Symmetries of finite projective planes

Gábor Korchmáros

Università degli Studi della Basilicata Italy

2016 PhD Summer School in Discrete Mathematics,
Rogla (Slovenia) 26 June - 2 July 2016
Basic Facts and Notation

A finite projective plane: $\left(P, L \right)$

P := non empty set whose elements
L := family of subsets of P whose elements

Lines satisfying incident axioms:

- any two distinct points are contained in exactly one line;
- any two distinct lines have exactly one common point;
- there exists a non-degenerate quadrangle.

Basic facts:

(i) Each line consists of the same number of points
(ii) Each point is contained in the same number of lines
(iii) The numbers in (i) and (ii) coincide. This number is denoted by $n + 1$ where $n \geq 2$ is an integer the order of the projective plane
(iv) The total number of points, as well as of lines, is $n^2 + n + 1$.
A finite projective plane: $\equiv (P; \mathcal{L})$
Basic Facts and Notation

A finite projective plane: $= (\mathcal{P}; \mathcal{L})$

\mathcal{P}: non empty set whose elements points

\mathcal{L}: family of subsets of \mathcal{P} whose elements lines satisfying incident axioms:

- any two distinct points are contained in exactly one line;
- any two distinct lines have exactly one common point;
- there exists a non-degenerate quadrangle.

Basic facts:

(i) Each line consists of the same number of points
(ii) Each point is contained in the same number of lines
(iii) The numbers in (i) and (ii) coincide. This number is denoted $n+1$ where $n \geq 2$ is an integer the order of the projective plane
(iv) The total number of points, as well as of lines, is $n^2 + n + 1$.

Gábor Korchmáros
Symmetries of finite projective planes
Basic Facts and Notation

A finite projective plane: $\mathcal{P}; \mathcal{L}$
\mathcal{P}: non empty set whose elements points
\mathcal{L}: family of subsets of \mathcal{P} whose elements lines

Basic facts:
(i) Each line consists of the same number of points
(ii) Each point is contained in the same number of lines
(iii) The numbers in (i) and (ii) coincide. This number is denoted $n+1$ where $n \geq 2$ is an integer the order of the projective plane
(iv) The total number of points, as well as of lines, is $n^2 + n + 1$.

Gábor Korchmáros
Symmetries of finite projective planes
A finite projective plane: $=(\mathcal{P};\mathcal{L})$
\(\mathcal{P}:=\text{non empty set whose elements points}\)
\(\mathcal{L}:=\text{family of subsets of }\mathcal{P}\text{ whose elements lines}\)
satisfying incident axioms:

Basic facts:

(i) Each line consists of the same number of points
(ii) Each point is contained in the same number of lines
(iii) The numbers in (i) and (ii) coincide. This number is denoted \(n+1\) where \(n \geq 2\) is an integer the order of the projective plane
(iv) The total number of points, as well as of lines, is \(n^2+n+1\).
A finite projective plane: $\mathcal{P} = (\mathcal{P}; \mathcal{L})$

\mathcal{P}: non empty set whose elements *points*

\mathcal{L}: family of subsets of \mathcal{P} whose elements *lines*

satisfying *incident axioms*:

- any two distinct points are contained in exactly one line;
A finite projective plane: $\mathcal{P} = (\mathcal{P}; \mathcal{L})$
\mathcal{P}: non-empty set whose elements points
\mathcal{L}: family of subsets of \mathcal{P} whose elements lines
satisfying incident axioms:
- any two distinct points are contained in exactly one line;
- any two distinct lines have exactly one common point;

Basic facts:
1. Each line consists of the same number of points.
2. Each point is contained in the same number of lines.
3. The numbers in (1) and (2) coincide. This number is denoted by $n+1$ where $n \geq 2$ is an integer the order of the projective plane.
4. The total number of points, as well as of lines, is $n^2 + n + 1$.
Basic Facts and Notation

A finite projective plane: $\mathcal{P} := (P; \mathcal{L})$

\mathcal{P}: non empty set whose elements points
\mathcal{L}: family of subsets of \mathcal{P} whose elements lines satisfying incident axioms:

- any two distinct points are contained in exactly one line;
- any two distinct lines have exactly one common point;
- there exists a non-degenerate quadrangle.

Basic facts:

1. Each line consists of the same number of points
2. Each point is contained in the same number of lines
3. The numbers in (i) and (ii) coincide. This number is denoted by $n+1$ where $n \geq 2$ is an integer the order of the projective plane
4. The total number of points, as well as of lines, is $n^2 + n + 1$.

Gábor Korchmáros

Symmetries of finite projective planes
Basic Facts and Notation

A finite projective plane: $\mathcal{P}; \mathcal{L}$
\$\mathcal{P} := \text{non empty set whose elements points}\$
\$\mathcal{L} := \text{family of subsets of } \mathcal{P} \text{ whose elements lines}\$

satisfying incident axioms:

- any two distinct points are contained in exactly one line;
- any two distinct lines have exactly one common point;
- there exists a non-degenerate quadrangle.

Basic facts:
A finite projective plane: $\mathcal{P}:=(\mathcal{P};\mathcal{L})$

\mathcal{P}: non empty set whose elements *points*

\mathcal{L}: family of subsets of \mathcal{P} whose elements *lines*

satisfying *incident axioms*:

- any two distinct points are contained in exactly one line;
- any two distinct lines have exactly one common point;
- there exists a non-degenerate quadrangle.

Basic facts:

(i) Each line consists of the same number of points
A finite projective plane: $\mathbb{P} = (\mathcal{P}; \mathcal{L})$

\mathcal{P}: non empty set whose elements *points*

\mathcal{L}: family of subsets of \mathcal{P} whose elements *lines* satisfying *incident axioms*:

- any two distinct points are contained in exactly one line;
- any two distinct lines have exactly one common point;
- there exists a non-degenerate quadrangle.

Basic facts:

(i) Each line consists of the same number of points

(ii) Each point is contained in the same number of lines
A finite projective plane: \((\mathcal{P}; \mathcal{L})\)
\(\mathcal{P}:\) non empty set whose elements \(\text{points}\)
\(\mathcal{L}:\) family of subsets of \(\mathcal{P}\) whose elements \(\text{lines}\)
satisfying \(\text{incident axioms:}\)
- any two distinct points are contained in exactly one line;
- any two distinct lines have exactly one common point;
- there exists a non-degenerate quadrangle.

\text{Basic facts:}

(i) Each line consists of the same number of points
(ii) Each point is contained in the same number of lines
(iii) The numbers in (i) and (ii) coincide. This number is denoted by \(n + 1\) where \(n \geq 2\) is an integer the \(\text{order}\) of the projective plane
Basic Facts and Notation

A finite projective plane: $\mathcal{P} = (\mathcal{P}; \mathcal{L})$

\mathcal{P}: non empty set whose elements points

\mathcal{L}: family of subsets of \mathcal{P} whose elements lines

satisfying incident axioms:

- any two distinct points are contained in exactly one line;
- any two distinct lines have exactly one common point;
- there exists a non-degenerate quadrangle.

Basic facts:

(i) Each line consists of the same number of points

(ii) Each point is contained in the same number of lines

(iii) The numbers in (i) and (ii) coincide. This number is denoted by $n + 1$ where $n \geq 2$ is an integer the order of the projective plane

(iv) The total number of points, as well as of lines, is $n^2 + n + 1$.
A finite projective plane: $= (\mathcal{P}; \mathcal{L})$
\[\mathcal{P} := \text{non empty set whose elements points} \]
\[\mathcal{L} := \text{family of subsets of } \mathcal{P} \text{ whose elements lines} \]
satisfying incident axioms:
- any two distinct points are contained in exactly one line;
- any two distinct lines have exactly one common point;
- there exists a non-degenerate quadrangle.

Basic facts:

(i) Each line consists of the same number of points
(ii) Each point is contained in the same number of lines
(iii) The numbers in (i) and (ii) coincide. This number is denoted by $n + 1$ where $n \geq 2$ is an integer the order of the projective plane
(iv) The total number of points, as well as of lines, is $n^2 + n + 1$.
Classical plane := Projective plane $PG(2, q)$ over a finite field \mathbb{F}_q with q elements, $q := p^h$, $p \geq 2$ prime.

Three equivalent definitions of $PG(2, q)$:

(i) $P := \{1\text{-dimensional subspaces of } V(3, q)\}$,

(ii) $L := \{2\text{-dimensional subspaces of } V(3, q)\}$,

(iii) $\mathbb{A}(2, q) := \text{affine plane over } \mathbb{F}_q$, $PG(2, q)$ its projective closure.

The order of $PG(2, q)$ is equal to q^3.

∃ many finite projective planes of order q other than $PG(2, q)$.

Open problem: ∃ projective plane of order n with $n \neq q$?
Classical plane: Projective plane $PG(2, q)$ over a finite field
Example

Classical plane: Projective plane $PG(2, q)$ over a finite field

Three equivalent definitions of $PG(2, q)$:

1. $V(3, q) := 3$-dimensional vector-space over the finite field F_q with q elements, $q := p^h$, p prime, $h \geq 2$

2. $P := 1$-dimensional subspaces of $V(3, q)$,

3. $A := 2$-dimensional subspaces of $V(3, q)$, $PG(2, q)$ its projective closure

The order of $PG(2, q)$ is equal to q^2.

∃ many finite projective planes of order q other than $PG(2, q)$.

Open problem: \exists projective plane of order n with $n \neq q$?
Example

Classical plane: Projective plane \(PG(2, q) \) over a finite field

Three equivalent definitions of \(PG(2, q) \):

- \(V(3, q) := 3\)-dimensional vector-space over the finite field \(\mathbb{F}_q \) with \(q \) elements, \(q := p^h \ p \geq 2 \) prime
Classical plane: Projective plane $PG(2, q)$ over a finite field

Three equivalent definitions of $PG(2, q)$:

$V(3, q) := 3$-dimensional vector-space over the finite field \mathbb{F}_q with q elements, $q := p^h \ p \geq 2$ prime

(i) $\mathcal{P} := 1$-dimensional subspaces of $V(3, q)$,
Classical plane: $\text{Projective plane } PG(2, q)$ over a finite field \mathbb{F}_q

Three equivalent definitions of $PG(2, q)$:

1. $V(3, q) := 3$-dimensional vector-space over the finite field \mathbb{F}_q with q elements, $q := p^h \ p \geq 2$ prime
2. $P := 1$-dimensional subspaces of $V(3, q)$, $L := 2$-dimensional subspaces of $V(3, q)$

∃ many finite projective planes of order q other than $PG(2, q)$

Open problem: \exists projective plane of order $n \ \iff n \neq q$?
Example

Classical plane: Projective plane $PG(2, q)$ over a finite field

Three equivalent definitions of $PG(2, q)$:

$V(3, q) := 3$-dimensional vector-space over the finite field \mathbb{F}_q with q elements, $q := p^h p \geq 2$ prime

(i) $\mathcal{P} := 1$-dimensional subspaces of $V(3, q)$, $\mathcal{L} := 2$-dimensional subspaces of $V(3, q)$

(ii) $A(2, q) :=$ affine plane over \mathbb{F}_q, \exists many finite projective planes of order q other than $PG(2, q)$

Open problem: \exists projective plane of order n with $n \neq q$?
Example

Classical plane: Projective plane $PG(2, q)$ over a finite field

Three equivalent definitions of $PG(2, q)$:

- $V(3, q) := 3$-dimensional vector-space over the finite field \mathbb{F}_q with q elements, $q := p^h p \geq 2$ prime
- (i) $\mathcal{P} := 1$-dimensional subspaces of $V(3, q)$, $\mathcal{L} := 2$-dimensional subspaces of $V(3, q)$
- (ii) $A(2, q) :=$ affine plane over \mathbb{F}_q, $PG(2, q)$ its projective closure

Open problem: \exists many finite projective planes of order q other than $PG(2, q)$?
Classical plane: Projective plane $PG(2, q)$ over a finite field

Three equivalent definitions of $PG(2, q)$:

- $V(3, q) := 3$-dimensional vector-space over the finite field \mathbb{F}_q with q elements, $q := p^h, p \geq 2$ prime
- (i) $\mathcal{P} := 1$-dimensional subspaces of $V(3, q)$, $\mathcal{L} := 2$-dimensional subspaces of $V(3, q)$
- (ii) $A(2, q) :=$ affine plane over \mathbb{F}_q, $PG(2, q)$ its projective closure
- (iii) $\mathcal{P} :=$ set of all nontrivial homogeneous triples (x_1, x_2, x_3) with $x_i \in \mathbb{F}_q$, \exists many finite projective planes of order q other than $PG(2, q)$

Open problem: \exists projective plane of order n with $n \neq q$?
Example

Classical plane: Projective plane $PG(2, q)$ over a finite field

Three equivalent definitions of $PG(2, q)$:

- $V(3, q) := 3$-dimensional vector-space over the finite field \mathbb{F}_q with q elements, $q := p^h$, $p \geq 2$ prime
- (i) $\mathcal{P} :=$ 1-dimensional subspaces of $V(3, q)$, $\mathcal{L} :=$ 2-dimensional subspaces of $V(3, q)$
- (ii) $A(2, q) :=$ affine plane over \mathbb{F}_q, $PG(2, q)$ its projective closure
- (iii) $\mathcal{P} :=$ set of all nontrivial homogeneous triples (x_1, x_2, x_3) with $x_i \in \mathbb{F}_q$, $\mathcal{U} :=$ set of all nontrivial homogeneous triples $[u_1, u_2, u_3]$ with $u_i \in \mathbb{F}_q$.
Classical plane: Projective plane $PG(2, q)$ over a finite field

Three equivalent definitions of $PG(2, q)$:

1. $V(3, q) := 3$-dimensional vector-space over the finite field \mathbb{F}_q with q elements, $q := p^h p \geq 2$ prime
2. $\mathcal{P} := 1$-dimensional subspaces of $V(3, q)$, $\mathcal{L} := 2$-dimensional subspaces of $V(3, q)$
3. $A(2, q) :=$ affine plane over \mathbb{F}_q, $PG(2, q)$ its projective closure

(iii) $\mathcal{P} :=$ set of all nontrivial homogeneous triples (x_1, x_2, x_3) with $x_i \in \mathbb{F}_q$, $\mathcal{U} :=$ set of all nontrivial homogeneous triples $[u_1, u_2, u_3]$ with $u_i \in \mathbb{F}_q$,

for $[u_1, u_2, u_3] \in \mathcal{U}$: $\ell := \{P(x_1, x_2, x_3) | : u_1x_1 + u_2x_2 + u_3x_3 = 0\}$.

The order of $PG(2, q)$ is equal to q.

∃ many finite projective planes of order q other than $PG(2, q)$

Open problem: ∃ projective plane of order n with $n \neq q$?

Gábor Korchmáros
Symmetries of finite projective planes
Classical plane: Projective plane $\text{PG}(2, q)$ over a finite field

Three equivalent definitions of $\text{PG}(2, q)$:

1. \mathcal{P}: 1-dimensional subspaces of $V(3, q)$, \mathcal{L}: 2-dimensional subspaces of $V(3, q)$
2. $A(2, q)$: affine plane over \mathbb{F}_q, $\text{PG}(2, q)$ its projective closure
3. \mathcal{P}: set of all nontrivial homogeneous triples (x_1, x_2, x_3) with $x_i \in \mathbb{F}_q$, \mathcal{U}: set of all nontrivial homogeneous triples $[u_1, u_2, u_3]$ with $u_i \in \mathbb{F}_q$,
 for $[u_1, u_2, u_3] \in \mathcal{U}$: $\ell := \{P(x_1, x_2, x_3) : u_1x_1 + u_2x_2 + u_3x_3 = 0\}$.

The order of $\text{PG}(2, q)$ is equal to q.

Example

Gábor Korchmáros
Symmetries of finite projective planes
Example

Classical plane: Projective plane $PG(2, q)$ over a finite field

Three equivalent definitions of $PG(2, q)$:

$V(3, q) := 3$-dimensional vector-space over the finite field \mathbb{F}_q with q elements, $q := p^h$ $p \geq 2$ prime

(i) $\mathcal{P} := 1$-dimensional subspaces of $V(3, q)$, $\mathcal{L} := 2$-dimensional subspaces of $V(3, q)$

(ii) $A(2, q) :=$ affine plane over \mathbb{F}_q, $PG(2, q)$ its projective closure

(iii) $\mathcal{P} :=$ set of all nontrivial homogeneous triples (x_1, x_2, x_3) with $x_i \in \mathbb{F}_q$, $\mathcal{U} :=$ set of all nontrivial homogeneous triples $[u_1, u_2, u_3]$ with $u_i \in \mathbb{F}_q$,

for $[u_1, u_2, u_3] \in \mathcal{U}$: $\ell := \{P(x_1, x_2, x_3) | : u_1 x_1 + u_2 x_2 + u_3 x_3 = 0\}$.

The order of $PG(2, q)$ is equal to q.

\exists many finite projective planes of order q other than $PG(2, q)$
Example

Classical plane: Projective plane $PG(2, q)$ over a finite field

Three equivalent definitions of $PG(2, q)$:

$(i) \quad P := 1$-dimensional subspaces of $V(3, q)$, $L := 2$-dimensional subspaces of $V(3, q)$

$(ii) \quad A(2, q) :=$ affine plane over \mathbb{F}_q, $PG(2, q)$ its projective closure

$(iii) \quad P :=$ set of all nontrivial homogeneous triples (x_1, x_2, x_3) with $x_i \in \mathbb{F}_q$, $U :=$ set of all nontrivial homogeneous triples $[u_1, u_2, u_3]$ with $u_i \in \mathbb{F}_q$,

for $[u_1, u_2, u_3] \in U$: $\ell := \{ P(x_1, x_2, x_3) | u_1x_1 + u_2x_2 + u_3x_3 = 0 \}$.

The order of $PG(2, q)$ is equal to q.

\exists many finite projective planes of order q other than $PG(2, q)$

Open problem: \exists projective plane of order n with $n \neq q$?
Classical plane: $\text{Projective plane } PG(2, q)$ over a finite field \mathbb{F}_q with q elements, $q := p^h$ $p \geq 2$ prime

Three equivalent definitions of $PG(2, q)$:

(i) \mathcal{P} := 1-dimensional subspaces of $V(3, q)$, \mathcal{L} := 2-dimensional subspaces of $V(3, q)$

(ii) $A(2, q)$:= affine plane over \mathbb{F}_q, $PG(2, q)$ its projective closure

(iii) \mathcal{P} := set of all nontrivial homogeneous triples (x_1, x_2, x_3) with $x_i \in \mathbb{F}_q$, \mathcal{U} := set of all nontrivial homogeneous triples $[u_1, u_2, u_3]$ with $u_i \in \mathbb{F}_q$,

for $[u_1, u_2, u_3] \in \mathcal{U}$: $\ell := \{ P(x_1, x_2, x_3) : u_1x_1 + u_2x_2 + u_3x_3 = 0 \}$.

The order of $PG(2, q)$ is equal to q.

\exists many finite projective planes of order q other than $PG(2, q)$

Open problem: \exists projective plane of order n with $n \neq q$?
Symmetries of a projective plane

Symmetry (automorphism, collineation) of Π: permutation on P which takes lines to lines, i.e., σ is an automorphism of $(P; L)$ $\iff \sigma(\ell) \in L$ for all $\ell \in L$.

$\text{Aut}(\Pi)$ is the set (group) of all automorphisms of Π.

For $\Pi = \text{PG}(2, q)$, $\text{Aut}(\Pi) \supseteq \text{PGL}(3, q)$ where $\text{PGL}(3, q) = \text{GL}(3, q) / Z(\text{GL}(3, q))$, $Z(\text{GL}(3, q)) = \{\lambda I_3 | \lambda \in \mathbb{F}_q^*\}$.

The study of $\text{Aut}(\Pi)$ is a difficult task: It combines three theories: Geometry, Group Theory, Combinatorics.

Typical problem: For some nice point-set Ω in Π, determine the subgroup G of $\text{Aut}(\Pi)$ which leaves Ω invariant.

We shall see how to do this when Ω is an oval.
Symmetries of a projective plane

Π: finite projective plane \((P, \mathcal{L})\)
\(\Pi := \text{finite projective plane} \ (\mathcal{P}, \mathcal{L}) \)

Symmetry (automorphism, collineation) of \(\Pi := \) permutation on \(\mathcal{P} \) which takes lines to lines, i.e.
\(\Pi := \) finite projective plane \((\mathcal{P}, \mathcal{L})\)

Symmetry (automorphism, collineation) of \(\Pi := \) permutation on \(\mathcal{P} \) which takes lines to lines, i.e.

\[\sigma \text{ is automorphism of } (\mathcal{P}; \mathcal{L}) \iff \sigma(\ell) \in \mathcal{L} \text{ for } \forall \ell \in \mathcal{L} \]
Π:=finite projective plane \((\mathcal{P}, \mathcal{L})\)

Symmetry (automorphism, collineation) of \(\Pi:=\) permutation on \(\mathcal{P}\) which takes lines to lines, i.e.

\[\sigma \text{ is automorphism of } (\mathcal{P}; \mathcal{L}) \iff \sigma(\ell) \in \mathcal{L} \text{ for } \forall \ell \in \mathcal{L}\]

\(\text{Aut}(\Pi) := \text{set (group) of all automorphisms of } \Pi\)
Symmetries of a projective plane

\(\Pi := \text{finite projective plane } (P, \mathcal{L}) \)

Symmetry (automorphism, collineation) of \(\Pi := \) permutation on \(P \) which takes lines to lines, i.e.
\(\sigma \) is automorphism of \((P; \mathcal{L}) \iff \sigma(\ell) \in \mathcal{L} \text{ for } \forall \ell \in \mathcal{L} \)

\[\text{Aut}(\Pi) := \text{set (group)} \text{ of all automorphisms of } \Pi \]

For \(\Pi = PG(2, q) \), \(\text{Aut}(\Pi) \supseteq PGL(3, q) \) where
\[PGL(3, q) = GL(3, q)/Z(GL(3, q)), \quad Z(GL(3, q)) = \{ \lambda I_3 | \lambda \in \mathbb{F}_q^* \} \]
Symmetries of a projective plane

\[\Pi := \text{finite projective plane } (\mathcal{P}, \mathcal{L}) \]

Symmetry (automorphism, collineation) of \(\Pi := \) permutation on \(\mathcal{P} \) which takes lines to lines, i.e.

\[\sigma \text{ is automorphism of } (\mathcal{P}; \mathcal{L}) \iff \sigma(\ell) \in \mathcal{L} \text{ for } \forall \ell \in \mathcal{L} \]

\(\text{Aut}(\Pi) := \text{set (group) of all automorphisms of } \Pi \)

For \(\Pi = PG(2, q) \), \(\text{Aut}(\Pi) \supseteq PGL(3, q) \) where

\[PGL(3, q) = GL(3, q)/Z(GL(3, q)), \quad Z(GL(3, q)) = \{ \lambda I_3 | \lambda \in \mathbb{F}_q^* \} \]

The study of \(\text{Aut}(\Pi) \) *is a difficult task: It combines three theories: Geometry, Group Theory, Combinatorics.*
Symmetries of a projective plane

\(\Pi:=\) finite projective plane \((\mathcal{P}, \mathcal{L})\)

Symmetry (automorphism, collineation) of \(\Pi:=\) permutation on \(\mathcal{P}\) which takes lines to lines, i.e.
\[\sigma\text{ is automorphism of } (\mathcal{P}; \mathcal{L}) \iff \sigma(\ell) \in \mathcal{L} \text{ for } \forall \ell \in \mathcal{L}\]

\(\text{Aut}(\Pi):=\) set (group) of all automorphisms of \(\Pi\)

For \(\Pi = PG(2, q)\), \(\text{Aut}(\Pi) \supseteq PGL(3, q)\) where
\[PGL(3, q) = GL(3, q)/Z(GL(3, q)), \ Z(GL(3, q)) = \{\lambda I_3 | \lambda \in \mathbb{F}_q^*\}\]

The study of Aut(\(\Pi\)) is a difficult task: It combines three theories: Geometry, Group Theory, Combinatorics.

Typical problem: For some nice point-set \(\Omega\) in \(\Pi\), determine the subgroup \(G\) of \(\text{Aut}(\Pi)\) which leaves \(\Omega\) invariant.
Symmetries of a projective plane

\[\Pi := \text{finite projective plane } (\mathcal{P}, \mathcal{L}) \]

Symmetry (automorphism, collineation) of \(\Pi := \) permutation on \(\mathcal{P} \) which takes lines to lines, i.e.
\[
\sigma \text{ is automorphism of } (\mathcal{P}; \mathcal{L}) \iff \sigma(\ell) \in \mathcal{L} \text{ for } \forall \ell \in \mathcal{L}
\]

\(\text{Aut}(\Pi) := \) set (group) of all automorphisms of \(\Pi \)

For \(\Pi = \text{PG}(2, q) \), \(\text{Aut}(\Pi) \supseteq \text{PGL}(3, q) \) where
\[
\text{PGL}(3, q) = \text{GL}(3, q)/\text{Z}(\text{GL}(3, q)), \quad \text{Z}(\text{GL}(3, q)) = \{ \lambda I_3 | \lambda \in \mathbb{F}_q^* \}
\]

The study of \(\text{Aut}(\Pi) \) *is a difficult task: It combines three theories: Geometry, Group Theory, Combinatorics.*

Typical problem: For some nice point-set \(\Omega \) in \(\Pi \), determine the subgroup \(G \) of \(\text{Aut}(\Pi) \) which leaves \(\Omega \) invariant.

We shall see how to do this when \(\Omega \) is an oval.
\[\Pi := \text{finite projective plane } (\mathcal{P}, \mathcal{L}) \]

Symmetry (automorphism, collineation) of \(\Pi := \) permutation on \(\mathcal{P} \) which takes lines to lines, i.e.
\[\sigma \text{ is automorphism of } (\mathcal{P}; \mathcal{L}) \iff \sigma(\ell) \in \mathcal{L} \text{ for } \forall \ell \in \mathcal{L} \]

\(\text{Aut}(\Pi) := \text{set (group) of all automorphisms of } \Pi \)

For \(\Pi = PG(2, q) \), \(\text{Aut}(\Pi) \supseteq PGL(3, q) \) where
\[PGL(3, q) = GL(3, q)/Z(GL(3, q)), \quad Z(GL(3, q)) = \{ \lambda I_3 | \lambda \in \mathbb{F}_q^* \} \]

The study of Aut(\Pi) is a difficult task: It combines three theories: Geometry, Group Theory, Combinatorics.

Typical problem: For some nice point-set \(\Omega \) in \(\Pi \), determine the subgroup \(G \) of \(\text{Aut}(\Pi) \) which leaves \(\Omega \) invariant.

We shall see how to do this when \(\Omega \) is an oval.
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:

\[\Omega \subseteq \Pi \text{ s.t. no three points of } \Omega \text{ are collinear} \]

For every point \(P \in \Omega \), there exists a unique line \(\ell \) such that \(\Omega \cap \ell = \{ P \} \). The line \(\ell \) is the tangent of \(\Omega \) at \(P \).

\[|\Omega| = n + 1 \] for any oval \(\Omega \) in a projective plane of order \(n \).

Conic in \(\operatorname{PG}(2, q) \) is the classical oval.

\[\text{Conic } C := \text{set of all points } P(\mathbf{x}) = (x_1, x_2, x_3) \text{ in } \operatorname{PG}(2, q) \text{ s.t.} \]

\[a_{11} x_2^2 + a_{12} x_1 x_2 + a_{22} x_2^2 + a_{13} x_1 x_3 + a_{23} x_2 x_3 + a_{33} x_3^2 = 0. \]

For \(q \) odd, conic \(C \) is the set of all self-conjugate points of an orthogonal polarity, the collineation group preserving \(C \) is \(\Gamma L(2, q) \) and hence contains \(\operatorname{PSL}(2, q) \).
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:

\[\text{Oval} := \text{pointset } \Omega \text{ in } \Pi \text{ s.t. no three points of } \Omega \text{ are collinear} \]

for every point \(P \in \Omega \), \(\exists! \ell \in \mathcal{L} \) such that \(\Omega \cap \ell = \{P\} \).

The line \(\ell \) is the tangent of \(\Omega \) at \(P \).

\(|\Omega| = n + 1\) for any oval \(\Omega \) in a projective plane of order \(n \).

Conic in \(\mathbb{P}G(2,q) \) is the classical oval.

Conic \(C := \text{set of all points } P(x_1, x_2, x_3) \) in \(\mathbb{P}G(2,q) \) s.t.

\[a_{11}x_2^1 + a_{12}x_1x_2 + a_{22}x_2^2 + a_{13}x_1x_3 + a_{23}x_2x_3 + a_{33}x_3^2 = 0 \]

For \(q \) odd, conic \(C \) is the set of all self-conjugate points of an orthogonal polarity.

The collineation group preserving \(C \) is \(P\Gamma L(2,q) \) and hence contains \(PSL(2,q) \).
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:
Oval:= pointset Ω in Π s.t.

The line ℓ is the tangent of Ω at P.

$|\Omega| = n + 1$ for any oval Ω in a projective plane of order n.

Conic in $\text{PG}(2,q)$ is the classical oval.
Conic C := set of all points $P(x_1, x_2, x_3)$ in $\text{PG}(2,q)$ s.t.

For q odd, conic C is the set of all self-conjugate points of an orthogonal polarity, the collineation group preserving C is $\text{PGL}(2,q)$ and hence contains $\text{PSL}(2,q)$.

Gábor Korchmáros
Symmetries of finite projective planes
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:

\(\text{Oval} := \text{pointset } \Omega \text{ in } \Pi \text{ s.t.} \)

- no three points of \(\Omega \) are collinear
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:
Oval := pointset Ω in Π s.t.

- no three points of Ω are collinear
- for every point $P \in \Omega$, $\exists! \ell \in \mathcal{L}$ such that $\Omega \cap \ell = \{P\}$.

| $|\Omega|$ | $n + 1$ for any oval Ω in a projective plane of order n.

Conic in $\mathbb{P}G(2, q)$ is the classical oval.
Conic $C := \text{set of all points } P(x_1, x_2, x_3) \in \mathbb{P}G(2, q) \text{ s.t.}$

$$a_{11}x_2^1 + a_{12}x_1x_2 + a_{22}x_2^2 + a_{13}x_1x_3 + a_{23}x_2x_3 + a_{33}x_3^2 = 0.$$

For q odd, conic C is the set of all self-conjugate points of an orthogonal polarity,

The collineation group preserving C is $P\Gamma L(2, q)$ and hence contains $PSL(2, q)$.

Gábor Korchmáros
Symmetries of finite projective planes
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:
Oval:= pointset Ω in Π s.t.

- no three points of Ω are collinear
- for every point $P \in \Omega$, $\exists! \ell \in \mathcal{L}$ such that $\Omega \cap \ell = \{P\}$.

The line ℓ is the tangent of Ω at P.
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:

\[\text{Oval} = \text{pointset } \Omega \text{ in } \Pi \text{ s.t.} \]

- no three points of \(\Omega \) are collinear
- for every point \(P \in \Omega \), \(\exists! \ \ell \in \mathcal{L} \) such that \(\Omega \cap \ell = \{P\} \).

The line \(\ell \) is the tangent of \(\Omega \) at \(P \).

\[|\Omega| = n + 1 \text{ for any oval } \Omega \text{ in a projective plane of order } n. \]
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:
Oval := pointset \(\Omega \) in \(\Pi \) s.t.
- no three points of \(\Omega \) are collinear
- for every point \(P \in \Omega \), \(\exists! \ \ell \in \mathcal{L} \) such that \(\Omega \cap \ell = \{P\} \).

The line \(\ell \) is the tangent of \(\Omega \) at \(P \).
\[|\Omega| = n + 1 \] for any oval \(\Omega \) in a projective plane of order \(n \).
Conic in \(PG(2, q) \) is the classical oval.
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:
Oval := pointset Ω in Π s.t.

- no three points of Ω are collinear
- for every point $P \in \Omega$, $\exists! \; \ell \in \mathcal{L}$ such that $\Omega \cap \ell = \{P\}$.

The line ℓ is the tangent of Ω at P.

$|\Omega| = n + 1$ for any oval Ω in a projective plane of order n.

Conic in $\text{PG}(2, q)$ is the classical oval.

Conic $\mathcal{C} :=$ set of all points $P(x_1, x_2, x_3)$ in $\text{PG}(2, q)$ s.t.
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:
Oval:= pointset \(\Omega \) in \(\Pi \) s.t.

- no three points of \(\Omega \) are collinear
- for every point \(P \in \Omega \), \(\exists! \ l \in \mathcal{L} \) such that \(\Omega \cap l = \{P\} \).

The line \(l \) is the tangent of \(\Omega \) at \(P \).

\(|\Omega| = n + 1\) for any oval \(\Omega \) in a projective plane of order \(n \).

Conic in \(PG(2, q) \) is the classical oval.

Conic \(C:=\) set of all points \(P(x_1, x_2, x_3) \) in \(PG(2, q) \) s.t.

\[a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2 + a_{13}x_1x_3 + a_{23}x_2x_3 + a_{33}x_3^2 = 0. \]
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:

Oval:= pointset \(\Omega \) in \(\Pi \) s.t.

- no three points of \(\Omega \) are collinear
- for every point \(P \in \Omega \), \(\exists! \ l \in \mathcal{L} \) such that \(\Omega \cap l = \{P\} \).

The line \(l \) is the \textit{tangent} of \(\Omega \) at \(P \).

\(|\Omega| = n + 1\) for any oval \(\Omega \) in a projective plane of order \(n \).

Conic in \(PG(2, q) \) is the \textit{classical} oval.

Conic \(C:=\) set of all points \(P(x_1, x_2, x_3) \) in \(PG(2, q) \) s.t.

\[
a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2 + a_{13}x_1x_3 + a_{23}x_2x_3 + a_{33}x_3^2 = 0.
\]

For \(q \) odd, conic \(C \) is the set of all self-conjugate points of an orthogonal polarity,
Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective plane:

Oval: Ω is a pointset Ω in Π such that:
- no three points of Ω are collinear
- for every point $P \in \Omega$, $\exists! \ell \in \mathcal{L}$ such that $\Omega \cap \ell = \{P\}$.

The line ℓ is the tangent of Ω at P.

$|\Omega| = n + 1$ for any oval Ω in a projective plane of order n.

Conic in $PG(2, q)$ is the classical oval.

Conic C: Ω is the set of all points $P(x_1, x_2, x_3)$ in $PG(2, q)$ such that:

$$a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2 + a_{13}x_1x_3 + a_{23}x_2x_3 + a_{33}x_3^2 = 0.$$

For q odd, conic C is the set of all self-conjugate points of an orthogonal polarity,

The collineation group preserving C is $P\Gamma L(2, q)$ and hence contains $PSL(2, q)$.
Geometry of an oval of a projective plane of odd order

Ω := oval in a projective plane Π of odd order,

Points of Π are partitioned in three types:

(i) Points on the oval
(ii) External points (through each there are exactly two tangents)
(iii) Internal points (through each there is no tangent)

<table>
<thead>
<tr>
<th>Ω</th>
<th>n+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(Ω)</td>
<td>1/2 (n+1)</td>
</tr>
<tr>
<td>I(Ω)</td>
<td>1/2 (n-1)</td>
</tr>
</tbody>
</table>

Segre's Theorem (1955): In \(PG(2,q)\) with \(q\) odd, every oval is a conic.

Segre's theorem fails for \(q\) even.

Open problem: Classification of ovals in \(PG(2,q)\) for \(q\) even.

Open problem: Do exist finite projective planes without any oval?
Geometry of an oval of a projective plane of odd order

\(\Omega := \text{oval in a projective plane } \Pi \text{ of odd order}, \)
Ω:= oval in a projective plane Π of odd order,

- Points of Π are partitioned in three types:
 Geometry of an oval of a projective plane of odd order

\[\Omega := \text{oval in a projective plane } \Pi \text{ of odd order}, \]

- Points of \(\Pi \) are partitioned in three types:

 (i) Points on the oval

Segre's Theorem (1955): In \(\text{PG}(2,q) \) with \(q \) odd, every oval is a conic.

Segre's theorem fails for \(q \) even.

Open problem: Classification of ovals in \(\text{PG}(2,q) \) for \(q \) even.

Open problem: Do exist finite projective planes without any oval?
\(\Omega := \text{oval in a projective plane } \Pi \text{ of odd order}, \)

- Points of \(\Pi \) are partitioned in three types:
 1. Points on the oval
 2. External points (through each there are exactly two tangents)

\(\Omega = n + 1, \quad E(\Omega) = \frac{1}{2} (n + 1)^2, \quad I(\Omega) = \frac{1}{2} (n - 1)n \)

Segre’s Theorem (1955): In \(\text{PG}(2, q) \) with \(q \) odd, every oval is a conic.

Segre’s theorem fails for \(q \) even.

Open problem: Classification of ovals in \(\text{PG}(2, q) \) for \(q \) even.

Open problem: Do exist finite projective planes without any oval?
\(\Omega := \text{oval in a projective plane } \Pi \text{ of odd order}, \)

- Points of \(\Pi \) are partitioned in three types:
 - (i) Points on the oval
 - (ii) External points (through each there are exactly two tangents)
 - (iii) Internal points (through each there is no tangent)
Geometry of an oval of a projective plane of odd order

\[\Omega := \text{oval in a projective plane } \Pi \text{ of odd order}, \]

- Points of \(\Pi \) are partitioned in three types:
 1. Points on the oval
 2. External points (through each there are exactly two tangents)
 3. Internal points (through each there is no tangent)

\[|\Omega| = n + 1, \]
Ω:= oval in a projective plane Π of odd order,

Points of Π are partitioned in three types:

(i) Points on the oval
(ii) External points (through each there are exactly two tangents)
(iii) Internal points (through each there is no tangent)

|Ω| = n + 1, \(E(Ω) = \frac{1}{2} (n + 1)n \),
Geometry of an oval of a projective plane of odd order

Ω: oval in a projective plane Π of odd order,

- Points of Π are partitioned in three types:

 (i) Points on the oval

 (ii) External points (through each there are exactly two tangents)

 (iii) Internal points (through each there is no tangent)

$|\Omega| = n + 1$, $E(\Omega) = \frac{1}{2} (n + 1)n$, $I(\Omega) = \frac{1}{2} (n - 1)n$
\(\Omega := \) oval in a projective plane \(\Pi \) of odd order,

- Points of \(\Pi \) are partitioned in three types:
 1. Points on the oval
 2. External points (through each there are exactly two tangents)
 3. Internal points (through each there is no tangent)

\[|\Omega| = n + 1, \quad E(\Omega) = \frac{1}{2} (n + 1)n, \quad I(\Omega) = \frac{1}{2} (n - 1)n \]

Segre’s Theorem (1955): In \(PG(2, q) \) with \(q \) odd, every oval is a conic.
Ω:= oval in a projective plane Π of odd order,

Points of Π are partitioned in three types:

(i) Points on the oval
(ii) External points (through each there are exactly two tangents)
(iii) Internal points (through each there is no tangent)

|Ω| = n + 1, E(Ω) = 1/2 (n + 1)n, I(Ω) = 1/2 (n − 1)n

Segre’s Theorem (1955): In PG(2, q) with q odd, every oval is a conic.
Segre’s theorem fails for q even.
\(\Omega:=\) oval in a projective plane \(\Pi\) of odd order,

- Points of \(\Pi\) are partitioned in three types:
 - (i) Points on the oval
 - (ii) External points (through each there are exactly two tangents)
 - (iii) Internal points (through each there is no tangent)

\[|\Omega| = n + 1, \ E(\Omega) = \frac{1}{2} (n + 1)n, \ I(\Omega) = \frac{1}{2} (n - 1)n\]

Segre’s Theorem (1955): In \(PG(2, q)\) with \(q\) odd, every oval is a conic.

Segre’s theorem fails for \(q\) even.

Open problem Classification of ovals in \(PG(2, q)\) for \(q\) even.
Geometry of an oval of a projective plane of odd order

\(\Omega := \) oval in a projective plane \(\Pi \) of odd order,

- Points of \(\Pi \) are partitioned in three types:
 1. Points on the oval
 2. External points (through each there are exactly two tangents)
 3. Internal points (through each there is no tangent)

\[|\Omega| = n + 1, \ E(\Omega) = \frac{1}{2} (n + 1)n, \ I(\Omega) = \frac{1}{2} (n - 1)n \]

Segre’s Theorem (1955): In \(PG(2, q) \) with \(q \) odd, every oval is a conic.

Segre’s theorem fails for \(q \) even.

Open problem Classification of ovals in \(PG(2, q) \) for \(q \) even.

Open problem Do exist finite projective planes without any oval?
Geometry of an oval of a projective plane of odd order

\[\Omega := \text{oval in a projective plane } \Pi \text{ of odd order}, \]

- Points of \(\Pi \) are partitioned in three types:
 1. Points on the oval
 2. External points (through each there are exactly two tangents)
 3. Internal points (through each there is no tangent)

\[|\Omega| = n + 1, \, E(\Omega) = \frac{1}{2} (n + 1)n, \, I(\Omega) = \frac{1}{2} (n - 1)n \]

Segre’s Theorem (1955): In \(PG(2, q) \) with \(q \) odd, every oval is a conic.

Segre’s theorem fails for \(q \) even.

Open problem Classification of ovals in \(PG(2, q) \) for \(q \) even.

Open problem Do exist finite projective planes without any oval?
Involutory collineations of an oval in an odd order plane

Let Π be a projective plane of odd order n. A central-axial collineation (C, ℓ) is a collineation that fixes a line ℓ pointwise (axis) and each line through a point C (center).

A homology is a central-axial collineation (C, ℓ) with $C \not\in \ell$.

An elation is a central-axial collineation (C, ℓ) with $C \in \ell$.

Let $\sigma \in \text{Aut}(\Pi)$. The fix set $\text{Fix}(\sigma)$ is the set of points P such that $\sigma(P) = P$, $P \in \Pi$.

If σ is involutory (i.e. $\sigma^2 = 1$, $\sigma \neq 1$) then σ is either a homology (C, ℓ) with $C \not\in \Omega$, ℓ is not tangent, or $n = m^2$, and σ is a Baer involution, i.e. $\text{Fix}(\sigma)$ is a subplane Π_0 of order m and if $|\text{Fix}(\sigma) \cap \Omega| \geq 1$ then $\Omega_0 = \Pi_0 \cap \Omega$ is an oval in Π_0.

If $\sigma_1, \sigma_2 \in \text{Aut}(\Pi)$ are Bare involutions preserving Ω and $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$ then $\sigma_1 \sigma_2$ is a (involutory) homology.

Gábor Korchmáros
Symmetries of finite projective planes
Π:=projective plane of odd order n
Involutory collineations of an oval in an odd order plane

Π:= projective plane of odd order \(n \)

Central-axial collineation \((C, \ell)\):= collineation fixing a line \(\ell \) pointwise (axis) and each line through a point \(C \) (center)
Π:=projective plane of odd order n

Central-axial collineation $(C, \ell) :=$ collineation fixing a line ℓ pointwise (axis) and each line through a point C (center)

Homology: $=$ Central-axial collineation (C, ℓ) with $C \notin \ell$

If σ is involutory (i.e. $\sigma^2 = 1$, $\sigma \neq 1$) then either σ is a homology (C, ℓ) with $C / \in \Omega$, ℓ is not tangent, or

$n = m^2$, and σ is a *Baer involution*, i.e. $\text{Fix}(\sigma)$ is a subplane Π_0 of order m and if $|\text{Fix}(\sigma) \cap \Omega| \geq 1$ then $\Omega_0 = \Pi_0 \cap \Omega$ is an oval in Π_0.

If $\sigma_1, \sigma_2 \in \text{Aut}(\Pi)$ are Bare involutions preserving Ω and $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$ then $\sigma_1 \sigma_2$ is a (involutory) homology.
Involutory collineations of an oval in an odd order plane

Π: = projective plane of odd order \(n \)

Central-axial collineation \((C, \ell) : = \) collineation fixing a line \(\ell \) pointwise (axis) and each line through a point \(C \) (center)

Homology: \(= \) Central-axial collineation \((C, \ell) \) with \(C \notin \ell \)

Elation: \(= \) Central-axial collineation \((C, \ell) \) with \(C \in \ell \)
Π:=projective plane of odd order n

Central-axial collineation $(C, ℓ) :=$ collineation fixing a line $ℓ$ pointwise (axis) and each line through a point C (center)

Homology:= Central-axial collineation $(C, ℓ)$ with $C \notin ℓ$

Elation:=Central-axial collineation $(C, ℓ)$ with $C \in ℓ$

$σ ∈ \text{Aut}(Π)$,
Π:=projective plane of odd order \(n \)

Central-axial collineation \((C, \ell)\):= collineation fixing a line \(\ell \) pointwise (axis) and each line through a point \(C \) (center)

Homology:= Central-axial collineation \((C, \ell)\) with \(C \notin \ell \)

Elation:=Central-axial collineation \((C, \ell)\) with \(C \in \ell \)

\(\sigma \in \text{Aut}(\Pi), \ Fix(\sigma) = \{P : \sigma(P) = P, P \in \Pi\} \)
Π:=projective plane of odd order n

Central-axial collineation $(C, ℓ) :=$ collineation fixing a line $ℓ$ pointwise (axis) and each line through a point C (center)

Homology:= Central-axial collineation $(C, ℓ)$ with $C \notin ℓ$

Elation:= Central-axial collineation $(C, ℓ)$ with $C \in ℓ$

$σ \in \text{Aut}(Π)$, $\text{Fix}(σ) = \{P : σ(P) = P, P \in Π\}$

If $σ$ is involutory (i.e. $σ^2 = 1, σ \neq 1$) then either
Involutory collineations of an oval in an odd order plane

\(\Pi := \) projective plane of odd order \(n \)

Central-axial collineation \((C, \ell) := \) collineation fixing a line \(\ell \) pointwise (axis) and each line through a point \(C \) (center)

Homology := Central-axial collineation \((C, \ell) \) with \(C \notin \ell \)

Elation := Central-axial collineation \((C, \ell) \) with \(C \in \ell \)

\(\sigma \in \text{Aut}(\Pi), \text{Fix}(\sigma) = \{ P : \sigma(P) = P, P \in \Pi \} \)

If \(\sigma \) is involutory (i.e. \(\sigma^2 = 1, \sigma \neq 1 \)) then either

- \(\sigma \) is a homology \((C, \ell) \) with \(C \notin \Omega, \ell \) is not tangent, or
Π:=projective plane of odd order \(n \)

Central-axial collineation \((C, \ell)\):= collineation fixing a line \(\ell \) pointwise (axis) and each line through a point \(C \) (center)

Homology:= Central-axial collineation \((C, \ell)\) with \(C \notin \ell \)

Elation:=Central-axial collineation \((C, \ell)\) with \(C \in \ell \)

\(\sigma \in \text{Aut}(\Pi), \ Fix(\sigma) = \{P : \sigma(P) = P, P \in \Pi\} \)

If \(\sigma \) is involutory (i.e. \(\sigma^2 = 1, \sigma \neq 1 \)) then either

- \(\sigma \) is a homology \((C, \ell)\) with \(C \notin \Omega \), \(\ell \) is not tangent, or
- \(n = m^2 \), and \(\sigma \) is a Baer involution,
\(\Pi := \) projective plane of odd order \(n \)

Central-axial collineation \((C, \ell) := \) collineation fixing a line \(\ell \) pointwise (axis) and each line through a point \(C \) (center)

Homology: \(=\) Central-axial collineation \((C, \ell)\) with \(C \notin \ell \)

Elation: \(=\) Central-axial collineation \((C, \ell)\) with \(C \in \ell \)

\(\sigma \in \text{Aut}(\Pi), \text{Fix}(\sigma) = \{P : \sigma(P) = P, P \in \Pi\} \)

If \(\sigma \) is involutory (i.e. \(\sigma^2 = 1, \sigma \neq 1 \)) then either

- \(\sigma \) is a homology \((C, \ell)\) with \(C \notin \Omega, \ell \) is not tangent, or
- \(n = m^2 \), and \(\sigma \) is a **Baer involution**, i.e. \(\text{Fix}(\sigma) \) is a subplane \(\Pi_0 \) of order \(m \) and
Π:=projective plane of odd order n

Central-axial collineation $(C, \ell) :=$ collineation fixing a line ℓ pointwise (axis) and each line through a point C (center)

Homology:= Central-axial collineation (C, ℓ) with $C \notin \ell$

Elation:=Central-axial collineation (C, ℓ) with $C \in \ell$

$\sigma \in \text{Aut}(\Pi)$, $\text{Fix}(\sigma) = \{P : \sigma(P) = P, P \in \Pi\}$

If σ is involutory (i.e. $\sigma^2 = 1, \sigma \neq 1$) then either

- σ is a homology (C, ℓ) with $C \notin \Omega$, ℓ is not tangent, or
- $n = m^2$, and σ is a *Baer involution*, i.e. $\text{Fix}(\sigma)$ is a subplane Π_0 of order m and if $|\text{Fix}(\sigma) \cap \Omega| \geq 1$ then $\Omega_0 = \Pi_0 \cap \Omega$ is an oval in Π_0.

If $\sigma_1, \sigma_2 \in \text{Aut}(\Pi)$ are Bare involutions preserving Ω and $\sigma_1\sigma_2 = \sigma_2\sigma_1$ then $\sigma_1\sigma_2$ is a (involutory) homology.
Involutory collineations of an oval in an odd order plane

Π: projective plane of odd order n

Central-axial collineation (C, ℓ): collineation fixing a line ℓ pointwise (axis) and each line through a point C (center)

Homology: $=$ Central-axial collineation (C, ℓ) with $C \not\in \ell$

Elation: $=$ Central-axial collineation (C, ℓ) with $C \in \ell$

$\sigma \in \text{Aut}(\Pi), \text{Fix}(\sigma) = \{P : \sigma(P) = P, P \in \Pi\}$

If σ is involutory (i.e. $\sigma^2 = 1, \sigma \neq 1$) then either

- σ is a homology (C, ℓ) with $C \not\in \Omega$, ℓ is not tangent, or
- $n = m^2$, and σ is a Baer involution, i.e. $\text{Fix}(\sigma)$ is a subplane Π_0 of order m and if $|\text{Fix}(\sigma) \cap \Omega| \geq 1$ then $\Omega_0 = \Pi_0 \cap \Omega$ is an oval in Π_0.

If $\sigma_1, \sigma_2 \in \text{Aut}(\Pi)$ are Bare involutions preserving Ω and $\sigma_1\sigma_2 = \sigma_2\sigma_1$ then $\sigma_1\sigma_2$ is a (involutory) homology.
2-groups of collineations of an oval in an odd order plane

S_2 := subgroup of $\text{Aut}(\Pi)$ of order $2^h \geq 1$ preserving an oval Ω

Results on the structure of S_2:

- If S_2 contains no involutory homology then S_2 is cyclic;
- $r_2(S_2) \leq 3$, i.e. S_2 has no elementary abelian subgroup of order $> 8 = 2^3$;
- $r_2(S_2) = 3$ \Rightarrow S_2 contains both involutory homologies and Baer involution.

$H(S_2)$:= subgroup generated by all (involutory) homologies in S_2.

- $r(S_2) = 1$ \Rightarrow $H(S_2) \cong C_2$,
- $r(S_2) = 2$ \Rightarrow $H(S_2) \cong C_2 \times D_{2m} \times C_4 \times D_{2m} \times Q_2 \times D_{2m}$, $m, u \geq 3$;
- $r(S_2) = 3$ \Rightarrow $H(S_2) \cong E_4 \times D_{2n}$.

Theorem: If G is a (non-abelian) simple collineation group preserving Ω then $G \cong \text{PSL}(2, q)$ with $5 \leq q \leq n$.

Remark: The above results fail when Π has even order: In the dual L"uneburg plane of order 2^h, $h \geq 3$ odd, $\text{Sz}(2^h)$ preserves an oval.
$S_2 :=$ subgroup of $\text{Aut}(\Pi)$ of order 2^h $h \geq 1$ preserving an oval Ω
2-groups of collineations of an oval in an odd order plane

\[S_2 := \text{subgroup of } \text{Aut}(\Pi) \text{ of order } 2^h \ h \geq 1 \text{ preserving an oval } \Omega \]

Results on the structure of \(S_2 \):

\[r(S_2) = 3 \Rightarrow H(S_2) \cong E_4, D_{2m}, C_4 \circ D_{2m}, Q_2 \circ D_{2m}, m, u \geq 3 \]

Theorem

If \(G \) is a (non-abelian) simple collineation group preserving \(\Omega \) then

\[G \cong \text{PSL}(2, q) \text{ with } 5 \leq q \leq n. \]

Remark

The above results fail when \(\Pi \) has even order: In the dual L"uneburg plane of order \(2^{2h}, h \geq 3 \) odd, \(Sz(2^h) \) preserves an oval.
\[S_2 := \text{subgroup of } \text{Aut}(\Pi) \text{ of order } 2^h \ h \geq 1 \text{ preserving an oval } \Omega \]

Results on the structure of \(S_2 \):

- If \(S_2 \) contains no involutory homology then \(S_2 \) is cyclic;
S_2: subgroup of $\text{Aut}(\Pi)$ of order $2^h \ h \geq 1$ preserving an oval Ω

Results on the structure of S_2:

- If S_2 contains no involutory homology then S_2 is cyclic;
- $r_2(S_2) \leq 3$, i.e. S_2 has no elementary abelian subgroup of order $> 8 = 2^3$;
$S_2 := \text{subgroup of } \text{Aut}(\Pi) \text{ of order } 2^h \ h \geq 1 \text{ preserving an oval } \Omega$

Results on the structure of S_2:

- If S_2 contains no involutory homology then S_2 is cyclic;
- $r_2(S_2) \leq 3$, i.e. S_2 has no elementary abelian subgroup of order $> 8 = 2^3$;
- $r_2(S_2) = 3 \Rightarrow S_2$ contains both involutory homologies and Baer involution.
2-groups of collineations of an oval in an odd order plane

$S_2 := $ subgroup of $\text{Aut}(\Pi)$ of order 2^h $h \geq 1$ preserving an oval Ω

Results on the structure of S_2:

- If S_2 contains no involutory homology then S_2 is cyclic;
- $r_2(S_2) \leq 3$, i.e. S_2 has no elementary abelian subgroup of order $> 8 = 2^3$;
- $r_2(S_2) = 3 \Rightarrow S_2$ contains both involutory homologies and Baer involution.

$H(S_2) := $ subgroup generated by all (involutory) homologies in S_2.

Theorem

If G is a (non-abelian) simple collineation group preserving Ω then $G \simeq \text{PSL}(2, q)$ with $5 \leq q \leq n$.

Remark

The above results fail when Π has even order: In the dual L"uneburg plane of order 2^h, $h \geq 3$ odd, $S_z(2^h)$ preserves an oval.
2-groups of collineations of an oval in an odd order plane

$S_2 := \text{subgroup of } \text{Aut}(\Pi) \text{ of order } 2^h \ h \geq 1 \text{ preserving an oval } \Omega$

Results on the structure of S_2:

- If S_2 contains no involutory homology then S_2 is cyclic;
- $r_2(S_2) \leq 3$, i.e. S_2 has no elementary abelian subgroup of order $> 8 = 2^3$;
- $r_2(S_2) = 3 \Rightarrow S_2$ contains both involutory homologies and Baer involution.

$H(S_2) := \text{subgroup generated by all (involutory) homologies in } S_2.$

$r(S_2) = 1 \Rightarrow H(S) \cong C_2,$
2-groups of collineations of an oval in an odd order plane

$S_2 :=$ subgroup of $\text{Aut}(\Pi)$ of order $2^h \ h \geq 1$ preserving an oval Ω

Results on the structure of S_2:

- If S_2 contains no involutory homology then S_2 is cyclic;
- $r_2(S_2) \leq 3$, i.e. S_2 has no elementary abelian subgroup of order $> 8 = 2^3$;
- $r_2(S_2) = 3 \Rightarrow S_2$ contains both involutory homologies and Baer involution.

$H(S_2):= \text{subgroup generated by all (involutory) homologies in } S_2.$

- $r(S_2) = 1 \Rightarrow H(S) \cong C_2$,
- $r(S_2) = 2 \Rightarrow H(S) \cong C_2, E_4, D_{2m}, C_4 \circ D_{2m}, Q_{2^u} \circ D_{2m}, m, u \geq 3,$

Theorem
If G is a (non-abelian) simple collineation group preserving Ω then $G \cong \text{PSL}(2, q)$ with $5 \leq q \leq n$.

Remark
The above results fail when Π has even order: In the dual L"{u}neburg plane of order 2^h, $h \geq 3$ odd, $\text{Sz}(2^h)$ preserves an oval.
S_2: subgroup of Aut(Π) of order $2^h \ h \geq 1$ preserving an oval Ω

Results on the structure of S_2:

- If S_2 contains no involutory homology then S_2 is cyclic;
- $r_2(S_2) \leq 3$, i.e. S_2 has no elementary abelian subgroup of order $> 8 = 2^3$;
- $r_2(S_2) = 3 \Rightarrow S_2$ contains both involutory homologies and Baer involution.

$H(S_2)$: subgroup generated by all (involutory) homologies in S_2.

- $r(S_2) = 1 \Rightarrow H(S) \cong C_2$,
- $r(S_2) = 2 \Rightarrow H(S) \cong C_2, E_4, D_{2m}, C_4 \circ D_{2m}, Q_{2^u} \circ D_{2m}, m, u \geq 3$,
- $r(S_3) = 3 \Rightarrow H(S) \cong E_4, D_{2^n}$.
2-groups of collineations of an oval in an odd order plane

S_2: subgroup of $\text{Aut}(\Pi)$ of order $2^h h \geq 1$ preserving an oval Ω

Results on the structure of S_2:

- If S_2 contains no involutory homology then S_2 is cyclic;
- $r_2(S_2) \leq 3$, i.e. S_2 has no elementary abelian subgroup of order $> 8 = 2^3$;
- $r_2(S_2) = 3 \Rightarrow S_2$ contains both involutory homologies and Baer involution.

$H(S_2)$: subgroup generated by all (involutory) homologies in S_2.

- $r(S_2) = 1 \Rightarrow H(S) \cong C_2$,
- $r(S_2) = 2 \Rightarrow H(S) \cong C_2, E_4, D_{2^m}, C_4 \circ D_{2^m}, Q_{2^u} \circ D_{2^m}, m, u \geq 3$,
- $r(S_3) = 3 \Rightarrow H(S) \cong E_4, D_{2^n}$.

Theorem If G is a (non-abelian) simple collineation group preserving Ω then $G \cong \text{PSL}(2, q)$ with $5 \leq q \leq n$.

Remark The above results fail when Π has even order: In the dual L"uneburg plane of order 2^h, $h \geq 3$ odd, $\text{Sz}(2^h)$ preserves an oval.

Gábor Korchmáros

Symmetries of finite projective planes
2-groups of collineations of an oval in an odd order plane

$S_2 :=$ subgroup of $\text{Aut}(\Pi)$ of order $2^h \ h \geq 1$ preserving an oval Ω

Results on the structure of S_2:

- If S_2 contains no involutory homology then S_2 is cyclic;
- $r_2(S_2) \leq 3$, i.e. S_2 has no elementary abelian subgroup of order $> 8 = 2^3$;
- $r_2(S_2) = 3 \Rightarrow S_2$ contains both involutory homologies and Baer involution.

$H(S_2) :=$ subgroup generated by all (involutory) homologies in S_2.

- $r(S_2) = 1 \Rightarrow H(S) \cong C_2$,
- $r(S_2) = 2 \Rightarrow H(S) \cong C_2, E_4, D_{2^m}, C_4 \circ D_{2^m}, Q_2^u \circ D_{2^m}, m, u \geq 3$,
- $r(S_3) = 3 \Rightarrow H(S) \cong E_4, D_{2^n}$.

Theorem If G is a (non-abelian) simple collineation group preserving Ω then $G \cong PSL(2, q)$ with $5 \leq q \leq n$.

Remark The above results fail when Π has even order: In the dual Lüneburg plane of order 2^{2h}, $h \geq 3$ odd, $Sz(2^h)$ preserves an oval.
2-groups of collineations of an oval in an odd order plane

\(S_2 := \) subgroup of \(\text{Aut}(\Pi) \) of order \(2^h \ h \geq 1 \) preserving an oval \(\Omega \)

Results on the structure of \(S_2 \):

- If \(S_2 \) contains no involutory homology then \(S_2 \) is cyclic;
- \(r_2(S_2) \leq 3 \), i.e. \(S_2 \) has no elementary abelian subgroup of order \(> 8 = 2^3 \);
- \(r_2(S_2) = 3 \Rightarrow \ S_2 \) contains both involutory homologies and Baer involution.

\(H(S_2) := \) subgroup generated by all (involutory) homologies in \(S_2 \).

\(r(S_2) = 1 \Rightarrow H(S) \cong C_2, \)
\(r(S_2) = 2 \Rightarrow H(S) \cong C_2, E_4, D_{2m}, C_4 \circ D_{2m}, Q_{2u} \circ D_{2m}, m, u \geq 3, \)
\(r(S_3) = 3 \Rightarrow H(S) \cong E_4, D_{2n}. \)

Theorem If \(G \) is a (non-abelian) simple collineation group preserving \(\Omega \) then \(G \cong \text{PSL}(2, q) \) with \(5 \leq q \leq n. \)

Remark The above results fail when \(\Pi \) has even order: In the dual Lüneburg plane of order \(2^{2h}, h \geq 3 \) odd, \(S_2(2^h) \) preserves an oval.
Action of collineation group of an oval in odd order plane

Theorem
G is 2-transitive on Ω $\Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Theorem
G is primitive on Ω, \Rightarrow either G is 2-transitive on Ω, or $\Pi \cong PG(2, 9)$, $\Omega = C$, and $PSL(2, 5) \leq G \leq PGL(2, 5)$.

Conjecture
G is transitive on Ω, $\Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Let G be minimal transitive on Ω.

For $n \equiv 1 \pmod{4}$, either G is primitive on Ω, or

(i) $|G| = 2^d$ d odd;
(ii) $G \cong PSL(2, q)$, and

$n = q(q+1)−1$ or $n = q(q−1)+1$ according as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$.

Remark: Case (ii) occurs in $PG(2, 29)$ with $G \cong PSL(2, 5)$ (and also in $PG(2, 5)$ with $G \cong PSL(2, 3)$). No (analogous) results are known about case $n \equiv 3 \pmod{4}$.
Action of collineation group of an oval in odd order plane

\[G := \text{collineation group preserving an oval } \Omega \text{ in a projective plane } \Pi \text{ of odd order } n \]
\(G := \) collineation group preserving an oval \(\Omega \) in a projective plane \(\Pi \) of odd order \(n \)

The action of \(G \) on \(\Omega \) is faithful

\[\text{Theorem} \quad G \text{ is 2-transitive on } \Omega \implies \Pi \cong \text{PG}(2, q) \quad \text{and } \Omega = C. \]

\[\text{Theorem} \quad G \text{ is primitive on } \Omega \implies \text{either } G \text{ is 2-transitive on } \Omega, \text{ or } \Pi \cong \text{PG}(2, 9), \Omega = C, \text{ and } \text{PSL}(2, 5) \leq G \leq \text{PGL}(2, 5). \]

\[\text{Conjecture} \quad G \text{ is transitive on } \Omega \implies \Pi \cong \text{PG}(2, q) \quad \text{and } \Omega = C. \]

Let \(G \) be minimal transitive on \(\Omega \).

For \(n \equiv 1 \pmod{4}, \) either \(G \) is primitive on \(\Omega, \) or

- (i) \(|G| = 2^d \) \(d \) odd;
- (ii) \(G \cong \text{PSL}(2, q), \) and \(n = q(q+1) - 1 \) or \(n = q(q-1) + 1 \) according as \(q \equiv 1 \pmod{4} \) or \(q \equiv 3 \pmod{4}. \)

\[\text{Remark: Case (ii) occurs in } \text{PG}(2, 29) \text{ with } G \cong \text{PSL}(2, 5) \text{ (and also in } \text{PG}(2, 5) \text{ with } G \cong \text{PSL}(2, 3). \) \]

No (analogous) results are known about case \(n \equiv 3 \pmod{4}. \)
Action of collineation group of an oval in odd order plane

$G :=$ collineation group preserving an oval Ω in a projective plane Π of odd order n

The action of G on Ω is faithful

Theorem G is 2-transitive on $\Omega \Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Let G be minimal transitive on Ω.

For $n \equiv 1 \pmod{4}$, either G is primitive on Ω, or

(i) $|G| = 2^{d}d$ odd;

(ii) $G \cong PSL(2, q)$, and $n = q(q+1)−1$ or $n = q(q−1)+1$ according as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$.

Remark: Case (ii) occurs in $PG(2, 29)$ with $G \cong PSL(2, 5)$ (and also in $PG(2, 5)$ with $G \cong PSL(2, 3)$).

No (analogous) results are known about case $n \equiv 3 \pmod{4}$.
$G :=$ collineation group preserving an oval Ω in a projective plane Π of odd order n

The action of G on Ω is faithful

Theorem G is 2-transitive on $\Omega \Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Theorem G is primitive on $\Omega \Rightarrow$ either G is 2-transitive on Ω, or $\Pi \cong PG(2, 9)$, $\Omega = C$, and $PSL(2, 5) \leq G \leq PGL(2, 5)$.
$G := \text{collineation group preserving an oval } \Omega \text{ in a projective plane } \Pi \text{ of odd order } n$

The action of G on Ω is faithful

Theorem G is 2-transitive on $\Omega \Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Theorem G is primitive on $\Omega \Rightarrow$ either G is 2-transitive on Ω, or $\Pi \cong PG(2, 9)$, $\Omega = C$, and $PSL(2, 5) \leq G \leq PGL(2, 5)$.

Conjecture G is transitive on $\Omega \Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).
G := collineation group preserving an oval Ω in a projective plane Π of odd order n

The action of G on Ω is faithful.

Theorem G is 2-transitive on Ω ⇒ Π ≅ PG(2, q) (and Ω = C).

Theorem G is primitive on Ω ⇒ either G is 2-transitive on Ω, or Π ≅ PG(2, 9), Ω = C, and PSL(2, 5) ≤ G ≤ PGL(2, 5).

Conjecture G is transitive on Ω ⇒ Π ≅ PG(2, q) (and Ω = C).

Let G be minimal transitive on Ω.
Action of collineation group of an oval in odd order plane

$G := \text{collineation group preserving an oval } \Omega \text{ in a projective plane } \Pi \text{ of odd order } n$

The action of G on Ω is faithful

Theorem G is 2-transitive on $\Omega \Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Theorem G is primitive on $\Omega \Rightarrow$ either G is 2-transitive on Ω, or $\Pi \cong PG(2, 9)$, $\Omega = C$, and $PSL(2, 5) \leq G \leq PGL(2, 5)$.

Conjecture G is transitive on $\Omega \Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Let G be minimal transitive on Ω. For $n \equiv 1 \pmod{4}$, either G is primitive on Ω, or
\(G := \) collineation group preserving an oval \(\Omega \) in a projective plane \(\Pi \) of odd order \(n \)

The action of \(G \) on \(\Omega \) is faithful

Theorem \(G \) is 2-transitive on \(\Omega \) \(\Rightarrow \) \(\Pi \cong PG(2, q) \) (and \(\Omega = \mathcal{C} \)).

Theorem \(G \) is primitive on \(\Omega \) \(\Rightarrow \) either \(G \) is 2-transitive on \(\Omega \), or \(\Pi \cong PG(2, 9), \Omega = \mathcal{C} \), and \(PSL(2, 5) \leq G \leq PGL(2, 5) \).

Conjecture \(G \) is transitive on \(\Omega \) \(\Rightarrow \) \(\Pi \cong PG(2, q) \) (and \(\Omega = \mathcal{C} \)).

Let \(G \) be minimal transitive on \(\Omega \). For \(n \equiv 1 \pmod{4} \), either \(G \) is primitive on \(\Omega \), or

(i) \(|G| = 2d \) \(d \) odd;

Remark: Case (ii) occurs in \(PG(2, 29) \) with \(G \cong PSL(2, 5) \) (and also in \(PG(2, 5) \) with \(G \cong PSL(2, 3) \)). No (analogous) results are known about case \(n \equiv 3 \pmod{4} \).
G := collineation group preserving an oval Ω in a projective plane Π of odd order n

The action of G on Ω is faithful

Theorem G is 2-transitive on Ω ⇒ Π ≅ PG(2, q) (and Ω = C).

Theorem G is primitive on Ω ⇒ either G is 2-transitive on Ω, or Π ≅ PG(2, 9), Ω = C, and PSL(2, 5) ≤ G ≤ PGL(2, 5).

Conjecture G is transitive on Ω ⇒ Π ≅ PG(2, q) (and Ω = C).

Let G be minimal transitive on Ω. For n ≡ 1 (mod 4), either G is primitive on Ω, or

(i) |G| = 2d d odd;

(ii) G ≅ PSL(2, q), and n = q(q + 1) − 1 or n = q(q − 1) + 1 according as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).
Action of collineation group of an oval in odd order plane

$G :=$ collineation group preserving an oval Ω in a projective plane Π of odd order n

The action of G on Ω is faithful

Theorem G is 2-transitive on $\Omega \Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Theorem G is primitive on $\Omega \Rightarrow$ either G is 2-transitive on Ω, or $\Pi \cong PG(2, 9)$, $\Omega = C$, and $PSL(2, 5) \leq G \leq PGL(2, 5)$.

Conjecture G is transitive on $\Omega \Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Let G be minimal transitive on Ω. For $n \equiv 1 \pmod{4}$, either G is primitive on Ω, or

(i) $|G| = 2d \ d \text{ odd};$

(ii) $G \cong PSL(2, q)$, and $n = q(q + 1) - 1$ or $n = q(q - 1) + 1$

according as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$.

Remark: Case (ii) occurs in $PG(2, 29)$ with $G \cong PSL(2, 5)$ (and also in $PG(2, 5)$ with $G \cong PSL(2, 3)$).
$G :=$ collineation group preserving an oval Ω in a projective plane Π of odd order n

The action of G on Ω is faithful.

Theorem G is 2-transitive on $\Omega \Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Theorem G is primitive on $\Omega \Rightarrow$ either G is 2-transitive on Ω, or $\Pi \cong PG(2, 9)$, $\Omega = C$, and $PSL(2, 5) \leq G \leq PGL(2, 5)$.

Conjecture G is transitive on $\Omega \Rightarrow \Pi \cong PG(2, q)$ (and $\Omega = C$).

Let G be minimal transitive on Ω. For $n \equiv 1 \pmod{4}$, either G is primitive on Ω, or

(i) $|G| = 2d$ d odd;

(ii) $G \cong PSL(2, q)$, and $n = q(q + 1) - 1$ or $n = q(q - 1) + 1$ according as $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$.

Remark: Case (ii) occurs in $PG(2, 29)$ with $G \cong PSL(2, 5)$ (and also in $PG(2, 5)$ with $G \cong PSL(2, 3)$).

No (analogous) results are known about case $n \equiv 3 \pmod{4}$.
Irreducible collineation groups in projective planes

Irreducible collineation group G fixes no point, preserves no line and triangle in Π.

Strongly irreducible group G is irreducible and preserves no subplane in Π.

Hering's classification of strongly irreducible groups containing central-axial collineations. (1970-1985)

Local version of irreducibility on an oval Ω:

G := collineation group preserving an oval Ω in a projective plane.

G := irreducible on Ω if G fixes no point of Ω, preserves no chord or triangle of Ω.

G := strongly irreducible on Ω if G is irreducible on Ω, and preserves no suboval of Ω.

Suboval $\Omega_0 = \Omega \cap \Pi_0$ with Π_0 a subplane and Ω_0 an oval in Π_0.

Remark G transitive on Ω \Rightarrow G strongly irreducible on Ω.

Strongly irreducible oval \Rightarrow \exists strongly irreducible collineation group on the oval.
Irreducible collineation group $G := G$ fixes no point, preserves no line and triangle in Π.

Remark G transitive on $\Omega \Rightarrow G$ strongly irreducible on Ω.

Strongly irreducible oval \exists strongly irreducible collineation group on the oval.
Irreducible collineation group $G := G$ fixes no point, preserves no line and triangle in Π.

Strongly irreducible group $G := G$ is irreducible and preserves no subplane in Π.

Remark G transitive on Ω \Rightarrow G strongly irreducible on Ω.

Strongly irreducible oval $= \exists$ strongly irreducible collineation group on the oval.
Irreducible collineation group $G := G$ fixes no point, preserves no line and triangle in Π.

Strongly irreducible group $G := G$ is irreducible and preserves no subplane in Π.

Hering’s classification of strongly irreducible groups containing central-axial collineations. (1970-1985)
Irreducible collineation group G := G fixes no point, preserves no line and triangle in Π.

Strongly irreducible group G := G is irreducible and preserves no subplane in Π.

Hering's classification of strongly irreducible groups containing central-axial collineations. (1970-1985)

Local version of irreducibility on an oval.
Irreducible collineation group $G := G$ fixes no point, preserves no line and triangle in Π.

Strongly irreducible group $G := G$ is irreducible and preserves no subplane in Π.

Hering’s classification of strongly irreducible groups containing central-axial collineations. (1970-1985)

Local version of irreducibility on an oval.

$G :=$ collineation group preserving an oval Ω in a projective plane.
Irreducible collineation group $G := G$ fixes no point, preserves no line and triangle in Π.

Strongly irreducible group $G := G$ is irreducible and preserves no subplane in Π.

Hering’s classification of strongly irreducible groups containing central-axial collineations. (1970-1985)

Local version of irreducibility on an oval.

$G := $ collineation group preserving an oval Ω in a projective plane.

$G := $ irreducible on Ω if G fixes no point of Ω, preserves no chord or triangle of Ω.
Irreducible collineation group \(G := G \) fixes no point, preserves no line and triangle in \(\Pi \).

Strongly irreducible group \(G := G \) is irreducible and preserves no subplane in \(\Pi \).

Hering’s classification of strongly irreducible groups containing central-axial collineations. (1970-1985)

Local version of irreducibility on an oval.

\(G := \) collineation group preserving an oval \(\Omega \) in a projective plane.

\(G := \text{irreducible} \) on \(\Omega \) if \(G \) fixes no point of \(\Omega \), preserves no chord or triangle of \(\Omega \).

\(G := \text{strongly irreducible} \) on \(\Omega \) if \(G \) is irreducible on \(\Omega \), and preserves no suboval of \(\Omega \).
Irreducible collineation group $G := G$ fixes no point, preserves no line and triangle in Π.
Strongly irreducible group $G := G$ is irreducible and preserves no subplane in Π.
Hering's classification of strongly irreducible groups containing central-axial collineations. (1970-1985)
Local version of irreducibility on an oval.
$G :=$ collineation group preserving an oval Ω in a projective plane.
$G :=$ irreducible on Ω if G fixes no point of Ω, preserves no chord or triangle of Ω.
$G :=$ strongly irreducible on Ω if G is irreducible on Ω, and preserves no suboval of Ω.
suboval: $= \Omega_0 = \Omega \cap \Pi_0$ with Π_0 a subplane and Ω_0 an oval in Π_0.

Irreducible collineation groups in projective planes

Irreducible collineation group $G := G$ fixes no point, preserves no line and triangle in Π.

Strongly irreducible group $G := G$ is irreducible and preserves no subplane in Π.

Hering’s classification of strongly irreducible groups containing central-axial collineations. (1970-1985)

Local version of irreducibility on an oval.

$G := $ collineation group preserving an oval Ω in a projective plane.

$G := $ irreducible on Ω if G fixes no point of Ω, preserves no chord or triangle of Ω.

$G := $ strongly irreducible on Ω if G is irreducible on Ω, and preserves no suboval of Ω.

Suboval: $\Omega_0 = \Omega \cap \Pi_0$ with Π_0 a subplane and Ω_0 an oval in Π_0.

Remark G transitive on $\Omega \Rightarrow G$ strongly irreducible on Ω.
Irreducible collineation group $G := G$ fixes no point, preserves no line and triangle in Π.

Strongly irreducible group $G := G$ is irreducible and preserves no subplane in Π.

Hering’s classification of strongly irreducible groups containing central-axial collineations. (1970-1985)

Local version of irreducibility on an oval.

$G :=$ collineation group preserving an oval Ω in a projective plane.

$G :=$ irreducible on Ω if G fixes no point of Ω, preserves no chord or triangle of Ω.

$G :=$ strongly irreducible on Ω if G is irreducible on Ω, and preserves no suboval of Ω.

Suboval: $= \Omega_0 = \Omega \cap \Pi_0$ with Π_0 a subplane and Ω_0 an oval in Π_0.

Remark G transitive on $\Omega \Rightarrow G$ strongly irreducible on Ω.

Strongly irreducible oval: $= \exists$ strongly irreducible collineation group on the oval.
Classification of strongly irreducible ovals I

\[\Pi := \text{projective plane of order } n \]
\[\Omega := \text{strongly irreducible oval in } \Pi \]
\[G := \text{strongly irreducible collineation group of } \Omega \]

Theorem

If \(G \leq \text{Alt} \Omega \) then either

(i) \(G \) is isomorphic to a subgroup of \(P\Gamma L(2,q) \) containing \(PSL(2,q) \) for some odd prime power \(q \);

(ii) \(G \) fixes a point-line pair \(\{P, \ell\} \), where \(P \) is an internal point whereas \(\ell \) is an external line to \(\Omega \) and all involutions in \(G \) are homologies.

Gábor Korchmáros

Symmetries of finite projective planes
\Pi:=\text{projective plane of order } n \text{ with } n \equiv 1 \pmod{4}
\[\Pi := \text{projective plane of order } n \text{ with } n \equiv 1 \pmod{4} \]
\[\Omega := \text{strongly irreducible oval in } \Pi \]
\[\Pi := \text{projective plane of order } n \text{ with } n \equiv 1 \pmod{4} \]
\[\Omega := \text{strongly irreducible oval in } \Pi \]
\[G := \text{strongly irreducible collineation group of } \Omega \]
Classification of strongly irreducible ovals I

\(\Pi := \) projective plane of order \(n \) with \(n \equiv 1 \pmod{4} \)

\(\Omega := \) strongly irreducible oval in \(\Pi \)

\(G := \) strongly irreducible collineation group of \(\Omega \)

Theorem If \(G \leq \text{Alt}_\Omega \) then either

(i) \(G \) is isomorphic to a subgroup of \(\text{PGL}(2, q) \) containing \(\text{PSL}(2, q) \) for some odd prime power \(q \);

(ii) \(G \) fixes a point-line pair \(\{P, \ell\} \), where \(P \) is an internal point whereas \(\ell \) is an external line to \(\Omega \) and all involutions in \(G \) are homologies.
\[\Pi := \text{projective plane of order } n \text{ with } n \equiv 1 \pmod{4} \]
\[\Omega := \text{strongly irreducible oval in } \Pi \]
\[G := \text{strongly irreducible collineation group of } \Omega \]

Theorem If \(G \leq \text{Alt}_\Omega \) then either

(i) \(G \) is isomorphic to a subgroup of \(P\Gamma L(2, q) \) containing \(PSL(2, q) \) for some odd prime power \(q \); or
Π:=projective plane of order \(n \) with \(n \equiv 1 \pmod{4} \)

Ω:=strongly irreducible oval in Π

G:=strongly irreducible collineation group of Ω

Theorem If \(G \leq \text{Alt}_\Omega \) then either

(i) \(G \) is isomorphic to a subgroup of \(P\Gamma L(2, q) \) containing \(PSL(2, q) \) for some odd prime power \(q \); or

(ii) \(G \) fixes a point-line pair \(\{P, \ell\} \), where \(P \) is an internal point whereas \(\ell \) is an external line to Ω and all involutions in \(G \) are homologies.
\[\Pi := \text{projective plane of order } n \text{ with } n \equiv 1 \pmod{4} \]
\[\Omega := \text{strongly irreducible oval in } \Pi \]
\[G := \text{strongly irreducible collineation group of } \Omega \]

Theorem If \(G \leq \text{Alt}_\Omega \) then either

(i) \(G \) is isomorphic to a subgroup of \(P\Gamma L(2, q) \) containing \(PSL(2, q) \) for some odd prime power \(q \); or

(ii) \(G \) fixes a point-line pair \(\{P, \ell\} \), where \(P \) is an internal point whereas \(\ell \) is an external line to \(\Omega \) and all involutions in \(G \) are homologies.
Classification of strongly irreducible ovals II

Let Π be the projective plane of even order n, Ω be a strongly irreducible oval in Π, and G be the strongly irreducible collineation group of Ω.

Theorem

The subgroup H of G generated by all (involutory) elations is either

(i) $H = O(G) \rtimes C_2$; or

(ii) $H \cong PSL(2,q)$, $Sz(q)$, $PSU(3,q)$ with $q = 2^h$.

Open problem: Does the case $H \cong PSU(3,q)$ actually occur (in some non-classical plane)?
Π: = projective plane of even order n

Open problem: Does the case $H \cong \text{PSU}(3, q)$ actually occur (in some non-classical plane)?
\(\Pi := \text{projective plane of even order } n \)
\(\Omega := \text{strongly irreducible oval in } \Pi \)
Classification of strongly irreducible ovals II

\[\Pi := \text{projective plane of even order } n \]
\[\Omega := \text{strongly irreducible oval in } \Pi \]
\[G := \text{strongly irreducible collineation group of } \Omega \]

Theorem

The subgroup \(H \) of \(G \) generated by all (involutory) elations is either

1. \(H = O(G) \rtimes C_2 \)
2. \(H \cong PSL(2, q), Sz(q), PSU(3, q) \) with \(q = 2^h \).

Open problem: Does the case \(H \cong PSU(3, q) \) actually occur (in some non-classical plane)?
Classification of strongly irreducible ovals II

\[\Pi := \text{projective plane of even order } n \]
\[\Omega := \text{strongly irreducible oval in } \Pi \]
\[G := \text{strongly irreducible collineation group of } \Omega \]

Theorem The subgroup \(H \) of \(G \) generated by all (involutory) elations is either

\[(i) \quad H \cong \mathbb{O}(G) \rtimes C_2 \]
\[(i) \quad H \cong \text{PSL}(2, q) \]
\[\text{Sz}(q) \]
\[\text{PSU}(3, q) \]

with \(q = 2^h \).

Open problem: Does the case \(H \cong \text{PSU}(3, q) \) actually occur (in some non-classical plane)?
\(\Pi := \) projective plane of even order \(n \)
\(\Omega := \) strongly irreducible oval in \(\Pi \)
\(G := \) strongly irreducible collineation group of \(\Omega \)

Theorem The subgroup \(H \) of \(G \) generated by all (involutory) elations is either

(i) \(H = O(G) \rtimes C_2 \); or

Open problem: Does the case \(H \cong PSU(3, q) \) actually occur (in some non-classical plane)?
\(\Pi := \text{projective plane of even order } n \)
\(\Omega := \text{strongly irreducible oval in } \Pi \)
\(G := \text{strongly irreducible collineation group of } \Omega \)

Theorem The subgroup \(H \) of \(G \) generated by all (involutory) elations is either

(i) \(H = O(G) \rtimes C_2 \); or

(ii) \(H \cong \text{PSL}(2, q), \text{Sz}(q), \text{PSU}(3, q) \) with \(q = 2^h \).
Π:=projective plane of even order n
Ω:=strongly irreducible oval in Π
G:=}strongly irreducible collineation group of Ω

Theorem The subgroup H of G generated by all (involutory) elations is either

(i) $H = O(G) \rtimes C_2$; or

(ii) $H \cong PSL(2, q), Sz(q), PSU(3, q)$ with $q = 2^h$.

Open problem: Does the case $H \cong PSU(3, q)$ actually occur (in some non-classical plane)?

