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Notation

G - simple graph with no components of order less than 3

E (G ) - the edge set of G

V (G ) - the vertex set of G

n = |V (G )|
G - Abelian group, for convenience: 0, 2a, −a, a− b . . .
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s(G ): Definition

Assign positive integer w(e) ≤ s to every edge e ∈ E (G ).
For every vertex v ∈ V (G ) the weighted degree is defined as:

wd(v) =
∑
e3v
w(e).

w is irregular if for v 6= u we have wd(v) 6= wd(u).
Irregularity strength s(G ): the lowest s that allows some
irregular labeling.

Marcin Anholcer and Sylwia Cichacz Group Irregularity Strength of Graphs 4/ 29



Outline
Introduction

Proof of the Main Result
The End

Notation
Irregularity Strength
Graph Labelling the Graph with Abelian Groups
Group Irregularity Strength
Main Result

s(G ): Definition

Assign positive integer w(e) ≤ s to every edge e ∈ E (G ).
For every vertex v ∈ V (G ) the weighted degree is defined as:

wd(v) =
∑
e3v
w(e).

w is irregular if for v 6= u we have wd(v) 6= wd(u).
Irregularity strength s(G ): the lowest s that allows some
irregular labeling.

Marcin Anholcer and Sylwia Cichacz Group Irregularity Strength of Graphs 4/ 29



Outline
Introduction

Proof of the Main Result
The End

Notation
Irregularity Strength
Graph Labelling the Graph with Abelian Groups
Group Irregularity Strength
Main Result

s(G ): Definition

Assign positive integer w(e) ≤ s to every edge e ∈ E (G ).
For every vertex v ∈ V (G ) the weighted degree is defined as:

wd(v) =
∑
e3v
w(e).

w is irregular if for v 6= u we have wd(v) 6= wd(u).
Irregularity strength s(G ): the lowest s that allows some
irregular labeling.

Marcin Anholcer and Sylwia Cichacz Group Irregularity Strength of Graphs 4/ 29



Outline
Introduction

Proof of the Main Result
The End

Notation
Irregularity Strength
Graph Labelling the Graph with Abelian Groups
Group Irregularity Strength
Main Result

s(G ): Definition

Assign positive integer w(e) ≤ s to every edge e ∈ E (G ).
For every vertex v ∈ V (G ) the weighted degree is defined as:

wd(v) =
∑
e3v
w(e).

w is irregular if for v 6= u we have wd(v) 6= wd(u).
Irregularity strength s(G ): the lowest s that allows some
irregular labeling.

Introduced by G. Chartrand, M.S. Jacobson, J. Lehel, O.R.
Oellermann, S. Ruiz, F. Saba, 1988.
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s(G ): Some results

Lower bound:

s(G ) ≥ max
1≤i≤∆

ni + i − 1
i

Best upper bound (M. Kalkowski, M. Karoński, F. Pfender,
2009):

s(G ) ≤
⌈

6n
δ

⌉
Exact values for some families of graphs (e.g. cycles, grids,
some kinds of trees, circulant graphs).
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Labellings with finite Abelian groups

Harmonious graphs (Graham and Sloane, Beals et al., Żak).

A-cordial labellings (Hovey).

Edge-magic total labellings (Cavenagh et al.).

Group distance magic graphs (Froncek).

Vertex-antimagic edge labellings (Kaplan et al.).
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sg(G ): Definition

Assign the element of an Abelian group G of order s to every edge
e ∈ E (G ).

For every vertex v ∈ V (G ) the weighted degree is defined as:

wd(v) =
∑
e3v
w(e).

w is G-irregular if for v 6= u we have wd(v) 6= wd(u).
Group irregularity strength sg (G ): the lowest s such that
for every Abelian group G of order s there exists G-irregular
labelling of G .
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sg(G ): Main Result

Theorem

Let G be arbitrary connected graph of order n ≥ 3. Then

sg (G ) =


n + 2 when G ∼= K1,32q+1−2 for some integer q ≥ 1

n + 1 when n ≡ 2 (mod 4) ∧ G 6∼= K1,32q+1−2
n otherwise
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sg(G ): Lower bound

Lemma

Let G be of order n, if n ≡ 2 (mod 4), then sg (G ) ≥ n + 1.

Proof.

Assume we can use some G of order 2(2k + 1). Obviously
G = Z2 × G1. There are 2k + 1 elements (1, a) where a ∈ G1 and
we have to use all of them. On the other hand∑

x∈G
w(x) = (0, b)

for some b ∈ G1. Contradiction.
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sg(K1,n−1)

Lemma

Let K1,n−1 be a star with n − 1 pendant vertices. Then

sg (K1,n−1) =


n + 2 when n ≡ 2 (mod 4) ∧ n = 3q − 2

n + 1 when n ≡ 2 (mod 4) ∧ n 6= 3q − 2

n otherwise
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sg(K1,n−1) - proof

Case n = 2k + 1:

a1 -a1 a2 -a2 ak -ak
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sg(K1,n−1) - proof

Case n = 4k, one involution a - there is a subgroup {0, a, 2a, 3a}:

a 2a a1 -a1 a2k-2 -a2k-20
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sg(K1,n−1) - proof

Case n = 4k, r involutions i1, i2, . . . , ir :

i2 ir a1 -a1 a2k-(r+1)/2
i1 -a2k-(r+1)/2
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sg(K1,n−1) - proof

Case n = 4k + 2, there exists element a of order more than 3:

-2a 0 a1 -a1 a2k-1
a -a2k-1
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sg(K1,n−1)

Case n = 4k + 2, 4k + 3 = 3q, all the elements have order 3:

G=Z3 × Z3 × · · · × Z3, we do not use exactly two distinct
elements a and b.

Sum at the central vertex: −a− b, has to be equal either a or
b implies a = b, contradiction.

Possible to use G of order 4k + 4 as there exists a ∈ G of
order more than 2 (otherwise 4k + 4 = 2p - contradiction to
the Mihǎilescu Theorem). We use all but 0, a and −a.
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sg(T )

Lemma

Let T be arbitrary tree on n ≥ 3 vertices not being a star. Then

sg (T ) =

{
n + 1 when n ≡ 2 (mod 4)

n otherwise
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sg(T ) - proof

Main idea: alternating paths.

a -a a -a

C(xi)=C(xj)

xi xj

a -a -a a

C(xi)≠C(xj)

xi xj
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sg(T ) - proof

Case n = 2k + 1: take a1, . . . , ak , ai 6∈ {aj ,−aj}.

a1 ap

V1 even

ap+1
ak

V2 odd

a2

Marcin Anholcer and Sylwia Cichacz Group Irregularity Strength of Graphs 18/ 29



Outline
Introduction

Proof of the Main Result
The End

Lower Bounds
Stars
Trees

sg(T ) - proof

Case n = 4k, one involution - subgroup {0, a, 2a, 3a}, reduction:

V1

a

V2

2a different parity
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sg(T ) - proof

Case n = 4k, r ≤ n/2 involutions:

V1

i1

V2

ir different parity

a1
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sg(T ) - proof

Case n = 4k, r = n − 1 involutions, G = Z2 × · · · × Z2

x0

i1

V\{x0}

i4k-1
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sg(T ) - proof

Case n = 4k + 2, colour classes even: use G without 0.

Colour classes odd: we label K3,5.
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Open Problem

Problem

Determine group irregularity strength sg (G ) for not-connected
graph G with no component of order less than 3.
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Open Problem

Problem

Characterize the graphs G such that if sg (G ) = s then G admits a
G-labeling for every group G of order greater than s.

Observation

Let G be arbitrary connected graph on n ≥ 3 vertices not being a
star. Then G admits G′-irregular labelling for any abelian group G′
of order k > n, if k = 2p(2m + 1) and m ∈ N and (2m ≥ n − 1 or
0 ≤ p ≤ blog2(n + 1)c).
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Open Problem

Problem

Let G be a simple graph with no components of order less than 3.
For any Abelian group G, let G∗ = G \ {0}. Determine non-zero
group irregularity strength (s∗g (G )) of G, i.e. the smallest value of
s such that taking any Abelian group G of order s, there exists a
function f : E (G )→ G∗ such that the sums of edge labels in every
vertex are distinct.
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Some History

Thu: complete graphs.

Sat: cycles.

Mon: trees.

Wed: VICTORY!
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Thank You

THANK YOU :-)
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