Group Irregularity Strength of Graphs

Marcin Anholcer ${ }^{1,2}$ and Sylwia Cichacz ${ }^{1,3}$
${ }^{1}$ UP FAMNIT
${ }^{2}$ Poznań University of Economics
${ }^{3}$ AGH University of Science and Technology

March 26, 2012, Koper
(1) Introduction

- Notation
- Irregularity Strength
- Graph Labelling the Graph with Abelian Groups
- Group Irregularity Strength
- Main Result
(2) Proof of the Main Result
- Lower Bounds
- Stars
- Trees
(3) The End
- Open Problems
- The End

Notation

- G - simple graph with no components of order less than 3
- $E(G)$ - the edge set of G
- $V(G)$ - the vertex set of G
- $n=|V(G)|$
- \mathcal{G} - Abelian group, for convenience: 0, 2a, -a, $a-b$

Notation

- G-simple graph with no components of order less than 3
- $E(G)$ - the edge set of G
- $V(G)$ - the vertex set of G
- $n=|V(G)|$
- \mathcal{G} - Abelian group, for convenience: $0,2 a,-a, a-b$

Notation

- G-simple graph with no components of order less than 3
- $E(G)$ - the edge set of G
- $V(G)$ - the vertex set of G
$n=|V(G)|$
- \mathcal{G} - Abelian group, for convenience: $0,2 a,-a, a-b$

Notation

- G-simple graph with no components of order less than 3
- $E(G)$ - the edge set of G
- $V(G)$ - the vertex set of G
- $n=|V(G)|$
- \mathcal{G} - Abelian group, for convenience: 0, 2a, -a, $a-b$

Notation

- G - simple graph with no components of order less than 3
- $E(G)$ - the edge set of G
- $V(G)$ - the vertex set of G
- $n=|V(G)|$
- \mathcal{G} - Abelian group, for convenience: $0,2 a,-a, a-b \ldots$

$s(G):$ Definition

Assign positive integer $w(e) \leq s$ to every edge $e \in E(G)$.

- For every vertex $v \in V(G)$ the weighted degree is defined as:

$$
w d(v)=\sum_{e \ni v} w(e)
$$

- w is irregular if for $v \neq u$ we have $w d(v) \neq w d(u)$.
- Irregularity strength $s(G)$: the lowest s that allows some irregular labeling.

$s(G):$ Definition

Assign positive integer $w(e) \leq s$ to every edge $e \in E(G)$.

- For every vertex $v \in V(G)$ the weighted degree is defined as:

$$
w d(v)=\sum_{e \ni v} w(e)
$$

- w is irregular if for $v \neq u$ we have $w d(v) \neq w d(u)$.
- Irregularity strength $s(G)$: the lowest s that allows some irregular labeling.

$s(G):$ Definition

Assign positive integer $w(e) \leq s$ to every edge $e \in E(G)$.

- For every vertex $v \in V(G)$ the weighted degree is defined as:

$$
w d(v)=\sum_{e \ni v} w(e)
$$

- w is irregular if for $v \neq u$ we have $w d(v) \neq w d(u)$.
- Irregularity strength $s(G)$: the lowest s that allows some irregular labeling.

$s(G):$ Definition

Assign positive integer $w(e) \leq s$ to every edge $e \in E(G)$.

- For every vertex $v \in V(G)$ the weighted degree is defined as:

$$
w d(v)=\sum_{e \ni v} w(e) .
$$

- w is irregular if for $v \neq u$ we have $w d(v) \neq w d(u)$.
- Irregularity strength $s(G)$: the lowest s that allows some irregular labeling.
Introduced by G. Chartrand, M.S. Jacobson, J. Lehel, O.R.
Oellermann, S. Ruiz, F. Saba, 1988.

$s(G):$ Some results

- Lower bound:

$$
s(G) \geq \max _{1 \leq i \leq \Delta} \frac{n_{i}+i-1}{i}
$$

- Best upper bound (M. Kalkowski, M. Karoński, F. Pfender, 2009):

- Exact values for some families of graphs (e.g. cycles, grids, some kinds of trees, circulant graphs).

$s(G):$ Some results

- Lower bound:

$$
s(G) \geq \max _{1 \leq i \leq \Delta} \frac{n_{i}+i-1}{i}
$$

- Best upper bound (M. Kalkowski, M. Karoński, F. Pfender, 2009):

$$
s(G) \leq\left\lceil\frac{6 n}{\delta}\right\rceil
$$

- Exact values for some families of graphs (e.g. cycles, grids, some kinds of trees, circulant graphs).

$s(G):$ Some results

- Lower bound:

$$
s(G) \geq \max _{1 \leq i \leq \Delta} \frac{n_{i}+i-1}{i}
$$

- Best upper bound (M. Kalkowski, M. Karoński, F. Pfender, 2009):

$$
s(G) \leq\left\lceil\frac{6 n}{\delta}\right\rceil
$$

- Exact values for some families of graphs (e.g. cycles, grids, some kinds of trees, circulant graphs).

Labellings with finite Abelian groups

- Harmonious graphs (Graham and Sloane, Beals et al., Żak).
- A-cordial labellings (Hovey).
- Edge-magic total labellings (Cavenagh et al.).
- Group distance magic graphs (Froncek).
- Vertex-antimagic edge labellings (Kaplan et al.)

Labellings with finite Abelian groups

- Harmonious graphs (Graham and Sloane, Beals et al., Żak).
- A-cordial labellings (Hovey).
- Edge-magic total labellings (Cavenagh et al.).
- Group distance magic graphs (Froncek).
- Vertex-antimagic edge labellings (Kaplan et al.)

Labellings with finite Abelian groups

- Harmonious graphs (Graham and Sloane, Beals et al., Żak).
- A-cordial labellings (Hovey).
- Edge-magic total labellings (Cavenagh et al.).
- Group distance magic graphs (Froncek).
- Vertex-antimagic edge labellings (Kaplan et al.).

Labellings with finite Abelian groups

- Harmonious graphs (Graham and Sloane, Beals et al., Żak).
- A-cordial labellings (Hovey).
- Edge-magic total labellings (Cavenagh et al.).
- Group distance magic graphs (Froncek).
- Vertex-antimagic edge labellings (Kaplan et al.)

Labellings with finite Abelian groups

- Harmonious graphs (Graham and Sloane, Beals et al., Żak).
- A-cordial labellings (Hovey).
- Edge-magic total labellings (Cavenagh et al.).
- Group distance magic graphs (Froncek).
- Vertex-antimagic edge labellings (Kaplan et al.).

$s_{g}(G):$ Definition

Assign the element of an Abelian group \mathcal{G} of order s to every edge $e \in E(G)$.

- For every vertex $v \in V(G)$ the weighted degree is defined as:

$$
w d(v)=\sum_{e \ni v} w(e)
$$

- w is \mathcal{G}-irregular if for $v \neq u$ we have $w d(v) \neq w d(u)$.
- Group irregularity strength $s_{g}(G)$: the lowest s such that for every Abelian group \mathcal{G} of order s there exists \mathcal{G}-irregular labelling of G.

$s_{g}(G):$ Definition

Assign the element of an Abelian group \mathcal{G} of order s to every edge $e \in E(G)$.

- For every vertex $v \in V(G)$ the weighted degree is defined as:

$$
w d(v)=\sum_{e \ni v} w(e)
$$

- w is \mathcal{G}-irregular if for $v \neq u$ we have $w d(v) \neq w d(u)$.
- Group irregularity strength $s_{g}(G)$: the lowest s such that for every Abelian group \mathcal{G} of order s there exists \mathcal{G}-irregular labelling of G.

$s_{g}(G):$ Definition

Assign the element of an Abelian group \mathcal{G} of order s to every edge $e \in E(G)$.

- For every vertex $v \in V(G)$ the weighted degree is defined as:

$$
w d(v)=\sum_{e \ni v} w(e)
$$

- w is \mathcal{G}-irregular if for $v \neq u$ we have $w d(v) \neq w d(u)$.
- Group irregularity strength $s_{g}(G)$: the lowest s such that for every Abelian group \mathcal{G} of order s there exists \mathcal{G}-irregular labelling of G.

$s_{g}(G):$ Main Result

Theorem

Let G be arbitrary connected graph of order $n \geq 3$. Then

$$
s_{g}(G)= \begin{cases}n+2 & \text { when } G \cong K_{1,3^{2 q+1}-2} \text { for some integer } q \geq 1 \\ n+1 & \text { when } n \equiv 2(\bmod 4) \wedge G \nsubseteq K_{1,3^{2 q+1}-2} \\ n & \text { otherwise }\end{cases}
$$

$s_{g}(G):$ Lower bound

Lemma

Let G be of order n, if $n \equiv 2(\bmod 4)$, then $s_{g}(G) \geq n+1$.

Proof.

Assume we can use some \mathcal{G} of order $2(2 k+1)$. Obviously $\mathcal{G}=Z_{2} \times \mathcal{G}_{1}$. There are $2 k+1$ elements $(1, a)$ where $a \in \mathcal{G}_{1}$ and we have to use all of them. On the other hand

$$
\sum_{x \in G} w(x)=(0, b)
$$

for some $b \in \mathcal{G}_{1}$. Contradiction.

$$
s_{g}\left(K_{1, n-1}\right)
$$

Lemma

Let $K_{1, n-1}$ be a star with $n-1$ pendant vertices. Then

$$
s_{g}\left(K_{1, n-1}\right)= \begin{cases}n+2 & \text { when } n \equiv 2(\bmod 4) \wedge n=3^{q}-2 \\ n+1 & \text { when } n \equiv 2(\bmod 4) \wedge n \neq 3^{q}-2 \\ n & \text { otherwise }\end{cases}
$$

$$
s_{g}\left(K_{1, n-1}\right) \text { - proof }
$$

Case $n=2 k+1$:

$s_{g}\left(K_{1, n-1}\right)$ - proof

Case $n=4 k$, one involution a - there is a subgroup $\{0, a, 2 a, 3 a\}$:

$s_{g}\left(K_{1, n-1}\right)$ - proof

Case $n=4 k, r$ involutions $i_{1}, i_{2}, \ldots, i_{r}$:

$$
s_{g}\left(K_{1, n-1}\right) \text { - proof }
$$

Case $n=4 k+2$, there exists element a of order more than 3:

$$
s_{g}\left(K_{1, n-1}\right)
$$

Case $n=4 k+2,4 k+3=3^{q}$, all the elements have order 3:

- $\mathcal{G}=Z_{3} \times Z_{3} \times \cdots \times Z_{3}$, we do not use exactly two distinct elements a and b.
- Sum at the central vertex: $-a-b$, has to be equal either a or b implies $a=b$, contradiction.
- Possible to use \mathcal{G} of order $4 k+4$ as there exists $a \in \mathcal{G}$ of order more than 2 (otherwise $4 k+4=2^{p}$ - contradiction to the Mihǎilescu Theorem). We use all but $0, a$ and $-a$.

$s_{g}(T)$

Lemma

Let T be arbitrary tree on $n \geq 3$ vertices not being a star. Then

$$
s_{g}(T)= \begin{cases}n+1 & \text { when } n \equiv 2(\bmod 4) \\ n & \text { otherwise }\end{cases}
$$

$s_{g}(T)$ - proof

Main idea: alternating paths.
$C\left(x_{i}\right)=C\left(x_{j}\right)$

$C\left(x_{i}\right) \neq C\left(x_{j}\right)$

$s_{g}(T)$ - proof

Case $n=2 k+1$: take $a_{1}, \ldots, a_{k}, a_{i} \notin\left\{a_{j},-a_{j}\right\}$.
V_{1} even

V_{2} odd

$s_{g}(T)$ - proof

Case $n=4 k$, one involution - subgroup $\{0, a, 2 a, 3 a\}$, reduction:

$s_{g}(T)$ - proof

Case $n=4 k, r \leq n / 2$ involutions:

$s_{g}(T)$ - proof

Case $n=4 k, r=n-1$ involutions, $\mathcal{G}=Z_{2} \times \cdots \times Z_{2}$

$$
s_{g}(T)-\text { proof }
$$

- Case $n=4 k+2$, colour classes even: use \mathcal{G} without 0 .
- Colour classes odd: we label $K_{3,5}$.

Open Problem

Problem

Determine group irregularity strength $s_{g}(G)$ for not-connected graph G with no component of order less than 3.

Open Problem

Problem

Characterize the graphs G such that if $s_{g}(G)=s$ then G admits a \mathcal{G}-labeling for every group \mathcal{G} of order greater than s.

Observation

Let G be arbitrary connected graph on $n \geq 3$ vertices not being a star. Then G admits \mathcal{G}^{\prime}-irregular labelling for any abelian group \mathcal{G}^{\prime} of order $k>n$, if $k=2^{p}(2 m+1)$ and $m \in N$ and $(2 m \geq n-1$ or $0 \leq p \leq\left\lfloor\log _{2}(n+1)\right\rfloor$.

Open Problem

Problem

Let G be a simple graph with no components of order less than 3 . For any Abelian group \mathcal{G}, let $\mathcal{G}^{*}=\mathcal{G} \backslash\{0\}$. Determine non-zero group irregularity strength $\left(s_{g}^{*}(G)\right)$ of G, i.e. the smallest value of s such that taking any Abelian group \mathcal{G} of order s, there exists a function $f: E(G) \rightarrow \mathcal{G}^{*}$ such that the sums of edge labels in every vertex are distinct.

Some History

- Thu: complete graphs.
- Sat: cycles.
- Mon: trees.
- Wed: VICTORY!

Outline

Victory

Thank You

THANK YOU :-)

Group Irregularity Strength of Graphs

Marcin Anholcer ${ }^{1,2}$ and Sylwia Cichacz ${ }^{1,3}$
${ }^{1}$ UP FAMNIT
${ }^{2}$ Poznań University of Economics
${ }^{3}$ AGH University of Science and Technology

March 26, 2012, Koper

