GEOMETRIC $\left(n_{k}\right)$ CONFIGURATIONS

Gábor Gévay

Bolyai Institute
University of Szeged
Hungary

Pappus, 4th century A.D.
(93)

Desargues, 1648
$\left(10_{3}\right)$

- A geometric point-line configuration (p_{q}, n_{k}) is a family of p points and n lines such that each point is incident with precisely q lines and each line is incident with precisely k points.
- If $p=n$ (hence $q=k$), then the configuration is called balanced. Notation: $\left(n_{k}\right)$.
- The ambient space is \mathbb{E}^{d} (or, the projective space \mathbb{P}^{d}). (We do not restrict ourselves to \mathbb{E}^{2} or \mathbb{P}^{2}.)

From the 1990-ties there is a "renaissance" of configurations.

Branko Grünbaum (2009)

Instead of lines, one can also use: planes, hyperplanes, circles, ellipses \downarrow

- point-plane;
- point-hyperplane;
- point-circle;
- point-ellipse configurations.

SPATIAL POINT-LINE CONFIGURATIONS

Construction principle:

- highly symmetric convex polytopes can serve as a scaffolding for building large spatial configurations;
- the configuration inherits the symmetry of the polytope.

Configurations with the symmetry of a Platonic solid

(Supporting polytope: pentagonal dodecahedron)

Configurations with the symmetry of a Platonic solid

Three infinite series (for $t=1,2, \ldots$):

- tetrahedron $\longrightarrow\left(\left(18(t+1)_{3}\right)\right.$
- cube $\longrightarrow\left(\left(36(t+1)_{3}\right)\right.$
- icosahedron $\longrightarrow\left(\left(90(t+1)_{3}\right)\right.$

An example with chiral symmetry: $\left(180_{3}\right)$.

Configurations with the symmetry of a regular 4-polytope

- regular 4-simplex $(|G|=120) \quad \longrightarrow \quad\left(240_{3}\right)$
- 4-cube

$$
(|G|=384) \quad \longrightarrow \quad\left(768_{3}\right)
$$

- regular 120-cell $\quad(|G|=14400) \quad \longrightarrow \quad\left(28800_{3}\right)$
(n_{3}), where $n=2 \times$ (order of the symmetry group);
7 orbits of points, 5 orbits of lines.

Configurations with the symmetry of other 4-polytopes

Uniform 10 -cell $+\left(12_{2}, 6_{4}\right) \longrightarrow\left(420_{4}\right)$	$(\|G\|=240)$
Uniform 48 -cell $+\left(16_{2}, 8_{4}\right) \longrightarrow\left(4032_{4}\right)$	$(\|G\|=2304)$

Cartesian product of point-line configurations

Gray configuration

Cartesian product of point-line configurations

Definition.

Let \mathcal{C}_{1} be a $\left(p_{q}, m_{k}\right)$ configuration in an Euclidean space \mathbb{E}_{1} and \mathcal{C}_{2} be an $\left(r_{s}, n_{k}\right)$ configuration in an Euclidean space \mathbb{E}_{2}. Observe that these two configurations have the same number k of points on each line. The Cartesian product of \mathcal{C}_{1} and \mathcal{C}_{2} is the

$$
\left((p r)_{(q+s)},(p n+r m)_{k}\right)
$$

configuration $\mathcal{C}_{1} \times \mathcal{C}_{2}$ in $\mathbb{E}_{1} \times \mathbb{E}_{2}$ whose point set is the Cartesian product of the point sets of \mathcal{C}_{1} and \mathcal{C}_{2} and where there is a line incident to two points $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ if and only if either $x_{1}=y_{1}$ and there is a line incident to x_{2} and y_{2} in \mathcal{C}_{2}, or $x_{2}=y_{2}$ and there is a line incident to x_{1} and y_{1} in \mathcal{C}_{1}.

$\underline{\text { Powers of configurations }}$

- complete 5-lateral: $\left(10_{2}, 5_{4}\right)^{2}=\left(100_{4}\right) \quad \subset \mathbb{P}^{4}$
- complete 7-lateral: $\left(21_{2}, 7_{6}\right)^{3}=\left(9261_{6}\right) \subset \mathbb{P}^{6}$
- complete 9-lateral: $\left(36_{2}, 9_{8}\right)^{4}=(16796168) \subset \mathbb{P}^{8}$
- complete 11-lateral: $\left(55_{2}, 11_{10}\right)^{5}=\left(\begin{array}{ll}503 & 284375_{10}\end{array}\right) \subset \mathbb{P}^{10}$
\vdots
- complete $(2 k+1)$-lateral:

$$
\left(\binom{2 k+1}{2}_{2},(2 k+1)_{2 k}\right)^{k}=\left(\left(\binom{2 k+1}{2}^{k}\right)_{2 k}\right) \subset \mathbb{P}^{2 k}
$$

Powers of configurations

Scaffolding polytope: rhombicosidodecahedron.

- $\left(120_{2}, 60_{4}\right)^{2}=\left(14400_{4}\right) \subset \mathbb{E}^{6}$
- $\left(180_{2}, 60_{6}\right)^{3}=\left(5832200_{6}\right) \subset \mathbb{E}^{9}$
- $\left(240_{2}, 60_{8}\right)^{4}=(33177600008) \subset \mathbb{E}^{12}$
- $\quad\left(300_{2}, 60_{10}\right)^{5}=\left(\left(2.43 \cdot 10^{10}\right)_{10}\right) \subset \mathbb{E}^{15}$
- $\left(360_{2}, 60_{12}\right)^{6}=\left(\left(2^{18} \cdot 3^{12} \cdot 5^{6}\right)_{12}\right) \subset \mathbb{E}^{18}$

An incidence statement on complete pentalaterals

Lemma. The set of vertices of a complete pentalateral $P\left(l_{1}, \ldots, l_{5}\right)$ can be uniquely partitioned to "external" and "internal" vertices.

"Symmetric" position

"General" position

Let be given 25 lines, $a_{i j}(i, j=1, \ldots, 5)$, in the projective space \mathbb{P}^{3} such that they form five complete pentalaterals:

$$
A_{1}=P\left(a_{11}, \ldots, a_{15}\right), \ldots, A_{5}=P\left(a_{51}, \ldots, a_{55}\right)
$$

Assume that the following conditions hold:

1. the external vertices of the pentalaterals A_{i} form the external vertices of complete pentalaterals $B_{j}=P\left(b_{1 j}, \ldots, b_{5 j}\right)$, as follows:

$$
a_{i j} \cap a_{i, j+2}=b_{i j} \cap b_{i+2, j}
$$

2. the internal vertices of the pentalaterals A_{i} form the external vertices of complete pentalaterals $C_{j}=P\left(c_{1 j}, \ldots, c_{5 j}\right)$, as follows:

$$
a_{i j} \cap a_{i, j+1}=c_{i j} \cap c_{i+2, j}
$$

(indexing is meant modulo 5).
Then there is a quintuple of complete pentalaterals D_{i} such that their vertices coincide with the internal vertices of the pentalaterals B_{j} and C_{j}, as follows:

$$
b_{i j} \cap b_{i+1, j}=d_{i j} \cap d_{i, j+2} \quad \text { and } \quad c_{i j} \cap c_{i+1, j}=d_{i j} \cap d_{i, j+1} .
$$

An incidence statement on complete pentalaterals

Some facts supporting the statement:

- There exists a balanced configuration $\left(100_{4}\right)$ in \mathbb{P}^{3} such that its points are just the points of intersection satisfying the four conditions of the statement.
- (Special case in \mathbb{E}^{3} when the statement holds.)

The pentagons determined by the $A_{i} \mathrm{~S}$ and $D_{i} \mathrm{~S}$ are all regular (in Euclidean sense), and they have a common axis of rotation (of order five). In this case the conditions of the conjecture can easily be satisfied by suitably scaling the $A_{i} \mathrm{~S}$ and $D_{i} \mathrm{~s}$ and by suitably chosen shapes and sizes of the $B_{j} \mathrm{~s}$ and $D_{j} \mathrm{~s}$.

- (Special case in \mathbb{E}^{3} when the statement is supported by simulation.)

All the pentalaterals A_{i} are homothetic copies of a pentalateral A_{0}. Furthermore, the external vertices of A_{0} (hence those of each A_{i}) are inscribed in a circle. (Modelled in Mathematica by Karsai and Szilassi, 2008).

POINT-ELLIPSE CONFIGURATIONS

The Levi graph of the (326) point-ellipse configuration (by Tomaž Pisanski)

An analogus version: (966), derived from the regular 24-cell.

From a different point of view, the (326) configuration can be considered as the starting member of an infinite series of pointellipse configurations \mathcal{C}_{n}, whose type is

$$
\left(\left(2 n^{2}\right)_{6}\right), \quad(n=4,5, \ldots)
$$

The sketch of the construction:

- take the Cartesian product of two equal regular n-gons with even $n \geq 4$; this is a 4-polytope with $2 n$ prismatic facets;
- inscribe into these prisms affinely regular hexagons;
- circumscribe ellipses around these hexagons.

The set of the points of \mathcal{C}_{n} is

$$
\left\{v_{j}^{i, i+1}, v_{j, j+1}^{i} \mid i, j \in[n]\right\}
$$

and the inscribed hexagons are of the following forms:

$$
\left.\begin{array}{l}
\left\{v_{j-1, j}^{i}, \underline{v_{j}^{i, i+1}}, v_{j, j+1}^{i+1}, v_{j-1, j}^{i+\frac{1}{2} n}, \underline{v_{j}^{i+\frac{1}{2} n, i+\frac{1}{2} n+1}}, v_{j, j+1}^{i+\frac{1}{2} n+1}\right\} \\
\left\{v_{j, j+1}^{i}, \underline{v_{j}^{i, i+1}}, v_{j-1, j}^{i+1}, v_{j, j+1}^{i+\frac{1}{2} n}, \underline{v_{j}^{i+\frac{1}{2} n, i+\frac{1}{2} n+1}}, v_{j-1, j}^{i+\frac{1}{2} n+1}\right\}, \\
\left\{v_{j}^{i-1, i}, \underline{v_{j, j+1}^{i}}, v_{j+1}^{i, i+1}, v_{j+\frac{1}{2} n}^{i-1, i}, \underline{v_{j+\frac{1}{2} n, j+\frac{1}{2} n+1}^{i}}, v_{j+\frac{1}{2} n+1}^{i, i+1}\right.
\end{array}\right\}, ~ \begin{aligned}
& \left\{v_{j}^{i, i+1}, \underline{v}_{j, j+1}^{i}, v_{j+1}^{i-1, i}, v_{j+\frac{1}{2} n}^{i, i+1}, \underline{v_{j+\frac{1}{2} n, j+\frac{1}{2} n+1}^{i}}, v_{j+\frac{1}{2} n+1}^{i-1, i}\right\},
\end{aligned}
$$

for all $i, j \in[n]$.

POINT-PLANE CONFIGURATIONS

"V-construction": (GG, 2009)

- start from a highly symmetric polytope P (e.g. Platonic solid, Archimedean solid, etc.);
- the points of the configuration $V(P)$ are the vertices of P;
- for each vertex v of P, take the plane spanned by the vertices which are the first neighbours of v.

A direct consequence of the construction:

The Levi graph of the configuration $V(P)$ is isomorphic to the Kronecker cover of the 1-skeleton of the polytope P :

$$
L(V(P)) \cong K C(G(P))
$$

(A graph \widetilde{G} is said to be the Kronecker cover of the graph G if there exists a two-to-one surjective homomorphism $f: \widetilde{G} \rightarrow G$ such that for every vertex v of \widetilde{G} the set of edges incident with v is mapped bijectively onto the set of edges incident with $f(v)$.)

The flag-transitive triangle-free point-line configuration (203), and its Levi graph.
(This Levi graph is the Kronecker cover of the dodecahedron graph.)
[Boben, Grünbaum, Pisanski and Žitnik, 2006]

V-construction from Platonic solids

V_{1} (tetrahedron)	$\left(4_{3}\right)$
V_{1} (cube)	$2 \times\left(4_{3}\right)$
V_{1} (icosahedron)	$\left(12_{5}\right)$
V_{1} (dodecahedron)	$\left(20_{3}\right)$
V_{2} (dodecahedron)	$\left(20_{6}\right)$

V-construction from Archimedean solids

V (truncated tetrahedron)	$\left(12_{3}\right)$
V (cuboctahedron)	$\left(12_{4}\right)$
V (truncated octahedron)	$\left(24_{3}\right)$
V (truncated cube)	$\left(24_{3}\right)$
V (rhombicuboctahedron)	$\left(24_{4}\right)$
V (great rhombicuboctahedron)	$\left(48_{3}\right)$
V (truncated icosahedron)	$\left(12_{3}\right)$
V (truncated dodecahedron)	$\left(20_{3}\right)$
V (icosidodecahedron)	$\left(30_{4}\right)$
V (rhombicosidodecahedron)	$\left(60_{4}\right)$
$V($ great rhombicosidodecahedron $)$	$\left(10_{3}\right)$
V (snub cube)	$\left(24_{5}\right)$
V (snub dodecahedron)	$\left(60_{5}\right)$

$\underline{V \text {-construction from regular } d \text {-polytopes }}$

$$
(d \geq 4)
$$

$V_{1}(24$-cell $)$	$\left(24_{8}\right)$
$V_{1}(600-c \mathrm{ll})$	$\left(120_{12}\right)$
$V_{2}(600$-cell $)$	$\left(120_{20}\right)$
$V_{1}(120$-cell $)$	$\left(600_{4}\right)$
$V_{2}(120$-cell $)$	$\left(600_{12}\right)$
$V_{1}(d$-simplex $)$	$\left((d+1)_{d}\right)$
$V_{1}(d$-cube $)$	$2 \times\left(\left(2^{d-1}\right)_{d}\right)$

A sufficient condition for applicability of the V-construction:

Assume that P is a polytope such that

1. P is vertex-transitive;
2. the stabilizer of each vertex v of P is transitive on the vertices adjacent to v.

Then the configuration $V(P)$ exists.

Corollary. $V(P)$ is self-polar.

Definition. A configuration \mathcal{C} is self-polar if there exists a fixed-point-free and involutive automorphism π of $L(\mathcal{C})$ such that the bipartition of $L(\mathcal{C})$ is interchanged by π, and for any vertex v of $L(\mathcal{C})$ the vertices v and $\pi(v)$ are non-adjacent.

A hypersimplex $\Delta(d, k)$ is defined as a convex polytope whose vertices are given by vectors of length $d+1$ which consist of k ones and $d-k+1$ zeroes. (Gelfand et al., 1975; Ziegler, 1995).

It can also be defined as the convex hull of the centroids of ($k-1$)-dimensional faces of a regular d-simplex.

For each $d \geq 4$ and $1<k \leq d / 2$, there exists the point-hyperplane configuration $V(\Delta(d, k))$ of type

$$
\left(\binom{d+1}{k}_{k(d-k+1)}\right) .
$$

Let T and T^{\prime} be two concentric regular simplices of equal size such that one is the mirror image of the other with respect to their common centre. Then the intersection $T \cap T^{\prime}$ is called a uniform duplex. A polytope combinatorially equivalent to a uniform duplex called a duplex. (GG, 2009)
(A duplex of odd dimension is the hypersimplex $\Delta(d,(d+1) / 2)$.)
Let D be a duplex of even dimension. For each $d \geq 4$, there exists the point-hyperplane configuration $V(D)$ of type

$$
\left(\left((d+1)\binom{d+1}{k}\right)_{d}\right)
$$

POINT-CIRCLE CONFIGURATIONS

The classical example: Clifford's chain

$$
\left(\left(2^{n}\right)_{n+1}\right), \quad(n=3,4, \ldots)
$$

(Clifford, 1882; Coxeter, 1950, 1961)

A new (limitedly movable) example: (124).

(125)

POINT-CIRCLE CONFIGURATIONS

For each integer $n \geq 3$, there is an infinite series of type

$$
\left((3 n)_{4}\right)
$$

$\left(15_{4}\right)$

(154)

(154)

Thank you for your attention.

