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Separators and separability

G - a (simple, finite, undirected) graph
a,b - two vertices of G

An (a,b)-separator is a set S ⊆ V (G) such that a and b are in
different connected components of G − S.

a b

S

Separability of {a,b}: the smallest size of an (a,b)-separator.
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G - a (simple, finite, undirected) graph
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An (a,b)-separator is a set S ⊆ V (G) such that a and b are in
different connected components of G − S.

a b

S
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Separators and separability

G - a (simple, finite, undirected) graph
a,b - two vertices of G

An (a,b)-separator is a set S ⊆ V (G) such that a and b are in
different connected components of G − S.

c

d

S

S

separability(c,d) = 3
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Separability of graphs

The separability of a graph G is the maximum over all
separabilities of non-adjacent vertex pairs...

a graph of separability 3

... unless G is complete, in which case we define
separability(G) = 0.
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Menger’s Theorem and separability

By Menger’s Theorem,

separability(a,b) = min size of an (a,b)-separator
= max # internally vertex-disjoint (a,b)-paths.

Therefore, for a non-complete graph G,

separability(G) = max # internally vertex-disjoint paths
connecting two non-adjacent vertices in G.
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Graphs of bounded separability

For k ≥ 0, let

Gk = {G : separability(G) ≤ k} .

Graphs in Gk :

generalize graphs of maximum degree k ,

generalize pairwise k-separable graphs,

G.L. Miller, Isomorphism of graphs which are pairwise k -separable. Informat. and Control 56 (1983) 21–33.

are related to the parsimony haplotyping problem from
computational biology.
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The main question

Can we characterize graphs of separability at most k,
at least for small values of k?
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Structure of graphs in G0 and G1

Graphs of separability 0 = disjoint unions of complete graphs

Graphs of separability at most 1 = block graphs: graphs every
block of which is complete.
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Outline

G2, graphs of separability at most 2:

generalize complete graphs, trees, cycles, block-cactus
graphs

characterizations

algorithmic and complexity results

Graphs in Gk :

connection to the parsimony haplotyping problem
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Characterizations
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A structure theorem

Complete graphs, cycles are in G2.
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A structure theorem

Complete graphs, cycles are in G2.

Theorem
A connected graph G is in G2 if and only if G arises from
complete graphs and cycles by pasting along vertices or edges.
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Some consequences of the structure result

Corollary

Every graph in G2 contains either a simplicial vertex or two
adjacent vertices of degree 2.

v ∈ V (G) is simplicial if its neighborhood is a clique.

Corollary

Graphs in G2 are χ-bounded:
There exists a function f such that for every G ∈ G2,

χ(G) ≤ f (ω(G)) .
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Some consequences of the structure result

Is tree-width of graphs in G2 bounded by a constant?

No ∵ complete graphs are in G2.

Corollary

For every G ∈ G2,

tw(G) ≤ max{2, ω(G)− 1} .

(This is best possible: no similar result holds for G3.)
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Cicalese–Milani č Graphs of separability at most two



Characterization by forbidden induced subgraphs

induced minor of G: a graph obtained from G by vertex
deletions
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Characterization by forbidden induced subgraphs

induced minor of G: a graph obtained from G by vertex
deletions

Theorem

G2 = {K−

5 , 3PC, wheels}-induced-subgraph-free graphs.

K
−

5 wheel

︸ ︷︷ ︸

3PC
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Characterization by forbidden induced minors

induced minor of G: a graph obtained from G by vertex
deletions and edge contractions
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Characterization by forbidden induced minors

induced minor of G: a graph obtained from G by vertex
deletions and edge contractions

Theorem

G2 = {K2,3,F5,W4,K
−

5 }-induced-minor-free graphs.

K−

5
K2,3 W4F5
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This is best possible

Theorem

Gk is closed under induced minors if and only if k ≤ 2.

a graph from G3 contracted to a graph of separability 6
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Algorithms and complexity
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Good news

Some problems are solvable in polynomial time for graphs in
Gk , for every k :

recognition
– O(|V (G)|2) max flow computations

finding a maximum weight clique
– polynomially many maximal cliques
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Good news

For graphs in G2, the structure theorem leads to polytime
algorithms for:

maximum weight independent set (NP-hard for G3)

coloring (NP-hard for G3)

The algorithms are based on the decomposition by clique
separators.

Whitesides 1981, Tarjan 1985
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Not so good news

Is clique-width of graphs in G2 bounded by a constant?

Proposition

Graphs in G2 are of unbounded clique-width.

Proposition

The following problems are NP-complete:

The dominating set problem for graphs in G2.

The simple max cut problem for graphs in G2.

The 3-colorability problem for graphs in G3

(planar, of maximum degree 6).
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Connection to the
parsimony haplotyping problem
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A problem from computational biology

PARSIMONY HAPLOTYPING:

Given: a set of n vectors in {0,1,2}m (genotypes).

Task: find the minimum size of a set of vectors in
{0,1}m (haplotypes) such that every genotype can be
expressed as the sum of two haplotypes from the set.

Addition rules: 0 + 0 = 0, 1 + 1 = 1, 0 + 1 = 1 + 0 = 2
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A problem from computational biology

Compatibility graph G: the graph with
V (G) = {genotypes} and
E(G) = {gg′ : ∄r such that {gr ,g′

r} = {0,1}}.

012

122

200

201

121
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Connection to separability

A parsimony haplotyping instance is k-bounded if in every
coordinate, at most k genotypes contain a 2.

Theorem

Gk = {compatibility graphs of k-bounded PH instances}.

G1 G2 G3

PARSIMONY HAPLOTYPING polynomial ? NP-complete

van Iersel–Keijsper–Kelk–Stougie 2008
Sharan–Halldórsson–Istrail 2006
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Some open problems

For k ≥ 3, characterize graphs in Gk in terms of:

forbidden induced subgraphs,

decomposition properties.

For k ≥ 3, determine whether graphs in Gk are χ-bounded.

Determine the complexity of:

the independent domination problem for graphs in G2,

2-bounded parsimony haplotyping.
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Conclusion

Separators of size at most 2 sometimes help...

decomposition along separating cliques of size at most two
into cycles and complete graphs,

tw(G) ≤ f (ω(G)),

χ(G) ≤ f (ω(G)).

...but not always:

dominating set is NP-complete,

simple max cut is NP-complete,

clique-width is unbounded.
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The end

HVALA ZA POZORNOST
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