Graphs of separability at most two: structural characterizations and their consequences

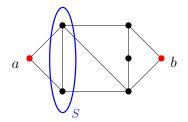
Ferdinando Cicalese¹ Martin Milanič²

¹DIA, University of Salerno, Fisciano, Italy

²FAMNIT in PINT, Univerza na Primorskem

Raziskovalni matematični seminar, FAMNIT, 18. oktober 2010

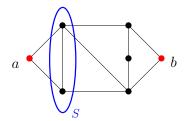
An (a, b)-separator is a set $S \subseteq V(G)$ such that a and b are in different connected components of G - S.



Separability of $\{a, b\}$: the smallest size of an (a, b)-separator.

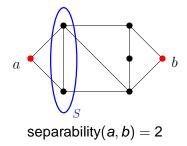
Cicalese–Milanič Graphs of separability at most two

An (a, b)-separator is a set $S \subseteq V(G)$ such that a and b are in different connected components of G - S.

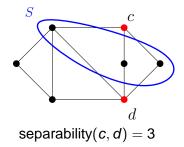


Separability of $\{a, b\}$: the smallest size of an (a, b)-separator.

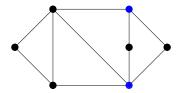
An (a, b)-separator is a set $S \subseteq V(G)$ such that a and b are in different connected components of G - S.



An (a, b)-separator is a set $S \subseteq V(G)$ such that a and b are in different connected components of G - S.



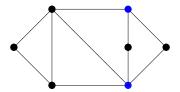
The separability of a graph *G* is the maximum over all separabilities of non-adjacent vertex pairs...



a graph of separability 3

... unless G is complete, in which case we define separability(G) = 0.

The separability of a graph *G* is the maximum over all separabilities of non-adjacent vertex pairs...



a graph of separability 3

... unless G is complete, in which case we define separability(G) = 0.

By Menger's Theorem,

separability(a, b) = min size of an (a, b)-separator

= max # internally vertex-disjoint (a, b)-paths.

Therefore, for a non-complete graph G,

separability(G) = max # internally vertex-disjoint paths
connecting two non-adjacent vertices in G.

By Menger's Theorem,

separability(a, b) = min size of an (a, b)-separator

= max # internally vertex-disjoint (a, b)-paths.

Therefore, for a non-complete graph G,

separability(G) = max # internally vertex-disjoint paths connecting two non-adjacent vertices in G.

$\mathcal{G}_k = \{ \mathbf{G} : separability(\mathbf{G}) \leq k \}.$

Graphs in \mathcal{G}_k :

- generalize graphs of maximum degree k,
- generalize pairwise k-separable graphs,

G.L. Miller, Isomorphism of graphs which are pairwise k-separable. Informat. and Control 56 (1983) 21–33.

 $\mathcal{G}_k = \{ \mathbf{G} : separability(\mathbf{G}) \leq k \}.$

Graphs in \mathcal{G}_k :

- generalize graphs of maximum degree k,
- generalize pairwise k-separable graphs,

G.L. Miller, Isomorphism of graphs which are pairwise k-separable. Informat. and Control 56 (1983) 21–33.

 $\mathcal{G}_k = \{ \mathbf{G} : separability(\mathbf{G}) \leq k \}.$

Graphs in \mathcal{G}_k :

- generalize graphs of maximum degree k,
- generalize pairwise k-separable graphs,

G.L. Miller, Isomorphism of graphs which are pairwise k-separable. Informat. and Control 56 (1983) 21-33.

 $\mathcal{G}_k = \{ \mathbf{G} : separability(\mathbf{G}) \leq k \}.$

Graphs in \mathcal{G}_k :

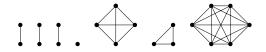
- generalize graphs of maximum degree k,
- generalize pairwise k-separable graphs,

G.L. Miller, Isomorphism of graphs which are pairwise k-separable. Informat. and Control 56 (1983) 21-33.

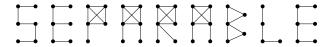
Can we characterize graphs of separability at most k, at least for small values of k?

Structure of graphs in \mathcal{G}_0 and \mathcal{G}_1

Graphs of separability 0 = disjoint unions of complete graphs



Graphs of separability at most 1 = block graphs: graphs every block of which is complete.



Outline

\mathcal{G}_2 , graphs of separability at most 2:

- generalize complete graphs, trees, cycles, block-cactus graphs
- characterizations
- algorithmic and complexity results

Graphs in \mathcal{G}_k :

connection to the parsimony haplotyping problem

Outline

\mathcal{G}_2 , graphs of separability at most 2:

- generalize complete graphs, trees, cycles, block-cactus graphs
- characterizations
- algorithmic and complexity results

Graphs in \mathcal{G}_k :

connection to the parsimony haplotyping problem

Characterizations

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Corollary

Every graph in G_2 contains either a simplicial vertex or two adjacent vertices of degree 2.

 $v \in V(G)$ is simplicial if its neighborhood is a clique.

Corollary

Graphs in \mathcal{G}_2 are χ -bounded: There exists a function f such that for every $\mathbf{G} \in \mathcal{G}_2$,

 $\chi(\mathbf{G}) \leq f(\omega(\mathbf{G})).$

Corollary

Every graph in G_2 contains either a simplicial vertex or two adjacent vertices of degree 2.

 $v \in V(G)$ is simplicial if its neighborhood is a clique.

Corollary

Graphs in \mathcal{G}_2 are χ -bounded: There exists a function f such that for every $\mathbf{G} \in \mathcal{G}_2$,

 $\chi(\mathbf{G}) \leq f(\omega(\mathbf{G}))$.

Is tree-width of graphs in \mathcal{G}_2 bounded by a constant?

No \therefore complete graphs are in \mathcal{G}_2 .

Corollary

For every $G \in \mathcal{G}_2$,

 $tw(G) \leq \max\{2, \omega(G) - 1\}.$

(This is best possible: no similar result holds for G_3 .)

Is tree-width of graphs in \mathcal{G}_2 bounded by a constant?

No \therefore complete graphs are in \mathcal{G}_2 .

```
Corollary
For every G \in \mathcal{G}_2,tw(G) \leq \max\{2, \omega(G) - 1\}.
```

(This is best possible: no similar result holds for \mathcal{G}_3 .)

Is tree-width of graphs in \mathcal{G}_2 bounded by a constant?

No \therefore complete graphs are in \mathcal{G}_2 .

Corollary

For every $G \in \mathcal{G}_2$,

$$tw(G) \leq \max\{2, \omega(G) - 1\}.$$

(This is best possible: no similar result holds for $G_{3.}$)

Characterization by forbidden induced subgraphs

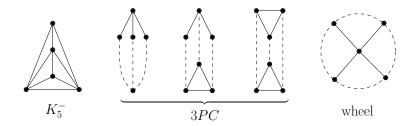
induced minor of G: a graph obtained from G by vertex deletions

Characterization by forbidden induced subgraphs

induced minor of G: a graph obtained from G by vertex deletions

Theorem

 $\mathcal{G}_2 = \{K_5^-, 3PC, wheels\}$ -induced-subgraph-free graphs.



Characterization by forbidden induced minors

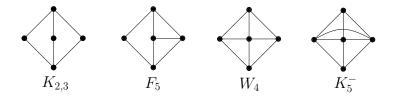
induced minor of G: a graph obtained from G by vertex deletions and edge contractions

Characterization by forbidden induced minors

induced minor of G: a graph obtained from G by vertex deletions and edge contractions

Theorem

 $\mathcal{G}_2 = \{\textit{K}_{2,3},\textit{F}_5,\textit{W}_4,\textit{K}_5^-\}\text{-induced-minor-free graphs}.$



Theorem

 \mathcal{G}_k is closed under induced minors if and only if $k \leq 2$.

a graph from \mathcal{G}_3 contracted to a graph of separability 6

Algorithms and complexity

Some problems are solvable in polynomial time for graphs in \mathcal{G}_k , for every *k*:

- recognition
 - $O(|V(G)|^2)$ max flow computations
- finding a maximum weight clique
 - polynomially many maximal cliques

Some problems are solvable in polynomial time for graphs in \mathcal{G}_k , for every *k*:

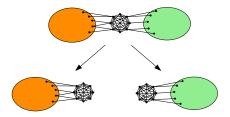
- recognition
 - $O(|V(G)|^2)$ max flow computations
- finding a maximum weight clique
 - polynomially many maximal cliques

Good news

For graphs in \mathcal{G}_2 , the structure theorem leads to polytime algorithms for:

- maximum weight independent set (NP-hard for \mathcal{G}_3)
- coloring (NP-hard for \mathcal{G}_3)

The algorithms are based on the decomposition by clique separators.



Whitesides 1981, Tarjan 1985

Not so good news

Is clique-width of graphs in \mathcal{G}_2 bounded by a constant?

Proposition

Graphs in \mathcal{G}_2 are of unbounded clique-width.

Proposition

- The dominating set problem for graphs in G₂.
- The simple max cut problem for graphs in \mathcal{G}_2 .
- The 3-colorability problem for graphs in *G*₃ (planar, of maximum degree 6).

Proposition

Graphs in \mathcal{G}_2 are of unbounded clique-width.

Proposition

- The dominating set problem for graphs in G₂.
- The simple max cut problem for graphs in \mathcal{G}_2 .
- The 3-colorability problem for graphs in *G*₃ (planar, of maximum degree 6).

Proposition

Graphs in \mathcal{G}_2 are of unbounded clique-width.

Proposition

- The dominating set problem for graphs in \mathcal{G}_2 .
- The simple max cut problem for graphs in \mathcal{G}_2 .
- The 3-colorability problem for graphs in *G*₃ (planar, of maximum degree 6).

Proposition

Graphs in \mathcal{G}_2 are of unbounded clique-width.

Proposition

- The dominating set problem for graphs in \mathcal{G}_2 .
- The simple max cut problem for graphs in \mathcal{G}_2 .
- The 3-colorability problem for graphs in *G*₃ (planar, of maximum degree 6).

Proposition

Graphs in \mathcal{G}_2 are of unbounded clique-width.

Proposition

- The dominating set problem for graphs in \mathcal{G}_2 .
- The simple max cut problem for graphs in \mathcal{G}_2 .
- The 3-colorability problem for graphs in \mathcal{G}_3 (planar, of maximum degree 6).

Connection to the parsimony haplotyping problem

PARSIMONY HAPLOTYPING:

Given: a set of *n* vectors in $\{0, 1, 2\}^m$ (genotypes).

Task: find the minimum size of a set of vectors in $\{0, 1\}^m$ (*haplotypes*) such that every genotype can be expressed as the sum of two haplotypes from the set.

Addition rules: 0 + 0 = 0, 1 + 1 = 1, 0 + 1 = 1 + 0 = 2

A problem from computational biology

Compatibility graph *G*: the graph with $V(G) = \{\text{genotypes}\}$ and $E(G) = \{gg' : \nexists r \text{ such that } \{g_r, g'_r\} = \{0, 1\}\}.$

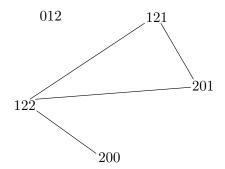
122

200

201

A problem from computational biology

Compatibility graph *G*: the graph with $V(G) = \{\text{genotypes}\}$ and $E(G) = \{gg' : \nexists r \text{ such that } \{g_r, g'_r\} = \{0, 1\}\}.$



A parsimony haplotyping instance is *k*-bounded if in every coordinate, at most *k* genotypes contain a 2.

Theorem

 $G_k = \{$ compatibility graphs of k-bounded PH instances $\}$.

van Iersel–Keijsper–Kelk–Stougie 2008 Sharan–Halldórsson–Istrail 2006 A parsimony haplotyping instance is k-bounded if in every coordinate, at most k genotypes contain a 2.

Theorem

 $\mathcal{G}_k = \{ \text{compatibility graphs of } k \text{-bounded PH instances} \}.$

van Iersel–Keijsper–Kelk–Stougie 2008 Sharan–Halldórsson–Istrail 2006 A parsimony haplotyping instance is k-bounded if in every coordinate, at most k genotypes contain a 2.

Theorem

 $\mathcal{G}_k = \{ \text{compatibility graphs of } k \text{-bounded PH instances} \}.$

	\mathcal{G}_1	\mathcal{G}_2	\mathcal{G}_{3}
PARSIMONY HAPLOTYPING	polynomial	?	NP-complete

van Iersel–Keijsper–Kelk–Stougie 2008 Sharan–Halldórsson–Istrail 2006 For $k \ge 3$, characterize graphs in \mathcal{G}_k in terms of:

- forbidden induced subgraphs,
- decomposition properties.

For $k \ge 3$, determine whether graphs in \mathcal{G}_k are χ -bounded.

Determine the complexity of:

- the independent domination problem for graphs in G₂,
- 2-bounded parsimony haplotyping.

For $k \ge 3$, characterize graphs in \mathcal{G}_k in terms of:

- forbidden induced subgraphs,
- decomposition properties.

For $k \geq 3$, determine whether graphs in \mathcal{G}_k are χ -bounded.

Determine the complexity of:

- the independent domination problem for graphs in \mathcal{G}_2 ,
- 2-bounded parsimony haplotyping.

For $k \ge 3$, characterize graphs in \mathcal{G}_k in terms of:

- forbidden induced subgraphs,
- decomposition properties.

For $k \ge 3$, determine whether graphs in \mathcal{G}_k are χ -bounded.

Determine the complexity of:

- the independent domination problem for graphs in \mathcal{G}_2 ,
- 2-bounded parsimony haplotyping.

Conclusion

Separators of size at most 2 sometimes help...

- decomposition along separating cliques of size at most two into cycles and complete graphs,
- $tw(G) \leq f(\omega(G))$,
- $\chi(\mathbf{G}) \leq f(\omega(\mathbf{G})).$

...but not always:

- dominating set is NP-complete,
- simple max cut is NP-complete,
- clique-width is unbounded.

HVALA ZA POZORNOST