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MEDIAN ALGEBRAS

Let (M,m) be a ternary algebraic structure, i.e. M is a set

and m : M ×M ×M −→ M (we use m(x, y, z) =< xyz >).

Def. (M,m) is a median algebra, if it enjoys the follow-

ing properties:

(A1) <xyz>=<¼(x)¼(y)¼(z)> commutativity

(A2) < xxy >= x majority strategy

(A3) < xu < yuz >>=<< xuy > uz > associativity

Third axiom alternatively:

(A3’) < xy < uvz >>=<< xyu >< xyv > z > dis-

tributivity
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INTERVALS IN MEDIAN ALGEBRAS

Def. Ideal of a median algebra (M,m) is a subset J ⊆
M such that for any x, y ∈ J and any a ∈ M :
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interval between x and y is

I(x, y) = {<xyu>∣u ∈ M}.
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interval between x and y is

I(x, y) = {<xyu>∣u ∈ M}.

Proposition 1 Every interval in a median algebra is an

ideal.

Proposition 2 I(x, y) = {u ∣<xyu>= u}.

Proposition 3 For arbitrary x, y, z ∈ M we have

I(x, y) ∩ I(x, z) ∩ I(y, z) ={<xyz>}.

Corollary For arbitrary x, y, z ∈ M we have

∣I(x, y) ∩ I(x, z) ∩ I(y, z)∣ = 1.



MEDIAN GRAPHS

Let (M,m) be a median algebra. Then its underlying graph

GM has M as its vertex set, and x, y ∈ M are adjacent if

I(x, y) = {x, y}.

Proposition 4 For an arbitrary discrete median algebra

M its underlying graph GM is connected and bipartite. An

interval I(x, y) in a median algebra coincides with an interval

in a graph, induced by the shortest paths metrics.

I(x, y) = {u ∣u lies on a shortest path between x and y}
= {u ∣ d(x, y) = d(x, u) + d(u, y)}.
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GM has M as its vertex set, and x, y ∈ M are adjacent if

I(x, y) = {x, y}.

Proposition 4 For an arbitrary discrete median algebra

M its underlying graph GM is connected and bipartite. An

interval I(x, y) in a median algebra coincides with an interval

in a graph, induced by the shortest paths metrics.

I(x, y) = {u ∣u lies on a shortest path between x and y}
= {u ∣ d(x, y) = d(x, u) + d(u, y)}.

Def. A connected graph in which for any triple of vertices

x, y, z we have

∣I(x, y) ∩ I(x, z) ∩ I(y, z)∣ = 1

is called a median graph.

Corollary. The underlying graph GM of a discrete median

algebra M is a median graph. The ternary algebraic structure

(V,m) in a median graph G = (V,E), where m is defined by

m(x, y, z) = I(x, y) ∩ I(x, z) ∩ I(y, z)

is a median algebra.
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CONVEX SETS AND IDEALS

Def. A set C is g-convex, if for any pair x, y ∈ C we have

I(x, y) ⊆ C.

Corollary Convex sets of a median graph are exactly ideals

of the corresponding median algebra.

Def. Let G be a (median) graph and ab an edge in G. A

set

Wab = {x ∣ d(x, a) < d(x, b)}
is called a halfspace.

Izrek. Every halfspace in a median graph is convex. More-

over, any convex subset in a median graph can be realized as

an intersection of halfspaces.



A FEW CHARACTERIZATIONS

A connected graph is a median graph if and only if it . . .

(Mulder, 1978) . . . is a median-closed isometric subgraph of

a hypercube;

(Isbell, 1980) . . . it can be obtained by a sequence of convex

amalgamations from hypercubes;

(Bandelt, 1984) . . . is a retract of a hypercube;

(Chung, Graham, Saks, 1987) . . . has an optimal solution

for dynamic location problem;

(Tardif, 1996) . . . its intervals enjoy Helly property;

(Chepoi, 2000) . . . is the undelying graph (1-skeleton) of

some CAT(0) polyhedral cube complex.

(B., 2003): . . . G is bipartite and every halfspace Wab in G

is gated.



MEDIAN GRAPHS in COMBINATORIAL and GEOMET-

RIC GROUP THEORY

M. Gromov, Hyperbolic groups, in: S. Gersten (Ed.), Essays

in Group Theory, in: Math. Sci. Res. Inst. Publ., vol. 8,

Springer-Verlag, Berlin, 1987, pp. 75263.

Thm. (Gromov, 1987). Polyhedral cubical complex ∣C∣
with intrinsic l2-metrics is CAT(0) if and only if ∣C∣ is simply

connected and enjoys the condition: if three (k+2)-cubes from

∣C∣ share a common k-cube and pair-wise share (k+1)-cubes,

they are included in a (k + 3)-cube of a complex ∣C∣.
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Thm. (Bandelt, van de Vel, 1991) Let G be a median

graph. Then the graphs GΔ and q(G) are Helly graphs (i.e.

the graphs in which disks enjoy Helly property).

Open problem: Is every Helly graph H the intersection

graph of maximal hypercubes of some median graph?

(Is there a median graph G, such that q(G) = H?)



ACYCLIC CUBICAL COMPLEXES

Def. An (abstract) cubical complex K is a set of (graphic)

cubes closed for subcubes and nonempty intersections. In the

underlying graph of a cubical complex K two vertices of K
are adjacent whenever they constitute a 1-dimensional cube.

Cycle of a complex K is x1, E1, x2, E2, . . . , xk, Ek, x1 where

xi are distinct vertices and Ei distinct cubes of K, such that

xi, xi+1 ∈ Ei for i = 1, . . . , k (mod k), and no member of

K includes three distinct vertices of a cycle. Cubical complex

K is conformal if any set of vertices that are pair-wisely in

a common cube, is included in a cube of K. Complex K is

acyclic if it is conformal and has no cycles.



Thm. (Bandelt, Chepoi, 1996) Let G be the underlying

graph of a cubical complex K. The following statements are

equivalent:

∙ K is acyclic,

∙ simplicial complex KΔ is acyclic,

∙ K enjoys a peripheral cube contraction scheme,

∙ G is a median graph without convex bipartite wheels,

∙ G is a median graph, whose crossing graph is chordal.
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Corollary. Let G be the graph of an acyclic cubical com-

plex. The intersection graph of maximal hypercubes q(G) ofG

is a dually chordal graph (i.e. clique graph of a chordal graph;

or, the underlying graph of a hypertree (arboreal hypergraph)).

Converse?

Yes!

Thm. (B. B., 2003) Any dually chordal graph H can be

realized as the cube graph of some acyclic cubical complex G

(i.e. q(G) = H)).

Proof

Idea 1: Elimination scheme of dually chordal graphs.

Idea 2: Maximal-2-intersection cube graph of an acyclic cu-

bical complex is a block graph.



BACK TO MEDIAN GRAPHS

B. Brešar, T. Kraner Šumenjak, Cube intersection concepts

in median graphs, Discrete Math. 309 (2009) 2990-2997.

Def. LetG be a median graph and k ≥ 0. The graph qk (G)

has maximal hypercubes of G as its vertices and Hx, Hy ∈
V (qk(G)) are adjacent if and only if Hx ∩ Hy contains a k-

cube.

Note: q0(G) = q(G).
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REALIZATION THEOREM

Thm. For any median graph G, q1(G) is a clique-graph

(graph realizable as the clique graph of some graph).

For any clique-graph H there exists a median graph G such

that q1(G) = H .

Proof

Part 1. Idea: conformality of 1-cubes in hypercubes.

Lemma: Let S be a set of edges in a median graph G. If

edges from S pair-wise belong to a common hypercube then

there exists a hypercube that contains all edges from S.

Then: the line-cube graph Ge of G;

q1(G) = K(Ge)

Part 2. Idea: simplex graph ·(G) of G.

q1(·(G)) = K(G)



REALIZATION THEOREM - more generally

Thm. For any median graph G, q1(G) is a clique-graph

(graph realizable as the clique graph of some graph).

For any clique-graph H there exists a median graph G such

that q1(G) = H .

Thm. Let k ≥ 1. For any median graph G, qk(G) is a

clique-graph. For any clique-graph H there exists a median

graph G such that qk(G) = H .
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Def. LetG be a median graph. Themaximal 2-intersection
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vertices, and two vertices are adjacent if the corresponding

hypercubes have a maximal 2-intersection in common.
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Def. LetG be a median graph. Themaximal 2-intersection

cube graph Qm2(G) of G has maximal hypercubes of G as its

vertices, and two vertices are adjacent if the corresponding

hypercubes have a maximal 2-intersection in common.

Thm. For any median graph G the graph Qm2(G) is a

diamond-free graph.

For any diamond-free graph H there exists a median graph

G such that Qm2(G) = H .



REALIZATION THEOREMS and A CONJECTURE

Thm. Let k ≥ 1. For any median graph G, qk(G) is a

clique-graph.

For any clique-graph H there exists a median graph G such

that qk(G) = H .

Thm. For any median graph G the graph Qm2(G) is a

diamond-free graph.

For any diamond-free graph H there exists a median graph

G such that Qm2(G) = H .

Thm. For any median graph G the graph q(G) is a Helly

graph.

Conjecture. For any Helly graph H there is a median

graph G such that q(G) = H .


