Characterization of Cyclic Schur Groups

Sergei Evdokimov

St.Petersburg Department of Steklov Mathematical Institute Russia (joint work with István Kovács and Ilia Ponomarenko)

Koper, October 10, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

- General Theory
- Circulant S-rings
- 2 Schur Groups
 - General Theory
 - Ocyclic Schur Groups

3 Main Theorem

- Statement
- Sketch of Proof

ヨト イヨト ヨヨ わえで

Definition

Let *G* be a group and $\mathbb{Q}G$ the group algebra of *G* over \mathbb{Q} .

An S-ring over *G* is a subalgebra \mathcal{A} of $\mathbb{Q}G$ that contains 1 and is closed under the termwise multiplication and inversion.

Definition

- Let *G* be a group and $\mathbb{Q}G$ the group algebra of *G* over \mathbb{Q} .
- An S-ring over *G* is a subalgebra \mathcal{A} of $\mathbb{Q}G$ that contains 1 and is closed under the termwise multiplication and inversion.
- There exists a partition S = S(A) of *G* such that $A = \operatorname{span} S$.

- Let *G* be a group and $\mathbb{Q}G$ the group algebra of *G* over \mathbb{Q} .
- An S-ring over *G* is a subalgebra \mathcal{A} of $\mathbb{Q}G$ that contains 1 and is closed under the termwise multiplication and inversion.
- There exists a partition S = S(A) of *G* such that $A = \operatorname{span} S$.
- The partition S is stable: 1) {1} $\in S$, 2) $X \in S \Rightarrow X^{-1} \in S$, 3) $X \cdot Y$ is a linear combination of $Z \in S$ for all $X, Y \in S$.

- Let *G* be a group and $\mathbb{Q}G$ the group algebra of *G* over \mathbb{Q} .
- An S-ring over *G* is a subalgebra \mathcal{A} of $\mathbb{Q}G$ that contains 1 and is closed under the termwise multiplication and inversion.
- There exists a partition S = S(A) of *G* such that $A = \operatorname{span} S$.
- The partition S is stable: 1) {1} $\in S$, 2) $X \in S \Rightarrow X^{-1} \in S$, 3) $X \cdot Y$ is a linear combination of $Z \in S$ for all $X, Y \in S$.
- A-sets, A-groups, primitivity, $A_{U/L}$, rank(A), deg(A)

- Let *G* be a group and $\mathbb{Q}G$ the group algebra of *G* over \mathbb{Q} .
- An S-ring over *G* is a subalgebra \mathcal{A} of $\mathbb{Q}G$ that contains 1 and is closed under the termwise multiplication and inversion.
- There exists a partition S = S(A) of G such that $A = \operatorname{span} S$.
- The partition S is stable: 1) {1} $\in S$, 2) $X \in S \Rightarrow X^{-1} \in S$, 3) $X \cdot Y$ is a linear combination of $Z \in S$ for all $X, Y \in S$.
- A-sets, A-groups, primitivity, $A_{U/L}$, rank(A), deg(A)
- **Examples:** 1) $\mathcal{A} = \mathbb{Q}G$ trivial S-ring, 2) S-rings of rank 2, 3) tensor product $\mathcal{A}_1 \otimes \mathcal{A}_2$ is an S-ring over $G_1 \times G_2$.

Schur Theorem on Multipliers

For $X \subset G$ and $m \in \mathbb{Z}$ set $X^{(m)} = \{x^m : x \in X\}$.

Theorem Let A be an S-ring over an abelian group G. Then for any integer *m* coprime to |G| we have

$$X \in \mathcal{S} \Rightarrow X^{(m)} \in \mathcal{S}.$$

In other words the mapping $X \mapsto X^{(m)}, X \in S$ is a bijection of S.

Schur Theorem on Multipliers

For
$$X \subset G$$
 and $m \in \mathbb{Z}$ set $X^{(m)} = \{x^m : x \in X\}$.

Theorem Let A be an S-ring over an abelian group G. Then for any integer *m* coprime to |G| we have

$$X \in \mathcal{S} \Rightarrow X^{(m)} \in \mathcal{S}.$$

In other words the mapping $X \mapsto X^{(m)}, X \in S$ is a bijection of S. Set

 $M = \{ \sigma \in Aut(G) : \exists m \in \mathbb{Z} \text{ such that } x^{\sigma} = x^{m} \forall x \in G \}.$

Then M = Z(Aut(G)) and the group M acts on the set S.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Schur Theorem on Multipliers

For $X \subset G$ and $m \in \mathbb{Z}$ set $X^{(m)} = \{x^m : x \in X\}$.

Theorem Let A be an S-ring over an abelian group G. Then for any integer *m* coprime to |G| we have

$$X \in \mathcal{S} \Rightarrow X^{(m)} \in \mathcal{S}.$$

In other words the mapping $X \mapsto X^{(m)}, X \in S$ is a bijection of S. Set

 $M = \{ \sigma \in Aut(G) : \exists m \in \mathbb{Z} \text{ such that } x^{\sigma} = x^{m} \forall x \in G \}.$

Then M = Z(Aut(G)) and the group M acts on the set S.

If G is cyclic, then M = Aut(G) and hence M acts transitively on the basic sets containing a generator of G.

・ロト (周) (E) (E) (E) (E)

General Theory Circulant S-rings

Automorphism Group of an S-ring

Any basic A-set X yields a Cayley graph $\mathcal{G}_X = (G, E_X)$ over G where $E_X = \{(g, xg) : g \in G, x \in X\}$. All of these graphs form a Cayley scheme $\mathcal{C} = (G, \{E_X\}_{X \in S})$ over G.

Automorphism Group of an S-ring

Any basic A-set X yields a Cayley graph $\mathcal{G}_X = (G, E_X)$ over G where $E_X = \{(g, xg) : g \in G, x \in X\}$. All of these graphs form a Cayley scheme $\mathcal{C} = (G, \{E_X\}_{X \in S})$ over G.

Definition For an S-ring A over a group G set

$$\operatorname{Aut}(\mathcal{A}) = \operatorname{Aut}(\mathcal{C}) = \bigcap_{X \in \mathcal{S}} \operatorname{Aut}(\mathcal{G}_X).$$

Automorphism Group of an S-ring

Any basic A-set X yields a Cayley graph $\mathcal{G}_X = (G, E_X)$ over G where $E_X = \{(g, xg) : g \in G, x \in X\}$. All of these graphs form a Cayley scheme $\mathcal{C} = (G, \{E_X\}_{X \in S})$ over G.

Definition For an S-ring \mathcal{A} over a group G set

$$\operatorname{Aut}(\mathcal{A}) = \operatorname{Aut}(\mathcal{C}) = \bigcap_{X \in S} \operatorname{Aut}(\mathcal{G}_X).$$

We have $Aut(A) = Aut(A)_1 \cdot G_{right} \leq Sym(G)$. Moreover, given $\sigma \in Aut(\mathcal{A})_1$ we have $X^{\sigma} = X$ for all $X \in S$.

Automorphism Group of an S-ring

Any basic A-set X yields a Cayley graph $\mathcal{G}_X = (G, E_X)$ over G where $E_X = \{(g, xg) : g \in G, x \in X\}$. All of these graphs form a Cayley scheme $\mathcal{C} = (G, \{E_X\}_{X \in S})$ over G.

Definition For an S-ring A over a group G set

$$\operatorname{Aut}(\mathcal{A}) = \operatorname{Aut}(\mathcal{C}) = \bigcap_{X \in \mathcal{S}} \operatorname{Aut}(\mathcal{G}_X).$$

We have $\operatorname{Aut}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A})_1 \cdot G_{right} \leq \operatorname{Sym}(G)$. Moreover, given $\sigma \in \operatorname{Aut}(\mathcal{A})_1$ we have $X^{\sigma} = X$ for all $X \in S$.

Examples: 1) Aut(\mathcal{A}) = G_{right} if $\mathcal{A} = \mathbb{Q}G$, 2) Aut(\mathcal{A}) = Sym(G) if rank(\mathcal{A}) = 2, 3) Aut($\mathcal{A}_1 \otimes \mathcal{A}_2$) = Aut(\mathcal{A}_1) × Aut(\mathcal{A}_2).

General Theory Circulant S-rings

Schurian S-rings

For a permutation group $\Gamma \leq \text{Sym}(G)$ with $G_{right} \leq \Gamma$ set

 $\mathcal{A}_{\Gamma} = \operatorname{span} \mathcal{S}_{\Gamma}, \quad \mathcal{S}_{\Gamma} = \operatorname{Orb}(\Gamma_1, G).$

Then A_{Γ} is an S-ring over *G*. Such S-rings are called schurian.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

General Theory Circulant S-rings

Schurian S-rings

For a permutation group $\Gamma \leq \text{Sym}(G)$ with $G_{right} \leq \Gamma$ set

 $\mathcal{A}_{\Gamma} = \operatorname{span} \mathcal{S}_{\Gamma}, \quad \mathcal{S}_{\Gamma} = \operatorname{Orb}(\Gamma_1, G).$

Then \mathcal{A}_{Γ} is an S-ring over *G*. Such S-rings are called schurian.

 \mathcal{A} is schurian \Leftrightarrow Aut $(\mathcal{A})_1$ acts transitively on each basic \mathcal{A} -set.

General Theory Circulant S-rings

Schurian S-rings

For a permutation group $\Gamma \leq \text{Sym}(G)$ with $G_{right} \leq \Gamma$ set

 $\mathcal{A}_{\Gamma} = \operatorname{span} \mathcal{S}_{\Gamma}, \quad \mathcal{S}_{\Gamma} = \operatorname{Orb}(\Gamma_1, G).$

Then \mathcal{A}_{Γ} is an S-ring over *G*. Such S-rings are called schurian.

 \mathcal{A} is schurian \Leftrightarrow Aut $(\mathcal{A})_1$ acts transitively on each basic \mathcal{A} -set.

 $\{\text{doubly transitive groups}\} \rightarrow \{\text{S-rings of rank 2}\}$

Tensor product of schurian S-rings is schurian.

Schurian S-rings

For a permutation group $\Gamma \leq Sym(G)$ with $G_{right} \leq \Gamma$ set

 $\mathcal{A}_{\Gamma}=\text{span}\,\mathcal{S}_{\Gamma},\quad \mathcal{S}_{\Gamma}=\text{Orb}(\Gamma_{1},\textit{G}).$

Then A_{Γ} is an S-ring over *G*. Such S-rings are called schurian.

 \mathcal{A} is schurian \Leftrightarrow Aut $(\mathcal{A})_1$ acts transitively on each basic \mathcal{A} -set.

 $\{\text{doubly transitive groups}\} \rightarrow \{\text{S-rings of rank 2}\}$

Tensor product of schurian S-rings is schurian.

Special case: $\Gamma = K \cdot G_{right} \leq Hol(G)$ where $K \leq Aut(G)$. Then $\Gamma_1 = K$ and $S_{\Gamma} = Orb(K, G)$. The ring A_{Γ} is called cyclotomic and denoted by Cyc(K, G).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Generalized Wreath Product

Let U/L be an A-section such that L is normal in G.

Definition We say that A is the U/L-wreath product if every basic set outside U is the union of L-cosets. The product is called proper if $L \neq 1$ and $U \neq G$.

▲□ > ▲ Ξ > ▲ Ξ > Ξ Ξ - 의۹ @

Generalized Wreath Product

Let U/L be an A-section such that L is normal in G.

Definition We say that A is the U/L-wreath product if every basic set outside U is the union of L-cosets. The product is called proper if $L \neq 1$ and $U \neq G$.

When U = L we obtain an ordinary wreath product of S-rings.

▲□ > ▲ Ξ > ▲ Ξ > Ξ Ξ - 의۹ @

Generalized Wreath Product

Let U/L be an A-section such that L is normal in G.

Definition We say that A is the U/L-wreath product if every basic set outside U is the union of L-cosets. The product is called proper if $L \neq 1$ and $U \neq G$.

When U = L we obtain an ordinary wreath product of S-rings.

Theorem Let A_1 and A_2 be S-rings over U and G/L. Suppose that U/L is both an A_1 - and A_2 -section and $(A_1)_{U/L} = (A_2)_{U/L}$. Then there is a uniquely determined S-ring A over G that is the U/L-wreath product such that $A_U = A_1$ and $A_{G/L} = A_2$.

Generalized Wreath Product

Let U/L be an A-section such that L is normal in G.

Definition We say that A is the U/L-wreath product if every basic set outside U is the union of L-cosets. The product is called proper if $L \neq 1$ and $U \neq G$.

When U = L we obtain an ordinary wreath product of S-rings.

Theorem Let A_1 and A_2 be S-rings over U and G/L. Suppose that U/L is both an A_1 - and A_2 -section and $(A_1)_{U/L} = (A_2)_{U/L}$. Then there is a uniquely determined S-ring A over G that is the U/L-wreath product such that $A_U = A_1$ and $A_{G/L} = A_2$.

In this case we write $\mathcal{A} = \mathcal{A}_1 \wr_{U/L} \mathcal{A}_2 = \mathcal{A}_U \wr_{U/L} \mathcal{A}_{G/L}$.

General Theory Circulant S-rings

Burnside – Schur Theorem (1933)

Theorem Every primitive permutation group containing a full cycle is either 2-transitive or isomorphic to a subgroup of the affine group $AGL_1(p)$ where *p* is a prime.

Burnside – Schur Theorem (1933)

Theorem Every primitive permutation group containing a full cycle is either 2-transitive or isomorphic to a subgroup of the affine group $AGL_1(p)$ where p is a prime.

The theorem follows from the following statement in which we call an S-ring A over G normal if Aut $(A) \leq Hol(G)$.

Theorem Every primitive circulant S-ring is either of rank 2 or normal cyclotomic of prime degree.

Burnside – Schur Theorem (1933)

Theorem Every primitive permutation group containing a full cycle is either 2-transitive or isomorphic to a subgroup of the affine group $AGL_1(p)$ where p is a prime.

The theorem follows from the following statement in which we call an S-ring A over G normal if Aut $(A) \leq Hol(G)$.

Theorem Every primitive circulant S-ring is either of rank 2 or normal cyclotomic of prime degree.

Indeed, if Γ is a primitive group, then \mathcal{A}_{Γ} is a primitive S-ring. If $rk(\mathcal{A}_{\Gamma}) = 2$, then Γ is 2-transitive. Otherwise, \mathcal{A}_{Γ} is normal. But then $\Gamma \leq Aut(\mathcal{A}_{\Gamma}) \leq Hol(\mathbb{Z}_{p}) = AGL_{1}(p)$.

Decomposition Theorem (Leung – Man, EP)

Given an S-ring A over G set

 $rad(\mathcal{A}) = rad(X)$

where X is a basic set of A that contains a generator of G and $rad(X) = \{g \in G : gX = X\}.$

Decomposition Theorem (Leung – Man, EP)

Given an S-ring A over G set

 $rad(\mathcal{A}) = rad(X)$

where X is a basic set of A that contains a generator of G and $rad(X) = \{g \in G : gX = X\}.$

Theorem Let \mathcal{A} be a circulant S-ring. Then

- if rad(A) ≠ 1 then A is a proper generalized wreath product,
- if rad(A) = 1 then A is the tensor product of a normal cyclotomic S-ring and S-rings of rank 2.

Decomposition Theorem (Leung – Man, EP)

Given an S-ring \mathcal{A} over G set

 $rad(\mathcal{A}) = rad(X)$

where X is a basic set of A that contains a generator of G and $rad(X) = \{g \in G : gX = X\}.$

Theorem Let \mathcal{A} be a circulant S-ring. Then

- if rad(A) ≠ 1 then A is a proper generalized wreath product,
- if rad(A) = 1 then A is the tensor product of a normal cyclotomic S-ring and S-rings of rank 2.

Corollary Any circulant S-ring with trivial radical is schurian.

General Theory Circulant S-rings

Schurity of Generalized Wreath Product

Let us consider the U/L-wreath product

 $\mathcal{A} = \mathcal{A}_U \wr_{U/L} \mathcal{A}_{G/L}.$

Theorem (EP) Suppose that $A_{U/L}$ is the tensor product of a normal S-ring and S-rings of rank 2. Then A is schurian if and only if so are the S-rings A_U and $A_{G/L}$.

・ロト (周) (E) (E) (E) (E)

Schurity of Generalized Wreath Product

Let us consider the U/L-wreath product

 $\mathcal{A} = \mathcal{A}_U \wr_{U/L} \mathcal{A}_{G/L}.$

Theorem (EP) Suppose that $A_{U/L}$ is the tensor product of a normal S-ring and S-rings of rank 2. Then A is schurian if and only if so are the S-rings A_U and $A_{G/L}$.

Corollary Suppose that $rad(A_{U/L}) = 1$. Then A is schurian if and only if so are the S-rings A_U and $A_{G/L}$.

・ロト (周) (E) (E) (E) (E)

General Theory Cyclic Schur Groups

Definition and Properties

Definition (Pöschel, 1974) A finite group G is a Schur group if every S-ring over it is schurian.

Sergei Evdokimov Characterization of Cyclic Schur Groups

General Theory Cyclic Schur Groups

Definition and Properties

Definition (Pöschel, 1974) A finite group G is a Schur group if every S-ring over it is schurian.

Any section of a Schur group is a Schur group.

General Theory Cyclic Schur Groups

Definition and Properties

Definition (Pöschel, 1974) A finite group G is a Schur group if every S-ring over it is schurian.

Any section of a Schur group is a Schur group.

Theorem For $p \ge 5$ a *p*-group is Schur only if it is cyclic.

Corollary A nilpotent (in particular, abelian) group the order of which is coprime to 6 is Schur only if it is cyclic.

General Theory Cyclic Schur Groups

Definition and Properties

Definition (Pöschel, 1974) A finite group G is a Schur group if every S-ring over it is schurian.

Any section of a Schur group is a Schur group.

Theorem For $p \ge 5$ a *p*-group is Schur only if it is cyclic.

Corollary A nilpotent (in particular, abelian) group the order of which is coprime to 6 is Schur only if it is cyclic.

The smallest non-Schur group is $\mathbb{Z}_4 \times \mathbb{Z}_4$.

General Theory Cyclic Schur Groups

Previous Results

Cyclic Schur groups of order *n*:

- $n = p^k$ where p is an odd prime (Pöschel, 1974),
- n = pq where p, q are primes (Klin Pöschel, 1978),
- n = 2^k (Kovács, 2009),
- n = pqr or $n = p^3q$ where p, q, r are primes (EP, 2010).

General Theory Cyclic Schur Groups

Previous Results

Cyclic Schur groups of order n:

- $n = p^k$ where p is an odd prime (Pöschel, 1974),
- n = pq where p, q are primes (Klin Pöschel, 1978),
- n = 2^k (Kovács, 2009),
- n = pqr or $n = p^3q$ where p, q, r are primes (EP, 2010).

Let \mathcal{A} be an S-ring over \mathbb{Z}_{pqr} . If $rad(\mathcal{A}) = 1$, then \mathcal{A} is schurian. Otherwise, $\mathcal{A} = \mathcal{A}_U \wr_{U/L} \mathcal{A}_{G/L}$ where |U/L| = 1 or p or q or r. So $rad(\mathcal{A}_{U/L}) = 1$. Since \mathcal{A}_U and $\mathcal{A}_{G/L}$ are schurian, so is \mathcal{A} .

・ロト (周) (E) (E) (E) (E)

General Theory Cyclic Schur Groups

Schur – Klin Hypothesis (1970's)

Hypothesis Any circulant S-ring is schurian. In other words, any finite cyclic group is a Schur group.

General Theory Cyclic Schur Groups

Schur – Klin Hypothesis (1970's)

Hypothesis Any circulant S-ring is schurian. In other words, any finite cyclic group is a Schur group.

The hypothesis was disproved in 2001 by EP.

Theorem Let $n = p_1 p_2 p_3 p_4$ where $p'_i s$ are odd primes such that $\{p_1, p_2\} \cap \{p_3, p_4\} = \emptyset$. Then a cyclic group of order *n* is not Schur whenever $\text{GCD}(p_1 - 1, p_2 - 1, p_3 - 1, p_4 - 1) \ge 3$.

Schur – Klin Hypothesis (1970's)

Hypothesis Any circulant S-ring is schurian. In other words, any finite cyclic group is a Schur group.

The hypothesis was disproved in 2001 by EP.

Theorem Let $n = p_1 p_2 p_3 p_4$ where $p'_i s$ are odd primes such that $\{p_1, p_2\} \cap \{p_3, p_4\} = \emptyset$. Then a cyclic group of order *n* is not Schur whenever $\text{GCD}(p_1 - 1, p_2 - 1, p_3 - 1, p_4 - 1) \ge 3$.

To construct counterexamples the authors used generalized wreath product of S-rings. The smallest counterexample was on $n = 5^2 \cdot 13^2$ points.

A cyclic group of order n is a Schur group if and only if n belongs to one of the following five (partially overlapped) families of integers:

$$p^k$$
, p^kq , $2p^kq$, pqr , $2pqr$,

where p, q, r are distinct primes and $k \ge 0$ is an integer.

A cyclic group of order n is a Schur group if and only if n belongs to one of the following five (partially overlapped) families of integers:

$$p^k$$
, p^kq , $2p^kq$, pqr , $2pqr$,

where p, q, r are distinct primes and $k \ge 0$ is an integer.

Note. Cyclic groups of orders $4p^k$ and 4pq are also Schur.

A cyclic group of order n is a Schur group if and only if n belongs to one of the following five (partially overlapped) families of integers:

$$p^k$$
, p^kq , $2p^kq$, pqr , $2pqr$,

where p, q, r are distinct primes and $k \ge 0$ is an integer.

Note. Cyclic groups of orders $4p^k$ and 4pq are also Schur.

The smallest non-Schur cyclic group has order 72.

Statement Sketch of Proof

Sketch of Proof

Given a positive integer *m* set

$$\Omega^*(\textit{m}) = egin{cases} \Omega(\textit{m}), & ext{if m is odd,} \ \Omega(\textit{m}/2), & ext{if m is even.} \end{cases}$$

For example, $\Omega(4) = 2$ whereas $\Omega^*(4) = 1$.

Statement Sketch of Proof

Sketch of Proof

Given a positive integer m set

$$\Omega^*(\textit{m}) = egin{cases} \Omega(\textit{m}), & ext{if }\textit{m} ext{ is odd,} \ \Omega(\textit{m}/2), & ext{if }\textit{m} ext{ is even.} \end{cases}$$

For example, $\Omega(4) = 2$ whereas $\Omega^*(4) = 1$.

Theorem Let $n = n_1 n_2$ where n_1 and n_2 are coprime positive integers such that $\Omega^*(n_i) \ge 2$, i = 1, 2. Then a cyclic group of order *n* is not a Schur group.

Statement Sketch of Proof

Sketch of Proof

Given a positive integer m set

$$\Omega^*(\textit{m}) = egin{cases} \Omega(\textit{m}), & ext{if }\textit{m} ext{ is odd,} \ \Omega(\textit{m}/2), & ext{if }\textit{m} ext{ is even.} \end{cases}$$

For example, $\Omega(4) = 2$ whereas $\Omega^*(4) = 1$.

Theorem Let $n = n_1 n_2$ where n_1 and n_2 are coprime positive integers such that $\Omega^*(n_i) \ge 2$, i = 1, 2. Then a cyclic group of order *n* is not a Schur group.

Note. An integer *n* satisfies the theorem condition if and only if it does not belong to any of the above five families of integers.

Sketch of Proof

For coprime $n_1 = ab$ and $n_2 = cd$ where $a, b, c, d \ge 3$ set

Schur Groups

Main Theorem

$$\begin{split} \mathcal{A}_1 &= \mathsf{Cyc}(\mathit{K}_{ac}, \mathbb{Z}_{ac}), \quad \mathcal{A}_2 &= \mathsf{Cyc}(\mathit{K}_{bc}, \mathbb{Z}_{bc}), \\ \mathcal{A}_3 &= \mathsf{Cyc}(\mathit{K}_{ad}, \mathbb{Z}_{ad}), \quad \mathcal{A}_4 &= \mathsf{Cyc}(\mathit{K}_b \times \mathit{K}_d, \mathbb{Z}_{bd}) \\ \text{with } \mathit{K}_m &= \{1, -1\} \leq \mathbb{Z}_m^\times \text{ for all } m \geq 3. \end{split}$$

Sketch of Proof

Sketch of Proof

For coprime $n_1 = ab$ and $n_2 = cd$ where $a, b, c, d \ge 3$ set

Schur Groups

Main Theorem

$$\begin{split} \mathcal{A}_1 &= \mathsf{Cyc}(\mathit{K}_{ac}, \mathbb{Z}_{ac}), \quad \mathcal{A}_2 = \mathsf{Cyc}(\mathit{K}_{bc}, \mathbb{Z}_{bc}), \\ \mathcal{A}_3 &= \mathsf{Cyc}(\mathit{K}_{ad}, \mathbb{Z}_{ad}), \quad \mathcal{A}_4 = \mathsf{Cyc}(\mathit{K}_b \times \mathit{K}_d, \mathbb{Z}_{bd}) \\ \text{with } \mathit{K}_m &= \{1, -1\} \leq \mathbb{Z}_m^\times \text{ for all } m \geq 3. \text{ Set} \\ \mathcal{A}_{1,2} &= \mathcal{A}_1 \wr_c \mathcal{A}_2, \qquad \mathcal{A}_{3,4} = \mathcal{A}_3 \wr_d \mathcal{A}_4, \end{split}$$

Then $(\mathcal{A}_{1,2})^{n_1} = \operatorname{Cyc}(K_a, \mathbb{Z}_a) \wr \operatorname{Cyc}(K_b, \mathbb{Z}_b) = (\mathcal{A}_{3,4})_{n_1}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Sketch of Proof

Sketch of Proof

For coprime $n_1 = ab$ and $n_2 = cd$ where $a, b, c, d \ge 3$ set

S-rings

Main Theorem

Sketch of Proof

$$\begin{split} \mathcal{A}_1 &= \mathsf{Cyc}(\mathcal{K}_{ac}, \mathbb{Z}_{ac}), \quad \mathcal{A}_2 = \mathsf{Cyc}(\mathcal{K}_{bc}, \mathbb{Z}_{bc}), \\ \mathcal{A}_3 &= \mathsf{Cyc}(\mathcal{K}_{ad}, \mathbb{Z}_{ad}), \quad \mathcal{A}_4 = \mathsf{Cyc}(\mathcal{K}_b \times \mathcal{K}_d, \mathbb{Z}_{bd}) \\ \text{with } \mathcal{K}_m &= \{1, -1\} \leq \mathbb{Z}_m^{\times} \text{ for all } m \geq 3. \text{ Set} \\ \mathcal{A}_{1,2} &= \mathcal{A}_1 \wr_c \mathcal{A}_2, \qquad \mathcal{A}_{3,4} = \mathcal{A}_3 \wr_d \mathcal{A}_4, \end{split}$$

Then $(\mathcal{A}_{1,2})^{n_1} = \operatorname{Cyc}(K_a, \mathbb{Z}_a) \wr \operatorname{Cyc}(K_b, \mathbb{Z}_b) = (\mathcal{A}_{3,4})_{n_1}$. Set

$$\mathcal{A} = \mathcal{A}_{1,2} \wr_{n_1} \mathcal{A}_{3,4}.$$

Theorem The S-ring A over \mathbb{Z}_n is not schurian.

Theorem Let $\mathcal{A} = \mathcal{A}_U \wr_{U/L} \mathcal{A}_{G/L}$ be an S-ring over an abelian group *G*. Then

- $\operatorname{Aut}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A})^U \wr_{U/L} \operatorname{Aut}(\mathcal{A})^{G/L},$
- ${\cal A}$ is schurian if and only if there exist groups Δ_U and Δ_0 such that
 - $U_{\text{right}} \leq \Delta_U \leq \text{Aut}(\mathcal{A}_U), (G/L)_{\text{right}} \leq \Delta_0 \leq \text{Aut}(\mathcal{A}_{G/L}),$

•
$$\Delta_U \approx \operatorname{Aut}(\mathcal{A}_U), \Delta_0 \approx \operatorname{Aut}(\mathcal{A}_{G/L}),$$

•
$$(\Delta_0)^{U/L} = (\Delta_U)^S$$

Moreover, in this case $\operatorname{Aut}(\mathcal{A}) \approx \Delta_U \wr_{U/L} \Delta_0$.

・ロト (周) (E) (E) (E) (E)

Papers I

- S. Evdokimov, I. Kovács, I. Ponomarenko. Characterization of cyclic Schur groups. *Preprint*, 1–26, 2011.
- S. Evdokimov, I. Ponomarenko.

Schurity of S-rings over a cyclic group and generalized wreath product of permutation groups. *arXiv*:1012.5393v2 [math.CO], 1–46, 2011 (accepted for publication in *St. Petersburg Math. J.*).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの