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Izvle£ek:

Cilj naloge je posplo²iti ABE metodo za izbiro spremenljivk katero so pred kratkim

predlagali Dunkler et al. Metoda je dostopna samo v programskem jeziku SAS, tako da

je na² cilj bil sprogramirati metodo tudi v programskem jeziku R. ABE metoda izbira

spremenljivke na podlagi zna£ilnosti in na podlagi standardizirane spremembe v oceni

koe�cienta. Pri tem uporablja aproksimacijo za spremembo v oceni koe�cienta namesto

eksaktnega izra£una. Potencialna teºava metode ABE je da spremenljivke izbira na

podlagi njihove zna£ilnosti. Zaradi tega, v nalogi smo predstavili posplo²itve metode

ABE, katere omogo£ajo tudi uporabo informacijskih kriterij, Akaikejev informacijski

kriterij (AIC) ali bayesovski informacijski kriterij (BIC). Pri pripravi R funkcije smo

omogo£ili tudi uporabo eksaktnega izra£una za spremembo v oceni koe�cienta.

V nalogi smo najprej predstavili problem izbire spremenljivk in obstoje£e metode za

izbiro spremenljivk in predstavili znane teºave, ki jih imajo te metode. Glede na to

da je metoda ABE sprogramirana za linearno, logisti£no in Cox regresijo, predstavili

smo posplo²ene linearne regresijske modele in Coxov model. Natan£no smo predstavili

metodo ABE kot tudi njene izbolj²ave. Predstavili smo R paket, oziroma kodo in

opis delovanja funkcije; kaj so argumenti in kaj funkcija izra£una. Na koncu smo s

simulacijami prikazali delovanje predlaganih izbolj²av metode ABE in jih primerjali z

osnovno metodo ABE ter s preostalimi metodami, ki so ºe sprogramirane v R.
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Abstract: In this master's thesis we reviewed the most common variable selection

procedures, their advantages and disadvantages. Among others we presented aug-

mented backward elimination method recently proposed by Dunkler et al. which is a

combination of backward elimination procedure and approximated change-in-estimate

criterion. The method proposed by Dunkler et al. is only available in SAS, so our

aim was to make an R package which will implement their method for several sta-

tistical models. Since this method chooses variables based on their signi�cance and

approximated change-in-estimated, we extended it such that information criteria AIC

and BIC can also be used and that we can choose between approximated and exact

change-in-estimate. Also, extended augmented backward elimination is available for

all generalized linear models, not just for logistic regression. We performed extensive

simulation studies.
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1 Introduction

From the literature concerning model selection you can notice that statisticians are

divided into two groups when it comes to variable selection methods. On one side are

those who believe that variable selection is necessary for model building, while on the

other side are those who consider that using variable selection only makes things worse.

Often variable selection is identi�ed with model selection but variable selection is indeed

a part of it. Even though in this master thesis we will be interested in varibale selection,

�rst we will go through what is considered as a model selection and what the good

model is. Of course, as we could expect, there are many answers to these questions.

The simplest de�nition of model selection would be:�model selection is the task of

selecting a statistical model from a set of candidate models, given data� [23]. The

question now arises, what do we mean by a statistical model and what is a good

model? Statistical models are simple mathematical rules derived from empirical data

describing the association between an outcome and several explanatory variables [6].

A statistical model represents, often in considerably idealized form, the data-generating

process [24]. Herman Ader quoting Kenneth Bollen said: �A model is a formal repre-

sentation of a theory�. One of the most famous statements about statistical modelling

is:�All models are wrong� and it is attributed to the statistician George Box. This

sentence is from his paper published in the Journal of the American Statistical Asso-

ciation in 1976. He repeated this well-known aphorism several times more in a slightly

modi�ed form. In his 1987 book, Empirical Model-Building and Response Surfaces he

says the following:�Remember that all models are wrong; the practical question is how

wrong do they have to be to not be useful�. The second edition of his book Statistics

for Experiments published in 2005 also includes this aphorism:�The most that can be

expected from any model is that it can supply a useful approximation to reality: All

models are wrong; some models are useful�.

As one of the responses to this statement, we will quote the following which is stated

in the Burnham and Anderson book on model selection:�A model is a simpli�cation or

approximation of reality and hence will not re�ect all of reality. . .Box noted that �all

models are wrong, but some are useful.� While a model can never be �truth", a model

might be ranked from very useful, to useful, to somewhat useful to, �nally, essentially

useless.�
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Also the statistician Sir David Cox made the following statement about the aphorism:

�. . . it does not seem helpful just to say that all models are wrong. The very word model

implies simpli�cation and idealization. The idea that complex physical, biological or

sociological systems can be exactly described by a few formulae is patently absurd. The

construction of idealized representations that capture important stable aspects of such

systems is, however, a vital part of general scienti�c analysis and statistical models,

especially substantive ones, do not seem essentially di�erent from other kinds of model�.

Back to the question what is a good model. Of course, in practise it may happen that

sometimes a poor model may give acceptable results, while under other circumstances

it can also happen that good model may fail to give the required answers. Nevertheless,

there should be some criteria and any person with experience in modelling should try

to adhere to them. De�nitely one of the most important characteristics of a good

model is simplicity. Every statistician will agree that among models with roughly

equal predictive or explanatory power, the simplest one is the most desirable.

As we have already mentioned in this master thesis we are interested in variable se-

lection. First of all we will present what are possible approaches when it comes to

variable selection and we will discuss advantages and disadvantages of variable selec-

tion procedures. Recently Dunkler et al. proposed augmented backward elimination,

where a standardized change-in-estimate criterion on the quantity of interest usually

reported and interpreted in a model for variable selection is added to the backward

elimination. We review this, and some other variable selection techniques which are

the most common in medical research. The method proposed by Dunkler et al. is

only available in SAS, our aim was to make an R package which will implement their

method for several statistical models. In chapter three we review some of the statis-

tical models which are the most common in medical research, i.e. linear, logistic and

Cox proportional hazards regression. In chapter four we review in details augmented

backward elimination method; where does the idea for it come from and how change-in-

estimate criterion can be approximated. After that we propose possible generalization

of augmented backward elimination. Namely, since this method chooses variables based

on their signi�cance and approximated change-in-estimated, we extended it such that

information criteria Akaike information criterion (AIC) and Bayesian information cri-

terion (BIC) can also be used and that we can choose between approximated and exact

change-in-estimate. Also, extended augmented backward elimination is available for

all generalized linear models, not just for logistic regression. For the end we present

results of an extensive simulation study used to evaluate di�erent variable selection

techniques for several statistical models. In the simulation study we evaluated the bias

of the regression coe�cients and their mean squared error.
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2 Variable selection

Research in variable selection started in early 1960s and despite the fact that until

now extensive research has been conducted, there is no unique solution that would

completely solve the problem about variable selection. Hocking said: �One reason for

the lack of resolution of the problem is the fact that it has not been well de�ned� [12]. As

he pointed out, there is not a single problem, but several problems for which di�erent

answers might be appropriate.

A brief overview of the content of this chapter follows. First of all we will present

reasons why do we need variable selection techniques; after that we will examine various

proposed solutions to the general problem of variable selection. Also, we will include

a discussion of the importance of various criteria to certain goals. For the end, we will

present problems and issues of di�erent variable selection methods.

Variable selection is used when the analyst has a series of potential explanatory vari-

ables but does not have or does not use the necessary subject matter knowledge to

enable him to choose �important� variables to include in the model. Very often in

biomedical studies it is common to have data where the number of explanatory vari-

ables k greatly exceeds the number of observations n for which these covariates are

available. Therefore the development of methods for variable selection, especially in

these cases was needed. In order to explain the variability of the response as much

as possible, usually we take into consideration as many explanatory variables as we

can. But of course it may happen that the whole set of variables is too large for using

them all in the model. Therefore, sometimes the precision of the �t is improved by the

reduction of the number of explanatory variables. For example, explanatory variables

for which the associated regression coe�cients are not signi�cantly di�erent from zero

may increase the variance of the estimates. Using the entire set of variables may also

bring about numerical di�culties due to multicollinearity, since for large number of

explanatory variables it is more likely that there are at least two highly correlated

variables.

Besides these statistical reasons, there are a variety of practical and also economical

reasons for reducing the number of explanatory variables. In addition it should be

emphasized what are the consequences of incorrect model speci�cation regardless of

whether deleting the relevant variables or either because of retaining irrelevant ones.
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However, the selection of the best subset of the explanatory variables is not trivial

problem �rst of all because the number of subsets to be considered grows rapidly with

the number of explanatory variables.

2.1 Variable Selection Approaches

Many statisticians will agree that although variable selection is very important, at

the same time it is very di�cult and demanding part of data analysis. Burnham and

Anderson say the following:�The so-called variable selection is arguably the most used

and misused application area of model selection� [4]. There are two main approaches

towards variable selection: all possible regressions approach and sequential strategies.

In case we have k explanatory variables, all 2k − 1 possible models are �tted and the

best model is chosen according to some criteria, like information criterion or adjusted

R2. This method is useful when the number of explanatory variables is not so large,

meaning that is feasible to �t all possible models. The R function ′regsubsets()′ in the

library ′leaps′ can be used for regression subset selection.

Sequential methods are useful when the number of explanatory variables is large. In this

case, it is more e�cient to use a search algorithm (e.g., Forward selection, Backward

elimination and Stepwise regression) to �nd the best model. Even though many variable

selection techniques were proposed until now, we will discuss just some of the more

common ones.

One of the most commonly used methods are the oldest approaches to variable selection

based on di�erent sequential tests. Their biggest advantage is the simplicity of choosing

explanatory variables but on the other side their use is not well-justi�ed theoretically.

Among this type of techniques, the most commonly used are forward, backward and

stepwise sequential testing, also known as stepwise methods.

Forward selection starts with a �null model� or with an �intercept only model� and

sequentially adds explanatory variables. At the �rst step it considers all one-variable

models and adds the variable with the best result based on some criterion. The criterion

could be lowest p-value, lowest AIC, highest R2, lowest Mallow's Cp, etc. We repeat

this process, always adding one variable at a time, until the criterion is not met.

Backward selection starts with a full model and sequentially removes non-signi�cant

explanatory variables, one variable at a time.

Stepwise sequential testing represents a combination of forward and backward proce-

dure, that is, it alternates between adding and removing variables. Stepwise regression

term was introduced by Efroymson in 1960 in the context of linear models. This se-

lection algorithm involves the inclusion of a single variable to the model or removal of

a single variable from the model in order to improve its quality. The criterion used to
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select the Xi variable to add or remove from the regression is as follows:

1 If the variance contribution of a variable in the regression is insigni�cant at a

speci�ed F level, the variable is removed from the regression.

If no variable is to be removed, then the following criterion is used.

2 If the variance reduction obtained by adding the variable to the regression is

signi�cant at a speci�ed level F , this variable is entered into the regression.

R function for stepwise model selection is called �step�. It can do forward or backward

selection, or both, and the user can specify the smallest model to consider (so those

variables are always included). It can, however, only use AIC or BIC as the selection

criteria.

Even though variable selection techniques have been widely investigated in the litera-

ture, one has to be aware of the weak points of the available techniques. For instance,

the stepwise techniques do not necessarily give the best subset of variables. Further-

more, these procedures induce a ranking on the explanatory variables which is often

misused in practice. The order of inclusion or removal of variable can be misleading. It

may, for example, happen that the �rst variable entered in forward selection becomes

unnecessary in the presence of other variables. Also, it is possible that forward and

backward procedures give the totally di�erent best subset of variables.

As we have already mentioned, stepwise methods have no �rm justi�cation in statistical

theory, but that is not their only disadvantage. These methods will never consider all

possible subsets of variables so obviously there is a big chance that they will miss a

good or maybe the best subset.

Another variable selection method widely used and at the same time very criticized by

many statisticians is the so called screening, pretesting or bivariate analysis. Screening

is a method that usually uses t-test for each explanatory variable in order to decide

which are signi�cant and to remove variables from model that are not signi�cant.

This method ignores the possibility that variables may be correlated, and therefore it

can exclude important variable given that the signi�cance of a explanatory variables

depends on which other variables are in the model.

All decisions in previously mentioned methods are based on signi�cance test but the

crucial thing is that classical testing and variable selection process do not always deal

with the same questions. Whichever method we choose for variable selection, we can

not expect that it will work perfectly.

Nowadays, there is enormous amount of data from medicine, social science, �nance,

geography, geophysics, genetics, and engineering. Of course, there are variable selection

techniques that are not theoretically enough justi�ed. Also, there are so many examples

in practice with misapplication of variable selection methods. It is crucial to understand
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that principle �measure everything that is easy to measure and let the computer sort

it out� simply does not work.

Even though variable selection is very important for many researchers in areas of ap-

plications for which datasets of huge number of variables are available. Some of these

areas are biostatistics analysis, text processing of internet documents, etc. The aim of

variable selection is three-fold. Namely, the objective is

1) to improve prediction performance of the explanatory variables

2) to evaluate an explanatory variable of primary interest

3) to identify the important explanatory variables of an outcome.

One of the essential things when choosing the best subset of variables is to know what

we are doing. The same �rules� are not applicable for di�erent aims. There is a big

di�erence between for example selecting a best model in order to �nd the relationships

between explanatory variables and the response variable, and prediction on the other

side. This means we should be careful while dropping variables. For �rst situation

we will drop exactly those variables that can not reasonably be causally related with

response variable, while for the second situation we will exclude variables that can not

reasonably be related to outcome for prediction. But that is not all. What we often

forget is that things like sample size and subject-matter knowledge must be taken into

consideration. Before choosing any variable selection technique, we should �rst think

of possible limitation because of the sample size and how to use prior knowledge if

there is any.

Many statisticians warn that it is not correct and that we can not rely on the results

obtained by using automatic packages that pick a model and then use for example

least squares to estimate regression coe�cients using the same data. In this regard we

quote Miller (2002): �Many statisticians and other scientists have long been aware that

the so-called signi�cance levels reported by subset selection packages are totally without

foundation, but far fewer are aware of the substantial biases in the (least squares or

other) regression coe�cients� [15].

He also believes that variable selection is an �unclean� and �distasteful� area of statistics

which can best be described using terms such as ��shing expeditions�, �torturing the

data until they confess�, �data mining�, and others.

Despite all the negative sides of variable selection and the fact that there is very little

theory to handle this very common problem, in many situations it is unavoidable to

use some of its techniques.

Maybe the problem of variable selection sounds like not so hard problem but let us

look what are possible di�culties in the simple case of linear regression. The main
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idea in problem of �nding a subset of variables whose model �ts a data set fairly

well in the least-squares sense is the following. For a given set of n observations with

k variables, denote observations of variables Xj with xi,j for i = 1, . . . , n, and j =

1, . . . , k. The least squares estimates for the coe�cients β0, β1, . . . , βk denote with

β̂0, β̂1, . . . , β̂k. Given a set of variables X1, . . . , Xk, our aim is to �nd a subset of

p (p < k) variables for which the sum

S =
n∑
i=1

(
yi −

(
β̂0 +

p∑
j=1

β̂jxi,j

))2

is minimized or it has enough small value.

Besides common problems with variable selection techniques, additional di�culties

occur since very often it happens that there are some constraints regarding the min-

imization of S. For example, maybe we want one or more variables to be in selected

subset. Another possibility is that maybe one variable may only be included in a se-

lected subset if another variable(s) is also included. Also it does not make sense to

include a transformation of some variable if that variable is not included in the subset.

Particular topic is about dummy variables which represent categorical variables. If

among our variables there is one which can be represented by more than two dummy

variables in such cases, it is often required that either all or none of the dummy variables

should be in the model.

Nowadays, some models have their own built-in feature selection methods. Some of the

most popular examples of these methods are LASSO and RIDGE regression which have

inbuilt penalization functions to reduce over�tting [19]. Other examples of embedded

methods are Regularized trees, Memetic algorithm, Random multinomial logit [25], [5].

2.2 Disadvantages of Variable Selection

Whoever was reading about variable selection he could not help but notice criticism

related to it by statistician Frank Harrell. In his book Regression modelling strate-

gies, Harrell points on problems that stepwise variable selection brings [10]. Here is a

summary of those problems.

1. �It yields R2 values that have a high bias.

2. The ordinary F and χ2 test statistics do not have the claimed distribution. Vari-

able selection is based on methods (e.g., F tests for nested models) that were

intended to be used to test only prespeci�ed hypotheses.
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3. The method yields standard errors of regression coe�cient estimates that have a

low bias and con�dence intervals for e�ects and predicted values that are falsely

narrow.

4. It yields P -values that are too small (i.e., there are severe multiple comparison

problems) and that do not have the proper meaning, and the proper correction

for them is a very di�cult problem.

5. It provides regression coe�cients that have a high bias in absolute value and

need shrinkage. Even if only a single predictor was being analysed and one only

reported the regression coe�cient for that predictor if its association with Y was

�statistically signi�cant", the estimate of the regression coe�cient β is biased

(too large in absolute value). To put this in symbols for the case where we obtain

a positive association (β̂ > 0), E(β̂|P < 0.05, β̂ > 0) > β.

6. Rather than solving problems caused by collinearity, variable selection is made

arbitrary by collinearity.

7. It allows us to not think about the problem.�

Harrell also emphasizes observations made by Derksen and Keselman. By studying

stepwise variable selection, backward elimination, and forward selection they concluded

the following:

1. �The degree of correlation between the predictor variables a�ected the frequency

with which authentic predictor variables found their way into the �nal model.

2. The number of candidate predictor variables a�ected the number of noise vari-

ables that gained entry to the model.

3. The size of the sample was of little practical importance in determining the

number of authentic variables contained in the �nal model.

4. The population multiple coe�cient of determination could be faithfully estimated

by adopting a statistic that is adjusted by the total number of candidate predictor

variables rather than the number of variables in the �nal model.�

2.3 Five Myths About Variable Selection

Dunkler and Heinze in their article Five myths about variable selection, discuss what

are the problems related with variable selection and how some misunderstandings of

crucial concepts can be misleading for it [11]. They consider the following issues:
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1) The number of the variables in a model should be reduced until there are 10 events

per variables.

Result about the minimum number of events per variable which was derived

from the simulation studies refers to a priori �xed models which are not the

consequence of the variable selection. We need to bear in mind that variable

selection introduce some additional insecurity in parameter estimation so in order

to get reliable results we need to have much more events per variable. Based on

the above mentioned result it is enough to have 5-15 events, but if we use some

variable selection technique then we need at least 50 events per variable.

2) Only variables with proven univariable model signi�cance should be included in a

model.

Univariable pre�ltering or bivariable analysis cannot properly control for possible

confounding. Using this method will not add stability to the selection process,

moreover it will introduce a source of signi�cant error thus as a consequence we

can include or reject inappropriate variables.

3) Insigni�cant e�ects should be eliminated from a model.

In general, the values of the regression coe�cients depend on which other vari-

ables are omitted, that is which variables are in the model. So, one of the possible

situations is the following. In case we would eliminate a confounder that would

lead to a change of the coe�cient of another variable, moving it close to zero. In

other words, that variable would change from signi�cant to insigni�cant meaning

that on the following step we would eliminate it even though it was important

predictor.

4) The reported P-value quanti�es the type I error of a variable being falsely selected.

We should always bear in mind that standard software report p-values from the

last model, forgetting the previous steps of variable selection, so this p-values are

misleading. Therefore, p-value does not quantify the type I error of a variable

being falsely selected. Besides, p-value does not quantify the type I error at all.

5) Variable selection simpli�es analysis.

Variable selection is quite a demanding process. First of all we have to choose

which variable selection technique we will use. After that to choose the values

for selection parameters, for example the signi�cance level at which we will in-

clude the variable in a model. For the end the variable selection should always

be followed by sensitivity analysis on model stability in order to avoid wrong

conclusions.
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3 Generalized Linear Model and

Cox Model

In this chapter we will present two types of statistical models of great importance

for which Augmented Backward Elimination has been implemented. Namely, we will

present Generalized Linear Model as a generalization of ordinary linear regression and

Cox proportional hazards model, sometimes abbreviated to Cox model as a class of

survival models.

3.1 Generalized Liner Model

In statistics very often there are many similar terms with di�erent meanings. This

is exactly the case with generalized linear models. In order not to be confused with

general linear models, �rst of all we will go through de�nitions of both general and

generalized linear models, even though in this section our attention will be focused on

generalized linear models.

In statistics term linear model is most commonly used as a synonym for linear regression

model.

The general linear model is a statistical linear model which may be written as

Y = XB + U,

where Y is a matrix with series of multivariate measurements, X is a matrix that

might be a design matrix, B is a matrix containing parameters that are usually to be

estimated and U is a matrix containing errors or noise [21].

The general linear model includes di�erent statistical models, like: ANOVA, ANCOVA,

MANOVA, MANCOVA, F-test, t-test and also ordinary linear regression. Furthermore,

it represents a generalization of multiple linear regression model to the case of more

than one response variable.

In case the errors from general linear model do not follow a multivariate normal distri-

bution, we use generalized linear model.

The basic model for linear regression is

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik + εi.
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In the case Yi ∼ N(µi, σ
2), models of this form are basis of most analyses of continuous

data. In the following, more general situations when response variables have distribu-

tions other than the normal distribution and in the case when the relationship between

response variable and explanatory variables need not to be of the simple linear form,

generalized linear model allows us to use methods analogous to those developed for

linear model.

GLM represents a natural generalization of classical linear model. In GLM each out-

come Y of the dependent variables is assumed to be generated from a particular dis-

tribution in the exponential family.

A single-parameter exponential family is a set of probability distributions whose prob-

ability density function (or probability mass function, for the case of a discrete distri-

bution) can be expressed in the form

fX(x | θ) = h(x) exp(η(θ)T (x)− A(θ))

where h(x), η(θ), T (x) and A(θ) are known functions.

An alternative, equivalent form often given is

fX(x | θ) = h(x)g(θ) exp (η(θ)T (x))

The value θ is called the parameter of the family [20].

Equivalently, the distribution belongs to the exponential family if it can be written in

the form

fX(x | θ) = exp [a(x)b(θ) + c(θ) + d(x)] .

If a(x) = x, the distribution is said to be in canonical form.

Generalized linear model has three components:

1. Response variables Y1, · · · , Yn, which are assumed to share the same distribution

from the exponential family.

2. A set of parameters β,

β =


β1

...

βk


and explanatory variables


XT

1
...

XT
n

 =


x11 · · · x1k

...
...

xn1 xnk


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3. A monotone link function g such that

g(µi) = xTi β

where µi = E(Yi).

Link function represents the relationship between the linear predictor and the mean

of the distribution function. In the initial formulation of generalized linear models by

Nelder and Wedderburn (1972) link function is a simple mathematical function.

Response variables in GLM have distribution di�erent from the Normal distribution so

they may not range from −∞ to +∞. That is why we need the link function, because

it links the expected value of the response variable Yi to the linear term xTi β in such

a way that the range of non-linearly transformed mean g(E[Yi]) ranges from −∞ to

+∞. Function g must be smooth and invertible.

One of the advantages of using generalized linear models is the use of nice properties of

the normal distribution shared by a wider class of distributions called the exponential

family of distributions.

3.1.1 Estimation method for Generalized Linear Model

Typical estimation methods for generalized linear model are maximum likelihood esti-

mation and Bayesian approach.

Bayesian methods involve using Laplace approximations or some type of Markov chain

Monte Carlo method such as Gibbs sampling for approximation of the posterior distri-

bution, since it can not be found in closed form. Here, we will go through maximum

likelihood approach.

Scoring algorithm is a form of Newton's method used in statistics to �nd the maximum

likelihood estimators numerically. Let us recall the Newton-Raphson approximation

for numerical solving f(x) = 0.We start with an initial value and use the fact that the

tangent line to a curve is a good approximation to the curve near the point of tangency.

The slope of f at a value xn is given by

f
′
(xn) =

f(xn+1)− f(xn)

xn+1 − xn
.

If xn+1 is the required solution such that f(xn+1) is zero, solving for xn+1 gives

xn+1 = xn −
f(xn)

f ′(xn)
.

We repeat this until the process converges.

In order to maximize the log likelihood function we require its derivative with respect
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to θ to be equal to zero. Or in other words we are looking for the solution of the

equation S(θ) = 0 where S is a score function. The estimating equation is

θn+1 = θn −
Sn
S ′n

Given that the response variables Y1, · · · , YN have the distribution belonging to the

exponential family we can write their joint probability density function as

f(Y1, · · · , YN |θ) =
N∏
i=1

exp [yib(θi) + c(θi) + d(yi)]

= exp

[
N∑
i=1

yib(θi) +
N∑
i=1

c(θi) +
N∑
i=1

d(yi)

]
.

The log likelihood function is

l =
N∑
i=1

yib(θi) +
N∑
i=1

c(θi) +
N∑
i=1

d(yi).

We want to estimate parameters β which are related to the response variables Yi
through their expected values E[Yi] = µi and ηi = g(µi) = xTi β. Note, it can be shown

that

E(Yi) = −c
′(θi)

b′(θi)

and

var(Yi) =
b′′(θi)c

′(θi)− c′′(θi)b′(θi)
(b′(θi))3

.

Denote with li the log-likelihood function for each Yi, i.e.

li = yib(θi) + c(θi) + d(yi).

Therefore,

Sj =
∂l

∂βj
=

N∑
i=1

∂li
∂βj

=
N∑
i=1

∂li
∂θi

∂θi
∂µi

∂µi
∂βj

.

For better clearness, we will consider each term from the last expression separately.

So, we have the following

∂li
∂θi

= yib
′(θi) + c′(θi) = b′(θi)(yi − µi),

since µi = − c′(θi)
b′(θi)

.

On the other hand,
∂θi
∂µi

=
1
∂µi
∂θi

.
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Calculating
∂µi
∂θi

we get

∂µi
∂θi

= −c
′′(θi)

b′(θi)
+
c′(θi)b

′′(θi)

b′(θi)2
= b′(θi)var(Yi).

For the last term we get
∂µi
∂βj

=
∂µi
∂ηi
· ∂ηi
∂βj

=
∂µi
∂ηi

xij.

Therefore,

∂li
∂βj

=
(yi − µi)
var(Yi)

xij

(
∂µi
∂ηi

)
and Sj =

N∑
i=1

[
(yi − µi)
var(Yi)

xij

(
∂µi
∂ηi

)]
.

For maximum likelihood estimation, it is common to approximate S ′n by its expected

values. In this way, we exactly obtain an information matrix. Given that Fisher

information matrix as elements has[
I (θ)

]
i,j

= E

[(
∂

∂θi
log f(X; θ)

)(
∂

∂θj
log f(X; θ)

)∣∣∣∣ θ]
in our case elements of the information matrix are terms Ijk = E[SjSk]. Hence, the

term Ijk is

Ijk = E

{
N∑
i=1

[
(yi − µi)
var(Yi)

xij

(
∂µi
∂ηi

)] N∑
l=1

[
(yl − µl)
var(Yl)

xlk

(
∂µl
∂ηl

)]}

=
N∑
i=1

E[(Yi − µi)2]xijxik
[var(Yi)]2

(∂µi
∂ηi

)2

=
N∑
i=1

xijxik
[var(Yi)]

(∂µi
∂ηi

)2

.

Note, from the last expression, information matrix can be written as

I = XTV X

where V is the N ×N diagonal matrix with elements

vii =
1

var(Yi)

(∂µi
∂ηi

)2

.

Finally, our estimating equation has the following form

bn+1 = bn +
[
In
]−1

Sn

where bn+1 is the vector of the estimates of the parameters β1, · · · βp at the (n + 1)st

iteration and
[
In
]−1 is the inverse of the information matrix. Multiplying both sides

of the last expression by In we obtain

Inbn+1 = Inbn + Sn.
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The right-hand side of the equation represents the vector with elements

p∑
k=1

N∑
i=1

xijxik
var(Yi)

(∂µi
∂ηi

)2

bnk +
N∑
i=1

(yi − µi)
var(Yi)

xij

(
∂µi
∂ηi

)
.

Introducing a new variable z where

zi =

p∑
k=1

xikbnk + (yi − µi)
(∂ηi
∂µi

)
the right-hand side can be written as XTV z.

After this, estimating equation multiplied by In can be written as

XTV Xbn+1 = XTV z.

We see that in general, V and z depend on b, so the estimating equation must be solved

iteratively. Hence, for generalized linear models, maximum likelihood estimators are

obtained by an iterative weighted least squares procedure.

3.1.2 Examples

Some of the most commonly used distributions belonging to the exponential family are:

normal, exponential, gamma, chi-squared, Bernoulli, categorical, Poisson, beta, Dirich-

let, Wishart and inverse Wishart. For these distributions a generalized linear model

approach can be used to �t response with one of those distributions to explanatory

variables.

Below is a table of several exponential-family distributions in common use along with

the link functions.

Table 1: Examples of exponential family distributions

Distribution Support of distribution Link name Link function

Normal (−∞,∞) Identity Xβ = µ

Exponential

Gamma
(0,+∞) Inverse Xβ = µ−1

Poisson integer: 0, 1, 2, . . . Log Xβ = ln (µ)

Binomial integer: 0, 1, . . . , N Logit Xβ = ln
(

µ
1−µ

)
Inverse Gaussian real: (0,+∞) Inverse squared Xβ = µ−2
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Given that Augmented Backward Elimination method has been implemented in a SAS

macro for logistic regression and given that this type of generalized linear model is one

of the most commonly used, we will present it in more detail.

Logistic regression is a type of regression model where the response variable is categor-

ical. Thus, when we want to explain how a set of explanatory variables X is related to

a categorical response variable Y, we can use logistic regression. Some of the examples

where logistic regression can be very useful are many problems from medical research.

It is appropriate for models involving the presence or absence of a particular disease,

risk factors, drug use, death during surgery and similar. Logistic regression can be

binomial, ordinal or multinomial. Typically, it is used for estimating the probability of

a binary response based on one or more explanatory variables. Usually, the response

Y is de�ned to be Y = 0 and Y = 1, where Y = 1 denotes the occurrence of the event

of interest.

Using ordinary linear regression, we could try to model categorical response as a linear

function of our explanatory variables, which means we would have common scenario

where:

E(Y |X) = Xβ,

interpreting E(Y |X) as P (Y = 1). Linear model E(Y |X) allows that P (Y = 1) is

outside the interval [0, 1]. That is why we need some other approach.

In order to introduce logistic regression as a special case of the generalized linear model,

�rst we will de�ne logistic function, i.e. logistic curve. A logistic function or logistic

curve is a common �S� shape, with equation:

f(t) =
L

1 + e−k(t−t0)
,

where

e = the natural logarithm base,

t0 = the t-value of the sigmoid's midpoint,

L = the curve's maximum value, and

k = the steepness of the curve [22].

The standard logistic function is the logistic function with parameters (k = 1, t0 =

0, L = 1) which yields

f(t) =
1

1 + e−t
.
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We have started with the logistic function since it is useful because it can take any

real input t, (t ∈ R), whereas the output always takes values between zero and one and

hence is interpretable as a probability. In the following �gure it is shown the graph of

the standard logistic function on the t−interval (−6, 6).

Figure 1: Logistic curve

If t represents a linear combination of multiple explanatory variables, t = β0 + β1x1 + · · · βkxk,
logistic function can be expressed as:

µ =
1

1 + e−(β0+β1x1+···+βkxk)
.

The inverse of logistic function g allows the expression to be written as a linear model

structure,

g(µ) = ln

(
µ

1− µ

)
= β0 + β1x1 + · · ·+ βkxk,

and equivalently, after exponentiating both sides:

µ

1− µ
= eβ0+β1x1+···+βkxk .

In comparison with logistic model the major advantage of the linear model is its inter-

pretability. In any of these cases it is not so intuitive to interpret coe�cients of logistic

regression, whether we are using log odds scale or odds ratios after exponentiating.

Literally, the parameter βi is then the change in the log odds per unit change in Xi if

Xi represents a single factor that is linear and does not interact with other factors and

if all other factors are held constant [10].
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3.1.3 Generalized Linear Model in R

The R language includes a built-in function glm to �t Generalized Linear Models. Its

main argument is the speci�cation of a model given as a formula object. After the

�tting procedure, glm returns parameters estimates together with a range of other

indicators. Sometimes, as we have already mentioned, for di�erent reasons we would

like to drop some terms from the full �tted model. Several R packages have been

created in the past years for automated variable selection. Most of them are used for

variable selection in multiple regression. On the other hand, for variable selection in

generalized linear models we do not have so many possibilities if we are using R.

One of the possible solutions for performing variable selection is the R function step().

This function is automatic method which uses a stepwise procedure based on AIC.

Thus, all disadvantages of stepwise procedures hold also for step function. Using it

we can perform forward, backward and stepwise elimination for all type of generalized

linear models.

Second possibility is to use glmpath package. This package contains a path-following

algorithm for L1 regularized generalized linear models, proposed by Park and Hastie

[17]. In GLM response variable Y is modelled by using a linear combination of ex-

planatory variables, x
′
β, where x represents explanatory variables and β coe�cients to

be estimated. Using likelihood function L, we estimate coe�cient β using

β̂ = argmax
β

lnL(y; β).

GLM path algorithm uses this criterion but modi�ed by adding a penalty term

β̂(λ) = argmin
β
{− lnL(y; β) + λ ‖ β ‖1},

where λ > 0 is the regularization parameter. In comparison with forward stepwise

selection, GLM path algorithm is less greedy.

3.2 Cox Model

Survival analysis is used to analyse the data where the response variable is the time until

the occurrence of an event of interest. The event is often referred to as a failure time,

survival time or event time. First logical or intuitive question to ask ourselves would

be whether we can use linear regression to model the survival time as a function of a

set of explanatory variables. Given that survival times are typically positive numbers,

ordinary linear regression is not the best choice, except these times are not transformed

such that this restriction is removed. But more importantly, ordinary linear regression

cannot e�ectively handle the censoring of observations.
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Censoring is present when the information about the survival time is incomplete and

represents a particular type of missing data. This lack of information occurs when

a variable can be measured accurately only within a speci�c range. Outside of that

domain, the only information available is that it is greater or smaller than some given

value or that it lies between two values. As a consequence of this we have three main

types of censoring: right, left and interval.

Two main notions for describing the distribution of event times in survival analysis are

the survival and hazard function.

The survival function is de�ned as

S(t) = P (T > t),

where t represents some time and T is a random variable that represents survival time.

Thus, it is the probability of surviving or not experiencing the event up to the time t.

The hazard function is de�ned as the event rate at time t conditional on survival until

time t or later (that is, T ≥ t). Usually it is denoted as λ(t) and it is equal to:

λ(t) = lim
∆t→0

P (t < T ≤ t+ ∆t | T > t)

∆t
.

The hazard function is not a density or a probability, but we can interpret it as a

measure of risk, the greater the hazard between the two times - the greater the risk of

failure in this time interval. The hazard function gives the potential that the event will

occur, per time unit, given that an individual has survived up to the speci�ed time.

It is generally of interest to describe the relationship of a set of explanatory variables

with the survival time. A number of methods are available for this and they include

parametric, nonparametric and semiparametric approaches. The most frequently used

regression model for survival analysis is Cox's proportional hazards model.

The Cox regression model is a semiparametric model. It assumes the nonlinear relation-

ship between the hazard function and the set of explanatory variables. The assumption

that explanatory variables do not vary over time is called the proportional hazards as-

sumption and in that case the hazard ratio comparing any two observations is in fact

constant over time.

The Cox Proportional Hazard Model is most often stated in terms of the hazard func-

tion:

λ(t | X) = λ(t)exp(Xβ).

It is a semiparametric model, meaning that it makes a parametric assumption con-

cerning the e�ect of the explanatory variables on the hazard function, but without

assumption regarding the nature of the hazard function. Thus, we do not assume any

speci�c shape for λ(t), the baseline hazard function. Regardless of this, for estimating
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and testing regression coe�cients, the Cox model is as e�cient as parametric models.

Note that λ(t | X = 0) = λ(t). The only requirement for the baseline hazard function

it to be greater then 0, apart from that it is left completely unspeci�ed. Thus, we

can not use ordinary likelihood methods to estimate unknown coe�cient β. Cox (1972)

described in his paper the method for estimation using conditional likelihood and later

in 1975 he modi�ed it and called it partial likelihood. Intuitively described, partial

likelihood estimation procedure for Cox model is the following.

The �rst assumption is that there are no tied failure times, that is no two subjects have

the same event time. Further, denote with Ri the risk set. Ri is the set of individuals

at risk of failing an instant before failure time ti, which means that their failure or

censoring time is Yj ≥ ti. Conditional probability that individual i will fail at moment

ti given a risk set and that exactly one failure will occur at ti, is

λ(ti)exp(Xiβ)∑
j∈Ri

λ(ti)exp(Xjβ)
=

exp(Xiβ)∑
j∈Ri

exp(Xjβ)
.

For independent subject events - failures, the joint probability is partial likelihood:

L(β) =
∏
i

exp(Xiβ)∑
j∈Ri

exp(Xjβ)
.

The log partial likelihood is

logL(β) =
∑
i

{
Xiβ − log

[∑
j∈Ri

exp(Xjβ)
]}

.

Cox and others have shown that using this partial log likelihood valid maximum like-

lihood estimates can be derived. This function can be maximized over β using the

Newton-Raphson algorithm to produce maximum partial likelihood estimates of the

model parameters. Without assumption of non tied failure times calculating the true

partial log likelihood can be time consuming. Some of the approaches for that situation

are Breslow's method and Efron's approach [8], [1]. The Cox PH regression model is

�t in R with the coxph function available through survival package [18].
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4 Augmented Backward

Elimination

Augmented backward elimination is a method for variable selection proposed by Dun-

kler et al [6]. It is a combination of signi�cance and change-in-estimate criterion. Since

we will follow their article the remainder of this chapter will cover brief discuss about

the change-in-estimate criterion and selection by signi�cance. We will present approx-

imated change-in-estimate criterion proposed by Dunkler et al. After that we will

present the ABE method.

4.1 The Change-In-Estimate Criterion

In statistics, a confounding variable or confounder is de�ned as a variable that explains

some or all of the correlation between the response variable and an explanatory variable.

A confounder is correlated to the response variable and to the explanatory variable at

the same time. There are many strategies to identify confounders, for example, forward,

backward, and stepwise variable selection. Among these strategies, simulation studies

have shown that the best is the change-in-estimate criterion [14]. Using change-in-

estimate we can easily identify confounders in the following way: we just have to

check whether the removal of the covariate has produced an important change in the

coe�cients of the variables remaining in the model. That is, we have to re�t the model

and to check for relative or absolute changes in the coe�cients. When using the change-

in-estimate criterion, a cuto� of 10% is commonly used to identify confounders [2]. Lee

in his paper from 2014 emphasizes that there are very few studies of the statistical

properties of the change-in-estimate criterion [14]. Thus, the suitability of the cuto� of

10% should be also veri�ed under di�erent conditions. Using simulations he showed the

following. In linear regression, larger e�ect size, larger sample size, and lower standard

deviation of the error term led to a lower cuto� point at a 5% signi�cance level. In

contrast, larger e�ect size and a lower exposure-confounder correlation led to a lower

cuto� point at 80% power. In logistic regression, a lower odds ratio and larger sample

size led to a lower cuto� point at a 5% signi�cance level, while a lower odds ratio, larger

sample size, and lower exposure-confounder correlation yielded a lower cuto� point at
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80% power [14].

Instead of re�tting the model, Dunkler et al. suggest to use approximated change-in-

estimate. They denote by δ−ap the change in estimate, that is, the change in a regression

coe�cient βp if we remove a variable Xa from a model. With index a active variable is

denoted and with index p passive variable (p 6= a). Approximated change-in-estimate

is de�ned as

δ̂−ap = − β̂aσ̂pa
σ̂2
a

.

This approximation is motivated by considering estimates β̂a and β̂p as random vari-

ables with variances σ̂2
a and σ̂

2
p and covariance σ̂pa.

It can be shown that using approximated change-in-estimate and signi�cance-based

threshold for it, is equivalent to using a signi�cance-based selection of variables, as if

the change-in-estimate criterion is not considered at all. The variance of δ̂−ap is given

by

V ar(δ̂−ap ) =

(
σ̂pa
σ̂2
a

)2

V ar(β̂a) =
σ̂2
pa

σ̂2
a

.

Z-statistic for testing δ̂−ap = 0 is given by

z =
δ̂−ap

SE(δ̂−ap )
= − β̂a

σ̂a
.

We see that this z-statistics is equivalent to z-statistic for testing βa = 0.

Instead of using a signi�cance-based threshold for the change-in-estimate, usually some

pre-speci�ed minimum value of δ̂−ap or δ̂−ap /β̂p is used as a threshold for leaving Xa in

a model. Given that this formula is not appropriate in cases where β̂p is close to zero,

Dunkler et al. propose the following criterion

|δ̂−ap |SD(Xp)

SD(Y )
,

where SD(Xp) and SD(Y ) are standard deviations of the passive explanatory variable

Xp and the response variable Y , respectively. This criterion is used for linear regression.

For some threshold value τ , active variable Xa is left in a model if

|δ̂−ap |SD(Xp)

SD(Y )
≥ τ.

For logistic and Cox regression they propose the following standardized criterion

exp
[
|δ̂−ap |SD(Xp)

]
≥ 1 + τ.

Using this, we can achieve the scale-independence and at the same time we avoid

problematic situations where β̂p is close to 0.
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One of the advantages of this approximation is that evaluation of the change-in-estimate

is notably faster, since instead of re�tting the model after some variable is removed, the

only thing we have to do is to calculate the approximation using given formula. Besides

that, we can easily check for the signi�cance of the change-in-estimate. Perhaps, the

most important reason for including this change-in-estimate in variable selection is to

avoid selecting variables just based on its signi�cance.

4.2 Variable selection based on signi�cance

Numerous variable selection methods are partially or fully based on signi�cance. Since

we have already presented some of the most commonly used techniques for variable

selection and problems related to them, we will just emphasize which among those are

fully relying on signi�cance.

Primarily, all stepwise selection methods are included in this group. The most fre-

quently used among them is backward selection. Another method based on signi�cance

test that is very criticized by many statisticians is univariate screening. Even though,

there are some methods for variable selection, suggesting that the �rst step in selection

process should be univariate screening [13]. Using just signi�cance as a criterion for

including or excluding a variable from a model is not the best choice. Considering

change-in-estimate in addition to signi�cance is exactly the advantage of augmented

backward elimination, since in some way that is a safety belt for insigni�cant variables.

It is very common to use p-values from Wald test statistic,

β̂i

ŜE(β̂i)
,

to select variables in the following way: variables with larger test statistic (hence with

smaller p-values) are included in a model. This brings up the next question: what is

that makes the test statistic larger or smaller?

The Wald test statistic
β̂i

ŜE(β̂i)
can be written as

β̂i
σ̂√

n ˆvar(Xi)

√
V IFi

,

where V IFi is the variance in�ation factor for β̂i. From this we can see that we can

make any variable signi�cant or insigni�cant by making its test statistic enough large

or small, which can be done by reducing or increasing certain parameters from the

expression while the others are not changing. For example, for larger coe�cients, test

statistic is larger, thus variables will be more signi�cant; by increasing the sample size
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every variable will become more signi�cant; by increasing the variance in an explanatory

variable we increase also the test statistic so that variable will become more signi�cant,

etc.

Despite that methods based only on signi�cance have many disadvantages it seems

that they are still used quite a lot.

4.3 Purposeful Selection Algorithm

The method proposed by Dunkler et al. is based on �purposeful selection algorithm�

proposed by Hosmer and Lemeshow. In their book Applied Survival Analysis, they say

the following:

�We feel that one should approach multivariable model building with patience and a

keen eye for the details that di�erentiate a good model from one that is merely adequate

for the job� [13].

Their method for variable selection consists of the following seven steps:

1) We start with univariable analysis in order to get all variables that are signi�cant

at 20-25 percent level. Those variables as well as the others that are not signi�cant

but are of clinical importance represent subset of variables that will be included

in the model.

2) After this we use the p-values from the Wald test to check if some variables can be

deleted from the initial model. At the same time we should be careful and using

p-values of the partial likelihood ratio test we should con�rm that the deleted

variable is not signi�cant.

3) The next step you need to perform is checking whether removal of some variable

has caused an important change in the coe�cients of variables remaining in the

model.

4) At this step, we add to the model, one at the time, all variables excluded from the

initial multivariable model to con�rm that they are neither statistically signi�cant

nor an important confounder.

5) Authors presented this method �rst of all for proportional hazards regression,

but as they emphasized the methods available for selecting the best subset of

variables for PH regression are essentially the same as those used in any other

regression model.

So, at this point we check whether the data support the hypothesis that the e�ect

of the covariate is linear in the log hazard and, if not, what transformation of the

covariate is linear in the log hazard.
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6) The �nal step is used for checking if interactions are needed in the model.

7) Evaluation of model obtained at step 6.

4.4 Augmented Backward Elimination Procedure

Augmented backward elimination (ABE) proposed by Dunkler et al. is a combina-

tion of backward elimination procedure and change-in-estimate criterion. The ABE

method is implemented in a SAS macro and it is available for linear, logistic and Cox

proportional hazards regression. More about this algorithm can be found in a Tech-

nical Report [7]. Brief outline of the augmented backward elimination algorithm is

presented in the following �gure. Authors of the ABE method take into consideration

Figure 2: ABE method [6]

that di�erent explanatory variables play di�erent roles in the model, emphasizing that

that could have important in�uence on variable selection process . Thus, based on

subject-matter knowledge, one should identify the roles of explanatory variables before

variable selection. For purposes of augmented backward elimination they have de�ned

three types of variables. Namely, only passive, only active and passive or active.

Only passive explanatory variables represent type of explanatory variables we

want to have in the model regardless of whether they are statistically signi�cant

or not, for example. One of the reasons for keeping it in the model, is that maybe

it is a variable of interest, or just based on subject-matter knowledge.
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Only active explanatory variables represent less important explanatory variables

which will be included in the model only if their exclusion causes changes in the

estimates of more important explanatory variables. Such variables are not used

for evaluating the change-in-estimate.

Passive or active explanatory variables represent type of variables considered as

passive as well as active variables when evaluating change-in-estimate.

Since our aim is to write a R package for the ABE method, we will use the same

de�nitions for three types of variables mentioned above. So, highly recommended and

somehow necessary is to use a priori information in order to de�ne initial working set

of variables in the best possible way.
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5 Generalization of ABE method

In this chapter we will present possible generalization of Augmented Backward Elim-

ination method. Namely, we will try to use AIC and BIC as a criterion for choosing

variables for the so called black list. Later, using simulations, we will check if and

how good the generalization is. The idea to use AIC or BIC as a criterion arises from

the results that indicate that it is better to use some information criterion for model

selection in general than to use p-values. First we will present well-known AIC and

BIC criteria. After that we will focus on why we should not use p-values for variable

selection and why information-theoretic methods should be used.

5.1 Akaike Information Criterion

At any moment we should be aware that statistical models only approximate reality and

at the same time we should try to �nd which model would be the best approximation

given the data we have. Kullback and Leibler (1951) developed a measure called the

Kullback-Leibler information which estimates the information lost. They de�ned it as

a measure of the non-symmetric di�erence between two probability distributions P and

Q. One way of de�ning the KL information or distance is by using probability density

functions of P and Q:

DKL(P‖Q) =

∫ ∞
−∞

p(x) ln
p(x)

q(x)
dx,

where p and q denote the densities of P and Q. If we look at this de�nition as a

�information�, intuitively DKL(P‖Q) represents the information lost when q is used to

approximate p. In the sense of the �distance�, DKL(P‖Q) is the distance between a

model and the truth.

Idea of using Kullback-Leibler distance for model selection was introduced by Akaike

in 1974.

For a statistical model M of some observed data x the Akaike information criterion is

de�ned as:

AIC = 2k − 2 ln(l̂) (5.1)

where
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1. l̂ is the maximized value of the likelihood function of the model, i.e. l̂ = p(x|θ̂,M),

where θ̂ are the parameter values that maximize the likelihood function;

2. k is the number of free parameters to be estimated.

Akaike derived a relationship between the maximum likelihood and the Kullback-

Leibler information. Soon we will see that relationship between AIC and KL informa-

tion has very natural and simple concept. Main idea is to select a �tted approximating

model that is estimated, on average, to be closest to the unknown data-generating

model.

DKL(P‖Q) can be written equivalently as

DKL(P‖Q) =

∫ ∞
−∞

p(x) ln(p(x))dx−
∫ ∞
−∞

p(x) ln(q(x))dx.

We see that both expressions on the right side of the above expression are expectation

with respect to p. Hence,

DKL(P‖Q) = Ep [ln(p(x))]− Ep [ln(q(x))] .

The aim of Akaike information criterion is to estimate the Kullback-Leibler distance

between an approximating model and the data-generating model in order to choose a

model with the smallest estimated KL distance.

The �rst expectation is a constant, thus,

DKL(P‖Q) = Constant− Ep [ln(q(x))] ,

or

DKL(P‖Q)− Constant = −Ep [ln(q(x))] .

So minimizing the KL distance is equivalent to maximizing the expression

D = Ep [ln(q(x))] .

Hence, this expression is the quantity of interest but the problem is that it can not be

estimated.

The �rst idea that comes to mind would be to use the following expression as an

estimate

D̂ =
1

n

n∑
i=1

ln(q(Xi; θ̂)) =
ln(l̂)

n

where ln(l̂) represents the log-likelihood function for the approximating model. Obvi-

ously this is biased since we are using the same data to obtain the maximum likelihood

estimate and for the estimate of the expression of interest.
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Akaike showed that an asymptotical bias is equal to
k

n
,where k is the number of param-

eters to estimate in the model. Therefore, the unbiased estimator of the Ep [ln(q(x))]

is
ln(l̂)

n
− k

n
.

Finally, AIC is de�ned as in (5.1).

We see that there is no directed distance between two models. Instead of that we

have unbiased estimator of the relative, expected Kullback-Leibler distance between

the �tted model and the unknown model which generated the observed data.

Obviously, one should select the model with the smallest value of AIC since that model

is the closest model to the unknown data-generating model from among the candidate

models considered.

AIC has strong theoretical support since it is based on maximum likelihood and

Kullback-Leibler information but at the same time supporting the idea that there

is no true model. Furthermore it is easy to calculate and interpret. One of its greatest

advantages is its role in variable selection.

Even though AIC attempts to choose the best approximating model of those in the

set of models, everything depends on the given set, since of course it can happen that

none of the models in the set are good. We will never know if a better model exists

unless it is speci�ed in the candidate set.

5.2 Bayesian Information Criterion

Closely related to the Akaike information criterion is another information criterion

called Bayesian information criterion which is also used for model selection among the

�nite set of models. Also, it is partially based on log-likelihood but as an advantage over

the AIC, BIC takes into the consideration the possibility of over�tting. This problem

is caused by adding parameters in order to increase the likelihood. It is resolved by

adding a penalty term for the number of parameters in the model. Formally BIC is

de�ned as

BIC = ln(n)k − 2 ln(l̂),

where

1. l̂ is the maximized value of the likelihood function of the modelM , i.e. l̂ = p(x|θ̂,M),

where θ̂ are the parameter values that maximize the likelihood function;

2. n is the number of observations;

3. k is the number of free parameters to be estimated.
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The BIC was introduce by Schwarz as an asymptotic approximation to a transformation

of the Bayesian posterior probability of a candidate model under the assumptions

that the data distribution is in an exponential family. For large sample sizes, the

model selected by BIC corresponds to the candidate model which is a posteriori most

probable.

Let P (Mi) denote a discrete prior over the models M1, . . . ,Ml. Applying the Bayes

theorem to calculate the posterior probability of a model given the data, we get

P (Mi|y1, . . . , yn) =
P (y1, . . . , yn|Mi)P (Mi)

P (y1, . . . , yn)
.

Since our aim is to choose the model which is a posteriori most probable, we see

that maximizing the posterior probability from the above expression is equivalent to

maximizing the marginal likelihood P (y1, . . . , yn|Mi), because one of the assumptions

is that all candidate models are equally likely. The marginal likelihoods are evaluated

as

P (y1, . . . , yn|Mi) =

∫
l(θi|y1, . . . , yn)gi(θi) dθi,

where θi is the vector of parameters for the model Mi, l is the likelihood function and

gi is the probability density function of parameters θi.

Given that this is very di�cult to obtain, the next step in the derivation of BIC is the

approximation of this integral using Laplace method. This method uses a second order

Taylor series expansion of lnP (Y |Mi) around θ̃i, the posterior mode. For large n, by

keeping the terms involving n and ignoring the rest, it can be shown that

−2 · lnP (Y |Mi) ≈ BIC = −2 · ln l̂ + k · ln(n).

We see that penalty term is larger in BIC than in AIC. Just as AIC, also BIC is widely

used in model selection, �rst of all because of its computational simplicity. Beside

that, BIC has a strong theoretical property, consistency. A consistent criterion will

asymptotically select, with probability one, the candidate model having the correct

structure.

In general BIC tends to choose models that are more parsimonious than those chosen

by AIC. From the de�nitions of both AIC and BIC, we can see that scores to be

minimized are quite similar, but it is very important to emphasize that AIC and BIC

are not trying to answer the same questions. From informal derivation of AIC, we have

seen that AIC is aimed at �nding the best approximating model to the unknown data

generating process (via minimizing expected estimated K-L divergence). As such, it

fails to converge in probability to the true model (assuming one is present in the group

evaluated), whereas BIC does converge as n tends to in�nity.
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5.3 To Use p-value Or Not?

�We were surprised to see a paper defending P-values and signi�cance testing at this

time in history.� - This was the �rst sentence in paper from 2014 written by Burnham

and Anderson as an answer or reaction on the paper from the same year written by

Murtaugh [16], [3]. In his paper �In defence of p-values� Murtaugh argued that since

con�dence intervals, information-theoretic criteria and p-values are tools that are based

on the same statistical information, the choice of which summary to present should

be largely stylistic, depending on details of the application at hand. Therefore, all

three tools have their places in sound statistical practice, and none of them should be

excluded based on dogmatic, a priori considerations. He makes comparison between

p-value and con�dence interval, and explains the relationship between p-value and

Akaike's information criterion.

He considered two nested linear models, i.e., two models such that one (the �reduced�

model) is a special case of the other (the �full� model), with n observations and p

parameters for the case of full model, while reduced model is obtained by setting

the �rst k parameters equal to zero. Using basic de�nitions of p-value and AIC, he

emphasizes the relationship between them as follows:

P = Pr(χ2
k > ∆AIC + 2k),

where χ2
k is a chi-square random variable with k degrees of freedom; ∆AIC represents

the di�erence between AIC of reduced and AIC of full model, that is AICR − AICF
and

∆AIC = F−1
χ2
k

(1− p)− 2k,

where the F−1
χ2
k

(1− p) is (1− p) quantile of the χ2
k distribution.

In the special case of nested linear models with Gaussian errors, it can be shown that

using exact F distribution the relationship between p-value and ∆AIC is as follows:

P = Pr

{
Fk,n−p+1 >

n− p+ 1

k

[
exp

(
∆AIC + 2k

n

)
− 1

]}
and

∆AIC = n log

[
k

n− p+ 1
F−1
Fk,n−p+1

(1− P ) + 1

]
− 2k

where F−1
Fk,n−p+1

(1−P ) is the (1−P ) quantile of an F distribution with k and n−p+ 1

degrees of freedom. For large n, these relationships are approximately equivalent to

those based on the likelihood ratio statistic, that is based on χ2
k distribution.

The relationship between ∆AIC and the p-value in a comparison of two models di�ering

with respect to one parameter for di�erent total sample sizes (n) is shown graphically

in the following �gure. The lines for �nite n are based on the least-squares case and the
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line for n =∞ is based on the asymptotic distribution of the likelihood ratio statistic.

From this Murtaugh concluded the following: deciding how small a p-value is needed

Figure 3: ∆AIC and p-value [16]

for us to prefer the more complicated model is equivalent to deciding how large a ratio

of likelihoods indicates a convincing di�erence between models. At the same time he

emphasizes that an important advantage of the information-theoretic criteria over the

p-value is their ability to rank two or more models that are not nested in this way.

On the other side Burnham and Anderson believe that the subject of p-values and null

hypothesis signi�cance tests is an old one given that criticisms by statisticians began in

the late 1930s and have been relentless. We will brie�y repeat some of their arguments.

One of the fundamental di�erences between p-values and information-theory methods

is that after data have been collected the interest is focused on post-data probabilities,

likelihood ratios, odds ratios, and likelihood intervals, while in case of p-values all

theory is based on pre-data probability statements. That is, the anticipated data

are being thought of as random variables, while for information criteria the theory is

based on exact achieved data. Therefore, the conditioning is on the data, not the null

hypothesis, and the objective is inference about unknowns parameters and models.
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As limitation of p-values they mentioned the fact that by using p-values we are not able

to use some very useful approaches in empirical science. Namely, we can not deal with

non-nested models, we can not reduce model selection bias in high dimensional prob-

lems, di�culties with assessing the relative importance of predictor variables, problems

with dealing with large systems and data sets (when number of parameters is greater

than number of observations), di�culties with analyzing data from observational stud-

ies (where the distribution of the test statistic is unknown).

Furthermore, they emphasize that it is crucial to understand that using p-value means

that we do not test the alternative hypothesis. Hence, if it is never tested it can not

be rejected or falsi�ed. Even greater di�culties arises when we have more than one

alternative hypothesis which is the case in real-world problems.

Historical statistical approaches i.e., p-values try to �nd the �best� model and to make

inferences from it. New methods that are based on post-data probability statements

such as model probabilities or odds ratios and likelihood intervals are trying to base

inference on all the models weighted by their model probabilities (model averaging).

About the Murtaugh's argument that p-values and AIC di�erences are closely related,

they emphasize that the relationship holds only for the simplest case. That is, for

comparison of two nested models di�ering by only one parameter. Therefore, that

does not hold in general.

To draw attention to importance of the fact that new methods have taken the place of

earlier ones, we will quote Burnham and Anderson.

�Statistical science has seen huge advances in the past 50-80 years, but the historical

methods (e.g., t tests, ANOVA, step-wise regression, and chi-squared tests) are still

being taught in applied statistics courses around the world. . . Students leave such classes

thinking that �statistics� is no more than null hypotheses and p-values and the arbitrary

ruling of statistical signi�cance.� [3]

Burnham and Anderson have already pointed out the di�erences between hypothesis

testing and AIC in their book from 2002 [4]. They have considered set of nested models

and they showed that the results can be quite di�erent. Namely, they considered the

null model with i parameters and set of alternative models with i+j parameters where

j ≥ 1. They assumed that AIC value for each of the models is the same. That is, no

model in the set has more support than any other model. Furthermore, they assumed

that the null hypothesis is a model Mi and that it represents an adequate model for

the data. Thus, Mi as a null model is tested individually against the j ≥ 1 alternative
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models from the set. So, the likelihood ratio test is used to compare the null model

with any of the alternative models Mi+j.

Using

AICi =− 2 ln(li) + 2i

AICi+j =− 2 ln(li+j) + 2(i+ j)

LRT =− 2(ln(li)− ln(li+j))

we have

LRT = AICi − AICi+j + 2j.

In order to illustrate the di�erence between AIC and hypothesis testing assume that

AIC value for each of the models is exactly the same. Then we have

LRT = 2j with j degrees of freedom.

For example, if we have the following situation, Mi and Mi+1, that corresponds to a

χ2 value of 2 with degrees of freedom 1 and a p-value of 0.157.

For signi�cance level α = 0.05 the hypothesis-testing methods support the null model

Mi over any of the alternative models Mi+1,Mi+2, . . . if degrees of freedom is less than

about 7. This result is in contrast with AIC selection, where in this example all the

models are supported equally.

Table 2: Summary of p-values

j χ2 p

1 2 0.157

2 4 0.135

3 6 0.112

4 8 0.092

5 10 0.075

6 12 0.062

7 14 0.051

8 16 0.042

9 18 0.035

10 20 0.029

15 30 0.012

20 40 0.005

25 50 0.005

30 60 0.001
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From the above table we can see that in case there are more than 8 additional pa-

rameters, the null model Mi is rejected. For example, the likelihood ratio test of Mi

versus Mi+10 has 10 degrees of freedom, χ2 = 20 and p-value of 0.029. The conclusion

is that the testing method indicates increasingly strong support of the models with

many parameters and strong rejection of the simple null model.



6 Likelihood Ratio, Wald and Rao

Score Tests

At the very beginning we have emphasized that augmented backward elimination is

implemented in SAS and that one of our aims is to create R package for it. During

testing of our R function in few examples we noticed slight di�erences in �nal models

obtained with R and SAS functions. It turned out that di�erences were the conse-

quences of using di�erent tests for signi�cance of our variables given that we had �nite

sample sizes. Because of that we want to stress that even though likelihood ratio,

Wald, and Rao score tests used for signi�cance testing converge to the same limiting

Chi-square distribution they can give di�erent results for small sample sizes. We will

show that we can avoid con�icts that arise because of the small samples.

All three tests can be used to test the true value of the parameter based on the sample

estimate. It is well-known that they are asymptotically equivalent but they di�er in

small samples. It can be shown that the score test statistic is always less than LR test

statistic which implies it is less than Wald statistic. This means that if we use the same

critical value for all three test the Wald test will reject the null hypothesis most often,

while on the other side the score test will reject it least often. Even though the usage

of the same critical value for all three tests is somehow indicated by the fact that these

tests converge to the same limiting Chi-square distribution, this can cause di�erent

conclusions. Because of that in this chapter we will pay attention on how these tests

are related in case of �nite sample size.

Before we proceed, let us recall what is the convergence in probability and convergence

in distribution.

De�nition 6.1. A sequence Xn of random variables converges in probability towards

the random variable X if for all ε > 0,

lim
n→∞

Pr
(
|Xn −X| ≥ ε

)
= 0.

Usually, convergence in probability is denoted by adding the letter p over an arrow

indicating convergence.

36
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De�nition 6.2. A sequence X1, X2, . . . of real-valued random variables is said to

converge in distribution, or converge weakly, or converge in law to a random variable

X if

lim
n→∞

Fn(x) = F (x),

for every number x ∈ R at which F is continuous. Here Fn and F are the cumulative

distribution functions of random variables Xn and X, respectively.

Convergence in distribution is denoted by adding the letter d over an arrow indicating

convergence.

The Wald test was introduced by Wald (1943). Assume that we want to test the

hypothesis

H0 : G(θ0) = 0,

where G is a function from Rp to Rr and the rank of ∂G
∂θ

is r.

Proposition 6.3. For Wald test statistic W under the null hypothesis H0, holds the

following:

W = nG′(θ̂)

(
∂G(θ̂)

∂θ′
I−1(θ̂)

∂G′(θ̂)

∂θ

)−1

G(θ̂) ∼ χ2(r).

Proof. First order Taylor expansion of G(θ̂) around the true value θ0 gives:

G(θ̂) = G(θ0) +
∂G(θ0)

∂θ′
(θ̂ − θ0)

ignoring other terms. By transforming the last expression, we get:

√
n
(
G(θ̂)−G(θ0)

)
=
∂G(θ0)

∂θ′
√
n(θ̂ − θ0). (6.1)

As a consequence of asymptotic property of the MLE we know that

√
n(θ̂ − θ0)

d−→ N(0, I−1(θ0)),

and using 6.1 we have that

√
n
(
G(θ̂)−G(θ0)

)
d−→ N

(
0,
∂G(θ0)

∂θ′
I−1(θ0)

∂G′(θ0)

∂θ

)
.

Under the null hypothesis G(θ0) is equal 0. Hence,

√
nG(θ̂)

d−→ N

(
0,
∂G(θ0)

∂θ′
I−1(θ0)

∂G′(θ0)

∂θ

)
. (6.2)
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From characteristics of normal random variables, we obtain

nG′(θ̂)

(
∂G(θ0)

∂θ′
I−1(θ0)

∂G′(θ0)

∂θ

)−1

G(θ̂) ∼ χ2(r),

under the null hypothesis. But this expression contains unknown parameter θ0. There-

fore, it is useless. Using consistent estimator, MLE θ̂, we can consistently approximate

the expression

nG′(θ̂)

(
∂G(θ̂)

∂θ′
I−1(θ̂)

∂G′(θ̂)

∂θ

)−1

G(θ̂) ∼ χ2(r).

Before presenting score test and its asymptotic property let us recall of few notions.

Let l be the likelihood function which depends on a univariate parameter θ and let x

be the data. Denote with L the log-likelihood function. The score U(θ) is de�ned as

U(θ) =
∂L(θ | x)

∂θ
.

The Fisher information is

I(θ) = −E

[
∂2

∂θ2
L(X; θ)

∣∣∣∣ θ] .
Sometimes there are certain restrictions for parameter vector. In that case the MLE

from constrained and unconstrained maximizations of course are not the same. We

will denote MLE for unconstrained case with θ̂ and with θ̃ for the solution of the MLE

for constrained case. For constrained case we have that

∂L(θ̃)

∂θ
+
∂G′(θ̃)

∂θ
λ̃ =0 (6.3)

G(θ̃) =0 (6.4)

where λ is the vector of Lagrange multiplier. The score test was introduced by Rao

(1948). Its main advantage is that it does not require an estimate of the information

under the alternative hypothesis or unconstrained maximum likelihood.

Proposition 6.4. For score statistic S under the null hypothesis H0, the following

holds

S =
1

n
U(θ̃)I−1(θ̃)U(θ̃) ∼ χ2(r)

or

S =
1

n
λ̃′
∂G(θ̃)

∂θ′
I−1(θ̃)

∂G′(θ̃)

∂θ
λ̃ ∼ χ2(r).
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Proof. Again, using Taylor expansion and ignoring the other terms, for both functions

G(θ̂) and G(θ̃) we have

√
nG(θ̃) =

√
nG(θ0) +

∂G(θ0)

∂θ′
√
n(θ̃ − θ0),

and

√
nG(θ̂) =

√
nG(θ0) +

∂G(θ0)

∂θ′
√
n(θ̂ − θ0).

By subtracting the two last expressions and given that G(θ̃) = 0 we have

√
nG(θ̂) =

∂G(θ0)

∂θ′
√
n(θ̂ − θ̃). (6.5)

Using Taylor expansion for score functions U(θ̂) and U(θ̃) around θ0, we have

U(θ̂) = U(θ0) +
∂U(θ0)

∂θ′
(θ̂ − θ0)

1√
n
U(θ̂) =

1√
n
U(θ0) +

1

n

∂U(θ0)

∂θ′
√
n(θ̂ − θ0).

Note that,

− 1

n

∂U(θ0)

∂θ′
= − 1

n

n∑
i=1

∂2 ln l(x | θ)
∂θ∂θ′

.

By the weak law of large numbers this converges in probability to I(θ0), so we have

the following

1√
n
U(θ̂) =

1√
n
U(θ0)− I(θ0)

√
n(θ̂ − θ0).

In the similar way we have

1√
n
U(θ̃) =

1√
n
U(θ0)− I(θ0)

√
n(θ̃ − θ0).

Subtracting the last two expressions and given that U(θ̂) = 0 we obtain

1√
n
U(θ̃) = I(θ0)

√
n(θ̂ − θ̃).

Now we can express
√
n(θ̂ − θ̃) as

√
n(θ̂ − θ̃) = I−1(θ0)

1√
n
U(θ̃). (6.6)

Therefore, from (6.5) and from (6.6) we have

√
nG(θ̂) =

∂G(θ0)

∂θ′
I−1(θ0)

1√
n
U(θ̃).



Babi¢ S. Developing statistical regression models by using variable selection techniques.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 40

By (6.3) and using the fact that θ̃
p−→ θ0 we have

√
nG(θ̂)

p−→ −∂G(θ0)

∂θ′
I−1(θ0)

∂G′(θ0)

∂θ

λ̃√
n
.

From (6.2) we know that
√
nG(θ̂)

d−→ N
(

0, ∂G(θ0)
∂θ′

I−1(θ0)∂G
′(θ0)
∂θ

)
. Therefore,

λ̃√
n

d−→ N

(
0,

(
∂G(θ0)

∂θ′
I−1(θ0)

∂G′(θ0)

∂θ

)−1
)
.

Again, using properties of normal random variables we have

1

n
λ̃′
(
∂G(θ0)

∂θ′
I−1(θ0)

∂G′(θ0)

∂θ

)
λ̃ ∼ χ2(r),

under null hypothesis. Using constrained MLE θ̃ instead of true value θ0 we can

consistently approximate the last expression in order to get a usable statistic.

Similarly, from U(θ̃) + ∂G′(θ̃)
∂θ

λ̃ = 0 it follows that

1

n
U(θ̃)I−1(θ̃)U(θ̃) ∼ χ2(r).

The likelihood ratio test was introduced by Neyman and Pearson (1928).

Proposition 6.5. For likelihood ratio test statistic LR under the null hypothesis the

following holds

LR = 2
(
L(θ̂)− L(θ̃)

)
∼ χ2(r)

Proof. Second order Taylor expansions of functions L(θ̂) and L(θ̃) around true value

θ0 give,

L(θ̂) = L(θ0) +
∂L(θ0)

∂θ′
(θ̂ − θ0) +

1

2
(θ̂ − θ0)′

∂2L(θ0)

∂θ∂θ′
(θ̂ − θ0)

= L(θ0) +
1√
n

∂L(θ0)

∂θ′
√
n(θ̂ − θ0) +

1

2

√
n(θ̂ − θ0)′

1

n

∂2L(θ0)

∂θ∂θ′
√
n(θ̂ − θ0)

and

L(θ̃) = L(θ0) +
∂L(θ0)

∂θ′
(θ̃ − θ0) +

1

2
(θ̃ − θ0)′

∂2L(θ0)

∂θ∂θ′
(θ̃ − θ0)

= L(θ0) +
1√
n

∂L(θ0)

∂θ′
√
n(θ̃ − θ0) +

1

2

√
n(θ̃ − θ0)′

1

n

∂2L(θ0)

∂θ∂θ′
√
n(θ̃ − θ0).

Subtracting and multiplying by 2, we get

2
(
L(θ̂)− L(θ̃)

)
=

2√
n

∂L(θ0)

∂θ′
√
n(θ̂ − θ̃) +

√
n(θ̂ − θ0)′

1

n

∂2L(θ0)

∂θ∂θ′
√
n(θ̃ − θ0)

−
√
n(θ̃ − θ0)′

1

n

∂2L(θ0)

∂θ∂θ′
√
n(θ̃ − θ0).
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Given that 1√
n
∂L(θ0)
∂θ′

= I(θ0)
√
n(θ̂ − θ0) and since − 1

n
∂2L(θ0)
∂θ∂θ′

p−→ I(θ0), we have

2
(
L(θ̂)− L(θ̃)

)
→ 2n(θ̂ − θ0)′I(θ0)(θ̂ − θ̃)− n(θ̂ − θ0)′I(θ0)(θ̂ − θ0)

+ n(θ̃ − θ0)′I(θ0)(θ̃ − θ0).

Hence we can write

2
(
L(θ̂)− L(θ̃)

)
= 2n(θ̂ − θ0)′I(θ0)(θ̂ − θ̃)− n(θ̂ − θ0)′I(θ0)(θ̂ − θ0)

+ n(θ̃ − θ̂ + θ̂ − θ0)′I(θ0)(θ̃ − θ̂ + θ̂ − θ0).

By simple computation and using that (θ̂− θ0)′I(θ0)(θ̂− θ̃) = (θ̂− θ̃)′I(θ0)(θ̂− θ0), we

have

2
(
L(θ̂)− L(θ̃)

)
= n(θ̂ − θ̃)′I(θ0)(θ̂ − θ̃). (6.7)

From (6.6) and (6.7), we obtain

2
(
L(θ̂)− L(θ̃)

)
=
√
n(θ̂ − θ̃)′I(θ0)

√
n(θ̂ − θ̃)

=
1√
n

∂L(θ̃)

∂θ′
I−1(θ0)I(θ0)I−1(θ0)

∂L(θ̃)

∂θ

1√
n

=
1

n

∂L(θ̃)

∂θ′
I−1(θ0)

∂L(θ̃)

∂θ

= S ∼ χ2(r).

Asymptotically, all three test statistics are distributed according to the χ2 distribution

with r degrees of freedom.

6.1 Wald, Score and LR Test for Linear Regression

Let us look at these tests for linear regression model. Suppose that the model is of the

form

Y = Xβ + ε

where ε ∼ N(0, σ2I). Suppose that hypothesis is of the form

H0 : Rβ = b versus H1 : Rβ 6= b

where R is a known matrix of the rank r and b is a known vector. Note that this can

be written as G(β) = Rβ − b. From the de�nitions of Wald, score and LR statistics it

follows that in the case σ2 is known, we have that

W = S = LR =
(Rβ̂ − b)′[R(X ′X)−1R′]−1(Rβ̂ − b)

σ2
∼ χ2(r),



Babi¢ S. Developing statistical regression models by using variable selection techniques.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 42

where β̂ is MLE [9].

Usually we do not know σ2 so we use its estimate obtained by MLE, σ̂. We know that

F statistics can be written as

F =

RSS1 −RSS2

r
RSS2

n− k

where RSS1 is residual sum of squares for restricted model, RSS2 is residual sum of

squares for unrestricted model, n is the number of observations, k is the number of

parameters and r is the rank of the matrix R.

Using F statistics we can derive all three statistics for the case σ2 is unknown.

RSS1 = (Y −Xβ̃)′(Y −Xβ̃)

RSS2 = (Y −Xβ̂)′(Y −Xβ̂)

Therefore,

RSS1 −RSS2 = (Y −Xβ̃)′(Y −Xβ̃)− (Y −Xβ̂)′(Y −Xβ̂)

= (Xβ̃ −Xβ̂)′(Xβ̃ −Xβ̂)

= (β̃ − β̂)′X ′X(β̃ − β̂).

Using that β̃ = β̂ + (X ′X)−1R′[R(X ′X)−1R′]−1(Rβ̂ − b), we have

RSS1 −RSS2 = (Rβ̂ − b)′[R(X ′X)−1R′]−1(Rβ̂ − b).

From the de�nition of Wald statistics in case σ2 is not known it follows that statistics

is of the form

W = n
(
Rβ̂ − b

)′ [
[R 0]I−1(θ̂)[R 0]′

]−1 (
Rβ̂ − b

)
=
(
Rβ̂ − b

)′ [
[R 0]I−1

n (θ̂)[R 0]′
]−1 (

Rβ̂ − b
)

=
(Rβ̂ − b)′[R(X ′X)−1R′]−1(Rβ̂ − b)

σ̂2
.

Here, we used that the inverse of Fisher information is

[In(β, σ2)]−1 =

[
σ2(X ′X)−1 0

0 2σ4

n

]
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Hence,

W =
(Rβ̂ − b)′[R(X ′X)−1R′]−1(Rβ̂ − b)

1
n
(Y −Xβ̂)′(Y −Xβ̂)

=
(Rβ̂ − b)′[R(X ′X)−1R′]−1(Rβ̂ − b)/r

(Y −Xβ̂)′(Y −Xβ̂)/(n− p)
· nr

n− p

=
(RSS1 −RSS2)/r

RSS2/(n− p)
· nr

n− p
=

nr

n− p
F

Now we will derive the relationship between F statistic and score statistic in case σ2 is

not known. Score statistic is de�ned as

S =
1

n
λ̃′
∂G(θ̃)

∂θ′
I−1(θ̃)

∂G′(θ̃)

∂θ
λ̃.

Again, the hypothesis is of the form

H0 : Rβ = b versus H1 : Rβ 6= b

Therefore, G(β) = Rβ − b. In order to write our score statistic we need Lagrange

multiplier for restricted linear regression, λ̃ and the inverse of Fisher information.

For linear model Y = Xβ + ε, where ε ∼ N(0, σ2I), the log-likelihood function L is

L(β, σ2) = −n
2

log 2π − n

2
log σ2 − 1

2σ2
(Y −Xβ)′(Y −Xβ).

Calculating the negative inverse of the expectation of
∂2L

∂β∂β′
∂2L

∂β∂σ2

∂2L

∂σ2∂β′
∂2L

∂σ2∂σ2


we get that the inverse of Fisher information

[In(β, σ2)]−1 =

[
σ2(X ′X)−1 0

0 2σ4

n

]

Denote with β̃ and σ̃2 solutions of restricted MLE. Then, from

∂L(θ̃)

∂θ
+
∂G′(θ̃)

∂θ
λ̃ =0

G(θ̃) =0

we can derive Lagrange multiplier. Namely, λ̃ = 1
σ̃2 (R(X ′X)−1R′)−1(b−Rβ̂).
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Using that and that In = nI we have the following

S =
1

n
λ̃′n(Rσ̃2(X ′X)−1R′)λ̃

=
1

σ̃2
(Rβ̂ − b)′(R(X ′X)−1R′)−1σ̃2(R(X ′X)−1R′)

1

σ̃2
(R(X ′X)−1R′)−1(Rβ̂ − b)

=
1

σ̃2
(Rβ̂ − b)′(R(X ′X)−1R′)−1(Rβ̂ − b).

We have already showed that

RSS1 −RSS2 = (Rβ̂ − b)′[R(X ′X)−1R′]−1(Rβ̂ − b).

Therefore, score statistic can be expressed as

S =
RSS1 −RSS2

σ̃2

= n
RSS1 −RSS2

RSS1

=
n

1− 1 + RSS1

RSS1−RSS2

=
n

1 + RSS2

RSS1−RSS2

=
n

1 + n−p
rF

To express likelihood ratio statistic using F statistic, note that

L(θ̂) = −n
2

log(2π)− n

2
log(σ̂2)− 1

2σ̂2
(Y −Xβ̂)′(Y −Xβ̂)

= −n
2

log(2π)− n

2
log(σ̂2)− 1

2σ̂2
· n
n

(Y −Xβ̂)′(Y −Xβ̂)

= −n
2

log(2π)− n

2
log(σ̂2)− n

2σ̂2
σ̂2

= −n
2

log(2π)− n

2
log(σ̂2)− n

2
.

Similarly,

L(θ̃) = −n
2

log(2π)− n

2
log(σ̃2)− 1

2σ̃2
(Y −Xβ̃)′(Y −Xβ̃)

= −n
2

log(2π)− n

2
log(σ̃2)− n

2σ̃2
σ̃2

= −n
2

log(2π)− n

2
log(σ̃2)− n

2
.
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Therefore,

LR = 2
(
L(θ̂)− L(θ̃)

)
= 2

(
−n

2
log(σ̂2) +

n

2
log(σ̃2)

)
= n log

σ̃2

σ̂2
= n log

(
1− 1 +

σ̃2

σ̂2

)
= n log

(
1 +

σ̃2 − σ̂2

σ̂2

)
= n log

(
1 +

rF

n− p

)

Using the inequality
t

1 + t
≤ log(1 + t) ≤ t ∀t > −1

and de�ning t =
rF

n− p
it follows that,

S ≤ LR ≤ W

We see that in case of linear regression when σ2 is known it holds that all three test

have the same and exact χ2 distribution. If σ2 is not known then all three statistics

are functions of F statistic meaning that we can avoid con�icts already pointed out if

we use critical values that are related to each other by the same functions.
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7 R Package

In this chapter we will present options available in the R package ABE.

7.1 Description

In Figure 2 is presented the brief outline of the augmented backward elimination. The

R package allows the user to use exactly the same function as it is explained in the

�gure. Additionally, enables us to use AIC or BIC criterion instead of signi�cance and

we can choose if approximated or exact change-in-estimate criterion will be evaluated.

Brie�y, procedure for the augmented backward elimination is as follows.

1) At the �rst step of augmented backward elimination we have to de�ne an initial

working set of variables using appropriate reasoning for etiologic or prognostic

modeling.

2) The next thing we should do is to de�ne the values for required parameters.

That is, we should set a value for signi�cance threshold α, de�ne the change-in-

estimate threshold τ . Finally, we should classify variables as �passive�, �active�

and �passive or active�.

3) After that, a model including all variables from the working set should be �tted.

4) In augmented backward elimination procedure proposed by Dunkler et al. the

following step is evaluation of signi�cance. That is, we have to evaluate p-values

of all e�ects in the model and to create a (new) temporary �blacklist� as the set

of the variables that are either �passive or active� or �active� and have p-values

larger than α, sorted by descending p-values.

We extended this, such that the �blacklist� could be created using information

criteria, AIC and BIC. Namely, we evaluate AIC (BIC) for the full model. We

drop each variable from the set of �passive or active� and �active� variables sep-

arately and evaluate AIC (BIC) for each model. After that we create temporary

�blacklist�. Variable will be on the blacklist if the value of AIC (BIC) for the

model without that variable is less than the AIC (BIC) for the full model.
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5) Next step is the evaluation of the change-in-estimate criterion. We have to eval-

uate the top variable on the current blacklist.

5.1) If the blacklist is empty, the algorithm stops and the current working model

is the preliminary �nal model.

5.2) Otherwise, evaluate the change-in-estimate criterion of the respective vari-

able as the active variable and all other variables in the current working

set who were initially labeled as �passive or active� or �passive� as passive

variables.

5.2.1) If the change-in-estimate criterion is not passed at τ , delete this variable

from the current working set. Go to step 3 with the updated working

set of variables.

5.2.2) Otherwise, delete this variable from the blacklist. Repeat step 5.

In augmented backward elimination procedure proposed by Dunkler et al. is

used approximated change-in-estimate. We extended this, such that also exact

change-in-estimated can be used.

7.2 Arguments

The following arguments allow the user to specify the initial model and the variable

selection criteria when using augmented backward elimination procedure.

abe(�t = object,

include = variables,

active = variables,

tau = value,

exp.beta = logical,

exact = logical,

criterion = string,

alpha = value,

type.test = string,

verbose = logical)

A brief explanation of these options follows.

• �t - An object of a class �lm�, �glm� or �cohph� representing the �t.

• include - Names a vector of passive variables. These variables might be exposure

variables of interest or known confounders. They will never be dropped from
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the working model in the selection process, but they will be used passively in

evaluating change-in-estimate criteria of other variables. Note, variables which

are not speci�ed as include or active are assumed to be active or passive variables.

Default is NULL.

• active - Names a vector of active variables. These less important explanatory

variables will only be used as active, but not as passive variables when evaluating

the change-in-estimate criterion. Note, they will be included in the model only

if their exclusion causes changes in the estimates of more important explanatory

variables. Default is NULL. Note, if we leave include and active as it is by the

default then ABE will consider all variables as �active or passive�.

• tau - Value that speci�es the threshold of the relative change-in estimate criterion.

Default is set to 0.05.

• exp.beta - Logical specifying if exponent is used in formula to standardize the

criterion. Default is set to TRUE.

• exact - Logical that speci�es if you will use exact change-in-estimate or approx-

imated. Default is set to FALSE, which means that you will use approximation

proposed by Dunkler et al. Note, setting to TRUE can severely slow down the

algorithm, but setting to FALSE can in some cases lead to a poor approximation

of the change-in-estimate criterion.

• criterion - String that speci�es the strategy to select variables for the blacklist.

Currently supported options are signi�cance level �alpha�, Akaike information

criterion �AIC� and Bayesian information criterion �BIC�. If you are using signif-

icance level, in that case you have to specify the value of �alpha�. Default is set

to �alpha�.

• alpha - Value that speci�es the level of signi�cance as explained above. Default

is set to 0.2.

• type.test - String that speci�es which test should be performed in case the crite-

rion = �alpha�. Possible values are �F� and �Chisq� (default) for class �lm�; �Rao�,

�LRT�, �Chisq� (default), �F� for class �glm� and �Chisq� for class �coxph�.

• verbose - Logical that speci�es should the variable selection process be printed.

Note: this can severely slow down the algorithm.

The result is an object of class �lm�, �glm� or �cohph� representing the model chosen

by ABE method.
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Using the default settings ABE will perform augmented backward elimination based

on signi�cance. The level of signi�cance will be set to 0.2. All variables will be treated

as �passive or active�. Approximated change-in-estimate will be used. Threshold of

the relative change-in-estimate criterion will be 0.05. Setting τ to a very large number

turns o� the change-in-estimate criterion, and ABE will only perform BE. Specifying

�alpha� = 0 will include variables just based on change-in-estimate criterion, since in

that case variables are not safe from exclusion because of their p-values. Specifying

�alpha� = 1 will always include all variables.

7.3 Example

To carry out the ABE procedure in R the following code can be submitted:

abe(fit, include=�x1�, active=NULL, tau=0.05, exp.beta=FALSE,

exact=FALSE, criterion=�alpha�, alpha=0.2,

type.test=�Chisq�, verbose=TRUE)

In this particular example parameter fit represents an object of a class �lm� repre-

senting the �t. Data were simulated as it is explained in chapter 8. Our current goal

is to show how the method is used in R and what is its output. We �tted the model

using all variables of the working set.

fit = lm(y~x1+x2+x3+x4+x5+x6+x7,x=T, y=T)

We de�ned �x1� to be �only passive variable� meaning that include=�x1�. By leaving

active to be NULL the other six variables are de�ned as �passive or active�. In order

to see the detailed output we set verbose to be TRUE. The output was as follows.

Model under investigation:

lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7, x = T, y = T)

Criterion for non-pasive variables: x2 : 0.0341 , x3 : 0.2233 ,

x4 : 0.3968 , x5 : 0.5151 , x6 : 0.2503 , x7 : 0

black list: x5 : 0.5151, x4 : 0.3968, x6 : 0.2503, x3 : 0.2233

Investigating change in b or exp(b) due to omitting variable x5;

x1 : 0.0039, x2 : 0.0072, x3 : 0.0163, x4 : 0.019, x6 : 0.0023,

x7 : 0.003

Model under investigation:

lm(formula = y ~ x1 + x2 + x3 + x4 + x6 + x7, x = T, y = T)
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Criterion for non-pasive variables: x2 : 0.0268 , x3 : 0.1501 ,

x4 : 0.2733 , x6 : 0.2381 , x7 : 0

black list: x4 : 0.2733, x6 : 0.2381

Investigating change in b or exp(b) due to omitting variable x4;

x1 : 0.0125, x2 : 0.0203, x3 : 0.0474, x6 : 0, x7 : 0.0046

Model under investigation:

lm(formula = y ~ x1 + x2 + x3 + x6 + x7, x = T, y = T)

Criterion for non-pasive variables: x2 : 0.0128 , x3 : 0.0274 ,

x6 : 0.2406 , x7 : 0

black list: x6 : 0.2406

Investigating change in b or exp(b) due to omitting variable x6;

x1 : 0.0209, x2 : 0.0115, x3 : 0.0226, x7 : 0.0044

Model under investigation:

lm(formula = y ~ x1 + x2 + x3 + x7, x = T, y = T)

Criterion for non-pasive variables: x2 : 0.0087 , x3 : 0.0112 , x7 : 0

black list: empty

Final model:

lm(formula = y ~ x1 + x2 + x3 + x7, x = T, y = T)

Call:

lm(formula = y ~ x1 + x2 + x3 + x7, x = T, y = T)

Coefficients:

(Intercept) x1 x2 x3 x7

0.07863 1.71615 1.07317 0.96667 1.32194

From this we can see that at every step we see exactly what is happening. Namely, at

every step the current model is presented; in this particular example p-values of non-

passive variables are presented; variables that are on the blacklist sorted by descending

p-values and evaluated change-in-estimate for �passive� and �passive or active� variables

if we would delete the top variable from the blacklist are presented. At the end the

�nal model is shown. If we would set verbose to be FALSE only the �nal model would

be presented.
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8 Simulation Study

Simulation study for evaluation of ABE methods we performed was based on the sim-

ulation study already preformed by Dunkler et al [6].

Explanatory variables X1, . . . , X7 were drawn from a normal distribution. Namely,

X2, X3, X4 and X5 were drawn from a multivariate normal distribution with a mean

vector of 0, standard deviation of 1 and bivariate correlation coe�cients of 0.5. X6

and X7 were independently drawn from a standard normal distribution. Variable of

main interest X7 was de�ned such that it depended on X2, X3 and X6. Depending on

variance in�ation factor X1 was simulated as X1 = 0.266(X2 + X3 + X6) + 0.710ε for

case V IF = 2 and X1 = 0.337(X2 +X3 +X6) + 0.4499ε for case V IF = 4, where ε was

a random number from a standard normal distribution. Outcome variable was de�ned

as Y ∗ = β1X1+X2+X4+X7. Y was generated as continuous, binary and time-to-event

variable in order to simulate linear, logistic and Cox regression, respectively.

Speci�cally, to simulate linear regression outcome variable Y was drawn from a normal

distribution with mean Y ∗ and standard deviation 3.6. To simulate logistic regression

Y was drawn from a Bernoulli distribution with event probability 1/(1 + exp(−Y ∗). In
order to simulate Cox regression, Weibull distributed survival times T were drawn from

[− log(U)/0.125 exp(Y ∗)]1/3, where U was a standard uniform random variable. From

a uniform distribution U [0, 3.35] were drawn times U, in order to obtain approximately

55% censoring. Observable survival time was de�ned as Y = min(T, U) and status

indicator was de�ned as S = I(T < U).

We simulated 1000 samples with sample size 120 for each scenario, for β1 either 0 or

1, for VIF being 2 or 4 and for each type of regression (linear, logistic or Cox). Each

sample was analyzed applying di�erent methods for variable selection and variable

of main interest X1 was forced into every model. We were interested in the number

of biased, correct and in�ated models, as well as in the bias and root mean squared

error (RMSE) of β1 compared to the correct model. By biased model we mean model

for which at least one variable from the true model was not selected. Correct model

included all variables from the true model, that is X1, X2, X4 and X7. By in�ated

model we mean larger model, that is a model which contains all correct variables and

at least one incorrect as well. Namely, we checked results for cases where we used ABE

method proposed by Dunkler et al, but also for slightly modi�ed ABE method, that



Babi¢ S. Developing statistical regression models by using variable selection techniques.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 52

is for ABE based on BIC and AIC; all of that considering exact and approximated

change in estimate. We compared those results with results obtained after using the

following methods:

- Univariate model including X1.

- Correct model including X1, X2, X4 and X7.

- Full model including X1, X2, X3, X4, X5, X6 and X7.

- Model selected with forward selection and AIC as a criterion.

- Model selected with backward elimination and AIC as a criterion.

- Model selected with stepwise elimination and AIC as a criterion.

- Model selected with backward elimination and BIC as a criterion.

- Model selected with backward elimination and signi�cance level 0.05 as a crite-

rion.

- Model selected with backward elimination and signi�cance level 0.2 as a criterion.

We were also interested in the bias and root mean squared error (RMSE) of estimated

coe�cients. Namely, for every β̂1 in all samples the bias× 100 and the RMSE × 100,

as well as, the bias × 100 and the RMSE × 100 compared to the correct model were

given. The results of simulation study are contained in following sections.
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8.1 Simulation Results for Linear Regression

Notations for the methods we used are as follows: ABE method proposed by Dun-

kler et al., is denoted as �ABE�, ABE method that uses AIC as a criterion for the

blacklist is �abeAIC�, ABE method that uses BIC is �abeBIC�; for the same meth-

ods that were using exact change-in-estimate instead of approximated the notations

we used are: �eABE�, �eabeAIC� and �eabeBIC�; forward selection that uses AIC

as a criterion is �FE�; backward elimination and AIC as a criterion is �BE�; step-

wise elimination and AIC as a criterion is �SE�; backward elimination and BIC as

a criterion �BE bic�; backward elimination and signi�cance level 0.05 as a criterion

is denotead as �BE0.05�; backward elimination and signi�cance level 0.2 as a cri-

terion is denotead as �BE0.2�. Univariate model including X1 is denoted as �Uni�;

correct model including X1, X2, X4 and X7 is denoted as �Correct�; full model in-

cluding X1, X2, X3, X4, X5, X6 and X7 is denoted as �Full�. True bias and root mean

squared error (RMSE) of regression coe�cient β̂1 of a variable X1 are denoted as

�bias(×100)� and �rmse(×100)�, while bias and RMSE of β̂1 to correct model are de-

noted as �bias(β̂1)(×100)� and �rmse(β̂1)(×100)�.

Table 3: Simulation study for linear regression: vif = 2, β = 1, τ = 0.05. VIF is variance

in�ation factor of X1 conditional on X2, . . . , X7 and τ represents the change-in-estimate

threshold. Number of simulations, 1000; sample size, 120.

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 83.677 88.316 85.378 94.826

Correct 0 1, 000 0 0 0 1.701 41.052

Full 0 0 1, 000 0.926 21.594 2.627 46.328

ABE 324 321 355 1.548 19.328 3.249 46.256

abeAIC 354 359 287 2.056 18.785 3.757 46.138

abeBIC 477 351 172 2.491 17.788 4.192 46.138

eABE 324 321 355 1.548 19.328 3.249 46.256

eabeAIC 354 359 287 2.056 18.785 3.757 46.138

eabeBIC 477 351 172 2.491 17.788 4.192 46.138

FE 405 358 237 2.650 18.478 4.351 46.490

BE 393 348 259 2.509 18.713 4.210 46.362

SE 406 358 236 2.650 18.477 4.351 46.490

BE bic 770 207 23 10.266 18.713 11.967 46.362

BE0.2 342 321 337 1.652 19.070 3.353 46.362

BE0.05 661 290 49 7.516 17.955 9.217 47.032
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Table 4: Simulation study for linear regression: vif = 2, β = 0, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 85.544 90.223 86.079 95.573

Correct 0 1, 000 0 0 0 0.535 41.770

Full 0 0 1, 000 0.503 22.977 1.038 47.988

ABE 259 335 406 1.465 19.128 2.000 46.715

abeAIC 288 357 355 1.791 18.873 2.326 46.632

abeBIC 436 328 236 2.211 18.701 2.746 46.597

eABE 259 335 406 1.465 19.128 2.000 46.715

eabeAIC 288 357 355 1.791 18.873 2.326 46.632

eabeBIC 436 328 236 2.211 18.701 2.746 46.597

FE 353 370 277 2.503 18.081 3.038 46.413

BE 342 369 289 2.528 18.301 3.063 46.575

SE 355 371 274 2.535 18.058 3.070 46.424

BEbic 728 238 34 9.349 18.301 9.884 46.575

BE0.2 294 344 362 1.693 18.944 2.228 46.575

BE0.05 611 320 69 6.559 17.869 7.094 47.199

Table 5: Simulation study for linear regression: vif = 4, β = 1, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 125.885 131.943 128.813 136.896

Correct 0 1, 000 0 0 0 2.928 53.565

Full 0 0 1, 000 -2.510 52.568 0.418 74.441

ABE 258 224 518 -0.539 50.475 2.389 73.475

abeAIC 286 228 486 -0.487 50.435 2.441 73.573

abeBIC 429 190 381 0.200 50.762 3.128 74.041

eABE 258 224 518 -0.539 50.475 2.389 73.475

eabeAIC 286 228 486 -0.487 50.435 2.441 73.573

eabeBIC 429 190 381 0.200 50.762 3.128 74.041

FE 421 360 219 5.881 40.354 8.808 68.699

BE 415 359 226 5.442 41.760 8.369 69.381

SE 424 361 215 6.057 40.582 8.984 68.849

BEbic 767 206 27 19.980 41.760 22.907 69.381

BE0.2 347 345 308 3.559 43.348 6.486 69.381

BE0.05 662 290 48 13.874 39.235 16.802 69.944
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Table 6: Simulation study for linear regression: vif = 4, β = 0, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 128.595 134.919 127.766 135.724

Correct 0 1, 000 0 0 0 -0.829 53.034

Full 0 0 1, 000 -2.561 53.492 -3.389 75.964

ABE 243 196 561 -1.213 51.890 -2.041 75.267

abeAIC 269 201 530 -1.046 51.859 -1.874 75.389

abeBIC 396 170 434 -0.753 52.158 -1.582 75.914

eABE 243 196 561 -1.213 51.890 -2.041 75.267

eabeAIC 269 201 530 -1.046 51.859 -1.874 75.389

eabeBIC 396 170 434 -0.753 52.158 -1.582 75.914

FE 388 374 238 5.532 42.690 4.703 71.480

BE 379 366 255 4.606 44.839 3.778 72.858

SE 391 377 232 5.601 42.859 4.772 71.619

BEbic 765 206 29 20.429 44.839 19.601 72.858

BE0.2 328 340 332 3.049 45.903 2.220 72.858

BE0.05 658 282 60 15.472 42.132 14.643 71.955

In general, for all cases in linear regression ABE methods led to less biased estimate of

the variable of interest, X1, in comparison with other methods. Among ABE methods,

method based on AIC had some advantage with respect to the number of correct models

but at the same time it has returned slightly larger bias. For both cases, using exact

and approximated change in estimate we got the same results. For scenario V IF = 4

stepwise method outperformed ABE methods with regard to number of correct models,

but at the same time they returned more biased than in�ated models while for ABE

methods the opposite was true. As we can see from the captions of the previous �gures,

these results are related to the default values of the parameters, that is for τ = 0.05,

α = 0.2 and for the �xed sample size n = 120. Therefore, we will graphically present

what happens if we change the values of parameters. The number of selected models

(biased, correct and in�ated) is presented in percentages. Abbreviations we used are

similar to those from the previous tables. Namely, ABE method proposed by Dunkler

et al., is denoted as �ABE�, ABE method that uses AIC as a criterion for the blacklist is

�aA�, ABE method that uses BIC is �aB�; for the same methods that were using exact

change-in-estimate instead of approximated the notations we used are: �ea�, �eaA� and

�eaB�; forward selection that uses AIC as a criterion is �FE�; backward elimination and

AIC as a criterion is �BE�; stepwise elimination and AIC as a criterion is �SE�; backward

elimination and BIC as a criterion �BEb�; backward elimination and signi�cance level

0.05 as a criterion is denotead as �B05�; backward elimination and signi�cance level 0.2

as a criterion is denotead as �BE2�.
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From the following bar-plots we can see how di�erent were results in case of linear

regression when VIF was 2, β = 1 but we had three di�erent values of τ .

Figure 4: No. of selected models for linear regression for τ = 0.05

Figure 5: No. of selected models for linear regression for τ = 0.10

Figure 6: No. of selected models for linear regression for τ = 0.20
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From the above �gures we see that as we increase the value of τ which represents a

change-in-estimate threshold value for parameters from our initial model, the number of

biased or correct models is increasing. That is obviously expected, since by increasing

the value of τ we are making it di�cult for variables to enter the �nal model. Therefore,

the number of in�ated models is decreased and as a consequence the number of correct

model is increased; or the number of correct models is decreased so we can expect the

bigger number of biased models. Let us see the results for linear regression in case

VIF=2, β = 1, τ = 0.05 if we change the sample size.

Figure 7: No. of selected models for linear

regression for n = 120

Figure 8: No. of selected models for linear

regression for n = 200

As we can see from the above �gures there is a big di�erence in the number of biased,

correct and in�ated models for di�erent sample size. As we could expect the number

of correct models is larger for all methods used for variable selection. Therefore, we

can conclude that it is not only important which method will we choose but also there

are other factors that can a�ect the selection of the true model, like sample size. In the

�gures below are presented results for linear regression in case VIF=2 and τ = 0.05 if

the sample size is 120 but we change β. From these �gures we can conclude that the

results in case β = 1 and β = 0 if all other parameters were �xed, are not drastically

di�erent. It turned out that also in case we changed the sample size from 120 to

200 even though the number of biased, correct and in�ated models has signi�cantly

changed, the results were similar to those in case sample size was 120 in sense of the

proportion for β = 1 and β = 0.
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Figure 9: No. of selected models for linear

regression for β = 1

Figure 10: No. of selected models for linear

regression for β = 0

The only thing we have to check more is if there is a di�erence in the number of correct

models for cases where we used VIF=2 and VIF=4. From the below �gures we see

that in case VIF was 4 the number of in�ated models was bigger. We could expected

that the number of in�ated models for bigger VIF will be bigger since VIF measures

how much the variance of an estimated regression coe�cient is increased because of

the collinearity. If we compare ABE method with the modi�ed ABE methods, that is

Figure 11: No. of selected models for linear

regression for VIF=2

Figure 12: No. of selected models for linear

regression for VIF=4

ABE using AIC or BIC as a criterion for the blacklist, we can conclude the following.

It turned out that results were similar for ABE and ABE method based on AIC.

Namely, the number of correct models was slightly bigger in case we used ABE-AIC

method in comparison with the ABE method. For two scenarios (VIF= 2) ABE lead

to less biased estimate of β1, while for the other two (VIF= 4) the bias of β̂1 was less

in case of ABE-AIC method. At the same time ABE-AIC is prone to choosing larger

number of biased models than ABE method. This could be seen as an disadvantage,

since maybe it is better to have in�ated model than biased one, because in case of

biased model we know that at least one of the �important� variables will not be in
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the model. As for the ABE-BIC method, we can say that among ABE methods, the

number of biased models was the largest for ABE-BIC. This was expected, since BIC is

more stringent than AIC, meaning that sometimes BIC results in serious under�tting.

The next we will present are results for logistic regression.
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8.2 Simulation Results for Logistic Regression

Table 7: Simulation study for logistic regression: vif = 2, β = 1, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 14.762 30.498 25.881 39.109

Correct 0 1, 000 0 0 0 11.118 42.661

Full 0 0 1, 000 5.516 23.242 16.634 52.258

ABE 21 37 942 5.537 23.139 16.655 52.196

abeAIC 21 37 942 5.538 23.138 16.657 52.195

abeBIC 21 37 942 5.538 23.138 16.657 52.195

eABE 19 37 944 5.402 23.117 16.521 52.128

eabeAIC 20 37 943 5.400 23.116 16.519 52.130

eabeBIC 21 36 943 5.397 23.116 16.515 52.133

FE 118 506 376 4.236 18.363 15.355 49.657

BE 113 492 395 4.501 19.512 15.620 50.341

SE 119 506 375 4.249 18.367 15.367 49.660

BEbic 331 603 66 3.985 19.512 15.104 50.341

BE0.2 91 433 476 4.609 20.230 15.727 50.341

BE0.05 254 622 124 4.003 15.939 15.121 48.564

Table 8: Simulation study for logistic regression: vif = 2, β = 0, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 56.153 60.881 56.503 60.887

Correct 0 1, 000 0 0 0 0.350 34.216

Full 0 0 1, 000 0.203 18.376 0.554 40.462

ABE 10 45 945 0.401 18.157 0.751 40.333

abeAIC 10 45 945 0.401 18.157 0.751 40.333

abeBIC 11 45 944 0.400 18.159 0.750 40.334

eABE 8 45 947 0.377 18.140 0.727 40.287

eabeAIC 8 45 947 0.377 18.140 0.727 40.287

eabeBIC 10 45 945 0.378 18.139 0.728 40.289

FE 70 528 402 0.759 14.518 1.109 38.518

BE 66 522 412 0.610 14.646 0.960 38.531

SE 70 528 402 0.762 14.537 1.113 38.544

BEbic 246 680 74 2.992 14.646 3.343 38.531

BE0.2 53 461 486 0.458 15.136 0.808 38.531

BE0.05 162 710 128 1.710 12.260 2.060 37.608
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Table 9: Simulation study for logistic regression: vif = 4, β = 1, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 53.425 62.494 60.892 69.594

Correct 0 1, 000 0 0 0 7.467 48.796

Full 0 0 1, 000 3.387 48.696 10.854 70.330

ABE 7 13 980 3.471 48.728 10.938 70.344

abeAIC 8 13 979 3.478 48.732 10.945 70.342

abeBIC 8 13 979 3.478 48.732 10.945 70.342

eABE 7 12 981 3.422 48.718 10.889 70.324

eabeAIC 7 12 981 3.422 48.718 10.889 70.324

eabeBIC 9 12 979 3.425 48.719 10.892 70.328

FE 136 542 322 3.054 35.812 10.521 61.809

BE 133 530 337 2.379 37.128 9.846 62.140

SE 136 543 321 3.099 35.871 10.566 61.838

BEbic 402 542 56 9.112 37.128 16.578 62.140

BE0.2 104 453 443 3.070 39.148 10.537 62.140

BE0.05 289 606 105 6.321 30.718 13.788 61.291

Table 10: Simulation study for logistic regression: vif = 4, β = 0, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 89.275 94.438 90.127 94.182

Correct 0 1, 000 0 0 0 0.852 43.002

Full 0 0 1, 000 0.528 44.305 1.380 62.694

ABE 10 14 976 0.583 44.246 1.435 62.712

abeAIC 10 14 976 0.583 44.246 1.435 62.712

abeBIC 10 14 976 0.583 44.246 1.435 62.712

eABE 10 15 975 0.554 44.253 1.406 62.709

eabeAIC 10 15 975 0.554 44.253 1.406 62.709

eabeBIC 10 15 975 0.554 44.253 1.406 62.709

FE 87 541 372 2.504 32.870 3.356 55.931

BE 83 531 386 2.468 34.066 3.320 56.756

SE 87 541 372 2.508 32.879 3.360 55.930

BEbic 275 652 73 7.920 34.066 8.772 56.756

BE0.2 69 459 472 2.009 36.482 2.860 56.756

BE0.05 195 673 132 5.568 27.834 6.420 53.785

Results for logistic regression were quite di�erent from the results for linear regression.

Namely, bias of β̂1 was almost the same for ABE and stepwise selection methods; only

for one scenario it was considerably less in case we used ABE methods. Results were

the same for exact and approximated change in estimate. For all scenarios all ABE
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methods returned around 95% of in�ated models.

Here, results did not change so much as for linear regression when we changed the

sample size. From below �gures we see that the number of correct models was slightly

bigger for bigger sample size.

Figure 13: No. of selected models for logistic regression for n = 120

Figure 14: No. of selected models for logistic regression for n = 200

From the following bar-plots we can see how di�erent were results in case of logistic

regression when VIF was 2, β = 1 but we had three di�erent values of τ .
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Figure 15: No. of selected models for logistic regression for τ = 0.05

Figure 16: No. of selected models for logistic regression for τ = 0.10

Figure 17: No. of selected models for logistic regression for τ = 0.20

From this we can conclude that if we want to avoid tendency of ABE methods to



Babi¢ S. Developing statistical regression models by using variable selection techniques.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 64

in�ated models we have to set a high value for parameter τ. That is, we have to require

that the threshold value of change-in-estimated is more than 0.05.

To summarize, if we compare ABE method with the modi�ed ABE methods, that is

ABE using AIC or BIC, in case of logistic regression it turned out that the results

were the same for all ABE methods. By increasing the sample size results were still

the same. However, by changing the threshold value for the change-in-estimate there

were di�erences in the number of selected models among ABE methods. Namely, the

number of correct models was the largest in case of ABE-AIC method.
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8.3 Simulation Results for Cox Regression

Table 11: Simulation study for Cox regression: vif = 2, β = 1, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 -4.696 22.365 -0.084 20.011

Correct 0 1, 000 0 0 0 4.612 23.230

Full 0 0 1, 000 2.734 12.697 7.346 27.657

ABE 0 116 884 2.706 12.418 7.318 27.369

abeAIC 0 117 883 2.707 12.421 7.320 27.377

abeBIC 0 119 881 2.720 12.412 7.332 27.362

eABE 0 115 885 2.678 12.411 7.291 27.351

eabeAIC 0 116 884 2.673 12.412 7.286 27.355

eabeBIC 0 118 882 2.677 12.406 7.289 27.351

FE 4 560 436 1.447 9.575 6.060 26.074

BE 4 550 446 1.540 9.835 6.152 26.260

SE 4 560 436 1.447 9.575 6.060 26.074

BEbic 8 881 111 0.971 9.835 5.583 26.260

BE0.2 1 467 532 1.870 10.396 6.482 26.260

BE0.05 5 824 171 0.916 6.809 5.529 24.712

Table 12: Simulation study for Cox regression: vif = 2, β = 0, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 45.676 49.289 45.314 48.469

Correct 0 1, 000 0 0 0 -0.362 19.911

Full 0 0 1, 000 0.369 11.700 0.007 23.673

ABE 0 129 871 0.392 11.423 0.030 23.604

abeAIC 0 131 869 0.395 11.420 0.034 23.607

abeBIC 0 134 866 0.383 11.417 0.021 23.606

eABE 0 127 873 0.377 11.417 0.016 23.576

eabeAIC 0 128 872 0.380 11.414 0.018 23.578

eabeBIC 0 130 870 0.373 11.412 0.011 23.574

FE 0 583 417 0.059 8.792 -0.303 22.166

BE 0 569 431 0.008 9.033 -0.353 22.201

SE 0 584 416 0.056 8.791 -0.306 22.167

BEbic 5 884 111 0.225 9.033 -0.137 22.201

BE0.2 0 463 537 0.044 9.745 -0.318 22.201

BE0.05 2 816 182 0.150 6.235 -0.211 21.049
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Table 13: Simulation study for Cox regression: vif = 4, β = 1, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 25.390 37.294 30.010 38.730

Correct 0 1, 000 0 0 0 4.620 28.737

Full 0 0 1, 000 2.818 27.485 7.438 41.231

ABE 0 52 948 2.849 27.342 7.469 41.165

abeAIC 0 52 948 2.849 27.342 7.469 41.165

abeBIC 0 52 948 2.853 27.345 7.473 41.172

eABE 0 51 949 2.812 27.331 7.432 41.134

eabeAIC 0 51 949 2.812 27.331 7.432 41.134

eabeBIC 0 51 949 2.816 27.334 7.436 41.141

FE 5 578 417 1.557 19.293 6.177 35.288

BE 5 554 441 1.371 20.662 5.991 36.106

SE 5 578 417 1.587 19.312 6.207 35.266

BEbic 15 896 89 0.714 20.662 5.334 36.106

BE0.2 4 460 536 1.678 22.308 6.298 36.106

BE0.05 9 840 151 0.887 14.268 5.507 32.667

Table 14: Simulation study for Cox regression: vif = 4, β = 0, τ = 0.05

biased correct in�ated bias(β̂1)(×100) rmse(β̂1)(×100) bias(×100) rmse(×100)

Uni 1, 000 0 0 72.257 76.271 72.160 75.057

Correct 0 1, 000 0 0 0 -0.097 25.431

Full 0 0 1, 000 0.283 28.837 0.186 39.375

ABE 0 43 957 0.282 28.663 0.185 39.195

abeAIC 0 43 957 0.278 28.665 0.181 39.197

abeBIC 0 43 957 0.278 28.665 0.181 39.197

eABE 0 44 956 0.298 28.653 0.201 39.188

eabeAIC 0 44 956 0.298 28.653 0.201 39.188

eabeBIC 0 44 956 0.298 28.653 0.201 39.188

FE 5 550 445 0.853 21.169 0.756 33.825

BE 4 534 462 1.073 22.150 0.976 34.642

SE 5 550 445 0.853 21.169 0.756 33.825

BEbic 15 862 123 0.493 22.150 0.396 34.642

BE0.2 4 440 556 0.987 23.787 0.890 34.642

BE0.05 6 800 194 0.393 16.325 0.296 30.941

Results show that the bias in Cox regression after ABE methods for scenario β = 1

was larger in comparison with the stepwise methods but for scenario β = 0 was less.

Backward elimination outperformed ABE methods with regard to the number of correct

models. Results for exact and approximated change in estimate were almost the same.
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Figure 18: No. of selected models for Cox regression for n = 120

Figure 19: No. of selected models for Cox regression for n = 200

The results were better for bigger sample size. From the following bar-plots we can see

how di�erent were results in case of Cox regression when VIF was 2, β = 1, n = 120

but we had three di�erent values of τ .
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Figure 20: No. of selected models for Cox regression for τ = 0.05

Figure 21: No. of selected models for Cox regression for τ = 0.10

Figure 22: No. of selected models for Cox regression for τ = 0.20

As in case of the logistic regression it turned out that for bigger τ results are better.

This is because ABE methods with their default values of parameters (τ = 0.05)
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are allowing variables to enter the model. This can be seen as an advantage since

confounders will be detected. It is up to us to decide what is the best cut-o� percentage

of change in the exposure-e�ect estimate.

Also in case of Cox regression the results were the same for all ABE methods. When we

changed the threshold value for the change-in-estimate the number of correct models

was the largest in case of ABE-BIC method. This makes sense because if ABE methods

tend to choose in�ated models for Cox regression and since BIC is the strictest criterion

there are bigger chances that it will return more correct than in�ated models. By

changing the sample size from 120 to 200 results among ABE methods were the same.
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8.4 Simulation study with di�erent covariance struc-

ture of independent variables

We wanted to check what happens if the covariance structure of X1, . . . , X7 is de�ned

di�erently. We simulated seven independent standard normal variables X1, . . . , X7.

Dependent variable was de�ned as Y ∗ = β1X1 +β2X2 +β4X4 +β7X7. True model form

was Y = β1X1 + β2X2 + β4X4 + β7X7 + ε, where ε ∼ N(0, σ2). To simulate linear,

logistic and Cox regression we used the same procedure as in previous simulations. We

checked what is happening if β1 = β2 = β4 = β7 = 1, 0.5 or 0. We were using di�erent

values of σ. Namely, σ = 1, 0.5 and 2. Here, we were interested just in the number of

biased, correct and in�ated models, not in bias and RMSE of estimated coe�cients.

From the following 6 tables we can see the results for linear regression. It turned out

that results were similar for τ equal 0.05, 0.1 and 0.2, meaning that we did not have

�strong� confounders. We can notice that τ had in�uence on the �nal model if we

compare the results of ABE and BE method. On the other side, for this simulation

setup results among ABE methods were quite di�erent. Namely, ABE method based

on BIC criterion outperformed the other two ABE methods, but the results were the

same as in case BE based on BIC criterion. Even though ABE and BE methods can

give almost the same results, from here we can conclude ABE methods are more useful

for certain type of data, when we expect or we know that we have confounders. If we

do not have any subject matter knowledge, meaning that we can and we do not have

to have confounders among our variables, we suggest to use ABE methods, since for

sure they will not give worse results than backward elimination procedure.

De�ning Y as Y = β1X1 + β2X2 + β4X4 + β7X7 for βi, i = 1, 2, 4, 7 all equal 1, 0.5 or 0

had expected in�uence on �nal results. Namely, for βi = 1 for i = 1, 2, 4, 7 and βi =

0.5, i = 1, 2, 4, 7 the results were more or less the same. Small di�erence in the number

of in�ated models has been noticed. Namely, for case βi = 1 for i = 1, 2, 4, 7 there was

more in�ated models than in case when coe�cients were 0.5. When coe�cients were

all equal to 0 all methods for variable selection returned around 99% of biased models.

Again, approximated and exact ABE methods gave the same results.

From the following tables we can see those results for linear regression in case the sample

size was 120, τ = 0.05, βi for i = 1, 2, 4, 7 being 1 or 0.5 and for σ being 0.5, 1 and 2

indicating how much variability is in dependent variable.
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Table 15: Simulation study for linear regression: βi = 0.5 for i = 1, 2, 4, 7; τ = 0.05;σ =

0.5, 1, 2

σ = 0.5 σ = 1 σ = 2

biased correct in�ated biased correct in�ated biased correct in�ated

ABE 0 482 518 1 480 519 304 317 379

ABE AIC 0 570 430 1 559 440 364 343 293

ABE BIC 0 904 96 4 897 99 749 225 26

eABE 0 482 518 1 480 519 304 317 379

eABE AIC 0 570 430 1 559 440 364 343 293

eABE BIC 0 904 96 4 897 99 749 225 26

FE 0 571 429 1 559 440 367 340 293

BE 0 570 430 1 559 440 364 343 293

SE 0 571 429 1 559 440 368 341 291

BE bic 0 904 96 4 897 99 750 224 26

BE alpha 0.2 0 482 518 1 480 519 304 317 379

BE alpha 0.05 0 838 162 3 835 162 662 274 64

Table 16: Simulation study for linear regression: βi = 1 for i = 1, 2, 4, 7; τ = 0.05;σ =

0.5, 1, 2

σ = 0.5 σ = 1 σ = 2

biased correct in�ated biased correct in�ated biased correct in�ated

ABE 0 456 544 0 464 536 0 507 493

ABE AIC 0 539 461 0 551 449 0 590 410

ABE BIC 0 901 99 0 896 104 2 903 95

eABE 0 456 544 0 464 536 0 507 493

eABE AIC 0 539 461 0 551 449 0 590 410

eABE BIC 0 901 99 0 896 104 2 903 95

FE 0 543 457 0 553 447 0 592 408

BE 0 539 461 0 551 449 0 590 410

SE 0 543 457 0 553 447 0 592 408

BE bic 0 901 99 0 896 104 2 903 95

BE alpha 0.2 0 456 544 0 464 536 0 507 493

BE alpha 0.05 0 841 159 0 826 174 0 832 168
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Results for logistic regression were quite di�erent with regards to the previous simu-

lation setup. In the following tables we can see results in case the sample size was

120, τ = 0.05, βi = 1 for i = 1, 2, 4, 7 being 1 or 0.5 and for σ = 1. Again, for

βi = 1 for i = 1, 2, 4, 7 being 0 we got around 99% biased models.

Table 17: Simulation study for logistic regression: βi = 0.5 and 1 for i = 1, 2, 4, 7; τ =

0.05;σ = 1

β = 0.5 β = 1

biased correct in�ated biased correct in�ated

ABE 558 195 247 25 296 679

ABE AIC 612 187 201 26 311 663

ABE BIC 738 132 130 39 319 642

eABE 569 200 231 26 339 635

eABE AIC 632 186 182 29 361 610

eABE BIC 798 109 93 66 382 552

FE 671 196 133 46 543 411

BE 669 195 136 45 542 413

SE 671 196 133 46 543 411

BE bic 957 40 3 205 726 69

BE alpha 0.2 593 209 198 38 458 504

BE alpha 0.05 906 84 10 147 726 127

If we look at the results from previous simulation where for all scenarios the number of

in�ated models was around 90% we can conclude that of course covariance structure

of our variables can have great in�uence on any variable selection methods, meaning

that we can not speak in general about �good� method for selection of variables since

as we can see among others it depends on data set what will we get as a �nal model.

From the following table we see that there are di�erences in Cox regression for βi for i =

1, 2, 4, 7 being all 0.5 or 1. Comparing with the �rst part of simulation study where we

had βi = 1 for i = 1, 2, 4, 7 all equal 1 but di�erent covariance structure and as a result

around 95% of in�ated models we can conclude that covariance structure has its own

in�uence. We checked what happens for di�erent values of τ . Results are not presented

here but it turned out that by increasing the value of τ for case βi = 1 for i = 1, 2, 4, 7

equal 0.5 the number of biased models was considerably bigger and around 80% for τ

equal 0.1 and 0.2 if we used ABE BIC method.

Therefore, it does not hold in general that in Cox regression if we use bigger value of

τ we can expect correct model, since in can happen that the result is biased model.

That means, there is no general rule, there is no �recipe� for good �nal model when
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Table 18: Simulation study for Cox regression: βi = 0.5 and 1 for i = 1, 2, 4, 7; τ = 0.05;σ =

1

β = 0.5 β = 1

biased correct in�ated biased correct in�ated

ABE 303 263 434 1 347 652

ABE AIC 354 274 372 3 379 618

ABE BIC 559 213 228 6 427 567

eABE 304 263 433 1 353 646

eABE AIC 354 276 370 3 387 610

eABE BIC 568 204 228 7 441 552

FE 421 302 277 3 521 476

BE 415 305 280 3 515 482

SE 424 305 271 3 521 476

BE bic 794 175 31 26 842 132

BE alpha 0.2 337 285 378 1 440 559

BE alpha 0.05 699 233 68 11 796 193

it comes to variable selection. Everything depends on the data we have and on our

patience and careful work we have to invest in order to expect good results.
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9 Conclusion

We reviewed the most common variable selection procedures, their advantages and

disadvantages. Among others we presented augmented backward elimination method

recently proposed by Dunkler et al which is a combination of backward elimination

procedure and approximated change-in-estimate criterion. The method proposed by

Dunkler et al. is only available in SAS, so our aim was to make an R package which

will implement their method for several statistical models. Since this method chooses

variables based on their signi�cance and approximated change-in-estimated, we ex-

tended it such that information criteria AIC and BIC can also be used and that we

can choose between approximated and exact change-in-estimate. Also, extended aug-

mented backward elimination is available for all generalized linear models, not just for

logistic regression. We performed extensive simulation studies.

In general, for all scenarios for linear regression ABE methods lead to less biased

estimate of the variable of interest in comparison with other methods but stepwise

methods outperformed ABE methods in sense of the number of correct models. For

bigger sample size results were better.

Results for logistic regression were quite di�erent from the results for linear regression.

Namely, bias of β̂1 was almost the same for ABE and stepwise selection methods; only

for one scenario it was considerably less in case we used ABE methods. Results were

the same for exact and approximated change in estimate. For all scenarios all ABE

methods returned around 95% of in�ated models.

If we want to avoid tendency of ABE methods to in�ated models we have to set a

high value for parameter τ. That is, we have to require that the change in estimated

coe�cient is more than 5%. This can be seen as an advantage since confounders will

be detected. It is up to us to decide what is the best cut-of percentage of change in

the exposure-e�ect estimate. Similar results were in case of Cox regression.

We checked what happens if the covariance structure of independent variables is de�ned

di�erently but data are generated in the same way. In general, results were quite

di�erent, especially among ABE methods.

If we compare ABE method with the modi�ed ABE methods, that is ABE using AIC

or BIC as a criterion for the blacklist, we can conclude the following.

In case of the linear regression it turned out that results were similar for ABE and ABE
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method based on AIC. Namely, the number of correct models was slightly bigger in case

we used ABE-AIC method in comparison with the ABE method. For two scenarios

(VIF= 2) ABE lead to less biased estimate of β1, while for the other two (VIF= 4)

the bias of β̂1 was less in case of ABE-AIC method. At the same time ABE-AIC is

prone to choosing larger number of biased models than ABE method. This could be

seen as an disadvantage, since maybe it is better to have in�ated model than biased

one, because in case of biased model we know that at least one of the �important�

variables will not be in the model. As for the ABE-BIC method, we can say that

among ABE methods, the number of biased models was the largest for ABE-BIC. This

was expected, since BIC is more stringent than AIC, meaning that sometimes BIC

results in serious under�tting.

In case of logistic regression it turned out that the results were the same for all ABE

methods. For logistic regression by increasing the sample size results were still the

same. However, by changing the threshold value for the change-in-estimate there were

di�erences in the number of selected models among ABE methods. Namely, the number

of correct models was the largest in case of ABE-AIC method.

Also in case of Cox regression the results were the same for all ABE methods. Later,

when we changed the threshold value for the change-in-estimate the number of correct

models was the largest in case of ABE-BIC method. This makes sense because ABE

methods tend to choose in�ated models for Cox regression and since BIC is the strictest

criterion there are bigger chances that it will return more correct than in�ated models.

By changing the sample size from 120 to 200 results among ABE methods were the

same.

To conclude we would like to emphasize that there is no general rule, there is no �recipe�

for good model when it comes to variable selection. Everything depends on the data

we have and on our patience and careful work we have to invest in order to expect

good results. There is no single method that will give reliable results for every possible

situation. Sample size, correlation structure, cut-of percentage of change-in-estimate

are just some of the factors that can have in�uence on �nal model in variable selection

process.
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10 Povzetek naloge v slovenskem

jeziku

Trenutne raziskave na medicinskem podro£ju vklju£ujejo veliko ²tevilo potencijalnih

pojasnjevalnih spremenljivk. Cilj teh ²tudij je oceniti povezanost med pojasnjevalnimi

spremenljivkami in izidom. �e imamo na voljo velik nabor potencialnih pojasnjevalnih

spremenljivk, izbira najprimernej²ih spremenljivk modela na objektiven in prakti£en

na£in obi£ajno ni trivialna naloga. Pred kratkim so Dunkler et al. predlagali novo

metodo za izbiro spremenljivk - Augmented backward elimination [6].

Metoda je dostopna samo v programskem jeziku SAS, tako da je na² prvi cilj bil spro-

gramirati metodo tudi v programskem jeziku R. ABE metoda izbira spremenljivke

na podlagi zna£ilnosti in na podlagi standardizirane spremembe v oceni koe�cienta.

Pomembno je poudariti, da so Dunkler et al. predlagali aproksimacijo za spremembo

v oceni koe�cienta namesto eksaktnega izra£una. Ker nima teoreti£ne podpore na

podlagi katere bi vedli to£no kdaj je aproksimacija dobra, pri pripravi R funkcije smo

omogo£ili tudi uporabo eksaktnega izra£una. Potencialna teºava metode ABE je tudi,

da spremenljivke izbira na podlagi njihove zna£ilnosti. Nedavne raziskave s tega po-

dro£ja so pokazale, da izbira spremenljivk na podlagi drugih kriterij, kot sta na primer

Akaikejev informacijski kriterij (AIC) ali bayesovski informacijski kriterij (BIC), deluje

bolje. Zaradi tega, v nalogi smo predstavili posplo²itve metode ABE, katere omogo£ajo

tudi uporabo AIC in BIC.

V nalogi smo najprej predstavili problem izbire spremenljivk in obstoje£e metode za

izbiro spremenljivk in predstavili znane teºave, ki jih imajo te metode. Glede na to

da je metoda ABE sprogramirana za linearno, logisti£no in Cox regresijo, predstavili

smo posplo²ene linearne regresijske modele in Coxov model. Natan£no smo predstavili

metodo ABE kot tudi njene izbolj²ave. Predstavili smo R paket, oziroma kodo in

opis delovanja funkcije; kaj so argumenti in kaj funkcija izra£una. Na koncu smo s

simulacijami prikazali delovanje predlaganih izbolj²av metode ABE in jih primerjali z

osnovno metodo ABE ter s preostalimi metodami, ki so ºe sprogramirane v R.
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