A problem from the theory of distance-regular graphs Part II

Štefko Miklavič
University of Primorska
UP PINT and UP FAMNIT

March 1, 2011

Vsebina

(1) Distance-regular graphs - definition
(2) Distance-regular graphs-examples
(3) Basic properties of distance-regular graphs
(4) Q-polynomial distance-regular graphs
(5) The main problem

Notation

- Γ - finite, connected simple graph
- X - vertex set of Γ
- $d(x, y)$ - distance between $x, y \in X$
- D - diameter of Γ
- $\Gamma_{i}(x)=\{y \in X \mid d(x, y)=i\}\left(\Gamma(x):=\Gamma_{1}(x)\right)$

Distance partition

Pick $x \in X$ and let $D(x)$ denote the diameter of Γ wrt x. Then

$$
\left\{\Gamma_{0}(x), \Gamma_{1}(x), \ldots, \Gamma_{D(x)}(x)\right\}
$$

is a distance partition of X wrt x.

$\Gamma(x)$

Distance-regularity with respect to a vertex

Pick $x \in X$. Graph 「 is distance-regular wrt x, if for $0 \leq i \leq D(x)$ there exist nonnegative integers $a_{i}(x), b_{i}(x)$ in $c_{i}(x)$, such that for every $y \in \Gamma_{i}(x)$ we have

$$
\begin{gathered}
\left|\Gamma_{i-1}(x) \cap \Gamma(y)\right|=c_{i}(x) \\
\left|\Gamma_{i}(x) \cap \Gamma(y)\right|=a_{i}(x) \\
\left|\Gamma_{i+1}(x) \cap \Gamma(y)\right|=b_{i}(x)
\end{gathered}
$$

$c_{i}(x), a_{i}(x), b_{i}(x)$ - intersection numbers of $\Gamma(w r t x)$.

Distance-regularity with respect to a vertex

$$
\begin{aligned}
& c_{0}(x)=0, c_{1}(x)=1, c_{2}(x)=1 \\
& a_{0}(x)=0, a_{1}(x)=1, a_{2}(x)=1 \\
& b_{0}(x)=2, b_{1}(x)=1, b_{2}(x)=0
\end{aligned}
$$

Distance-regularity with respect to a vertex

$$
\begin{aligned}
& c_{0}(x)=0, c_{1}(x)=1, c_{2}(x)=1 \\
& a_{0}(x)=0, a_{1}(x)=1, a_{2}(x)=1 \\
& b_{0}(x)=2, b_{1}(x)=1, b_{2}(x)=0
\end{aligned}
$$

Note that we always have $c_{0}(x)=0, c_{1}(x)=1, a_{0}(x)=0$ and $b_{D(x)}=0$!

Distance-regularity with respect to a vertex

Not distance-regular with respect to y !

Distance-regular and distance-biregular graphs

Theorem

(Godsil \& Shawe-Taylor) Assume that Γ is distance-regular wrt every $x \in X$. Then exactly one of the following (i), (ii) holds:
(i) Diameter $D(x)$ and numbers $c_{i}(x)=c_{i}, a_{i}(x)=a_{i}$ in $b_{i}(x)=b_{i}$ are independent of the choice of x. In this case we call Γ distance-regular.
(ii) Graph Γ is bipartite, diameter $D(x)$ and numbers $c_{i}(x), a_{i}(x), b_{i}(x)$ depend only on bipartition set of x. In this case we call Γ distance-biregular.

Distance-regular and distance-biregular graphs

Theorem

(Godsil \& Shawe-Taylor) Assume that Γ is distance-regular wrt every $x \in X$. Then exactly one of the following (i), (ii) holds:
(i) Diameter $D(x)$ and numbers $c_{i}(x)=c_{i}, a_{i}(x)=a_{i}$ in $b_{i}(x)=b_{i}$ are independent of the choice of x. In this case we call Γ distance-regular.
(ii) Graph Γ is bipartite, diameter $D(x)$ and numbers $c_{i}(x), a_{i}(x), b_{i}(x)$ depend only on bipartition set of x. In this case we call Γ distance-biregular.

From now on we assume 「 is distance-regular!!!

Examples of drg

Line graph of Petersen graph:

Examples of drg

Johnson graphs

Let S denote a finite set with n elements and pick $0 \leq e \leq n$. Johnson graph $J(n, e)$ has for vertices all subsets of S with e elements. Two vertices x, y are adjacent if and only if $|x \cap y|=e-1$. Johnson graph $J(n, e)$ is distance-regular with $D=\min \{e, n-e\}, b_{i}=(e-i)(n-e-i), c_{i}=i^{2}$.

Distance-regular graphs - definition

Johnson graph $J(6,3)$

Examples of drg

Hamming graphs

For integers $n \geq 1$ and $q \geq 2$ let X denote the set of all sequences of length n and with elements in $\{0,1, \ldots, q-1\}$. Hamming graph $H(n, q)$ has vertex set X. Two vertices x, y are adjacent if and only if they differ in exactly one coordinate. Hamming graph $H(n, q)$ is distance-regular with $D=n, b_{i}=(n-i)(q-1), c_{i}=i$.

Hamming graph $H(4,2)$

Examples of drg

Grassmann graphs

Let \mathbb{F} denote a finite field with $|\mathbb{F}|=q$ and let V denote a n-dimensional vector space over \mathbb{F}. Pick $0 \leq e \leq n$. Grassmann graph $G(q, n, e)$ has for vertices all subspaces of V with dimension e. Two vertices x, y are adjacent if and only if $\operatorname{dim}(x \cap y)=e-1$. Grassmann graph $G(q, n, e)$ is distance-regular with
$D=\min \{e, n-e\}, b_{i}=q^{2 i+1} \frac{q^{e-i}-1}{q-1} \frac{q^{n-e-i}-1}{q-1}, c_{i}=\left(\frac{q^{i}-1}{q-1}\right)^{2}$.

Regularity

Theorem

Let Γ denote a distance-regular graph. Then:
(i) Γ is regular with valency $k=b_{0}$.
(ii) $c_{i}+a_{i}+b_{i}=k$ for every $0 \leq i \leq D$.
(iii) $a_{i}=k-c_{i}-b_{i}$ for every $0 \leq i \leq D$.

Cardinality of spheres

Theorem

Let Γ denote a distance-regular graph. Pick $x \in X$ and let
$k_{i}=\left|\Gamma_{i}(x)\right|=|\{y \in X \mid d(x, y)=i\}|(0 \leq i \leq D)$. Then $k_{0}=1$ and

$$
k_{i}=\frac{b_{0} b_{1} \cdots b_{i-1}}{c_{1} c_{2} \cdots c_{i}} \quad(1 \leq i \leq D)
$$

Bipartite distance-regular graphs

Theorem

Let Γ denote a distance-regular graph. Then Γ is bipartite if and only if $a_{i}=0$ for every $0 \leq i \leq D$.

Bipartite distance-regular graphs

Theorem

Let Γ denote a distance-regular graph. Then Γ is bipartite if and only if $a_{i}=0$ for every $0 \leq i \leq D$.

We call Γ almost bipartite if $a_{i}=0$ for $0 \leq i \leq D-1$ and $a_{D} \neq 0$.

Monotonicity

Theorem

Let Γ denote a distance-regular graph. Then:
(i) $b_{0}>b_{1} \geq b_{2} \geq b_{3} \geq \cdots \geq b_{D-1}$.
(ii) $c_{1} \leq c_{2} \leq \cdots \leq c_{D-1} \leq c_{D}$.
(iii) If $i+j \leq D$ then $c_{i} \leq b_{j}$.

Another (not so easy) example

Theorem

Let Γ denote a distance-regular graph with $b_{0} \geq 3$. If $b_{i}=1$ for some $i \leq D-1$ then the following hold.
(i) If $i+j \leq D$, then $c_{j}=1$ and $c_{i+j}>a_{j}$.
(ii) If $2 i \leq D$, then $c_{2 i}>1$.
(iii) If $2 i+j \leq D$, then $a_{j}=0$.
(iv) $a_{i} \geq\left(c_{2}-1\right) a_{i+1}+a_{1}$.

Q-polynomial distance-regular graphs

- Purely algebraic definition (via some matrices associated with the adjacency matrix of Γ).
- Majority of known distance-regular graphs are Q-polynomial (Johnson graphs, Hamming graphs, Grassmann graphs, ...)
- Lot of nice combinatorial properties.

Q-polynomial distance-regular graphs

- Purely algebraic definition (via some matrices associated with the adjacency matrix of Γ).
- Majority of known distance-regular graphs are Q-polynomial (Johnson graphs, Hamming graphs, Grassmann graphs, ...)
- Lot of nice combinatorial properties.

Theorem (H. Lewis, 2000)

The girth of a Q-polynomial distance-regular graph is at most 6 .

Distance-regular graphs - definition

The main problem

Problem

Classify Q-polynomial distance-regular graphs with girth 6!

The main problem

Problem

Classify Q-polynomial distance-regular graphs with girth 6!

Conjecture

Assume Г is Q-polynomial distance-regular graphs with girth 6. Then Γ is either

- generalized hexagon of order $(1, k-1)$, where $k=b_{0}$ is the valency of Γ, or
- the Odd graph on the set with cardinality $2 D+1$, where D is the diameter of Γ.

Girth 6

Assume from now on that Γ is Q-polynomial distance-regular graph with girth 6 . Then $D \geq 3, a_{1}=0, c_{2}=1$ and $a_{2}=0$. If $k=2$ then Γ is a cycle, therefore assume also $k \geq 3$.

Girth 6

Assume from now on that Γ is Q-polynomial distance-regular graph with girth 6 . Then $D \geq 3, a_{1}=0, c_{2}=1$ and $a_{2}=0$. If $k=2$ then Γ is a cycle, therefore assume also $k \geq 3$.

Theorem (Miklavic, 2004)

If $a_{1}=a_{2}=0$, then Γ is either bipartite or almost bipartite.

Case $D=3$

Theorem (Miklavic)

If $D=3$, then Γ is either

- generalized hexagon of order $(1, k-1)$, where $k=b_{0}$ is the valency of Γ (in this case Γ is bipartite), or
- the Odd graph on the set with cardinality 7 (in this case Γ is almost bipartite).

Case $D \geq 4$, almost bipartite

Theorem (Lang, Terwilliger)

If $D \geq 4$ and Γ is almost bipartite, then Γ is the Odd graph on the set with cardinality $2 D+1$.

Case $D \geq 12$, bipartite

Theorem (Caughman 2004)

Assume Γ is bipartite with $D \geq 12$. Then exactly one of the following hold:

- 「 is the Hamming graph $H(D, 2)$ - the D-dimensional hypercube;
- 「 is the antipodal quotient of $H(2 D, 2)$;
- $c_{i}=\left(q^{i}-1\right) /(q-1)$ for $1 \leq i \leq D$, where q is an integer at least 2.
In particular, $c_{2} \geq 2$ and the girth of Γ is 4 .

Distance-regular graphs - definition

Case $D \geq 6$, bipartite

Theorem (Miklavic)
 Assume Γ is bipartite with $D \geq 6$. Then $c_{2} \geq 2$ (and therefore the girth of Γ is 4).

Case $D \geq 6$, bipartite

Theorem (Miklavic)

Assume Γ is bipartite with $D \geq 6$. Then $c_{2} \geq 2$ (and therefore the girth of Γ is 4).

The proofs of the above two theorems use the Terwilliger algebra of a Q-polynomial distance-regular graph. The proofs don't work for the cases $D=4$ and $D=5$.

Cases $D=4$ and $D=5$ - an alternative approach

Theorem (Miklavic)

Assume Γ is bipartite with $c_{2}=1$. Then

- $c_{i+1}-1$ divides $c_{i}\left(c_{i}-1\right)$ for $2 \leq i \leq D-1$;
- $b_{i-1}-1$ divides $b_{i}\left(b_{i}-1\right)$ for $1 \leq i \leq D-1$.

Moreover, $b_{D-1} \geq 2$.

Case $D=4$ - an alternative approach

Theorem (Miklavic 2007)

There is no Q-polynomial bipartite distance-regular graph with $D=4$ and $c_{2}=1$.

Case $D=5$ - an alternative approach

Step one: find all integers $b_{0}>b_{3} \geq b_{4}$ such that

- $b_{0}-1$ divides $b_{3}\left(b_{3}-1\right)$;
- b_{3} divides $b_{4}\left(b_{4}-1\right)$;
- $b_{0}-b_{4}-1$ divides $\left(b_{0}-b_{3}\right)\left(b_{0}-b_{3}-1\right)$;
- $b_{0}-1$ divides $\left(b_{0}-b_{4}\right)\left(b_{0}-b_{4}-1\right)$

Cases $D=5$ - an alternative approach

Step two: show that there is no bipartite Q-polynomial graph with girth 6 and with the above intersection numbers.

Cases $D=5$ - an alternative approach

I am almost sure that I can prove that $b_{4} \neq b_{3}-1$.

Cases $D=5$ - an alternative approach

Up to 10000 there is only one example: $b_{0}=7568, b_{3}=6111$, $b_{4}=3290$.

