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Outline of the talk

I A basic model of stream cipher.

I Use of Boolean functions in stream ciphers.

I Some cryptographically significant properties of Boolean
functions.



Stream Ciphers

I Alice sends message to Bob over a public channel.
Assume that the message is a binary sequence.

I Oscar has access to the channel.

I While sending the binary sequence (message) Alice xor-s
it bitwise with a random binary sequence (keystream).

I In case Bob has access to the same random binary
sequence (keystream) he can retrieve the original
message sent by Alice by xor-ing the random binary
sequence to the received message.

I The reason is that if x ∈ {0,1} then x ⊕ x = 0.



A Statistical model

I Each message bit is considered as an instance of a
random variable X .

I Each keystream bit is considered as an instance of a
random variable Z .

I Then each ciphertext bit is an instance of the random
variable Y = X ⊕ Z .

I Pr [X = 0] = p,Pr [X = 1] = 1 − p and
Pr [Z = 0] = Pr [Z = 1] = 1/2.



Killing the probability distribution of X

I

Pr [X ⊕ Z = 0] = Pr [X = 1]Pr [Z = 1] + Pr [X = 0]Pr [Z = 0]

= (1 − p)(1/2) + p(1/2) = 1/2.
(1)

Pr [X ⊕ Z = 1] = Pr [X = 0]Pr [Z = 1] + Pr [X = 1]Pr [Z = 0]

= p(1/2) + (1 − p)(1/2) = 1/2.
(2)

I Is it possible for X to be such that p = 1/2?



Use of Pseudorandom binary sequence generator

I Instead of using a true random binary sequence Alice uses
a finite state machine (FSM) which generates a
pseudorandom binary sequence which we refer to as the
keystream.

I Alice initializes the FSM with a short key (say k bits long)
which she shares with Bob.

I Then Bob is also able to generate the same
pseudorandom binary sequence and hence able to retrieve
the original message sent by Alice.



Oscar’s activity

I We assume that Oscar can access any M bits of the
keystream.

I If the cipher is optimally secure then Oscar must not be
able to compute the key with complexity less than 2k - that
is less than exhaustive search over the entire keyspace.



A model of a stream cipher

I x = (x1, . . . , xN) ∈ GF (2)N be a state of an FSM.

I L : GF (2)N → GF (2)N be the state update function.

I f : GF (2)n → GF (2), where n ≤ N is a Boolean function.

I The generation of keystream is done as follows:

f (Li(x)) = zi , for i = 0,1,2,3, . . . ,M, . . . . (3)



Stream cipher using LFSR
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Linear case

I Suppose f and L used in (3) are both linear, i.e.,
f (x + y) = f (x) + f (y) and L(x + y) = L(x) + L(y).

I The (3) is a system of linear equations.

I This means that if we have N such linearly independent
equations then we can solve them for x.

I If we obtain 2N such equations it is seen by experiment
that we usually obtain N linearly independent equations in
the process and hence can solve them and obtain the
initial state x.



Introduction of nonlinearity

I In large number of stream ciphers L is fixed to be linear
while f is not linear.

I However use of any nonlinear function may not solve the
problem.

I Example:

f (x1, . . . , x4) = x1x2x3x4 ⊕ x1 ⊕ x2.



Affine approximation
f (x1, . . . , x4) = x1x2x3x4 ⊕ x1 ⊕ x2; `(x1, . . . , x4) = x1 ⊕ x2.

x4 x3 x2 x1 f `
0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 1 1
0 1 1 0 0 1
0 1 1 1 1 0
1 0 0 0 0 0
1 0 0 1 1 1
1 0 1 0 0 1
1 0 1 1 0 0
1 1 0 0 0 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 0



Affine approximation
I Suppose that the initial state of the FSM, x is randomly

chosen and we compute f (Li(x)) = zi for i = 0,1, . . .M.
I The probability that the above system of equations is same

as `(Li(x)) = zi for i = 0,1, . . . ,M is (1 − 1
16)

M . (Of course
under certain assumptions)

I Since the second system is linear it can be solved for the
initial state x.

I Thus the function f must be “far away” from all the affine
functions

a1x1 ⊕ a2x2 ⊕ . . .⊕ anxn ⊕ ε,

for all (a1, . . . ,an) ∈ GF (2)n and ε ∈ GF (2). In the present
case n = 4.

I This can also be written as

`a,ε(x) = a · x ⊕ ε,

where a · x =
⊕n

i=1 aixi is the inner product of a and x.
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The distance between two Boolean functions
I The distance between two Boolean functions f and g is

dH(f ,g) = #(f 6= g)

=
1
2
(#(f = g) + #(f 6= g))−

1
2
(#(f = g)−#(f 6= g))

= 2n−1 −
1
2

∑

x∈GF (2)n

(−1)f (x)⊕g(x)

(4)
I

dH(f , `a,ε) = 2n−1 −
1
2

∑

x∈GF (2)n

(−1)f (x)⊕`a,ε(x)

= 2n−1 −
1
2

∑

x∈GF (2)n

(−1)f (x)⊕a·x⊕ε

= 2n−1 − (−1)ε
1
2

∑

x∈GF (2)n

(−1)f (x)⊕a·x

(5)



Hamming distance and Walsh–Hadamard transform

I

dH(f , `a,ε) = 2n−1 − (−1)ε
1
2

∑

x∈GF (2)n

(−1)f (x)⊕a·x

= 2n−1 − (−1)ε
1
2

Wf (a).

(6)

I minε∈GF (2)(dH(f , `a,ε)) = 2n−1 − 1
2 |Wf (a)|.

I The nonlinearity of f is defined as:

min
a∈GF (2)n

min
ε∈GF (2)

(dH(f , `a,ε)) = 2n−1 −
1
2

max
a∈GF (2)n

|Wf (a)|.



Parseval’s equation

I

∑

a∈GF (2)n

Wf (a)
2 =

∑

a∈GF (2)n

∑

x∈GF (2)n

∑

y∈GF (2)n

(−1)f (x)⊕f (y)⊕a·(x+y)

=
∑

x∈GF (2)n

∑

y∈GF (2)n

(−1)f (x)⊕f (y)

×
∑

a∈GF (2)n

(−1)a·(x+y)

= 22n.(Why!)
(7)

I Therefore Wf (a) ≥ 2
n
2 , which implies that

nonlinearity of f is bounded above by 2n−1 − 2
n
2−1.



Bent functions - the functions with maximum
nonlinearity

I Consider f (x , y) = x · y and n = 2t
I

Wf (a,b) =
∑

x∈GF (2)t

∑

y∈GF (2)t

(−1)x·y⊕a·x⊕b·y

=
∑

x∈GF (2)t

(−1)x·a
∑

y∈GF (2)t

(−1)y·(x⊕b)

= (−1)a·b2t .

(8)

I These functions where first constructed by Rothaus in
1966.

I These are called bent functions.



The case when n is odd

I For a long time it was believed that the maximum
nonlinearity possible for odd n is 2n−1 − 2

n−1
2 .

I It was known that such is the case for n ≤ 7.

I It was shown by Patterson and Wiedemann in 1983 that for
n = 15 there are functions with larger value of nonlinearity.

I The cases n = 9,11,13 remained open for long time and
finally settled in the following paper:
Kavut S., Maitra S., Sarkar S., Yücel M. D., Enumeration of
9-variable Rotation Symmetric Boolean Functions having
Nonlinearity > 240, INDOCRYPT 2006, pp. 266-279, 2006.



Other important properties

I A Boolean function f is said to be α-resilient (i.e., f has
resiliency order α) if it is balanced (i.e., dH(f ,0) = 2n−1,
where 0 is the constant function with output 0) and remains
balanced as an (n − t)-variable function if any set of t ≤ α
variables are fixed. This definition of resiliency is due to
Siegenthaler:
T. Siegenthaler, “Correlation-immunity of nonlinear
combining functions for cryptographic applications”, IEEE
Trans. Inform. Theory, vol. 30, no. 5, pp. 776-780, 1984.



Resiliency and Walsh–Hadamard transform

I A Boolean function f ∈ Bn is α-resilient if and only if

Wf (u) = 0 (9)

for all u ∈ GF (2)n such that wt(u) ≤ α.
I This is proved by

Xiao Guo-Zhen and J. L. Massey, “A Spectral
Characterization of Correlation-Immune Combining
Functions”, IEEE Trans. Inform. Theory, vol. 34, no. 3, pp.
569-571, 1988.



Algebraic degree

I The algebraic normal form (ANF) of a Boolean function f is
as follows:

f (x1, . . . , xn) =
⊕

a=(a1,...,an)∈GF (2)n

µa

n∏

i=1

xai
i .

I The algebraic degree of f ,

deg(f ) := max
a∈GF (2)n

{wt(a) : µa 6= 0}.



Optimization of nonlinearity, resiliency and algebraic
degree

I Then Siegenthaler proved that deg ≤ n − α− 1. This is
known as the Siegenthaler’s bound.

I Nonlinearity of f is bounded above by 2n−1 − 2α+1, which
is known as the Sarkar and Maitra’s bound.

S. Maitra and P. Sarkar, “Highly nonlinear resilient functions
optimizing Siegnethaler’s Inequality”, CRYPTO’99, Lecture
Notes in Comput. Sci., vol. 1666, pp. 198-215, 1999.

I Sarkar and Maitra obtained the optimal functions with
respect to nonlinearity, resiliency and algebraic degree.



Algebraic immunity

I Another class of attack was introduced by Courtois, Meier
and others which is known as algebraic attack.

I The property of Boolean function which has to be
maximized in order to resist algebraic attack is said to be
algebraic immunity.

I The Boolean functions with maximum algebraic immunity
were constructed for the first time by Dalai, Gupta and
Maitra.
Dalai D. K., Gupta K. C., Maitra S., Results on Algebraic
Immunity for Cryptographically Significant Boolean
Functions, INDOCRYPT 2004, Lecture Notes in Computer
Science, Vol. 3348, pp. 92-106, 2004.



Is it the end of the story of cryptographically significant
Boolean functions?

I A Boolean function f ∈ Bn is said to be k-normal (weakly
k-normal) if its restriction on a k-dimensional flat is
constant (affine). The positive integer k is said to be the
normality order of the Boolean function f .

I Mihaljević, Gangopadhyay, Paul and Imai demonstrated
that in some cases even the optimal functions constructed
above are vulnerable to dedicated
time-memory-date-tradeoff attacks due to high order of
normality.



Normality-order as a cryptographically significant
property

I Mihaljevic M. J., Gangopadhyay S., Paul G. and Imai H.,
An Algorithm for the Internal State Recovery of Grain-v1,
presented in the 11th Central European Conference on
Cryptology, Debrecen, Hugary, 30 June to 2 July, 2011.

I Mihaljevic M. J., Gangopadhyay S., Paul G. and Imai H., A
Generic Weakness of the k-normal Boolean Functions
Exposed to Dedicated Algebraic Attack, 2010 Int. Symp.
on Inform. Theory and its Appl. - ISITA 2010, Taichung,
Taiwan, Oct. 17-20, 2010, IEEE Proceedings, pp. 911-916.
(IEEE Catalog Number: CFP 10767-USB, ISBN:
078-1-4244-6014-4, ISSN: 1943-7439)



Normality-order as a cryptographically significant
property

I It is observed that all the standard constructions of optimal
functions have high normality-order.

I Thus it seems that the story is not complete yet.



Thank you
Questions Please!


