APN permutations on \(\mathbb{F}_{2^{2n}}, n > 3 \)?
Theorem

If F *is APN permutation, then* F^{-1} *is APN.*

Proof

Prove F^{-1} *is is APN where* F *is an APN permutation.

Since F *is a permutation,* F *is bijective and since* F *is APN, if is* $b \in D_a F,$ *then* $F(x + a) + F(x) = b$ *has exactly 2 solutions.*

Let $y = F(x)$ *and* $y' = F(x + a),$ *then* $y' = y + b.$ *So, for given* a *and* $b,$ $F(x + a) + F(x) = b$ *has exactly 0 or 2 solutions. But,*

$x + a = F^{-1}(y + b)$ *and* $x = F^{-1}(y),$ *so* $F^{-1}(y + b) + F^{-1}(y) = a$ *which has exactly 0 or 2 solutions since* $F(x + a) + F(x) = b$ *has exactly 0 or 2 solutions. That means,* F^{-1} *is APN.*
Known APN power functions x^d on \mathbb{F}_{2^n} up to EA-equivalence and inverse

<table>
<thead>
<tr>
<th></th>
<th>Exponents d</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold functions</td>
<td>$2^i + 1$</td>
<td>$\gcd(i,n) = 1$</td>
</tr>
<tr>
<td>Kasami functions</td>
<td>$2^{2i} - 2^i + 1$</td>
<td>$\gcd(i,n) = 1$</td>
</tr>
<tr>
<td>Welch function</td>
<td>$2^t + 3$</td>
<td>$n = 2t + 1$</td>
</tr>
<tr>
<td>Niho function</td>
<td>$2^t - 2^{\frac{t}{2}} - 1$, t even</td>
<td>$n = 2t + 1$</td>
</tr>
<tr>
<td></td>
<td>$2^t - 2^{\frac{3t+1}{2}} - 1$, t odd</td>
<td></td>
</tr>
<tr>
<td>Inverse function</td>
<td>$2^{2t} - 1$</td>
<td>$n = 2t + 1$</td>
</tr>
<tr>
<td>Dobbertin function</td>
<td>$2^{4t} + 2^{3t} + 2^{2t} + 2^t - 1$</td>
<td>$n = 5t$</td>
</tr>
</tbody>
</table>

Conjecture

This list of APN power functions is complete. (Dobbertin) proved by Dobbertin: APN power functions are permutations of \mathbb{F}_{2^n} if n is odd, and are three-to-one if n is even.

Samed Bajrić
Almost Perfect Nonlinear Functions
Known APN power functions x^d on \mathbb{F}_{2^n} up to EA-equivalence and inverse

<table>
<thead>
<tr>
<th></th>
<th>Exponents d</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold functions</td>
<td>$2^i + 1$</td>
<td>$\gcd(i,n)=1$</td>
</tr>
<tr>
<td>Kasami functions</td>
<td>$2^{2i} - 2^i + 1$</td>
<td>$\gcd(i,n)=1$</td>
</tr>
<tr>
<td>Welch function</td>
<td>$2^t + 3$</td>
<td>$n = 2t + 1$</td>
</tr>
<tr>
<td>Niho function</td>
<td>$2^t - 2^{\frac{t}{2}} - 1$, t even</td>
<td>$n = 2t + 1$</td>
</tr>
<tr>
<td></td>
<td>$2^t - 2^{\frac{3t+1}{2}} - 1$, t odd</td>
<td></td>
</tr>
<tr>
<td>Inverse function</td>
<td>$2^{2t} - 1$</td>
<td>$n = 2t + 1$</td>
</tr>
<tr>
<td>Dobbertin function</td>
<td>$2^{4t} + 2^{3t} + 2^{2t} + 2^t - 1$</td>
<td>$n = 5t$</td>
</tr>
</tbody>
</table>

Conjecture

This list of APN power functions is complete. (Dobbertin)
Known APN power functions x^d on \mathbb{F}_{2^n} up to EA-equivalence and inverse

<table>
<thead>
<tr>
<th>Exponents d</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold functions</td>
<td>$2^i + 1$</td>
</tr>
<tr>
<td>Kasami functions</td>
<td>$2^{2i} - 2^i + 1$</td>
</tr>
<tr>
<td>Welch function</td>
<td>$2^t + 3$</td>
</tr>
<tr>
<td>Niho function</td>
<td>$2^t - 2^{\frac{t}{2}} - 1$, t even</td>
</tr>
<tr>
<td></td>
<td>$2^t - 2^{\frac{3t+1}{2}} - 1$, t odd</td>
</tr>
<tr>
<td>Inverse function</td>
<td>$2^{2^t} - 1$</td>
</tr>
<tr>
<td>Dobbertin function</td>
<td>$2^{4t} + 2^{3t} + 2^{2t} + 2^t - 1$</td>
</tr>
</tbody>
</table>

Conjecture

This list of APN power functions is complete. (Dobbertin)

proved by Dobbertin: APN power functions are permutations of \mathbb{F}_{2^n} if n is odd, and are three-to-one if n is even
Thank you for your Attention!