> A problem from the theory of distance-regular graphs Part II

Štefko Miklavič

University of Primorska UP PINT and UP FAMNIT

March 1, 2011

A 3 b

Vsebina

- 1 Distance-regular graphs definition
- 2 Distance-regular graphs examples
- 3 Basic properties of distance-regular graphs
- Q-polynomial distance-regular graphs
- 5 The main problem

伺 ト イ ヨ ト イ ヨ

Notation

- Γ finite, connected simple graph
- X vertex set of Γ
- d(x,y) distance between $x,y \in X$
- D diameter of Γ
- $\Gamma_i(x) = \{y \in X \mid d(x, y) = i\} \ (\Gamma(x) := \Gamma_1(x))$

- 4 同 6 4 日 6 4 日 6

Distance partition

Pick $x \in X$ and let D(x) denote the diameter of Γ wrt x. Then

$$\{\Gamma_0(x),\Gamma_1(x),\ldots,\Gamma_{D(x)}(x)\}$$

is a distance partition of X wrt x.

Štefko Miklavič A problem from the theory of distance-regular graphs Part II

Distance-regularity with respect to a vertex

Pick $x \in X$. Graph Γ is *distance-regular wrt* x, if for $0 \le i \le D(x)$ there exist nonnegative integers $a_i(x)$, $b_i(x)$ in $c_i(x)$, such that for every $y \in \Gamma_i(x)$ we have

$$|\Gamma_{i-1}(x) \cap \Gamma(y)| = c_i(x)$$
$$|\Gamma_i(x) \cap \Gamma(y)| = a_i(x)$$
$$|\Gamma_{i+1}(x) \cap \Gamma(y)| = b_i(x)$$

 $c_i(x), a_i(x), b_i(x)$ - intersection numbers of Γ (wrt x).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Distance-regularity with respect to a vertex

$$c_0(x) = 0, c_1(x) = 1, c_2(x) = 1,$$

 $a_0(x) = 0, a_1(x) = 1, a_2(x) = 1,$

$$b_0(x) = 2$$
, $b_1(x) = 1$, $b_2(x) = 0$.

Distance-regularity with respect to a vertex

$$c_0(x) = 0, c_1(x) = 1, c_2(x) = 1,$$

 $a_0(x) = 0, a_1(x) = 1, a_2(x) = 1,$
 $b_0(x) = 2, b_1(x) = 1, b_2(x) = 0.$

Note that we always have $c_0(x) = 0$, $c_1(x) = 1$, $a_0(x) = 0$ and $b_{D(x)} = 0!$

Distance-regularity with respect to a vertex

Not distance-regular with respect to *y*!

Štefko Miklavič A problem from the theory of distance-regular graphs Part II

Distance-regular and distance-biregular graphs

Theorem

(Godsil & Shawe-Taylor) Assume that Γ is distance-regular wrt every $x \in X$. Then exactly one of the following (i), (ii) holds:

- (i) Diameter D(x) and numbers c_i(x) = c_i, a_i(x) = a_i in b_i(x) = b_i are independent of the choice of x. In this case we call Γ distance-regular.
- (ii) Graph Γ is bipartite, diameter D(x) and numbers
 c_i(x), a_i(x), b_i(x) depend only on bipartition set of x. In this case we call Γ distance-biregular.

・ロト ・同ト ・ヨト ・ヨト

Distance-regular and distance-biregular graphs

Theorem

(Godsil & Shawe-Taylor) Assume that Γ is distance-regular wrt every $x \in X$. Then exactly one of the following (i), (ii) holds:

- (i) Diameter D(x) and numbers c_i(x) = c_i, a_i(x) = a_i in b_i(x) = b_i are independent of the choice of x. In this case we call Γ distance-regular.
- (ii) Graph Γ is bipartite, diameter D(x) and numbers
 c_i(x), a_i(x), b_i(x) depend only on bipartition set of x. In this case we call Γ distance-biregular.

From now on we assume Γ is distance-regular!!!

- 4 同 6 4 日 6 4 日 6

Examples of drg

Line graph of Petersen graph:

Image: Image:

Examples of drg

Johnson graphs

Let S denote a finite set with n elements and pick $0 \le e \le n$. Johnson graph J(n, e) has for vertices all subsets of S with e elements. Two vertices x, y are adjacent if and only if $|x \cap y| = e - 1$. Johnson graph J(n, e) is distance-regular with $D = \min\{e, n - e\}, b_i = (e - i)(n - e - i), c_i = i^2$.

- 4 同 6 4 日 6 4 日 6

Johnson graph J(6,3)

Štefko Miklavič A problem from the theory of distance-regular graphs Part II

Examples of drg

Hamming graphs

For integers $n \ge 1$ and $q \ge 2$ let X denote the set of all sequences of length n and with elements in $\{0, 1, \ldots, q-1\}$. Hamming graph H(n, q) has vertex set X. Two vertices x, y are adjacent if and only if they differ in exactly one coordinate. Hamming graph H(n, q) is distance-regular with D = n, $b_i = (n - i)(q - 1)$, $c_i = i$.

- 4 同 6 4 日 6 4 日 6

Hamming graph H(4,2)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Examples of drg

Grassmann graphs

Let \mathbb{F} denote a finite field with $|\mathbb{F}| = q$ and let V denote a *n*-dimensional vector space over \mathbb{F} . Pick $0 \le e \le n$. Grassmann graph G(q, n, e) has for vertices all subspaces of V with dimension e. Two vertices x, y are adjacent if and only if dim $(x \cap y) = e - 1$. Grassmann graph G(q, n, e) is distance-regular with

$$D = \min\{e, n - e\}, \ b_i = q^{2i+1} \frac{q^{e-i}-1}{q-1} \frac{q^{n-e-i}-1}{q-1}, \ c_i = \left(\frac{q^i-1}{q-1}\right)^2.$$

- 4 周 ト 4 月 ト 4 月

Theorem

Let Γ denote a distance-regular graph. Then: (i) Γ is regular with valency $k = b_0$. (ii) $c_i + a_i + b_i = k$ for every $0 \le i \le D$. (iii) $a_i = k - c_i - b_i$ for every $0 \le i \le D$.

(日) (同) (三) (三)

Cardinality of spheres

Theorem

Let Γ denote a distance-regular graph. Pick $x \in X$ and let $k_i = |\Gamma_i(x)| = |\{y \in X \mid d(x, y) = i\}| \ (0 \le i \le D)$. Then $k_0 = 1$ and

$$k_i = \frac{b_0 b_1 \cdots b_{i-1}}{c_1 c_2 \cdots c_i} \qquad (1 \le i \le D)$$

- 4 同 6 4 日 6 4 日 6

Bipartite distance-regular graphs

Theorem

Let Γ denote a distance-regular graph. Then Γ is bipartite if and only if $a_i = 0$ for every $0 \le i \le D$.

- 4 同 ト 4 ヨ ト 4 ヨ

Bipartite distance-regular graphs

Theorem

Let Γ denote a distance-regular graph. Then Γ is bipartite if and only if $a_i = 0$ for every $0 \le i \le D$.

We call Γ almost bipartite if $a_i = 0$ for $0 \le i \le D - 1$ and $a_D \ne 0$.

▲□ ▶ ▲ □ ▶ ▲ □

Monotonicity

Theorem

Let Γ denote a distance-regular graph. Then: (i) $b_0 > b_1 \ge b_2 \ge b_3 \ge \cdots \ge b_{D-1}$. (ii) $c_1 \le c_2 \le \cdots \le c_{D-1} \le c_D$. (iii) If $i + j \le D$ then $c_i \le b_j$.

Another (not so easy) example

Theorem

Let Γ denote a distance-regular graph with $b_0 \ge 3$. If $b_i = 1$ for some $i \le D - 1$ then the following hold. (i) If $i + j \le D$, then $c_j = 1$ and $c_{i+j} > a_j$. (ii) If $2i \le D$, then $c_{2i} > 1$. (iii) If $2i + j \le D$, then $a_j = 0$. (iv) $a_i \ge (c_2 - 1)a_{i+1} + a_1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Q-polynomial distance-regular graphs

- Purely algebraic definition (via some matrices associated with the adjacency matrix of Γ).
- Majority of known distance-regular graphs are *Q*-polynomial (Johnson graphs, Hamming graphs, Grassmann graphs, ...)
- Lot of nice combinatorial properties.

伺 ト イ ヨ ト イ ヨ ト

Q-polynomial distance-regular graphs

- Purely algebraic definition (via some matrices associated with the adjacency matrix of Γ).
- Majority of known distance-regular graphs are *Q*-polynomial (Johnson graphs, Hamming graphs, Grassmann graphs, ...)
- Lot of nice combinatorial properties.

Theorem (H. Lewis, 2000)

The girth of a Q-polynomial distance-regular graph is at most 6.

・ロト ・同ト ・ヨト ・ヨト

The main problem

Problem

Classify Q-polynomial distance-regular graphs with girth 6!

・ 同 ト ・ ヨ ト ・ ヨ

The main problem

Problem

Classify Q-polynomial distance-regular graphs with girth 6!

Conjecture

Assume Γ is Q-polynomial distance-regular graphs with girth 6. Then Γ is either

- generalized hexagon of order (1, k 1), where k = b₀ is the valency of Γ, or
- the Odd graph on the set with cardinality 2D + 1, where D is the diameter of Γ .

(日) (同) (三) (三)

Girth 6

Assume from now on that Γ is *Q*-polynomial distance-regular graph with girth 6. Then $D \ge 3$, $a_1 = 0$, $c_2 = 1$ and $a_2 = 0$. If k = 2 then Γ is a cycle, therefore assume also $k \ge 3$.

同 ト イ ヨ ト イ ヨ ト

Girth 6

Assume from now on that Γ is *Q*-polynomial distance-regular graph with girth 6. Then $D \ge 3$, $a_1 = 0$, $c_2 = 1$ and $a_2 = 0$. If k = 2 then Γ is a cycle, therefore assume also $k \ge 3$.

Theorem (Miklavic, 2004)

If $a_1 = a_2 = 0$, then Γ is either bipartite or almost bipartite.

- 4 同 6 4 日 6 4 日 6

Case D = 3

Theorem (Miklavic)

If D = 3, then Γ is either

- generalized hexagon of order (1, k − 1), where k = b₀ is the valency of Γ (in this case Γ is bipartite), or
- the Odd graph on the set with cardinality 7 (in this case Γ is almost bipartite).

Case $D \ge 4$, almost bipartite

Theorem (Lang, Terwilliger)

If $D \ge 4$ and Γ is almost bipartite, then Γ is the Odd graph on the set with cardinality 2D + 1.

・ 同 ト ・ ヨ ト ・ ヨ

Case $D \ge 12$, bipartite

Theorem (Caughman 2004)

Assume Γ is bipartite with $D \ge 12$. Then exactly one of the following hold:

- Γ is the Hamming graph H(D, 2) the D-dimensional hypercube;
- Γ is the antipodal quotient of H(2D, 2);
- $c_i = (q^i 1)/(q 1)$ for $1 \le i \le D$, where q is an integer at least 2.

In particular, $c_2 \ge 2$ and the girth of Γ is 4.

(日)

Case $D \ge 6$, bipartite

Theorem (Miklavic)

Assume Γ is bipartite with $D \ge 6$. Then $c_2 \ge 2$ (and therefore the girth of Γ is 4).

Case $D \ge 6$, bipartite

Theorem (Miklavic)

Assume Γ is bipartite with $D \ge 6$. Then $c_2 \ge 2$ (and therefore the girth of Γ is 4).

The proofs of the above two theorems use the Terwilliger algebra of a Q-polynomial distance-regular graph. The proofs don't work for the cases D = 4 and D = 5.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Cases D = 4 and D = 5 - an alternative approach

Theorem (Miklavic)

Assume Γ is bipartite with $c_2 = 1$. Then

- $c_{i+1} 1$ divides $c_i(c_i 1)$ for $2 \le i \le D 1$;
- $b_{i-1} 1$ divides $b_i(b_i 1)$ for $1 \le i \le D 1$.

Moreover, $b_{D-1} \ge 2$.

- 4 同 6 4 日 6 4 日 6

Case D = 4 - an alternative approach

Theorem (Miklavic 2007)

There is no Q-polynomial bipartite distance-regular graph with D = 4 and $c_2 = 1$.

- 4 同 ト 4 ヨ ト 4 ヨ

Case D = 5 - an alternative approach

Step one: find all integers $b_0 > b_3 \ge b_4$ such that

•
$$b_0 - 1$$
 divides $b_3(b_3 - 1)$;

- *b*₃ divides *b*₄(*b*₄ − 1);
- $b_0 b_4 1$ divides $(b_0 b_3)(b_0 b_3 1)$;
- $b_0 1$ divides $(b_0 b_4)(b_0 b_4 1)$

伺 ト イ ヨ ト イ ヨ ト

Cases D = 5 - an alternative approach

Step two: show that there is no bipartite Q-polynomial graph with girth 6 and with the above intersection numbers.

同 ト イ ヨ ト イ ヨ ト

Cases D = 5 - an alternative approach

I am almost sure that I can prove that $b_4 \neq b_3 - 1$.

/□ ▶ < 글 ▶ < 글

Cases D = 5 - an alternative approach

Up to 10000 there is only one example: $b_0 = 7568$, $b_3 = 6111$, $b_4 = 3290$.

・ 同 ト ・ ヨ ト ・ ヨ