# LINEAR CRYPTANALYSIS 

Samed Bajrić<br>UNIVERSITY OF PRIMORSKA

FAMNIT
06. June 2011.
(1) Introduction

- A Quick Review of DES
- Linear Cryptanalysis
(2) Mathematical Framework
- Substitution - Permutation Network
- Linear Attack on SPN
(3) Conclusion


## Data Encryption Standard (DES)-history

- The most famous and analyzed block cipher international banking standard
- Design criteria were kept secret (including differential cryptanalysis) for more than 20 years
- Based on IBM's LUCIFER but changes introduced by NSA
- Still no trapdoors have been found


## DES Algorithm

Block length 64 bits, key length 56 bits


## Linear Attack on DES idea

In DES S-box maps 6 input bits to 4 output bits i.e.,

$$
\begin{gathered}
S: F_{2}^{6} \rightarrow F_{2}^{4}, \text { where } F_{2}=\{0,1\} \\
\left(x_{1}, \ldots, x_{6}\right) \rightarrow\left(y_{1}, \ldots, y_{4}\right)
\end{gathered}
$$

Assume,

$$
\begin{aligned}
y_{1}= & x_{1} x_{2} x_{3}+x_{2} x_{5}+x_{2}+x_{4} \\
y_{2}= & x_{1} x_{2} x_{3}+x_{2} x_{5}+x_{1}+x_{4} \\
& \Rightarrow y_{1} \oplus y_{2}=x_{1} \oplus x_{2}
\end{aligned}
$$

Specifically, if $P_{i}$ are plaintext bits, $C_{i}$ are ciphertext bits, and $K_{i}$ are subkey bits, then we wish to find an expression of the form

$$
P_{i_{1}} \oplus P_{i_{2}} \oplus \ldots P_{i_{j}} \oplus C_{i_{1}} \oplus C_{i_{2}} \oplus \ldots C_{i_{k}}=K_{i_{1}} \oplus K_{i_{2}} \oplus \ldots K_{i_{m}}
$$

such that this expression has a high or low probability of occurrence.

Specifically, if $P_{i}$ are plaintext bits, $C_{i}$ are ciphertext bits, and $K_{i}$ are subkey bits, then we wish to find an expression of the form

$$
P_{i_{1}} \oplus P_{i_{2}} \oplus \ldots P_{i_{j}} \oplus C_{i_{1}} \oplus C_{i_{2}} \oplus \ldots C_{i_{k}}=K_{i_{1}} \oplus K_{i_{2}} \oplus \ldots K_{i_{m}}
$$

such that this expression has a high or low probability of occurrence.

No such obvious expression should exist, otherwise the cipher is trivially weak. If we were to randomly select bits for the above expression, it would hold exactly $\frac{1}{2}$ the time.

Specifically, if $P_{i}$ are plaintext bits, $C_{i}$ are ciphertext bits, and $K_{i}$ are subkey bits, then we wish to find an expression of the form

$$
P_{i_{1}} \oplus P_{i_{2}} \oplus \ldots P_{i_{j}} \oplus C_{i_{1}} \oplus C_{i_{2}} \oplus \ldots C_{i_{k}}=K_{i_{1}} \oplus K_{i_{2}} \oplus \ldots K_{i_{m}}
$$

such that this expression has a high or low probability of occurrence.

No such obvious expression should exist, otherwise the cipher is trivially weak. If we were to randomly select bits for the above expression, it would hold exactly $\frac{1}{2}$ the time.

## Definition

For a given linear approximation to part of a cipher, let $p$ be the probability that it holds. We refer to $\left|p-\frac{1}{2}\right|$ as the bias of the approximation.

## Reducing DES



## Reducing DES



Let us simplify DES by

- Reducing the code length from 64 to 16
- Removing expansion function $E(R)$
- Taking identical S-boxes of size 4 bits
- Repeating over less rounds


## Substitution - Permutation Network



- SPN is a 16-bit block cipher
- Each round consists of a substitution and a permutation
- $4 \times 4$-bit S-box
- key-mixing by XOR-ing

SPN S-box and Permutation
SPN uses a single 4-bit S-Box that has the following structure:

| input | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| output | E | 4 | D | 1 | 2 | F | B | 8 | 3 | A | 6 | C | 5 | 9 | 0 | 7 |

## SPN S-box and Permutation

SPN uses a single 4-bit S-Box that has the following structure:

| input | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| output | E | 4 | D | 1 | 2 | F | B | 8 | 3 | A | 6 | C | 5 | 9 | 0 | 7 |

And the following 16-bit permutation:

| input | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| output | 1 | 5 | 9 | 13 | 2 | 6 | 10 | 14 | 3 | 7 | 11 | 15 | 4 | 8 | 12 | 16 |

## SPN S-box and Permutation

SPN uses a single 4-bit S-Box that has the following structure:

| input | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| output | E | 4 | D | 1 | 2 | F | B | 8 | 3 | A | 6 | C | 5 | 9 | 0 | 7 |

And the following 16-bit permutation:

| input | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| output | 1 | 5 | 9 | 13 | 2 | 6 | 10 | 14 | 3 | 7 | 11 | 15 | 4 | 8 | 12 | 16 |

The S-Box provides the confusion function and the permutation implements the diffusion operation in SPN, thus making it cryptographically similar to DES.

## Linear and Affine approximation of S-Box

Question:
How do we come up with the desired expression for the entire cipher?

## Linear and Affine approximation of S-Box

Question:
How do we come up with the desired expression for the entire cipher?

We start by looking at the only non-linear component, the S-Box.

## Linear and Affine approximation of S-Box

Question:
How do we come up with the desired expression for the entire cipher?

We start by looking at the only non-linear component, the S-Box.
To find the linear or affine approximation of the S-Box we simply consider every possible expression of the input bits $X_{i}$ and output bits $Y_{j}$. Thus the expression has the form

$$
\bigoplus_{i \in U} X_{i}=\bigoplus_{j \in V} Y_{j}
$$

where U and V range over all possible subsets of $\{1,2,3,4\}$. We then compare how often this expression coincides with the S-Box.

The number of agreements (minus 8) between the S-Box and every possible expression is summarized in the table below. Thus to get the bias, one must only divide by 16 .

|  |  |  |  |  |  |  |  |  | Out | it Sum |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |  | 8 | 9 | A | B | C | D | E | F |
|  | 0 | +8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 1 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | +6 | +2 | +2 | 0 | 0 | +2 | +2 | 0 | 0 |
|  | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | +2 | +2 | 0 | 0 | -6 | +2 |
|  | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +2 | -6 | -2 | -2 | +2 | +2 | -2 | -2 |
|  | 4 | 0 | +2 | 0 | -2 | -2 | -4 | -2 | 0 | 0 | -2 | 0 | +2 | +2 | -4 | +2 | 0 |
|  |  | 0 | -2 | -2 | 0 | -2 | 0 | $+4$ | +2 | -2 | 0 | -4 | +2 | 0 | -2 | -2 | 0 |
|  | 6 | 0 | +2 | -2 | +4 | +2 | 0 | 0 | +2 | 0 | -2 | +2 | +4 | -2 | 0 | 0 | -2 |
|  | 7 | 0 | -2 | 0 | +2 | +2 | -4 | +2 | 0 | -2 | 0 | +2 | 0 | +4 | +2 | 0 | +2 |
| S | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | +2 | +2 | -2 | +2 | -2 | -2 | -6 |
|  |  | 0 | 0 | -2 | -2 | 0 | 0 | -2 | -2 | -4 | 0 | -2 | +2 | 0 | +4 | +2 | -2 |
|  | A | 0 | +4 | -2 | +2 | -4 | 0 | +2 | -2 | +2 | +2 | 0 | 0 | +2 | +2 | 0 | 0 |
|  | B | 0 | +4 | 0 | -4 | +4 | 0 | +4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | C | 0 | -2 | +4 | -2 | -2 | 0 | +2 | 0 | +2 | 0 | +2 | +4 | 0 | +2 | 0 | -2 |
|  | D | 0 | +2 | +2 | 0 | -2 | +4 | 0 | +2 | -4 | -2 | +2 | 0 | +2 | 0 | 0 | +2 |
|  | E | 0 | +2 | +2 | 0 | -2 | -4 | 0 | +2 | -2 |  | 0 | -2 | -4 | +2 | -2 |  |
|  | F | 0 | -2 | -4 | -2 | -2 |  | +2 |  |  | -2 | +4 | -2 | -2 |  | +2 |  |

## S-Box Approximation Example



## S-Box Approximation Example



We can take the
following expression as an example:
$X_{2} \oplus X_{3}=Y_{1} \oplus Y_{3} \oplus Y_{4}$

## S-Box Approximation Example



We can take the following expression as an example:
$X_{2} \oplus X_{3}=Y_{1} \oplus Y_{3} \oplus Y_{4}$

Applying all possible values for the input $X$ bits it turns out that the expression holds in 12 out of the 16 cases. Hence, this
expression has a bias of $\frac{12}{16}-\frac{1}{2}=\frac{1}{4}$

## Linear Attack on SPN

What this means for 1 round


## Linear Attack on SPN

What this means for 1 round


Note, from the previous table, that the expression $X_{1} \oplus X_{3} \oplus X_{4}=Y_{2}$ has a bias of $+\frac{1}{4}$

## Linear Attack on SPN

What this means for 1 round


Note, from the previous table, that the expression $X_{1} \oplus X_{3} \oplus X_{4}=Y_{2}$ has a bias of $+\frac{1}{4}$

Note also that $U_{5}^{1}=P_{5} \oplus K_{5}^{1}$

## Linear Attack on SPN

We can now write down the following linear approximation across the 1st round of SPN:


$$
\begin{gathered}
V_{6}^{1}=U_{5}^{1} \oplus U_{7}^{1} \oplus U_{8}^{1} \\
=\left(P_{5} \oplus K_{5}^{1}\right) \oplus\left(P_{7} \oplus K_{7}^{1}\right) \oplus\left(P_{8} \oplus K_{8}^{1}\right)
\end{gathered}
$$

This expression holds with probability of $\frac{3}{4}$ (bias of $+\frac{1}{4}$ )

## Linear Attack on SPN

We can get expressions that hold with some non- $\frac{1}{2}$ probability for every round. But we must somehow combine them to write an expression relating the plaintext and ciphertext bits.

## Linear Attack on SPN

We can get expressions that hold with some non- $\frac{1}{2}$ probability for every round. But we must somehow combine them to write an expression relating the plaintext and ciphertext bits. We use the Piling Up Lemma for this purpose.

## Linear Attack on SPN

We can get expressions that hold with some non- $\frac{1}{2}$ probability for every round. But we must somehow combine them to write an expression relating the plaintext and ciphertext bits. We use the Piling Up Lemma for this purpose.

## Piling - Up Lemma

For $n$ independent, random binary variables $X_{1}, X_{2}, \ldots, X_{n}$,

$$
\operatorname{Pr}\left(X_{1} \oplus X_{2} \oplus \ldots \oplus X_{n}=0\right)=\frac{1}{2}+2^{n-1} \prod_{i=1}^{n} \varepsilon_{i}
$$

or, equivalently,

$$
\varepsilon_{1,2, \ldots, n}=2^{n-1} \prod_{i=1}^{n} \varepsilon_{i}
$$

where $\varepsilon_{1,2, \ldots, n}$ represents the bias of $X_{1} \oplus X_{2} \oplus \ldots \oplus X_{n}=0$

## Linear Attack on SPN



## Linear Attack on SPN



We can write down 4 approximations
$S_{12}: X_{1} \oplus X_{3} \oplus X_{4}=Y_{2}$
$S_{22}: X_{2}=Y_{2} \oplus Y_{4}$
$S_{32}: X_{2}=Y_{2} \oplus Y_{4}$
$S_{34}: X_{2}=Y_{2} \oplus Y_{4}$

## Linear Attack on SPN



We can write down 4 approximations
$S_{12}: X_{1} \oplus X_{3} \oplus X_{4}=Y_{2}$
$S_{22}: X_{2}=Y_{2} \oplus Y_{4}$
$S_{32}: X_{2}=Y_{2} \oplus Y_{4}$
$S_{34}: X_{2}=Y_{2} \oplus Y_{4}$
Each of these has a probability bias magnitude of $\frac{1}{4}$.

## Linear Attack on SPN

Consider the first 2 rounds:

$$
\begin{aligned}
& X_{1} \oplus X_{3} \oplus X_{4}=Y_{2} \\
& \Rightarrow\left(P_{5} \oplus K_{5}^{1}\right) \oplus\left(P_{7} \oplus K_{7}^{1}\right) \oplus\left(P_{8} \oplus K_{8}^{1}\right)=V_{6}^{1} \\
& X_{2}=Y_{2} \oplus Y_{4} \Rightarrow\left(V_{6}^{1} \oplus K_{6}^{2}=V_{6}^{2} \oplus V_{8}^{2}\right)
\end{aligned}
$$

## Linear Attack on SPN

Consider the first 2 rounds:
$X_{1} \oplus X_{3} \oplus X_{4}=Y_{2}$
$\Rightarrow\left(P_{5} \oplus K_{5}^{1}\right) \oplus\left(P_{7} \oplus K_{7}^{1}\right) \oplus\left(P_{8} \oplus K_{8}^{1}\right)=V_{6}^{1}$
$X_{2}=Y_{2} \oplus Y_{4} \Rightarrow\left(V_{6}^{1} \oplus K_{6}^{2}=V_{6}^{2} \oplus V_{8}^{2}\right)$
Each of these has a bias of magnitude $\frac{1}{4}$ and we can combine to obtain:

$$
V_{6}^{2} \oplus V_{8}^{2} \oplus P_{5} \oplus P_{7} \oplus P_{8} \oplus K_{5}^{1} \oplus K_{7}^{1} \oplus K_{8}^{1} \oplus K_{6}^{2}=0
$$

By the Piling Up Lemma this holds with bias

$$
2 \cdot \frac{1}{4} \cdot \frac{1}{4}=\frac{1}{8}
$$

## Linear Attack on SPN

Using this principle we can write the following equation over 3 rounds of SPN:

$$
U_{6}^{4} \oplus U_{8}^{4} \oplus U_{14}^{4} \oplus U_{16}^{4} \oplus P_{5} \oplus P_{7} \oplus P_{8}=\bar{K}
$$

Where

$$
\bar{K}=K_{5}^{1} \oplus K_{7}^{1} \oplus K_{8}^{1} \oplus K_{6}^{2} \oplus K_{6}^{3} \oplus K_{14}^{3} \oplus K_{6}^{4} \oplus K_{8}^{4} \oplus K_{14}^{4} \oplus K_{16}^{4} .
$$

Note that since the key is fixed, $\bar{K}=0$ or 1 and thus we can ignore it since we only care about the bias.

## Linear Attack on SPN

Using this principle we can write the following equation over 3 rounds of SPN:

$$
U_{6}^{4} \oplus U_{8}^{4} \oplus U_{14}^{4} \oplus U_{16}^{4} \oplus P_{5} \oplus P_{7} \oplus P_{8}=\bar{K}
$$

Where
$\bar{K}=K_{5}^{1} \oplus K_{7}^{1} \oplus K_{8}^{1} \oplus K_{6}^{2} \oplus K_{6}^{3} \oplus K_{14}^{3} \oplus K_{6}^{4} \oplus K_{8}^{4} \oplus K_{14}^{4} \oplus K_{16}^{4}$.
Note that since the key is fixed, $\bar{K}=0$ or 1 and thus we can ignore it since we only care about the bias.

The magnitude of the bias of the above expression, by the Piling Up Lemma, is $\frac{1}{32}$.

## Extracting Key Bits

We can partially undo the last round by guessing the last key.

## Extracting Key Bits

We can partially undo the last round by guessing the last key.
If we guess correctly, the equation will hold with high bias. If we guess wrong, the equation will probably hold with probability close to $\frac{1}{2}$, that is, a bias close to 0 .

## Extracting Key Bits

We can partially undo the last round by guessing the last key.
If we guess correctly, the equation will hold with high bias. If we guess wrong, the equation will probably hold with probability close to $\frac{1}{2}$, that is, a bias close to 0 .

BUT to do this, we don't need to guess the entire key for the last round! Our expression only involves 4 fourth round input $\left(U_{4}\right)$ bits, output from 2 S -Boxes of the third round. Thus we only need to guess $2^{8}=256$ values, instead $2^{16}=65546$, which is huge difference.

## Extracting Key Bits

We can partially undo the last round by guessing the last key.
If we guess correctly, the equation will hold with high bias. If we guess wrong, the equation will probably hold with probability close to $\frac{1}{2}$, that is, a bias close to 0 .

BUT to do this, we don't need to guess the entire key for the last round! Our expression only involves 4 fourth round input $\left(U_{4}\right)$ bits, output from 2 S -Boxes of the third round. Thus we only need to guess $2^{8}=256$ values, instead $2^{16}=65546$, which is huge difference.

For each value of the guessed target partial subkey we can undo the last round and determine the bias of the equation. Highest bias indicates likely correct guess.

## Conclusion

- One might say that 8 bits of the last round key is not very useful
- How many plaintext/ciphertext pairs do we need to make this attack?

Thank you for your Attention!

