Boštjan Brešar Fakulteta za naravoslovje in matematiko, Univerza v Mariboru in IMFM, Ljubljana

MEDIAN ALGEBRAS and GRAPHS

Koper, 16.5.2011

Hypercube or n-cube Q_n : $V(Q_n) = \{0, 1\}^n$, $xy \in E(Q_n) \iff E! i : x_i \neq y_i$

HYPERCUBES

Hypercube or *n*-cube Q_n : $V(Q_n) = \{0, 1\}^n$, $xy \in E(Q_n) \Longleftrightarrow \exists ! i : x_i \neq y_i$

HYPERCUBES

Hypercube or *n*-cube Q_n : $V(Q_n) = \{0, 1\}^n$, $xy \in E(Q_n) \Longleftrightarrow \exists ! i : x_i \neq y_i$

HYPERCUBES

Hypercube or *n*-cube Q_n : $V(Q_n) = \{0, 1\}^n$, $xy \in E(Q_n) \iff \exists ! i : x_i \neq y_i$

$$Q_n = Q_{n-1} \Box Q_1$$

MEDIAN ALGEBRAS

Let (M, m) be a ternary algebraic structure, i.e. M is a set and $m: M \times M \times M \longrightarrow M$ (we use $m(x, y, z) = \langle xyz \rangle$).

Def. (M, m) is a **median algebra**, if it enjoys the following properties:

Third axiom alternatively:

(A3') < xy < uvz >> = << xyu >< xyv > z >distributivity

MEDIAN ALGEBRAS

Let (M, m) be a ternary algebraic structure, i.e. M is a set and $m: M \times M \times M \longrightarrow M$ (we use $m(x, y, z) = \langle xyz \rangle$).

Def. (M, m) is a **median algebra**, if it enjoys the following properties:

(A1)
$$\langle xyz \rangle = \langle \pi(x)\pi(y)\pi(z) \rangle$$
 commutativity
(A2) $\langle xxy \rangle = x$ majority strategy
(A3) $\langle xu \langle yuz \rangle \rangle = \langle xuy \rangle uz \rangle$ associativity

Third axiom alternatively:

(A3') $\langle xy \langle uv \rangle \rangle = \langle xyu \rangle \langle xyv \rangle z \rangle$ distributivity

BRIEF HISTORY

G. Birkhoff, S. Kiss, A ternary operation in distributive lattices, Bull. Amer. Math. Soc. 53 (1947) 749-752.

M. Sholander, Medians, lattices and trees, Proc. Amer. Math. Soc. 5 (1954) 808-812.

S. Avann, Metric ternary distributive semi-lattices, Proc. Amer. Math. Soc. 12 (1961) 407-414.

J. R. Isbell, Median algebra, Trans. Amer. Math. Soc. 260 (1980) 319-362.

H. M. Mulder, *The Interval Function of a Graph*, Math. Centre Tracts 132, Amsterdam, 1980.

INTERVALS IN MEDIAN ALGEBRAS

Def. Ideal of a median algebra (M, m) is a subset $J \subseteq M$ such that for any $x, y \in J$ and any $a \in M$:

$$\langle xya \rangle \in J.$$

Def. Let (M, m) be a median algebra and $x, y \in M$. The **interval** between x and y is

$$I(x,y) = \{ \langle xyu \rangle | \ u \in M \}.$$

INTERVALS IN MEDIAN ALGEBRAS

Def. Ideal of a median algebra (M, m) is a subset $J \subseteq M$ such that for any $x, y \in J$ and any $a \in M$:

$$\langle xya \rangle \in J.$$

Def. Let (M, m) be a median algebra and $x, y \in M$. The **interval** between x and y is

$$I(x, y) = \{ <\!\! xyu \! > \! \mid \! u \in M \}.$$

Proposition 1 Every interval in a median algebra is an ideal.

Proposition 2 $I(x, y) = \{u \mid <xyu >= u\}.$

INTERVALS IN MEDIAN ALGEBRAS

Def. Ideal of a median algebra (M, m) is a subset $J \subseteq M$ such that for any $x, y \in J$ and any $a \in M$:

$$\langle xya \rangle \in J.$$

Def. Let (M, m) be a median algebra and $x, y \in M$. The **interval** between x and y is

$$I(x, y) = \{ < xyu > | u \in M \}.$$

Proposition 1 Every interval in a median algebra is an ideal.

Proposition 2 $I(x, y) = \{u \mid \langle xyu \rangle = u\}.$

Proposition 3 For arbitrary $x, y, z \in M$ we have $I(x, y) \cap I(x, z) \cap I(y, z) = \{ \langle xyz \rangle \}.$

Corollary For arbitrary $x, y, z \in M$ we have $|I(x, y) \cap I(x, z) \cap I(y, z)| = 1.$

MEDIAN GRAPHS

Let (M, m) be a median algebra. Then its *underlying graph* G_M has M as its vertex set, and $x, y \in M$ are adjacent if $I(x, y) = \{x, y\}.$

Proposition 4 For an arbitrary discrete median algebra M its underlying graph G_M is connected and bipartite. An interval I(x, y) in a median algebra coincides with an interval in a graph, induced by the shortest paths metrics.

$$I(x, y) = \{u \mid u \text{ lies on a shortest path between } x \text{ and } y\}$$
$$= \{u \mid d(x, y) = d(x, u) + d(u, y)\}.$$

MEDIAN GRAPHS

Let (M, m) be a median algebra. Then its *underlying graph* G_M has M as its vertex set, and $x, y \in M$ are adjacent if $I(x, y) = \{x, y\}.$

Proposition 4 For an arbitrary discrete median algebra M its underlying graph G_M is connected and bipartite. An interval I(x, y) in a median algebra coincides with an interval in a graph, induced by the shortest paths metrics.

$$I(x, y) = \{u \mid u \text{ lies on a shortest path between } x \text{ and } y\}$$
$$= \{u \mid d(x, y) = d(x, u) + d(u, y)\}.$$

Def. A connected graph in which for any triple of vertices x, y, z we have

 $|I(x,y) \cap I(x,z) \cap I(y,z)| = 1$

is called a **median graph**.

MEDIAN GRAPHS

Let (M, m) be a median algebra. Then its *underlying graph* G_M has M as its vertex set, and $x, y \in M$ are adjacent if $I(x, y) = \{x, y\}.$

Proposition 4 For an arbitrary discrete median algebra M its underlying graph G_M is connected and bipartite. An interval I(x, y) in a median algebra coincides with an interval in a graph, induced by the shortest paths metrics.

$$I(x, y) = \{u \mid u \text{ lies on a shortest path between } x \text{ and } y\}$$
$$= \{u \mid d(x, y) = d(x, u) + d(u, y)\}.$$

Def. A connected graph in which for any triple of vertices x, y, z we have

$$|I(x,y) \cap I(x,z) \cap I(y,z)| = 1$$

is called a **median graph**.

Corollary. The underlying graph G_M of a discrete median algebra M is a median graph. The ternary algebraic structure (V, m) in a median graph G = (V, E), where m is defined by

$$m(x, y, z) = I(x, y) \cap I(x, z) \cap I(y, z)$$

is a median algebra.

CONVEX SETS AND IDEALS

Def. A set *C* is *g*-convex, if for any pair $x, y \in C$ we have $I(x, y) \subseteq C$.

Corollary Convex sets of a median graph are exactly ideals of the corresponding median algebra.

CONVEX SETS AND IDEALS

Def. A set C is g-convex, if for any pair $x, y \in C$ we have $I(x, y) \subseteq C$.

Corollary Convex sets of a median graph are exactly ideals of the corresponding median algebra.

Def. Let G be a (median) graph and ab an edge in G. A set

$$W_{ab} = \{ x \, | \, d(x, a) < d(x, b) \}$$

is called a halfspace.

Izrek. Every halfspace in a median graph is convex. Moreover, any convex subset in a median graph can be realized as an intersection of halfspaces.

A FEW CHARACTERIZATIONS

A connected graph is a median graph if and only if it ...

(Mulder, 1978) . . . is a median-closed isometric subgraph of a hypercube;

(Isbell, 1980) . . . it can be obtained by a sequence of convex amalgamations from hypercubes;

(Bandelt, 1984) ... is a retract of a hypercube;

(Chung, Graham, Saks, 1987) ... has an optimal solution for dynamic location problem;

(Tardif, 1996) ... its intervals enjoy Helly property;

(Chepoi, 2000) ... is the undelying graph (1-skeleton) of some CAT(0) polyhedral cube complex.

(B., 2003): ... G is bipartite and every halfspace W_{ab} in G is gated.

MEDIAN GRAPHS in COMBINATORIAL and GEOMET-RIC GROUP THEORY

M. Gromov, *Hyperbolic groups*, in: S. Gersten (Ed.), Essays in Group Theory, in: Math. Sci. Res. Inst. Publ., vol. 8, Springer-Verlag, Berlin, 1987, pp. 75263.

Thm. (Gromov, 1987). Polyhedral cubical complex |C| with intrinsic l_2 -metrics is CAT(0) if and only if |C| is simply connected and enjoys the condition: if three (k+2)-cubes from |C| share a common k-cube and pair-wise share (k+1)-cubes, they are included in a (k+3)-cube of a complex |C|.

MEDIAN GRAPHS in COMBINATORIAL and GEOMET-RIC GROUP THEORY

M. Gromov, *Hyperbolic groups*, in: S. Gersten (Ed.), Essays in Group Theory, in: Math. Sci. Res. Inst. Publ., vol. 8, Springer-Verlag, Berlin, 1987, pp. 75263.

Thm. (Gromov, 1987). Polyhedral cubical complex |C| with intrinsic l_2 -metrics is CAT(0) if and only if |C| is simply connected and enjoys the condition: if three (k+2)-cubes from |C| share a common k-cube and pair-wise share (k+1)-cubes, they are included in a (k+3)-cube of a complex |C|.

G. A. Niblo, L. D. Reeves, Groups acting on CAT(0) cube complexes, Geom. & Topology 1 (1997), 7 pp.

B. Nica, Cubulating spaces with walls, Alg. & Geom. Topology 4 (2004) 297-309.

F. Haglund, D. Wise, Special cube complexes, Geom. Funct. Anal. 17 (5) (2008) 15511620.

F. Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (1) (2008) 167-209.

J. Brodzki, S. J. Campbell, E. Guentner, G. A. Niblo, N. J. Wright, Property A and CAT(0) cube complexes, J. Funct. Anal. 256 (2009) 1408-1431

STRUCTURE

Thm. (Isbell, 1980) G is a median graph if and only if it can be obtained by a sequence of convex amalgamations from hypercubes.

STRUCTURE

Thm. (Isbell, 1980) G is a median graph if and only if it can be obtained by a sequence of convex amalgamations from hypercubes.

Thm. (Bandelt, van de Vel, 1991) Let G be a median graph. Then the graphs \mathcal{G}^{Δ} and q(G) are Helly graphs (i.e. the graphs in which disks enjoy Helly property).

Thm. (Bandelt, van de Vel, 1991) Let G be a median graph. Then the graphs \mathcal{G}^{Δ} and q(G) are Helly graphs (i.e. the graphs in which disks enjoy Helly property).

Thm. (Bandelt, van de Vel, 1991) Let G be a median graph. Then the graphs \mathcal{G}^{Δ} and q(G) are Helly graphs (i.e. the graphs in which disks enjoy Helly property).

Open problem: Is every Helly graph H the intersection graph of maximal hypercubes of some median graph?

(Is there a median graph G, such that q(G) = H?)

ACYCLIC CUBICAL COMPLEXES

Def. An (abstract) *cubical complex* \mathcal{K} is a set of (graphic) cubes closed for subcubes and nonempty intersections. In the *underlying graph* of a cubical complex \mathcal{K} two vertices of \mathcal{K} are adjacent whenever they constitute a 1-dimensional cube.

Cycle of a complex \mathcal{K} is $x_1, E_1, x_2, E_2, \ldots, x_k, E_k, x_1$ where x_i are distinct vertices and E_i distinct cubes of \mathcal{K} , such that $x_i, x_{i+1} \in E_i$ for $i = 1, \ldots, k \pmod{k}$, and no member of \mathcal{K} includes three distinct vertices of a cycle. Cubical complex \mathcal{K} is conformal if any set of vertices that are pair-wisely in a common cube, is included in a cube of \mathcal{K} . Complex \mathcal{K} is acyclic if it is conformal and has no cycles.

- \mathcal{K} is acyclic,
- simplicial complex \mathcal{K}^{Δ} is acyclic,
- \mathcal{K} enjoys a peripheral cube contraction scheme,
- $\bullet~G$ is a median graph without convex bipartite wheels,
- G is a median graph, whose crossing graph is chordal.

- \mathcal{K} is acyclic,
- simplicial complex \mathcal{K}^{Δ} is acyclic,
- \mathcal{K} enjoys a peripheral cube contraction scheme,
- G is a median graph without convex bipartite wheels,
- G is a median graph, whose crossing graph is chordal.

- \mathcal{K} is acyclic,
- simplicial complex \mathcal{K}^{Δ} is acyclic,
- \mathcal{K} enjoys a peripheral cube contraction scheme,
- G is a median graph without convex bipartite wheels,
- G is a median graph, whose crossing graph is chordal.

- \mathcal{K} is acyclic,
- simplicial complex \mathcal{K}^{Δ} is acyclic,
- \mathcal{K} enjoys a peripheral cube contraction scheme,
- G is a median graph without convex bipartite wheels,
- G is a median graph, whose crossing graph is chordal.

- \mathcal{K} is acyclic,
- simplicial complex \mathcal{K}^{Δ} is acyclic,
- \mathcal{K} enjoys a peripheral cube contraction scheme,
- G is a median graph without convex bipartite wheels,
- G is a median graph, whose crossing graph is chordal.

- \mathcal{K} is acyclic,
- simplicial complex \mathcal{K}^{Δ} is acyclic,
- \mathcal{K} enjoys a peripheral cube contraction scheme,
- G is a median graph without convex bipartite wheels,
- G is a median graph, whose crossing graph is chordal.

Corollary. Let G be the graph of an acyclic cubical complex. The intersection graph of maximal hypercubes q(G) of G is a dually chordal graph (i.e. clique graph of a chordal graph; or, the underlying graph of a hypertree (arboreal hypergraph)).

Converse?

Corollary. Let G be the graph of an acyclic cubical complex. The intersection graph of maximal hypercubes q(G) of G is a dually chordal graph (i.e. clique graph of a chordal graph; or, the underlying graph of a hypertree (arboreal hypergraph)).

Converse?

Yes!

Thm. (B. B., 2003) Any dually chordal graph H can be realized as the cube graph of some acyclic cubical complex G (i.e. q(G) = H)).

Corollary. Let G be the graph of an acyclic cubical complex. The intersection graph of maximal hypercubes q(G) of G is a dually chordal graph (i.e. clique graph of a chordal graph; or, the underlying graph of a hypertree (arboreal hypergraph)).

Converse?

Yes!

Thm. (B. B., 2003) Any dually chordal graph H can be realized as the cube graph of some acyclic cubical complex G (i.e. q(G) = H)).

Proof

Idea 1: Elimination scheme of dually chordal graphs.

Idea 2: Maximal-2-intersection cube graph of an acyclic cubical complex is a block graph.

BACK TO MEDIAN GRAPHS

B. Brešar, T. Kraner Šumenjak, Cube intersection concepts in median graphs, Discrete Math. 309 (2009) 2990-2997.

Def. Let G be a median graph and $k \ge 0$. The graph $q_k(G)$ has maximal hypercubes of G as its vertices and $H_x, H_y \in V(q_k(G))$ are adjacent if and only if $H_x \cap H_y$ contains a k-cube.

Note: $q_0(G) = q(G)$.

Thm. For any median graph G, $q_1(G)$ is a clique-graph (graph realizable as the clique graph of some graph).

Thm. For any median graph G, $q_1(G)$ is a clique-graph (graph realizable as the clique graph of some graph).

For any clique-graph H there exists a median graph G such that $q_1(G) = H$.

Thm. For any median graph G, $q_1(G)$ is a clique-graph (graph realizable as the clique graph of some graph).

For any clique-graph H there exists a median graph G such that $q_1(G) = H$.

Proof

Part 1. Idea: conformality of 1-cubes in hypercubes.

Lemma: Let S be a set of edges in a median graph G. If edges from S pair-wise belong to a common hypercube then there exists a hypercube that contains all edges from S.

Thm. For any median graph G, $q_1(G)$ is a clique-graph (graph realizable as the clique graph of some graph).

For any clique-graph H there exists a median graph G such that $q_1(G) = H$.

Proof

Part 1. Idea: conformality of 1-cubes in hypercubes.

Lemma: Let S be a set of edges in a median graph G. If edges from S pair-wise belong to a common hypercube then there exists a hypercube that contains all edges from S.

Then: the *line-cube* graph G^e of G;

 $q_1(G) = K(G^e)$

Thm. For any median graph G, $q_1(G)$ is a clique-graph (graph realizable as the clique graph of some graph).

For any clique-graph H there exists a median graph G such that $q_1(G) = H$.

Proof

Part 1. Idea: conformality of 1-cubes in hypercubes.

Lemma: Let S be a set of edges in a median graph G. If edges from S pair-wise belong to a common hypercube then there exists a hypercube that contains all edges from S.

Then: the *line-cube* graph G^e of G;

$$q_1(G) = K(G^e)$$

Part 2. Idea: simplex graph $\kappa(G)$ of G.

$$q_1(\kappa(G)) = K(G)$$

REALIZATION THEOREM - more generally

Thm. For any median graph G, $q_1(G)$ is a clique-graph (graph realizable as the clique graph of some graph).

For any clique-graph H there exists a median graph G such that $q_1(G) = H$.

Thm. Let $k \geq 1$. For any median graph G, $q_k(G)$ is a clique-graph. For any clique-graph H there exists a median graph G such that $q_k(G) = H$.

MAXIMAL 2-INTERSECTION CUBE GRAPHS

Def. Let G be a median graph. The maximal 2-intersection cube graph $\mathcal{Q}_{m2}(G)$ of G has maximal hypercubes of G as its vertices, and two vertices are adjacent if the corresponding hypercubes have a maximal 2-intersection in common.

MAXIMAL 2-INTERSECTION CUBE GRAPHS

Def. Let G be a median graph. The maximal 2-intersection cube graph $\mathcal{Q}_{m2}(G)$ of G has maximal hypercubes of G as its vertices, and two vertices are adjacent if the corresponding hypercubes have a maximal 2-intersection in common.

Thm. For any median graph G the graph $\mathcal{Q}_{m2}(G)$ is a diamond-free graph.

MAXIMAL 2-INTERSECTION CUBE GRAPHS

Def. Let G be a median graph. The maximal 2-intersection cube graph $\mathcal{Q}_{m2}(G)$ of G has maximal hypercubes of G as its vertices, and two vertices are adjacent if the corresponding hypercubes have a maximal 2-intersection in common.

Thm. For any median graph G the graph $\mathcal{Q}_{m2}(G)$ is a diamond-free graph.

For any diamond-free graph H there exists a median graph G such that $\mathcal{Q}_{m2}(G) = H$.

Thm. Let $k \geq 1$. For any median graph G, $q_k(G)$ is a clique-graph.

For any clique-graph H there exists a median graph G such that $q_k(G) = H$.

Thm. For any median graph G the graph $\mathcal{Q}_{m2}(G)$ is a diamond-free graph.

For any diamond-free graph H there exists a median graph G such that $\mathcal{Q}_{m2}(G) = H$.

Thm. For any median graph G the graph q(G) is a Helly graph.

Conjecture. For any Helly graph H there is a median graph G such that q(G) = H.