The Price of Connectivity for Vertex Cover

Oliver Schaudt

Joint work with E. Camby, J. Cardinal and S. Fiorini (all from ULB)

Department for Computer Science Group Faigle/Schrader University of Cologne

May 2012

Basics

• A vertex cover is a vertex subset such that every edge is incident to the subset.

• A vertex cover is a vertex subset such that every edge is incident to the subset.

- A vertex cover is a vertex subset such that every edge is incident to the subset.
- The vertex cover number τ is the minimum size of a vertex cover.

- A vertex cover is a vertex subset such that every edge is incident to the subset.
- The vertex cover number τ is the minimum size of a vertex cover.
- A **connected vertex cover** is a vertex cover whose induced subgraph is connected.

- A vertex cover is a vertex subset such that every edge is incident to the subset.
- The vertex cover number τ is the minimum size of a vertex cover.
- A **connected vertex cover** is a vertex cover whose induced subgraph is connected.

- A vertex cover is a vertex subset such that every edge is incident to the subset.
- The vertex cover number τ is the minimum size of a vertex cover.
- A **connected vertex cover** is a vertex cover whose induced subgraph is connected.
- The connected vertex cover number τ_c is the minimum size of a connected vertex cover.

The Price of Connectivity

For a connected graph G we define

 $PoC(G) = \tau_c(G)/\tau(G).$

For a connected graph G we define

$$PoC(G) = \tau_c(G)/\tau(G).$$

For a connected graph G we define

$$PoC(G) = \tau_c(G)/\tau(G).$$

• Here, $\tau = 5$, $\tau_c = 6$

For a connected graph G we define

$$PoC(G) = \tau_c(G)/\tau(G).$$

• Here, $\tau = 5$, $\tau_c = 6 \implies PoC = 6/5$.

For a connected graph G we define

$$PoC(G) = \tau_c(G)/\tau(G).$$

- Here, $\tau = 5$, $\tau_c = 6 \implies PoC = 6/5$.
- In general, $1 \leq PoC < 2$.

•
$$\tau(P_5) = 2, \tau_c(P_5) = 3$$

•
$$\tau(P_5) = 2, \ \tau_c(P_5) = 3 \implies PoC(P_5) = 3/2.$$

•
$$\tau(P_5) = 2, \ \tau_c(P_5) = 3 \implies PoC(P_5) = 3/2.$$

•
$$\tau(P_5) = 2, \ \tau_c(P_5) = 3 \implies PoC(P_5) = 3/2.$$

We call a connected graph G critical if for every connected induced subgraph H it holds that PoC(H) < PoC(G).

•
$$\tau(P_5) = 2, \ \tau_c(P_5) = 3 \implies PoC(P_5) = 3/2.$$

• PoC = 1 for every connected proper induced subgraph of P_5 .

We call a connected graph G **critical** if for every connected induced subgraph H it holds that PoC(H) < PoC(G).

•
$$\tau(P_5) = 2, \ \tau_c(P_5) = 3 \implies PoC(P_5) = 3/2.$$

• PoC = 1 for every connected proper induced subgraph of P_5 .

• Thus *P*₅ is critical.

• Any path of even length \geq 4 is critical.

• Any path of even length \geq 4 is critical.

•
$$\tau(P_{2k+1}) = k, \ \tau_c(P_{2k+1}) = 2k - 1$$

• Any path of even length \geq 4 is critical.

•
$$\tau(P_{2k+1}) = k$$
, $\tau_c(P_{2k+1}) = 2k - 1 \implies PoC(P_{2k+1}) = 2 - 1/k$.

•
$$\tau(P_{2k+1}) = k$$
, $\tau_c(P_{2k+1}) = 2k - 1 \implies PoC(P_{2k+1}) = 2 - 1/k$.

•
$$\tau(P_{2k+1}) = k$$
, $\tau_c(P_{2k+1}) = 2k - 1 \implies PoC(P_{2k+1}) = 2 - 1/k$.

•
$$\tau(P_{2k+1}) = k$$
, $\tau_c(P_{2k+1}) = 2k - 1 \implies PoC(P_{2k+1}) = 2 - 1/k$.

•
$$\tau(P_{2k+1}) = k$$
, $\tau_c(P_{2k+1}) = 2k - 1 \implies PoC(P_{2k+1}) = 2 - 1/k$.

•
$$\tau(P_{2k+1}) = k$$
, $\tau_c(P_{2k+1}) = 2k - 1 \implies PoC(P_{2k+1}) = 2 - 1/k$.

•
$$\tau(P_{2k+1}) = k$$
, $\tau_c(P_{2k+1}) = 2k - 1 \implies PoC(P_{2k+1}) = 2 - 1/k$.

• Any path of even length \geq 4 is critical.

•
$$\tau(P_{2k+1}) = k$$
, $\tau_c(P_{2k+1}) = 2k - 1 \implies PoC(P_{2k+1}) = 2 - 1/k$.

• Any cycle of even length is critical.

• Any path of even length \geq 4 is critical.

•
$$\tau(P_{2k+1}) = k$$
, $\tau_c(P_{2k+1}) = 2k - 1 \implies PoC(P_{2k+1}) = 2 - 1/k$.

• Any cycle of even length is critical.

•
$$au(C_{2k}) = k$$
, $au_c(C_{2k}) = 2k - 1$

•
$$\tau(P_{2k+1}) = k$$
, $\tau_c(P_{2k+1}) = 2k - 1 \implies PoC(P_{2k+1}) = 2 - 1/k$.

- Any cycle of even length is critical.
- $\tau(C_{2k}) = k, \ \tau_c(C_{2k}) = 2k 1 \implies PoC(C_{2k}) = 2 1/k.$

• Any cycle of odd length is critical.

- Any cycle of odd length is critical.
- $PoC(C_{2k+1}) = 2 1/(k+1)$.

Special trees

• Start with a tree.

Special trees

• Start with a tree.

- Start with a tree.
- Subdivide each edge.

- Start with a tree.
- Subdivide each edge.

- Start with a tree.
- Subdivide each edge.
- Then attach a leaf to each leaf.

- Start with a tree.
- Subdivide each edge.
- Then attach a leaf to each leaf.

- Start with a tree.
- Subdivide each edge.
- Then attach a leaf to each leaf.
- Such tree we call a **special tree**.

- Start with a tree.
- Subdivide each edge.
- Then attach a leaf to each leaf.
- Such tree we call a **special tree**.

- Start with a tree.
- Subdivide each edge.
- Then attach a leaf to each leaf.
- Such tree we call a **special tree**.

Special trees

- Start with a tree.
- Subdivide each edge.
- Then attach a leaf to each leaf.
- Such tree we call a **special tree**.

Observation

A tree is critical if and only if it is a special tree.

O. Schaudt (Cologne)

The Price of Connectivity for Vertex Cover

May 2012 6 / 10

Critical chordal graphs

A chordal graph is critical if and only if it is a special tree.

A chordal graph is critical if and only if it is a special tree.

A chordal graph is critical if and only if it is a special tree.

A chordal graph is critical if and only if it is a special tree.

A chordal graph is critical if and only if it is a special tree.

A chordal graph is critical if and only if it is a special tree.

A chordal graph is critical if and only if it is a special tree.

• Some steps of the proof:

A chordal graph is critical if and only if it is a special tree.

• Some steps of the proof:

• ... 🗆

PoC-perfect graphs

Let G be a graph. The following assertions are equivalent:

• $\tau = \tau_c$ holds for every connected induced subgraph of *G*.

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:
- "⇒":

Let G be a graph. The following assertions are equivalent:

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:

• $PoC(P_5) = 3/2$,

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:
- "⇒":
 - $PoC(P_5) = 3/2$, $PoC(C_4) = 3/2$,

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:
- "⇒":
 - $PoC(P_5) = 3/2$, $PoC(C_4) = 3/2$, and $PoC(C_5) = 4/3$.

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:

• "
$$\implies$$
":
• $PoC(P_5) = 3/2$, $PoC(C_4) = 3/2$, and $PoC(C_5) = 4/3$.
• " \Leftarrow ":

Let G be a graph. The following assertions are equivalent:

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:
- "⇒":

•
$$PoC(P_5) = 3/2$$
, $PoC(C_4) = 3/2$, and $PoC(C_5) = 4/3$.

● "⇐=":

• Let G be a chordal graph with PoC(G) > 1.

Let G be a graph. The following assertions are equivalent:

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:
- "⇒":

•
$$PoC(P_5) = 3/2$$
, $PoC(C_4) = 3/2$, and $PoC(C_5) = 4/3$.

● "⇐=":

- Let G be a chordal graph with PoC(G) > 1.
- We can assume that G is critical.

Let G be a graph. The following assertions are equivalent:

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:
- "⇒":

•
$$PoC(P_5) = 3/2$$
, $PoC(C_4) = 3/2$, and $PoC(C_5) = 4/3$.

● "⇐=":

- Let G be a chordal graph with PoC(G) > 1.
- We can assume that G is critical.
- Thus G is a special tree.

Let G be a graph. The following assertions are equivalent:

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:
- "⇒":

•
$$PoC(P_5) = 3/2$$
, $PoC(C_4) = 3/2$, and $PoC(C_5) = 4/3$.

● "←":

- Let G be a chordal graph with PoC(G) > 1.
- We can assume that G is critical.
- Thus G is a special tree.
- So G contains P_5 as induced subgraph.

Let G be a graph. The following assertions are equivalent:

- $\tau = \tau_c$ holds for every connected induced subgraph of *G*.
- G is (P₅, C₄, C₅)-free.
- G is chordal and P_5 -free.
- Proof:
- "⇒":

•
$$PoC(P_5) = 3/2$$
, $PoC(C_4) = 3/2$, and $PoC(C_5) = 4/3$.

● "←":

- Let G be a chordal graph with PoC(G) > 1.
- We can assume that G is critical.
- Thus G is a special tree.
- So G contains P_5 as induced subgraph.

Let G be a graph. The following assertions are equivalent:

• $PoC \le 4/3$ for every connected induced subgraph of G.

- $PoC \le 4/3$ for every connected induced subgraph of G.
- G is (P_5, C_4) -free.

Let G be a graph. The following assertions are equivalent:

- $PoC \le 4/3$ for every connected induced subgraph of G.
- G is (P_5, C_4) -free.

Theorem

Let G be a graph. The following assertions are equivalent:

- $PoC \le 4/3$ for every connected induced subgraph of G.
- G is (P₅, C₄)-free.

Theorem

Let G be a graph. The following assertions are equivalent:

• $PoC \leq 3/2$ for every connected induced subgraph of G.

Let G be a graph. The following assertions are equivalent:

- $PoC \le 4/3$ for every connected induced subgraph of G.
- G is (P₅, C₄)-free.

Theorem

- $PoC \leq 3/2$ for every connected induced subgraph of G.
- G is $(P_7, C_6, \Delta_1, \Delta_2)$ -free.

Let G be a graph. The following assertions are equivalent:

- $PoC \le 4/3$ for every connected induced subgraph of G.
- G is (P₅, C₄)-free.

Theorem

- $PoC \leq 3/2$ for every connected induced subgraph of G.
- G is $(P_7, C_6, \Delta_1, \Delta_2)$ -free.

Current research

• Understand the critical graphs.

- Understand the critical graphs.
- Determine the computational complexity of the PoC.

- Understand the critical graphs.
- Determine the computational complexity of the PoC.
- Draw algorithms from the structural results.

- Understand the critical graphs.
- Determine the computational complexity of the PoC.
- Draw algorithms from the structural results.
- Apply the same concept to other graph invariants (like domination).

- Understand the critical graphs.
- Determine the computational complexity of the *PoC*.
- Draw algorithms from the structural results.
- Apply the same concept to other graph invariants (like domination).

Thanks!