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Definition

Let G be a group and QG the group algebra of G over Q.

An S-ring over G is a subalgebra A of QG that contains 1 and
is closed under the termwise multiplication and inversion.

There exists a partition S = S(A) of G such that A = spanS.

The partition S is stable: 1) {1} ∈ S, 2) X ∈ S ⇒ X−1 ∈ S,
3) X · Y is a linear combination of Z ∈ S for all X ,Y ∈ S.

A-sets, A-groups, primitivity, AU/L, rank(A), deg(A)

Examples: 1) A = QG – trivial S-ring, 2) S-rings of rank 2,
3) tensor product A1 ⊗A2 is an S-ring over G1 ×G2.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

General Theory
Circulant S-rings

Definition

Let G be a group and QG the group algebra of G over Q.

An S-ring over G is a subalgebra A of QG that contains 1 and
is closed under the termwise multiplication and inversion.

There exists a partition S = S(A) of G such that A = spanS.

The partition S is stable: 1) {1} ∈ S, 2) X ∈ S ⇒ X−1 ∈ S,
3) X · Y is a linear combination of Z ∈ S for all X ,Y ∈ S.

A-sets, A-groups, primitivity, AU/L, rank(A), deg(A)

Examples: 1) A = QG – trivial S-ring, 2) S-rings of rank 2,
3) tensor product A1 ⊗A2 is an S-ring over G1 ×G2.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

General Theory
Circulant S-rings

Definition

Let G be a group and QG the group algebra of G over Q.

An S-ring over G is a subalgebra A of QG that contains 1 and
is closed under the termwise multiplication and inversion.

There exists a partition S = S(A) of G such that A = spanS.

The partition S is stable: 1) {1} ∈ S, 2) X ∈ S ⇒ X−1 ∈ S,
3) X · Y is a linear combination of Z ∈ S for all X ,Y ∈ S.

A-sets, A-groups, primitivity, AU/L, rank(A), deg(A)

Examples: 1) A = QG – trivial S-ring, 2) S-rings of rank 2,
3) tensor product A1 ⊗A2 is an S-ring over G1 ×G2.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

General Theory
Circulant S-rings

Definition

Let G be a group and QG the group algebra of G over Q.

An S-ring over G is a subalgebra A of QG that contains 1 and
is closed under the termwise multiplication and inversion.

There exists a partition S = S(A) of G such that A = spanS.

The partition S is stable: 1) {1} ∈ S, 2) X ∈ S ⇒ X−1 ∈ S,
3) X · Y is a linear combination of Z ∈ S for all X ,Y ∈ S.

A-sets, A-groups, primitivity, AU/L, rank(A), deg(A)

Examples: 1) A = QG – trivial S-ring, 2) S-rings of rank 2,
3) tensor product A1 ⊗A2 is an S-ring over G1 ×G2.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

General Theory
Circulant S-rings

Definition

Let G be a group and QG the group algebra of G over Q.

An S-ring over G is a subalgebra A of QG that contains 1 and
is closed under the termwise multiplication and inversion.

There exists a partition S = S(A) of G such that A = spanS.

The partition S is stable: 1) {1} ∈ S, 2) X ∈ S ⇒ X−1 ∈ S,
3) X · Y is a linear combination of Z ∈ S for all X ,Y ∈ S.

A-sets, A-groups, primitivity, AU/L, rank(A), deg(A)

Examples: 1) A = QG – trivial S-ring, 2) S-rings of rank 2,
3) tensor product A1 ⊗A2 is an S-ring over G1 ×G2.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

General Theory
Circulant S-rings

Schur Theorem on Multipliers

For X ⊂ G and m ∈ Z set X (m) = {xm : x ∈ X}.

Theorem Let A be an S-ring over an abelian group G. Then for
any integer m coprime to |G| we have

X ∈ S ⇒ X (m) ∈ S.

In other words the mapping X 7→ X (m),X ∈ S is a bijection of S.

Set

M = {σ ∈ Aut(G) : ∃ m ∈ Z such that xσ = xm ∀x ∈ G}.

Then M = Z (Aut(G)) and the group M acts on the set S.

If G is cyclic, then M = Aut(G) and hence M acts transitively on
the basic sets containing a generator of G.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

General Theory
Circulant S-rings

Schur Theorem on Multipliers

For X ⊂ G and m ∈ Z set X (m) = {xm : x ∈ X}.

Theorem Let A be an S-ring over an abelian group G. Then for
any integer m coprime to |G| we have

X ∈ S ⇒ X (m) ∈ S.

In other words the mapping X 7→ X (m),X ∈ S is a bijection of S.

Set

M = {σ ∈ Aut(G) : ∃ m ∈ Z such that xσ = xm ∀x ∈ G}.

Then M = Z (Aut(G)) and the group M acts on the set S.

If G is cyclic, then M = Aut(G) and hence M acts transitively on
the basic sets containing a generator of G.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

General Theory
Circulant S-rings

Schur Theorem on Multipliers

For X ⊂ G and m ∈ Z set X (m) = {xm : x ∈ X}.

Theorem Let A be an S-ring over an abelian group G. Then for
any integer m coprime to |G| we have

X ∈ S ⇒ X (m) ∈ S.

In other words the mapping X 7→ X (m),X ∈ S is a bijection of S.

Set

M = {σ ∈ Aut(G) : ∃ m ∈ Z such that xσ = xm ∀x ∈ G}.

Then M = Z (Aut(G)) and the group M acts on the set S.

If G is cyclic, then M = Aut(G) and hence M acts transitively on
the basic sets containing a generator of G.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

General Theory
Circulant S-rings

Automorphism Group of an S-ring

Any basic A-set X yields a Cayley graph GX = (G,EX ) over G
where EX = {(g, xg) : g ∈ G, x ∈ X}. All of these graphs form
a Cayley scheme C = (G, {EX}X∈S) over G.

Definition For an S-ring A over a group G set

Aut(A) = Aut(C) =
⋂

X∈S
Aut(GX ).

We have Aut(A) = Aut(A)1 ·Gright ≤ Sym(G). Moreover, given
σ ∈ Aut(A)1 we have Xσ = X for all X ∈ S.

Examples: 1) Aut(A) = Gright if A = QG, 2) Aut(A) = Sym(G)
if rank(A) = 2, 3) Aut(A1 ⊗A2) = Aut(A1)× Aut(A2).
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Schurian S-rings

For a permutation group Γ ≤ Sym(G) with Gright ≤ Γ set

AΓ = spanSΓ, SΓ = Orb(Γ1,G).

Then AΓ is an S-ring over G. Such S-rings are called schurian.

A is schurian ⇔ Aut(A)1 acts transitively on each basic A-set.

{doubly transitive groups} → {S-rings of rank 2}

Tensor product of schurian S-rings is schurian.

Special case: Γ = K ·Gright ≤ Hol(G) where K ≤ Aut(G). Then
Γ1 = K and SΓ = Orb(K ,G). The ring AΓ is called cyclotomic
and denoted by Cyc(K ,G).
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Generalized Wreath Product

Let U/L be an A-section such that L is normal in G.

Definition We say that A is the U/L-wreath product if every
basic set outside U is the union of L-cosets. The product is
called proper if L 6= 1 and U 6= G.

When U = L we obtain an ordinary wreath product of S-rings.

Theorem Let A1 and A2 be S-rings over U and G/L. Suppose
that U/L is both an A1- and A2-section and (A1)U/L = (A2)U/L.
Then there is a uniquely determined S-ring A over G that is the
U/L-wreath product such that AU = A1 and AG/L = A2.

In this case we write A = A1 oU/L A2 = AU oU/L AG/L.
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Burnside – Schur Theorem (1933)

Theorem Every primitive permutation group containing a full
cycle is either 2-transitive or isomorphic to a subgroup of the
affine group AGL1(p) where p is a prime.

The theorem follows from the following statement in which we
call an S-ring A over G normal if Aut(A) ≤ Hol(G).

Theorem Every primitive circulant S-ring is either of rank 2 or
normal cyclotomic of prime degree.

Indeed, if Γ is a primitive group, then AΓ is a primitive S-ring.
If rk(AΓ) = 2, then Γ is 2-transitive. Otherwise, AΓ is normal.
But then Γ ≤ Aut(AΓ) ≤ Hol(Zp) = AGL1(p).
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Decomposition Theorem (Leung – Man, EP)

Given an S-ring A over G set

rad(A) = rad(X )

where X is a basic set of A that contains a generator of G and
rad(X ) = {g ∈ G : gX = X}.

Theorem Let A be a circulant S-ring. Then
if rad(A) 6= 1 then A is a proper generalized wreath
product,
if rad(A) = 1 then A is the tensor product of a normal
cyclotomic S-ring and S-rings of rank 2.

Corollary Any circulant S-ring with trivial radical is schurian.
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Schurity of Generalized Wreath Product

Let us consider the U/L-wreath product

A = AU oU/L AG/L.

Theorem (EP) Suppose that AU/L is the tensor product of a
normal S-ring and S-rings of rank 2. Then A is schurian if and
only if so are the S-rings AU and AG/L.

Corollary Suppose that rad(AU/L) = 1. Then A is schurian
if and only if so are the S-rings AU and AG/L.
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Definition and Properties

Definition (Pöschel, 1974) A finite group G is a Schur group if
every S-ring over it is schurian.

Any section of a Schur group is a Schur group.

Theorem For p ≥ 5 a p-group is Schur only if it is cyclic.

Corollary A nilpotent (in particular, abelian) group the order of
which is coprime to 6 is Schur only if it is cyclic.

The smallest non-Schur group is Z4 × Z4.
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Previous Results

Cyclic Schur groups of order n:

n = pk where p is an odd prime (Pöschel, 1974),
n = pq where p,q are primes (Klin – Pöschel, 1978),
n = 2k (Kovács, 2009),
n = pqr or n = p3q where p,q, r are primes (EP, 2010).

Let A be an S-ring over Zpqr . If rad(A) = 1, then A is schurian.
Otherwise, A = AU oU/L AG/L where |U/L| = 1 or p or q or r .
So rad(AU/L) = 1. Since AU and AG/L are schurian, so is A.
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Schur – Klin Hypothesis (1970’s)

Hypothesis Any circulant S-ring is schurian. In other words,
any finite cyclic group is a Schur group.

The hypothesis was disproved in 2001 by EP.

Theorem Let n = p1p2p3p4 where p′i s are odd primes such
that {p1,p2} ∩ {p3,p4} = ∅. Then a cyclic group of order n is
not Schur whenever GCD(p1 − 1,p2 − 1,p3 − 1,p4 − 1) ≥ 3.

To construct counterexamples the authors used generalized
wreath product of S-rings. The smallest counterexample was
on n = 52 · 132 points.
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Theorem

A cyclic group of order n is a Schur group if and only if n
belongs to one of the following five (partially overlapped)
families of integers:

pk , pkq, 2pkq, pqr , 2pqr ,

where p,q, r are distinct primes and k ≥ 0 is an integer.

Note. Cyclic groups of orders 4pk and 4pq are also Schur.

The smallest non-Schur cyclic group has order 72.
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Sketch of Proof

Given a positive integer m set

Ω∗(m) =

{
Ω(m), if m is odd,
Ω(m/2), if m is even.

For example, Ω(4) = 2 whereas Ω∗(4) = 1.

Theorem Let n = n1n2 where n1 and n2 are coprime positive
integers such that Ω∗(ni) ≥ 2, i = 1,2. Then a cyclic group of
order n is not a Schur group.

Note. An integer n satisfies the theorem condition if and only if
it does not belong to any of the above five families of integers.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

Statement
Sketch of Proof

Sketch of Proof

Given a positive integer m set

Ω∗(m) =

{
Ω(m), if m is odd,
Ω(m/2), if m is even.

For example, Ω(4) = 2 whereas Ω∗(4) = 1.

Theorem Let n = n1n2 where n1 and n2 are coprime positive
integers such that Ω∗(ni) ≥ 2, i = 1,2. Then a cyclic group of
order n is not a Schur group.

Note. An integer n satisfies the theorem condition if and only if
it does not belong to any of the above five families of integers.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

Statement
Sketch of Proof

Sketch of Proof

Given a positive integer m set

Ω∗(m) =

{
Ω(m), if m is odd,
Ω(m/2), if m is even.

For example, Ω(4) = 2 whereas Ω∗(4) = 1.

Theorem Let n = n1n2 where n1 and n2 are coprime positive
integers such that Ω∗(ni) ≥ 2, i = 1,2. Then a cyclic group of
order n is not a Schur group.

Note. An integer n satisfies the theorem condition if and only if
it does not belong to any of the above five families of integers.

Sergei Evdokimov Characterization of Cyclic Schur Groups



S-rings
Schur Groups
Main Theorem

Statement
Sketch of Proof

Sketch of Proof

For coprime n1 = ab and n2 = cd where a,b, c,d ≥ 3 set

A1 = Cyc(Kac ,Zac), A2 = Cyc(Kbc ,Zbc),

A3 = Cyc(Kad ,Zad ), A4 = Cyc(Kb × Kd ,Zbd )

with Km = {1,−1} ≤ Z×m for all m ≥ 3.

Set

A1,2 = A1 oc A2, A3,4 = A3 od A4,

Then (A1,2)n1 = Cyc(Ka,Za) o Cyc(Kb,Zb) = (A3,4)n1 . Set

A = A1,2 on1 A3,4.

Theorem The S-ring A over Zn is not schurian.
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Theorem Let A = AU oU/L AG/L be an S-ring over an abelian
group G. Then

Aut(A) = Aut(A)U oU/L Aut(A)G/L,
A is schurian if and only if there exist groups ∆U and ∆0
such that

Uright ≤ ∆U ≤ Aut(AU), (G/L)right ≤ ∆0 ≤ Aut(AG/L),

∆U ≈
2

Aut(AU), ∆0 ≈
2

Aut(AG/L),

(∆0)U/L = (∆U)S.

Moreover, in this case Aut(A) ≈
2

∆U oU/L ∆0.
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