# **GEOMETRIC** $(n_k)$ **CONFIGURATIONS**

Gábor Gévay

Bolyai Institute University of Szeged Hungary



Pappus, 4th century A.D.  $(9_3)$ 



Desargues, 1648 (10<sub>3</sub>)

- A geometric point-line configuration  $(p_q, n_k)$  is a family of p points and n lines such that each point is incident with precisely q lines and each line is incident with precisely k points.
- If p = n (hence q = k), then the configuration is called *balanced*. Notation:  $(n_k)$ .
- The ambient space is  $\mathbb{E}^d$  (or, the projective space  $\mathbb{P}^d$ ). (We do not restrict ourselves to  $\mathbb{E}^2$  or  $\mathbb{P}^2$ .)

#### From the 1990-ties there is a "renaissance" of configurations.



#### Branko Grünbaum (2009)

Instead of lines, one can also use: planes, hyperplanes, circles, ellipses



- point-plane;
- point-hyperplane;
- point-circle;
- point-ellipse configurations.

# SPATIAL POINT-LINE CONFIGURATIONS

**Construction principle:** 

- highly symmetric convex polytopes can serve as a scaffolding for building large spatial configurations;
- the configuration inherits the symmetry of the polytope.

#### Configurations with the symmetry of a Platonic solid



(Supporting polytope: pentagonal dodecahedron)

#### Configurations with the symmetry of a Platonic solid

Three infinite series (for t = 1, 2, ...):

- tetrahedron  $\longrightarrow ((18(t+1)_3))$
- cube  $\longrightarrow ((36(t+1)_3)$
- icosahedron  $\longrightarrow ((90(t+1)_3))$

An example with chiral symmetry:  $(180_3)$ .

#### Configurations with the symmetry of a regular 4-polytope

- regular 4-simplex  $(|G| = 120) \longrightarrow (240_3)$
- 4-cube  $(|G| = 384) \longrightarrow (768_3)$
- regular 120-cell  $(|G| = 14400) \longrightarrow (28800_3)$

 $(n_3)$ , where  $n = 2 \times (\text{order of the symmetry group});$ 

7 orbits of points, 5 orbits of lines.

#### Configurations with the symmetry of other 4-polytopes



Uniform 10-cell +  $(12_2, 6_4) \rightarrow (420_4)$  (|G| = 240)Uniform 48-cell +  $(16_2, 8_4) \rightarrow (4032_4)$  (|G| = 2304)

# **Cartesian product of point-line configurations**



#### **Cartesian product of point-line configurations**

#### **Definition**.

Let  $C_1$  be a  $(p_q, m_k)$  configuration in an Euclidean space  $\mathbb{E}_1$  and  $C_2$  be an  $(r_s, n_k)$  configuration in an Euclidean space  $\mathbb{E}_2$ . Observe that these two configurations have the same number k of points on each line. The Cartesian product of  $C_1$  and  $C_2$  is the

$$((pr)_{(q+s)}, (pn+rm)_k)$$

configuration  $C_1 \times C_2$  in  $\mathbb{E}_1 \times \mathbb{E}_2$  whose point set is the Cartesian product of the point sets of  $C_1$  and  $C_2$  and where there is a line incident to two points  $(x_1, x_2)$  and  $(y_1, y_2)$  if and only if either  $x_1 = y_1$  and there is a line incident to  $x_2$  and  $y_2$  in  $C_2$ , or  $x_2 = y_2$ and there is a line incident to  $x_1$  and  $y_1$  in  $C_1$ .

#### **Powers of configurations**

- <u>complete 5-lateral</u>:  $(10_2, 5_4)^2 = (100_4) \subset \mathbb{P}^4$  complete 7-lateral:  $(21_2, 7_6)^3 = (9261_6) \subset \mathbb{P}^6$
- complete 9-lateral:  $(36_2, 9_8)^4 = (1\ 679\ 616_8) \subset \mathbb{P}^8$
- complete 11-lateral:  $(55_2, 11_{10})^5 = (503\ 284\ 375_{10}) \subset \mathbb{P}^{10}$

• complete (2k + 1)-lateral:

$$\left( \left( \begin{array}{c} 2k+1\\ 2 \end{array} \right)_2, (2k+1)_{2k} \right)^k = \left( \left( \left( \begin{array}{c} 2k+1\\ 2 \end{array} \right)^k \right)_{2k} \right) \quad \subset \mathbb{P}^{2k}$$

# **Powers of configurations**

Scaffolding polytope: *rhombicosidodecahedron*.

• 
$$(120_2, 60_4)^2 = (14400_4) \subset \mathbb{E}^6$$

• 
$$(180_2, 60_6)^3 = (5832200_6) \subset \mathbb{E}^9$$

• 
$$(240_2, 60_8)^4 = (3\ 317\ 760\ 000_8) \subset \mathbb{E}^{12}$$

• 
$$(300_2, 60_{10})^5 = ((2.43 \cdot 10^{10})_{10}) \subset \mathbb{E}^{15}$$

• 
$$(360_2, 60_{12})^6 = ((2^{18} \cdot 3^{12} \cdot 5^6)_{12}) \subset \mathbb{E}^{18}$$

#### An incidence statement on complete pentalaterals

**Lemma**. The set of vertices of a complete pentalateral  $P(l_1, ..., l_5)$  can be uniquely partitioned to "external" and "internal" vertices.



"Symmetric" position



"General" position

Let be given 25 lines,  $a_{ij}$  (i, j = 1, ..., 5), in the projective space  $\mathbb{P}^3$  such that they form five complete pentalaterals:

$$A_1 = P(a_{11}, \ldots, a_{15}), \ \ldots, \ A_5 = P(a_{51}, \ldots, a_{55}).$$

Assume that the following conditions hold:

1. the external vertices of the pentalaterals  $A_i$  form the external vertices of complete pentalaterals  $B_j = P(b_{1j}, \ldots, b_{5j})$ , as follows:

$$a_{ij} \cap a_{i,j+2} = b_{ij} \cap b_{i+2,j};$$

2. the internal vertices of the pentalaterals  $A_i$  form the external vertices of complete pentalaterals  $C_j = P(c_{1j}, \ldots, c_{5j})$ , as follows:

$$a_{ij} \cap a_{i,j+1} = c_{ij} \cap c_{i+2,j}$$

(indexing is meant modulo 5).

Then there is a quintuple of complete pentalaterals  $D_i$  such that their vertices coincide with the internal vertices of the pentalaterals  $B_j$  and  $C_j$ , as follows:

$$b_{ij} \cap b_{i+1,j} = d_{ij} \cap d_{i,j+2}$$
 and  $c_{ij} \cap c_{i+1,j} = d_{ij} \cap d_{i,j+1}$ .

### An incidence statement on complete pentalaterals

Some facts supporting the statement:

- There exists a balanced configuration  $(100_4)$  in  $\mathbb{P}^3$  such that its points are just the points of intersection satisfying the four conditions of the statement.
- (Special case in  $\mathbb{E}^3$  when the statement holds.)

The pentagons determined by the  $A_i$ s and  $D_i$ s are all regular (in Euclidean sense), and they have a common axis of rotation (of order five). In this case the conditions of the conjecture can easily be satisfied by suitably scaling the  $A_i$ s and  $D_i$ s and by suitably chosen shapes and sizes of the  $B_j$ s and  $D_j$ s.

• (Special case in  $\mathbb{E}^3$  when the statement is supported by simulation.)

All the pentalaterals  $A_i$  are homothetic copies of a pentalateral  $A_0$ . Furthermore, the external vertices of  $A_0$  (hence those of each  $A_i$ ) are inscribed in a circle. (Modelled in *Mathematica* by Karsai and Szilassi, 2008).

# **POINT-ELLIPSE CONFIGURATIONS**





(32<sub>6</sub>) GG (2009)



The Levi graph of the  $(32_6)$  point-ellipse configuration (by Tomaž Pisanski) An analogus version:  $(96_6)$ , derived from the regular 24-cell.

From a different point of view, the  $(32_6)$  configuration can be considered as the starting member of an infinite series of pointellipse configurations  $C_n$ , whose type is

$$((2n^2)_6), (n = 4, 5, ...).$$

The sketch of the construction:

- take the Cartesian product of two equal regular *n*-gons with even  $n \ge 4$ ; this is a 4-polytope with 2n prismatic facets;
- inscribe into these prisms affinely regular hexagons;
- circumscribe ellipses around these hexagons.

The set of the points of  $\mathcal{C}_n$  is

$$\left\{ v_{j}^{i,i+1}, v_{j,j+1}^{i} \, \middle| \, i, j \in [n] \right\},$$

and the inscribed hexagons are of the following forms:

$$\begin{cases} v_{j-1,j}^{i}, \underline{v_{j}^{i,i+1}}, v_{j,j+1}^{i+1}, v_{j-1,j}^{i+\frac{1}{2}n}, \underline{v_{j}^{i+\frac{1}{2}n,i+\frac{1}{2}n+1}}, v_{j,j+1}^{i+\frac{1}{2}n+1} \end{cases}, \\ \begin{cases} v_{j,j+1}^{i}, \underline{v_{j}^{i,i+1}}, v_{j-1,j}^{i+1}, v_{j,j+1}^{i+\frac{1}{2}n}, \underline{v_{j}^{i+\frac{1}{2}n,i+\frac{1}{2}n+1}}, v_{j-1,j}^{i+\frac{1}{2}n+1} \end{cases}, \\ \begin{cases} v_{j}^{i-1,i}, \underline{v_{j,j+1}^{i}}, v_{j+1}^{i,i+1}, v_{j+\frac{1}{2}n}^{i-1,i}, \underline{v_{j+\frac{1}{2}n,j+\frac{1}{2}n+1}}, v_{j+\frac{1}{2}n+1}^{i,i+1} \end{cases}, \\ \begin{cases} v_{j}^{i,i+1}, \underline{v_{j,j+1}^{i}}, v_{j+1}^{i-1,i}, v_{j+\frac{1}{2}n}^{i,i+1}, \underline{v_{j+\frac{1}{2}n,j+\frac{1}{2}n+1}}, v_{j+\frac{1}{2}n+1}^{i,i+1} \end{cases}, \\ \end{cases} \end{cases}$$

for all  $i, j \in [n]$ .

## **POINT-PLANE CONFIGURATIONS**

"*V*-construction": (GG, 2009)

- start from a highly symmetric polytope P (e.g. Platonic solid, Archimedean solid, etc.);
- the points of the configuration V(P) are the vertices of P;
- for each vertex v of P, take the plane spanned by the vertices which are the first neighbours of v.

A direct consequence of the construction:

The Levi graph of the configuration V(P) is isomorphic to the Kronecker cover of the 1-skeleton of the polytope P:

 $L(V(P)) \cong KC(G(P))$ 

(A graph  $\tilde{G}$  is said to be the Kronecker cover of the graph G if there exists a two-to-one surjective homomorphism  $f: \tilde{G} \to G$ such that for every vertex v of  $\tilde{G}$  the set of edges incident with vis mapped bijectively onto the set of edges incident with f(v).)



The flag-transitive triangle-free point-line configuration  $(20_3)$ , and its Levi graph.

(This Levi graph is the Kronecker cover of the dodecahedron graph.) [Boben, Grünbaum, Pisanski and Žitnik, 2006]

## V-construction from Platonic solids

| $V_1$ (tetrahedron)  | (4 <sub>3</sub> )  |
|----------------------|--------------------|
| $V_1$ (cube)         | $2 \times (4_3)$   |
| $V_1$ (icosahedron)  | $(12_5)$           |
| $V_1$ (dodecahedron) | (20 <sub>3</sub> ) |
| $V_2$ (dodecahedron) | (20 <sub>6</sub> ) |

# V-construction from Archimedean solids

| V(truncated tetrahedron)        | (12 <sub>3</sub> ) |
|---------------------------------|--------------------|
| V(cuboctahedron)                | $(12_4)$           |
| V(truncated octahedron)         | (24 <sub>3</sub> ) |
| V(truncated cube)               | (24 <sub>3</sub> ) |
| V(rhombicuboctahedron)          | $(24_4)$           |
| V(great rhombicuboctahedron)    | (48 <sub>3</sub> ) |
| V(truncated icosahedron)        | $(12_3)$           |
| V(truncated dodecahedron)       | (20 <sub>3</sub> ) |
| V(icosidodecahedron)            | (30 <sub>4</sub> ) |
| V(rhombicosidodecahedron)       | $(60_4)$           |
| V(great rhombicosidodecahedron) | $(120_3)$          |
| V(snub cube)                    | $(24_5)$           |
| V(snub dodecahedron)            | $(60_5)$           |

# V-construction from regular *d*-polytopes

 $(d \ge 4)$ 

| $V_1$ (24-cell)  | (24 <sub>8</sub> )                              |
|------------------|-------------------------------------------------|
| $V_1(600-cell)$  | (120 <sub>12</sub> )                            |
| $V_2(600-cell)$  | (120 <sub>20</sub> )                            |
| $V_1$ (120-cell) | (600 <sub>4</sub> )                             |
| $V_2(120-cell)$  | (600 <sub>12</sub> )                            |
| $V_1(d-simplex)$ | $((d+1)_d)$                                     |
| $V_1(d$ -cube)   | $2 	imes \left( \left( 2^{d-1}  ight)_d  ight)$ |

**A sufficient condition** for applicability of the *V*-construction:

Assume that P is a polytope such that

- 1. *P* is vertex-transitive;
- 2. the stabilizer of each vertex v of P is transitive on the vertices adjacent to v.

Then the configuration V(P) exists.

**Corollary.** V(P) is self-polar.

**Definition.** A configuration C is self-polar if there exists a fixedpoint-free and involutive automorphism  $\pi$  of L(C) such that the bipartition of L(C) is interchanged by  $\pi$ , and for any vertex v of L(C) the vertices v and  $\pi(v)$  are non-adjacent. A hypersimplex  $\Delta(d, k)$  is defined as a convex polytope whose vertices are given by vectors of length d + 1 which consist of k ones and d - k + 1 zeroes. (Gelfand et al., 1975; Ziegler, 1995).

It can also be defined as the convex hull of the centroids of (k-1)-dimensional faces of a regular *d*-simplex.

For each  $d \ge 4$  and  $1 < k \le d/2$ , there exists the point-hyperplane configuration  $V(\Delta(d,k))$  of type

$$\left( \left( \begin{array}{c} d+1\\ k \end{array} \right)_{k(d-k+1)} \right)_{.}$$

Let T and T' be two concentric regular simplices of equal size such that one is the mirror image of the other with respect to their common centre. Then the intersection  $T \cap T'$  is called a uniform duplex. A polytope combinatorially equivalent to a uniform duplex called a duplex. (GG, 2009)

(A duplex of odd dimension is the hypersimplex  $\Delta(d, (d+1)/2)$ .)

Let D be a duplex of even dimension. For each  $d \ge 4$ , there exists the point-hyperplane configuration V(D) of type

$$\left(\left((d+1)\left(\begin{array}{c}d+1\\k\end{array}\right)\right)_{d}\right)_{d}$$

# **POINT-CIRCLE CONFIGURATIONS**

The classical example: Clifford's chain

$$\left(\left(2^n\right)_{n+1}\right), \quad (n=3,4,\dots)$$

(Clifford, 1882; Coxeter, 1950, 1961)

A new (limitedly movable) example:  $(12_4)$ .



 $(12_5)$ 



(20<sub>6</sub>)



(24<sub>5</sub>)

### **POINT-CIRCLE CONFIGURATIONS**

For each integer  $n \geq 3$ , there is an infinite series of type

 $((3n)_4).$ 



 $(15_4)$ 



 $(15_4)$ 



 $(15_4)$ 



# Thank you for your attention.