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Izvleček:

Beljakovine imajo ključno vlogo pri številnih biokemijskih procesih. Poznavanje struk-

ture in funkcije beljakovin je torej ključnega pomena za proučevanje procesov v živih

organizmih. Struktura proteina je zelo kompleksna in jo navadno predstavimo na tirih

nivojih: 1) primarna struktura, kjer opǐsemo zaporedje aminokislin, 2) sekundarna

struktura (alfa vijačnice, beta plošče in zanke), 3) terciarna struktura in 4) kvartarna

struktura. Če želimo natančno analizirati funkcije proteinov je potrebno poznati nji-

hovo 3D strukturo.

Da bi bolje analizirali in validirali 3D strukturo proteinov, smo 3D strukturo proteina

predstavili v obliki grafa in analizirali značilnosti (premer, drevo najkraǰsih poti, stop-

nja grafa, energija grafa, ter druge) tako dobljenih grafov.

Pri analizi grafov smo posebno pozornost namenili 3D strukturam proteinov, ki so bile

napačno rešene in kasneje popravljene.

Analiza grafov skonstruiranih iz 3D struktur proteinov je tako pokazala, da bi lahko

značilnosti takšnih grafov uporabili kot alternativni, oziroma dodaten validacijski korak

pri reševanju struktur proteinov.
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Abstract:

It is well known that protein molecules play many critical roles in the nature. Finding

a way to understand the chemical behavior of protein molecules, i.e. explaining their

structure and interaction with other molecules, is a key to complete understanding how

many biological processes work.

Protein structure is very complex and it is divided into 4 levels: primary, secondary,

tertiary and quaternary. Although one protein is determined by its primary structure

(sequence of amino acids that form it), secondary (position of local segments in 3D) and

tertiary (protein folding) structures can vary. So, in theory, there are several 3D models

of the same protein, but in nature, we can rarely find more than one macromolecular

structure. Finding a correct structure of a protein is a key step in further analysis of

protein behavior, but this process can be very demanding and expensive.

That kind of analysis will yield some important conclusions regarding the behavior

of that specific protein. We will analyze graphs of those proteins with distinguished

correct and incorrect 3D structure (that have been experimentally confirmed) and try

to specify what values of graph properties should correct structures have, compared

to those that are incorrect. Purpose of this paper is to show that analysis of protein

graphs can be used as a helpful research tool in macromolecular modeling.
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1 Introduction

It is well known that protein molecules play many critical roles in the nature. Finding

a way to understand the chemical behavior of protein molecules, i.e. explaining their

structure and interaction with other molecules, is a key to complete understanding

how many biological processes work. One might say that if we know more about the

proteins, we can also learn more about life on Earth itself.

Protein structure is very complex and it is divided into 4 levels: primary, secondary,

tertiary and quaternary.

• Primary protein structure is based on the linear sequence of amino acids in a

protein, starting from a amino-terminal and ending in a carboxyl-terminal. There

are 20 essential or proteinogenic amino acids, listed below [16].

• Secondary protein structure is the three dimensional form of local segments of

proteins. The two most common secondary structural elements are alpha helices

and beta sheets [16].

• Tertiary secondary structure is the three dimensional shape of a protein. Sec-

ondary structure elements typically spontaneously form as an intermediate before

the protein folds into its three dimensional tertiary structure [16].

• Quaternary protein structure refers to the number and arrangement of the protein

subunits with respect to one another [16].
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No. Name 3-letter abbreviation

1. Alanine ALA

2. Arginine ARG

3. Aspargine ASN

4. Aspartic acid ASP

5. Cysteine CYS

6. Glutamic acid GLU

7. Glutamine GLN

8. Glycine GLY

9. Histidine HIS

10. Isoleucine ILE

11. Leucine LEU

12. Lysine LYS

13. Methionine MET

14. Phenylalanine PHE

15. Proline PRO

16. Serine SER

17. Threonine THR

18. Tryptophan TRP

19. Tyrosine TYR

20. Valine VAL

Table 1.1: List of essential amino acids

Figure 1.1: Four levels of protein structure using PCNA protein as an example [16]
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Although one protein is determined by its primary structure (sequence of amino

acids that form it), secondary (position of local segments in 3D) and tertiary (protein

folding) structures can vary.

So, in theory, there are several 3D models of the same protein, but in nature, we can

rarely find more than one macromolecular structure. Finding a correct structure of a

protein is a key step in further analysis of protein behavior, but this process can be

very demanding and expensive.

The determination of 3D macromolecular structures consists of experimental data

recording and model building, refinement and validation. Often, the experimental

data is not complete and can contain errors, and scientists can sometimes misinterpret

the data, which can result in incorrect structure determination.

Graph Theory is a branch of discrete mathematics, distinguished by the geometric

approach to the study of objects. The principal object of the theory is a graph and its

generalization. Any problem or object under consideration is represented in the form

of nodes (vertices, elements) and edges (connections) [13].

According to Vishveshwara et al. [13] : ’Although the topic is more than two centuries

old, only in recent times it has gained momentum and has been routinely used in various

branches of science and engineering. The mathematics developed earlier can now be

applied to systems with large number of vertices and edges, since computers can be ef-

fectively made use of in obtaining solutions to such large graphs. Extensive applications

of graph theory are made use of in the fields such as electrical circuits, communication

and transportation networks.’

In order to better analyze the 3D protein structure, we can transform the protein

into a graph. Namely, a protein structure has geometry, expressed in the conformation

of the protein backbone and side-chains.

Many structures can differ in terms of the conformational features (geometry) but still

can have the same topology (the gross shape). Thus, it is best to transform the protein

into a graph and examine its properties. That kind of analysis will yield some impor-

tant conclusions regarding the behavior of that specific protein.

In this paper, the following properties of a protein graph will be considered:

• Average node degree

• Average shortest path

• Clustering coefficient
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• Radius of a graph

• Eigenvector centrality (Largest eigenvalue of an adjacency matrix and the corre-

sponding eigenvector)

• Energy of a graph

• Graph entropy and label entropy

We will analyze graphs of those proteins with distinguished correct and incorrect

3D structure (that have been experimentally confirmed) and try to specify what values

of graph properties mentioned above should correct structures have, compared to those

that are incorrect.
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2 Construction of protein graphs

Definition 2.1. A graph G = G(V,E) consists of a set of vertices (nodes) V and a set

of edges E, in which the vertices and edges are related as follows: Two vertices vi and

vj of a graph G are said to be adjacent if there is an edge eij connecting them.

Technical note: The vertices vi and vj are then said to be incident to the edge eij.

Two distinct edges of a graph G are adjacent if they have at least one vertex in common.

Question that naturally arises is how to effectively transform a protein, that is a struc-

ture in 3D, into a 2D model of a graph. First, we have to introduce an effective way

of representing proteins as lists. In this case, PDB (protein data bank) format will be

used. Since 1971, the Protein Data Bank archive (PDB) has served as the single repos-

itory of information about the 3D structures of proteins, nucleic acids, and complex

assemblies.

Protein Data Bank (PDB) format is a standard for files containing atomic coordinates.

It is used for structures in the Protein Data Bank and is read and written by many

programs. PDB format consists of lines of information in a text file. Each line of in-

formation in the file is called a record. A PDB file generally contains several different

types of records, arranged in a specific order to describe a structure [17].

In the following picture, we can see an example of a PDB file. These are first 19 atoms

(first 3 amino acids) of a protein glucagon.

Figure 2.1: PDB representation of glucagon [17]

Notice that each line or record begins with the record type ATOM. Although there
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are other types, such as SHEET, HELIX, TER etc, in this paper, only ATOM record

type will be considered.

The atom serial number is the next item in each record.

The atom name is the third item in the record. Notice that the first one or two char-

acters of the atom name consists of the chemical symbol for the atom type. All the

atom names beginning with C are carbon atoms; N indicates a nitrogen and O indi-

cates oxygen. In amino acid residues, the next character is the remoteness indicator

code, which is transliterated according to: α = A, β = B, γ = G, δ = D, ε =

E, ζ = Z, η = H.

The next character of the atom name is a branch indicator, if required.

The next data field is the residue type. Notice that each record contains the residue

type. In this example, the first residue in the chain is HIS (histidine) and the second

residue is a SER (serine).

The next data field contains the chain identifier, in this case A.

The next data field contains the residue sequence number. Notice that as the residue

changes from histidine to serine, the residue number changes from 1 to 2. Two like

residues may be adjacent to one another, so the residue number is important for dis-

tinguishing between them.

The next three data fields contain the X, Y , and Z coordinate values, respectively.

The last three fields shown are the occupancy, temperature factor (B-factor), and ele-

ment symbol(these quantities won’t be used in the rest of the text).

The glucagon data file continues in this manner until the final residue is reached:

Figure 2.2: End of glucagon PDB file [17]

Now, when we have an appropriate way of representing proteins, we proceed to

construction of protein graphs.

We see that every residue in a protein has its X, Y, Z coordinates, so we can calculate

a distance between any two residues.
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Definition 2.2. Euclidian distance in 3D

For any two points P andQ represented in 3D space withX, Y, Z coordinates P (x1, y1, z1)

and Q(x2, y2, z2) we can calculate Euclidian distance D(P,Q) as:

D(P,Q) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

The main idea behind construction of protein graphs is to take amino acid residues

as vertices (nodes). We abstract every amino acid to its Cα (alpha carbon) atoms

and measure the Euclidian distance for each pair of them. If the distance fits some

threshold value, then we create an edge between the corresponding nodes.

Based on the research of Greene and Higman [5] threshold value can be set to several

different values, but the best results were obtained when they used threshold value

of 7Å (7Å(angstroms)=700 picometers). Thus, we obtain the following algorithm for

construction of protein graphs:

Algorithm for construction of protein graphs

Input: Protein in PDB format

Idea: Obtain a protein graph of a given protein by taking Cα atoms of every amino

acid residue to serve as graph vertices(nodes) and assigning edges between two nodes

if the distance of corresponding atoms is less or equal than threshold value.

Initialization: V (G) = ∅, E(G) = ∅
Iteration: If atom at position i is Cα (CA) then Cαi ∈ V (G). For every j < i s.t.

Cαj ∈ V (G), we check if D(Cαi, Cαj) ≤ 7Å, then eij ∈ E(G), that is, we construct

an edge between them, i.e. we consider those two nodes to be adjacent.
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3 Characterization and properties

of protein graphs

Definition 3.1. A graph G is a simple graph if it has no loops (edges that start and

end at the same vertex) and no multiple edges between vertices.

From the definition above and the algorithm given in the previous chapter, we

clearly see that protein graphs are simple graphs. This is an important characteristic

of protein graphs that will yield some other interesting properties later.

3.1 Average node degree and clustering coefficient

Definition 3.2. The degree of a node v, denoted d(v), represents the number of nodes

adjacent to v.

Definition 3.3. The average node degree of a graph G is the mean value of all node

degrees in G. Formally written:

AND(G) = d(G) =
1

N

N∑
i=1

d(vi),

where d(vi) represents the degree of the node vi and N is the total number of nodes

in the graph G.

Remark 3.4. Another way of expressing the average node degree is with the ratio:

AND(G) =
2e(G)

N(G)
,

where e(G) represents the total number of edges in a graph G and N(G) is a number

of nodes in a graph G.

It also holds:

δ(G) ≤ AND(G) ≤ ∆(G),

where δ(G) and ∆(G) represent minimum and maximum node degree in graph G,

respectively.
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Definition 3.5. The clustering coefficient of a node v, denoted by c(v), represents the

completeness of the neighborhood of the node v. That is,

c(v) =
2ev

k(v)(k(v)− 1)
,

where k(v) represents the number of neighbors of node v and ev is the number of

neighboring nodes that are adjacent to each other.

Remark 3.6. If graph is simple, then k(v) = d(v), for every node v ∈ V (G).

Remark 3.7. If all the neighbor nodes of v are connected, then the neighborhood of

v is complete and we have a clustering coefficient equal to 1. If no nodes in the

neighborhood of v are connected, then the clustering coefficient is 0.

Definition 3.8. Clustering coefficient of the whole graph G on N vertices can be

expressed as the mean value of clustering coefficients of all vertices:

C(G) =
1

N

N∑
i=1

c(vi)

Example 3.9.

Definition 3.10. A complete graph Kn is a simple graph in which every pair of distinct

vertices is connected by a unique edge.

All nodes of Kn are of the same degree: n − 1. Thus, δ(Kn) = AND(Kn) =

∆(Kn) = n− 1.

It follows from definition of Kn that the neighborhood of every vertex is complete,

so every vertex has clustering coefficient equal to 1. Therefore, C(Kn) = 1.

Example 3.11. Let us look at an another simple example:

Figure 3.1: Example of a graph on 6 vertices
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This graph has 6 vertices: two of them are of degree 2 and the other four are of

degree 4.

So, the average node degree of this graph is:

AND(G) =
2 · 2 + 4 · 4

6
= 3, 333

Vertices of degree 2 have a complete neighborhood, so they will have clustering

coefficient equal to 1. Vertices of degree 4 don’t have a complete neighborhood, so we

have to use the formula. Let v be the one of those vertices. Since we are dealing with

a simple graph k(v) = d(v) = 4 and we see from the picture that ev = 4 (we count how

many edges are there between neighbors of v).

So, c(v) =
2 · 4
4 · 3

=
2

3
.

In the end,

C(G) =
2 · 1 + 4 · 2

3

6
=

14

18
= 0.778

When we look at the average node degree and the clustering coefficient of protein

graphs, one of the first questions that arises is:

Do average node degree and clustering coefficient of protein graphs strongly depend on

protein length and folding mechanism?

As we can see from the formula above, the average node degree is proportional to 1/N ,

where N represents the number of nodes i.e. the length of the protein.

Protein folding will change the number of edges in a graph of a protein that we are

looking into, because some amino acids will get close enough, so that we can say they

are connected. Since the average node degree is proportional to 2e(G), we can say that

it depends on the folding mechanism of a protein.

So, we can say that average node degree depends on both protein length and folding

mechanism, but we can’t say it ’strongly’ depends on either one of them, because in

both cases, the dependence is linear.

The same goes for the clustering coefficient. It is proportional to 1/N and ev depends

on e(G). In the case of simple graphs (which protein graphs are), higher ev yields

higher e(G) and vice versa. Therefore, we can say that clustering coefficient depends

on protein length and folding mechanism, but that dependence is not ’strong’.

This was sort of a theoretical approach to this problem, but in our research we wanted

to show that this actually holds in real examples of protein graphs.

We have obtained and analyzed the total of 50249 proteins from Protein Graph repos-

itory [4] [19]. All computations were conducted using NAPS: Network Analysis of
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Protein Structures software, available online [3] [18].

It can be seen from the plots below that the slopes for both average node degree

and clustering coefficient are rather flat, and that:

AND ∝ N0.0234

Figure 3.2: Dependence of protein length(number of residues) and average node degree

of protein graphs

C ∝ N−0.027

Figure 3.3: Dependence of protein length(number of residues) and clustering coefficient

of protein graphs

The resulting scaling exponents of 0.023 and −0.028 for a set of structures in our

study suggest that average node degree and clustering coefficient of protein graphs
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are not strongly related with the protein size. Increasing the protein size 1000 times

increases the average node degree and decreases the clustering coefficient by approxi-

mately 20% on average.

Thus, we can conclude that the average node degree and the clustering coefficient of

proteins with diverse primary structure and of similar sizes are not randomly scattered

over a wide range, but rather are distributed in a narrow interval.

Based on the given data, we can express average node degree in terms of protein size

with:

AND ≈ 7N0.023

If we have had used ′log− log′ plot, the expression would transform to ln(AND) ≈
0.023 ln(N) + 1.94, where we approximated e1.94 ≈ 7.

We can also express clustering coefficient in terms of protein size with:

C ≈ 0.64N−0.27,

or transform it to ln(C) = −0.027 ln(N)− 0.44.

Note that the standard deviation of these computations is σ(AND) ≈ 0.3 and σ(C) ≈
0.02.

It is also worth noting that larger proteins have higher average node degree and lower

clustering coefficient. Large proteins are made of several domains (subunits), thereby

they form quaternary structure and hence establish additional edges in protein graphs

that correspond to adjacent domains in 3D space. These new edges increase degree of

some nodes and because of that AND increases, but they don’t necessarily impact the

completeness of neighborhoods of those nodes, so clustering coefficient decreases.
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3.2 Average shortest path

Definition 3.12. Let G = (V,E) be a graph possessing n vertices and m edges, with

the set of vertices V = {v1, v2, . . . vn} and the edges set E = {e1, e2, . . . em}.
The adjacency matrix A(G) = (ai,j) of G is the n× n matrix defined by:

ai,j =

1, if(vi, vj) ∈ E

0, otherwise

Example 3.13. Adjacency matrix of a graph from Example 3.11 looks like:

0 1 0 0 0 1

1 0 1 0 1 1

0 1 0 1 1 1

0 0 1 0 1 0

0 1 1 1 0 1

1 1 1 0 1 0


Remark 3.14. Since protein graphs are simple graphs, then we see that adjacency

matrix of any protein graph is symmetric, with zeros on the diagonal.

Definition 3.15. The shortest path between two nodes vi and vj in a graph G is the

minimal number of edges that lie between two given nodes.

In computing the shortest path between a pair of nodes, we make use of the fact

that the number of different paths connecting a pair of nodes in n steps is given as

the entry of a adjacency matrix to the power of n, i.e. Bij = (An)ij . So, the shortest

path Lij between nodes vi and vj is the minimal power m of A for which (Am)ij is

nonzero [1].

Definition 3.16. The average shortest path of the graph G on N vertices is then given

by the formula:

L =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

Lij

Another way to obtain shortest path between vertices is to use Dijkstra’s Algo-

rithm [20]. This algorithm is usually applied to weighted graphs, but it can be also

useful when dealing with protein graphs (which are unweighted), by assigning weight

1 to every edge of the graph and weight inf if there is no edge between two vertices.
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Let u be the initial vertex. The main idea is to maintain a set S of vertices to which

a shortest path from u is known, enlarging S to include all vertices. To do this, we

maintain a tentative distance t(z) from u to each vertex z that is not in S, where t(z)

is the length of a shortest u, z-path found so far.

In every step, we select a vertex v outside S such that t(v) is minimal, and add v to

S. Then, we explore edges from v to update tentative distances: for each edge vz with

z not belonging to S, we update t(z) = min{t(z), t(v) + 1}. The iteration continues

until S = V (G), i.e. until we include all vertices or until t(z) = inf for every z not

already included in S.

We say that a network, such as protein graph, exhibits ’small-world’ properties if

it has high clustering coefficient and if its average shortest path scales logarithmically

with the number of nodes, as shown in [5] [2] [1].

This basically means that two nodes don’t necessarily have to be connected, but they

most likely share a neighbor, that is, they can be reached in fairly small number of

steps. This further implies that protein structures should have average shortest path

as small as possible.

3.3 Radius of a graph

Definition 3.17. Radius of the graph G, written rad(G), is the minimal eccentricity,

where eccentricity represents the maximal shortest path in the graph G.

In our analysis, we concluded that radius of protein graphs shows following depen-

dence regarding the number of residues (N)

rad(G) ∝ N ν , ν ≈ 2/5

Hong and Lei in [7] tried to compare radius of a graph and radius of gyration.

Radius of gyration refers to distribution of the components of an object around an

axis. Intuitively, we see that radius and radius of gyration have to be related to each

other,that is, we can observe the axis of gyration, as well as all components of the

protein, as nodes, so the radius of gyration in that case will correspond to radius of a

graph (maximal shortest path between ’axis’ node and other nodes).

They have mathematically calculated that: Rg ∝ N ν where N represents the number

of residues and ν is an exponent depending on the solvent conditions.
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Figure 3.4: Dependence of protein length(number of residues) and radius of protein

graphs

After some additional calculations, based on Flory theory, they’ve obtained the follow-

ing correlation:

ν =
α + 2

5α
,

where α represents the fractional dimension of protein conformation. In a good

solvent α ≈ 1 and ν =
3

5
, while in a poor solvent conditions α ≈ 3 and ν =

1

3
. Natural

proteins under physiological conditions have α ≈ 2 and ν =
2

5
.

Furthermore, authors of the paper used least squares method on 37162 proteins in

PDB they’ve analyzed, and obtained numerically ν ≈ 0.3915 as the best fitting. This

coincides with our result from Figure 3.4 (ν ≈ 0.4012).

Numerically obtained ν and ν obtained theoretically will be the same when we deal

with natural proteins under physiological conditions i.e. proteins that occur in living

organisms, which mostly is the case.

Also, we can note that it follows from the definition of a graph radius, that it is the

minimal value taken from all maximal shortest paths in a graph (for every node, we

look for a maximal shortest path to some other node, and then take minimum of those

values). Thus, we conclude that radius of a graph should be as small as possible and

that the correct structure of a certain protein will have smaller radius, compared to

the incorrect structure of the same protein.

3.4 Largest eigenvalue (LEV) and corresponding eigen-

vector (eigenvector centrality)

Let G = (V,E) be a graph possessing n vertices and m edges, with the set of vertices

V = v1, v2, , vn and the edges set E = e1, e2, , em



Tomić M. Protein graphs: Using insights from Graph Theory in analysis of macromolecular structures

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 16

As stated before, adjacency matrix of a simple graph is symmetric, and therefore

has a complete set of real eigenvalues and an orthogonal eigenvector basis. The set of

eigenvalues of a graph is the spectrum of the graph. We will denote the eigenvalues as

λ1 ≥ λ2 · · · ≥ λN .

We obtain eigenvalues as the roots of the characteristic polynomial of matrix A,

that is, we look for the solutions of the equation:

det(A− λI) = 0,

where I is the identity matrix. Eigenvalues of adjacency matrix also fulfill the

following two conditions:
n∑
i=1

λi = 0,

and
n∑
i=1

λ2i = 2m,

where m is total number of edges in the graph.

For every eigenvalue, we can find at least one vector ~x for which it holds:

λ~x = A~x

Vector ~x is called a corresponding eigenvector of the given eigenvalue.

The Perron-Frobenius theorem [21], asserts that a real square matrix with positive

entries has a unique largest real eigenvalue and that the corresponding eigenvector can

be chosen to have strictly positive components. Let λ1 = lev.

Remark 3.18. The largest eigenvalue (lev) depends upon the highest degree in the

graph. For any k-regular graph G (a graph with k degree on all vertices), the eigenvalue

with the largest absolute value is k. Similarly, we can say that the lev of clique on N

vertices (clique is a graph with all pairwise adjacent vertices) is N − 1.

In an irregular graph, lev is bounded with minimal and maximal node degree: δ(G) ≤
lev ≤ ∆(G).

Another property we can use is eigenvector centrality. In graph theory, eigenvector

centrality (also called eigencentrality) is a measure of the influence of a node in a net-

work.

The relative centrality score of vertex v can be defined as:



Tomić M. Protein graphs: Using insights from Graph Theory in analysis of macromolecular structures

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 17

xv =
1

λ

∑
t∈N(v)

xt =
1

λ

∑
t∈G

av,txt,

where N(v) is the set of neighbors of v, av,t is an entry from the adjacency matrix (it

is 1 if vertices v and t share an edge and 0 otherwise), and λ is a constant, that is actually

going to be the eigenvalue. Namely, with a small rearrangement this expression, can

be rewritten in vector notation as the eigenvector equation defined above:

λ~x = A~x

In general, there will be many different eigenvalues λ for which a non-zero eigen-

vector solution exists. However, the additional requirement that all the entries in the

eigenvector be non-negative implies (by the Perron-Frobenius theorem) that only the

greatest eigenvalue results in the desired centrality measure. The vth component of the

related eigenvector then gives the relative centrality score of the vertex v in the network.

In protein graphs, eigenvector centrality can be particularly useful when we want to

examine which amino acids in the protein have the biggest impact on the stability of

the protein, which side of a protein is the acive one in various chemical processes etc.

Example 3.19. Protein Cathepsin H(8PCB) has an eight residue long propeptide

termed mini-chain with a disulfide bond link to the main-chain. There are two alter-

native directions to the mini-chain and only one of them is correct. The positions only

differ for approximately 180 degrees (the mini-chain can be oriented ’up’ or ’down’).

Mini-chain takes positions from 221-228 and if we compare eigenvector centrality of the

correct structure with the incorrect one, we see from the plot that the correct structure

has a ’spike’ at the end, that is, values of eigenvector centrality for a correct position

of a mini-chain are substantially larger than those of the incorrect one.
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Figure 3.5: 3D representation of Cathepsin H (8PCB) with mini-chain (yellow) in the

correct position

Figure 3.6: Eigenvector centrality for Cathepsin H (8PCB) with correct (blue) and

incorrect (orange) position of the mini-chain
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3.5 Energy of a graph

Definition 3.20. Let G be a graph and let λ1, λ2, . . . , λN be the eigenvalues of adja-

cency matrix A(G).

The graph energy E(G) of G is defined as:

E(G) =
N∑
i=1

|λi|

Graph energy is an important criterion in analysis of protein graphs, because it

shows the stability of connections in the graph/network.

Another approach that Wu et al. [15] suggest, is that every amino acid is a graph in

its own right, i.e. it can be represented by a graph, where codons (triples of nucleotide

bases A, C, G and T) serve as nodes, and thus it has its own graph energy. Graph

energy of the 20 proteinogenic amino acids is determined and given in the list below.

Figure 3.7: Graph energy of proteinogenic amino acids

Given a protein sequence S = S1, S2, , SN the graph energy of the protein is defined

as follows:

E(S) =
N∑
i=1

E(Si),

where Si represents the i− th amino acid in the protein sequence S.

We see that the values of graph energy in this method differ from the first one, but
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this alternative approach can have its advantages and it is primarily used with some

other mathematical methods for looking for similarities/dissimilarities of two possibly

the same protein structures [15].

If go back to the first method of computing graph energy, we see that it depends on

the protein length, because adjacency matrix will have N eigenvalues, so E(G) ∝ N .

Therefore, we can use this graph property to do a more detailed analysis of protein

structures we are interested in.

3.6 Label entropy and graph entropy

Entropy defines a quantitative equilibrium property within a system and it implies the

principle of disorder, i.e. it is a measure of disorder of the system [9].

Although graph entropy and label entropy may seem to be similar, there is a significant

difference: Label entropy represents diversity in the node labels (in case of protein

graphs, those are types of amino acids) and the graph entropy is considering node

degree.

Definition 3.21. Label entropy, also known as Shannon information entropy, measures

the uncertainty of labels. Label entropy is given by the formula:

H = −
M∑
i=1

Pi log2(Pi),

where Pi is the fraction of residues of amino acid type i and M is the number of amino

acid types (20 proteinogenic amino acids).

H ranges from 0 (only one residue in present at that position) to 4.322 (all 20 residues

are equally represented in that position).

Technical note: Some sources use natural logarithm instead of log2, which would

yield maximal entropy equal to 2.9957.

In our research, when we plotted label entropy, it was clear that it does not scale with

number of residues (N) (H ∝ N0.0093), so it may be not the best tool for distinguishing

between correct and incorrect protein structures.

On the other hand, for an n-object system, such as graph G, we can define the

graph entropy in the following way:

I(G) =
∑
k

−P (k) log2(P (k)),
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Figure 3.8: Number of residues(N)-Label entropy(H) plot

where P (k) represents the probability that a node of the graph will have a degree

k. It is usually hard to work with these probabilities and some adjustments are nec-

essary for the graph entropy,proteins are so called scale-free networks [5] [9] i.e. the

probabilities in this case follow the so-called power law :

P (k) = Ak−γ,

where γ is an exponent which usually lie in the interval 2 < γ < 3 and A is a

constant that insures P (k) is less than 1.

If we plug in this formula into the previous one, we obtain:

I(G) =
∑
k

−Ak−γ log2(Ak
−γ)

We want to find minimum and maximum entropy for the proteins. Since I(G)

depends on γ and 2 < γ < 3, we will obtain maximum by taking γ = 2 and let k →∞.

Thus, we will get a converging sum

−
∑
k→∞

ln( 1
k2

)

k2 ln(2)
≈ 2, 705

We repeat the process with γ = 3 and obtain:

−
∑
k→∞

ln( 1
k3

)

k3 ln(2)
≈ 0, 857

Note that A is omitted, because it is just a scaling constant. So, 0, 857 < I(G) <

2, 705

Entropy of a graph highly depends on the number of edges, but not so much on the
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number of nodes (protein length).

Therefore, both label entropy and graph entropy can’t be used as a valid proof of

correctness/incorrectness of a certain protein structure.
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3.7 Some additional examples

In the figure below, there are 16 structures, paired up, such that in each pair one

structure is correct and the other one is incorrect.

It was experimentally confirmed that correct structures are: 2phy, 2frh, 3pte, 3b5d,

3enl, 5fd1, 1xya.

Figure 3.9: 2fd1 protein graph

Figure 3.10: 2fd1 protein graph
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If we take one pair, say, 2fd1 and 5fd1, and look at their respective graphs, we can

already see that the correct structure 5fd1 seems better intra-connected, with better

distribution of edges. So, by just visually examining the corresponding protein graphs,

we can intuitively conclude, which structure is the correct one. But, what do values of

graph properties tell us?

In the figure below, we clearly see that the correct structures, when compared to the

incorrect ones, have:

• Larger average node degree

• Larger graph energy

• Smaller average shortest path

• Smaller or equal radius of a graph

Figure 3.11: 8 pairs of correct and incorrect protein structures with their protein graph

properties

Thus, we can say that these properties of protein graphs fully validate experimental

data.
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4 Conclusion

Today, the determination of macromolecular models still requires human interpretation

of experimental data, and we should be aware of the occurrence of incomplete data

during model building and refinement.

On the other hand, analysis of protein graphs does not relay on experimental data (it is

purely theoretical), so it offers an orthogonal approach to interpretation and validation

of protein structures. During our research, we have shown which properties of graph

proteins will yield a clear difference between correct and incorrect structures in most

of the cases. We will be able to recognize correct protein structures, because they will

exhibit:

• Larger average node degree

• Larger graph energy

• Smaller average shortest path

• Smaller or equal radius of a graph,

when compared to the incorrect structures.

Therefore, we can consider property analysis of graph proteins to be an alternative

approach and a helpful research tool in macromolecular modeling.
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5 Povzetek naloge v slovenskem

jeziku

Beljakovine imajo ključno vlogo pri številnih biokemijskih procesih. Poznavanje struk-

ture in funkcije beljakovin je torej ključnega pomena za proučevanje procesov v živih

organizmih. Struktura proteina je zelo kompleksna in jo navadno predstavimo na tirih

nivojih: 1) primarna struktura, kjer opǐsemo zaporedje aminokislin, 2) sekundarna

struktura (alfa vijačnice, beta plošče in zanke), 3) terciarna struktura in 4) kvartarna

struktura. Če želimo natančno analizirati funkcije proteinov je potrebno poznati nji-

hovo 3D strukturo. Najbolj pogosta metoda za določevanje strukture proteinov je

rentgenska praškovna difrakcija. Osnovni koraki pri praškovni difrakciji so kristal-

izacija, izvajanje meritev, oziroma pridobivanje eksperimentalnih podatkov, gradnja

in izbolǰsava modela, ter validacija. Eksperimentalni podatki, ki jih pridobimo tekom

snemanja difrakcijskih slik, vsebujejo napake in niso popolni. Zato je pomembno, da

model validiramo in tako lahko z večjo verjetnostjo potrdimo pravilnost modela.

Da bi bolje analizirali in validirali 3D strukturo proteinov, smo 3D strukturo pro-

teina predstavili v obliki grafa in analizirali značilnosti (premer, drevo najkraǰsih poti,

stopnja grafa, energija grafa, ter druge) tako dobljenih grafov. Graf iz 3D modela

proteina je bil skonstruiran na naslednji način: vsak Cα atom predstavlja vozlǐsče in

e je razdalja med katerima koli Cα atomoma manǰsa ali enaka 7Å, potem naredimo

povezavo med dvema vozlǐsčema.

Pri analizi grafov smo posebno pozornost namenili 3D strukturam proteinov, ki so

bile napačno rešene in kasneje popravljene. Na teh modelih (napačno/pravilno) smo

ugotovili, da imajo grafi pravilno rešenih struktur vǐsjo energijo, kraǰso najkraǰso pot

in vǐsjo stopnjo povezanosti. Intuitivno lahko rečemo, da so pravilno rešeni modeli

bolj robustni, ter da se po grafu pravilno rešenega modela informacije pretakajo bolj

učinkovito. Prav tako je analiza več kot 50000 grafov skonstruiranih iz 3D struktur

proteinov pokazala, da stopnja povezanosti ni odvisna od primarne strukture in je zelo

malo odvisna od velikosti-dolžine proteina.
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Analiza grafov skonstruiranih iz 3D struktur proteinov je tako pokazala, da bi lahko

značilnosti takšnih grafov uporabili kot alternativni, oziroma dodaten validacijski korak

pri reševanju struktur proteinov.
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