The Isomorphism Classes of All Generalized Petersen Graphs

Ted Dobson

Department of Mathematics & Statistics
Mississippi State University
dobson@math.msstate.edu
http://www2.msstate.edu/~dobson/

Seminar, University of Primorska, May 9, 2011
For integers \(k \) and \(n \) satisfying \(1 \leq k \leq n - 1, 2k \neq n \), define the **generalized Petersen graph** \(GP(n, k) \) to be the graph with vertex set \(\mathbb{Z}_2 \times \mathbb{Z}_n \) and edge set

\[
\{(0, i)(0, i + 1), (0, i)(1, i), (1, i)(1, i + k) : i \in \mathbb{Z}_n\}
\]
For integers k and n satisfying $1 \leq k \leq n - 1$, $2k \neq n$, define the **generalized Petersen graph** $\text{GP}(n, k)$ to be the graph with vertex set $\mathbb{Z}_2 \times \mathbb{Z}_n$ and edge set

$$\{(0, i)(0, i + 1), (0, i)(1, i), (1, i)(1, i + k) : i \in \mathbb{Z}_n\}$$

The Petersen graph is $\text{GP}(5, 2)$:
For integers k and n satisfying $1 \leq k \leq n - 1$, $2k \neq n$, define the **generalized Petersen graph** $GP(n, k)$ to be the graph with vertex set $\mathbb{Z}_2 \times \mathbb{Z}_n$ and edge set

$$\{(0, i)(0, i + 1), (0, i)(1, i), (1, i)(1, i + k) : i \in \mathbb{Z}_n\}$$

The Petersen graph is $GP(5, 2)$:

![Diagram of the Petersen graph](image_url)

Figure: The Petersen graph is $GP(5, 2)$
Generalized Petersen graphs were introduced by Watkins in 1969 who was interested in trivalent graphs without proper three edge-colorings.
Generalized Petersen graphs were introduced by Watkins in 1969 who was interested in trivalent graphs without proper three edge-colorings. A proper 3-edge coloring of a trivalent graph is called a Tait coloring.
Generalized Petersen graphs were introduced by Watkins in 1969 who was interested in trivalent graphs without proper three edge-colorings. A proper 3-edge coloring of a trivalent graph is called a Tait coloring. The Petersen graph is not Tait colorable, so it is reasonable to ask whether “similar” type graphs are Tait colorable.
Generalized Petersen graphs were introduced by Watkins in 1969 who was interested in trivalent graphs without proper three edge-colorings. A proper 3-edge coloring of a trivalent graph is called a **Tait coloring**. The Petersen graph is not Tait colorable, so it is reasonable to ask whether “similar” type graphs are Tait colorable.

Figure: The generalized Petersen graph GP(10, 4).
Figure: The Desargues configuration and its Levi graph \(\text{GP}(10, 3) \)
Many famous graphs are generalized Petersen graphs:

- $GP(5, 2)$ is the Petersen graph
- $GP(4, 1)$ is the skeleton of the cube
- $GP(10, 3)$ is the Desargues graph
- $GP(10, 2)$ is the skeleton of the dodecahedron
- $GP(8, 3)$ is the Möbius-Kantor graph

The generalized Petersen graphs have received a great deal of attention — their automorphism groups are known, and exactly which contain Hamilton cycles are known for example.
Many famous graphs are generalized Petersen graphs:

> GP(5, 2) is the Petersen graph
Many famous graphs are generalized Petersen graphs:

- $\text{GP}(5, 2)$ is the Petersen graph
- $\text{GP}(4, 1)$ is the skeleton of the cube
Many famous graphs are generalized Petersen graphs:

- $\text{GP}(5, 2)$ is the Petersen graph
- $\text{GP}(4, 1)$ is the skeleton of the cube
- $\text{GP}(10, 3)$ is the Desargues graph
Many famous graphs are generalized Petersen graphs:

- \(\text{GP}(5, 2) \) is the Petersen graph
- \(\text{GP}(4, 1) \) is the skeleton of the cube
- \(\text{GP}(10, 3) \) is the Desargues graph
- \(\text{GP}(10, 2) \) is the skeleton of the dodecahedron
Many famous graphs are generalized Petersen graphs:

- \(\text{GP}(5, 2) \) is the Petersen graph
- \(\text{GP}(4, 1) \) is the skeleton of the cube
- \(\text{GP}(10, 3) \) is the Desargues graph
- \(\text{GP}(10, 2) \) is the skeleton of the dodecahedron
- \(\text{GP}(8, 3) \) is the Möbius-Kantor graph

The generalized Petersen graphs have received a great deal of attention -
Many famous graphs are generalized Petersen graphs:

- GP(5, 2) is the Petersen graph
- GP(4, 1) is the skeleton of the cube
- GP(10, 3) is the Desargues graph
- GP(10, 2) is the skeleton of the dodecahedron
- GP(8, 3) is the Möbius-Kantor graph

The generalized Petersen graphs have received a great deal of attention - their automorphism groups are known,
Many famous graphs are generalized Petersen graphs:

- \(\text{GP}(5, 2) \) is the Petersen graph
- \(\text{GP}(4, 1) \) is the skeleton of the cube
- \(\text{GP}(10, 3) \) is the Desargues graph
- \(\text{GP}(10, 2) \) is the skeleton of the dodecahedron
- \(\text{GP}(8, 3) \) is the Möbius-Kantor graph

The generalized Petersen graphs have received a great deal of attention - their automorphism groups are known, and exactly which contain Hamilton cycles are known for example.
Automorphisms of generalized Petersen graphs

Define $\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$ and $\delta(i, j) = (i, -j)$.
Automorphisms of generalized Petersen graphs

Define $\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$ and $\delta(i, j) = (i, -j)$. It is then easy to see that $\rho, \delta \in \text{Aut}(GP(n, k))$ for every n and k. One consequence of this is that $GP(n, k) = GP(n, -k)$.

Define $\tau : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\tau(i, j) = (i + 1, kj)$. In order for τ to be a bijection, $k \in \mathbb{Z}_n^*$. In order for τ to be an automorphism of $GP(n, k)$, $\tau^2((i, j)) = (i, kj) \equiv \pm 1 \pmod{n}$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^2 \equiv \pm 1 \pmod{n}$. If $k^2 \equiv \pm 1$, then $\tau((0, j)(0, j + 1)) = (1, kj)(1, kj + k)$, $\tau((1, kj)(1, kj + k)) = (0, \pm j)(0, \pm j \pm 1)$, and $\tau((0, j)(1, j)) = (1, kj)(0, kj)$. Thus $\tau \in \text{Aut}(GP(n, k))$.

Ted Dobson
Mississippi State University
The Isomorphism Classes of All Generalized Petersen Graphs
Automorphisms of generalized Petersen graphs

Define $\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$ and $\delta(i, j) = (i, -j)$. It is then easy to see that $\rho, \delta \in \text{Aut}(\text{GP}(n, k))$ for every n and k. One consequence of this is that $\text{GP}(n, k) = \text{GP}(n, -k)$.

In order for τ to be a bijection, $k \in \mathbb{Z}_n^*$. In order for τ to be an automorphism of $\text{GP}(n, k)$, $\tau^2(i, j) = (i, k^2 j)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^2 \equiv \pm 1 \pmod{n}$. If $k^2 \equiv \pm 1$, then $\tau((0, j)(0, j+1)) = (1, kj)(1, kj+1)$, $\tau((1, kj)(1, kj+1)) = (0, \pm j)(0, \pm j \pm 1)$, and $\tau((0, j)(1, j)) = (1, kj)(0, kj)$. Therefore $\tau \in \text{Aut}(\text{GP}(n, k))$.

Ted Dobson
Mississippi State University

The Isomorphism Classes of All Generalized Petersen Graphs
Define \(\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n \) by \(\rho(i, j) = (i, j + 1) \) and \(\delta(i, j) = (i, -j) \). It is then easy to see that \(\rho, \delta \in \text{Aut}(\text{GP}(n, k)) \) for every \(n \) and \(k \). One consequence of this is that \(\text{GP}(n, k) = \text{GP}(n, -k) \).

Define \(\tau : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n \) by \(\tau(i, j) = (i + 1, kj) \).
Automorphisms of generalized Petersen graphs

Define $\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$ and $\delta(i, j) = (i, -j)$. It is then easy to see that $\rho, \delta \in \text{Aut}(\text{GP}(n, k))$ for every n and k. One consequence of this is that $\text{GP}(n, k) = \text{GP}(n, -k)$.

Define $\tau : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\tau(i, j) = (i + 1, kj)$. In order for τ to be a bijection, $k \in \mathbb{Z}_n^*$.
Automorphisms of generalized Petersen graphs

Define $\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i,j) = (i,j+1)$ and $\delta(i,j) = (i,-j)$. It is then easy to see that $\rho, \delta \in \text{Aut}(\text{GP}(n,k))$ for every n and k. One consequence of this is that $\text{GP}(n,k) = \text{GP}(n,-k)$.

Define $\tau : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\tau(i,j) = (i+1,kj)$. In order for τ to be a bijection, $k \in \mathbb{Z}_n^*$. In order for τ to be an automorphism of $\text{GP}(n,k)$, $\tau^2(i,j) = (i,k^2j)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges.
Automorphisms of generalized Petersen graphs

Define $\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$ and $\delta(i, j) = (i, -j)$. It is then easy to see that $\rho, \delta \in \text{Aut}(\text{GP}(n, k))$ for every n and k. One consequence of this is that $\text{GP}(n, k) = \text{GP}(n, -k)$.

Define $\tau : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\tau(i, j) = (i + 1, kj)$. In order for τ to be a bijection, $k \in \mathbb{Z}_n^*$. In order for τ to be an automorphism of $\text{GP}(n, k)$, $\tau^2(i, j) = (i, k^2 j)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^2 \equiv \pm 1 \pmod{n}$.

Ted Dobson Mississippi State University

The Isomorphism Classes of All Generalized Petersen Graphs
Automorphisms of generalized Petersen graphs

Define $\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$ and $\delta(i, j) = (i, -j)$. It is then easy to see that $\rho, \delta \in \text{Aut}(\text{GP}(n, k))$ for every n and k. One consequence of this is that $\text{GP}(n, k) = \text{GP}(n, -k)$.

Define $\tau : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\tau(i, j) = (i + 1, kj)$. In order for τ to be a bijection, $k \in \mathbb{Z}_n^*$. In order for τ to be an automorphism of $\text{GP}(n, k)$, $\tau^2(i, j) = (i, k^2j)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^2 \equiv \pm 1 \pmod{n}$. If $k^2 \equiv \pm 1$, then $\tau((0, j)(0, j + 1)) = (1, kj)(1, kj + k)$,
Automorphisms of generalized Petersen graphs

Define $\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$ and $\delta(i, j) = (i, -j)$. It is then easy to see that $\rho, \delta \in \text{Aut}(\text{GP}(n, k))$ for every n and k. One consequence of this is that $\text{GP}(n, k) = \text{GP}(n, -k)$.

Define $\tau : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\tau(i, j) = (i + 1, kj)$. In order for τ to be a bijection, $k \in \mathbb{Z}_n^*$. In order for τ to be an automorphism of $\text{GP}(n, k)$, $\tau^2(i, j) = (i, k^2j)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^2 \equiv \pm 1 \pmod{n}$. If $k^2 \equiv \pm 1$, then $\tau((0, j)(0, j + 1)) = (1, kj)(1, kj + k)$, $\tau((1, kj)(1, kj + k)) = (0, \pm j)(0, \pm j \pm 1)$.
Automorphisms of generalized Petersen graphs

Define $\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$ and $\delta(i, j) = (i, -j)$. It is then easy to see that $\rho, \delta \in \text{Aut}(\text{GP}(n, k))$ for every n and k. One consequence of this is that $\text{GP}(n, k) = \text{GP}(n, -k)$.

Define $\tau : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\tau(i, j) = (i + 1, kj)$. In order for τ to be a bijection, $k \in \mathbb{Z}_n^*$. In order for τ to be an automorphism of $\text{GP}(n, k)$, $\tau^2(i, j) = (i, k^2j)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^2 \equiv \pm 1 \pmod{n}$. If $k^2 \equiv \pm 1$, then $\tau((0, j)(0, j + 1)) = (1, kj)(1, kj + k)$, $\tau((1, kj)(1, kj + k)) = (0, \pm j)(0, \pm j \pm 1)$, and $\tau((0, j)(1, j)) = (1, kj)(0, kj)$.

Automorphisms of generalized Petersen graphs

Define $\rho, \delta : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$ and $\delta(i, j) = (i, -j)$. It is then easy to see that $\rho, \delta \in \text{Aut}(\text{GP}(n, k))$ for every n and k. One consequence of this is that $\text{GP}(n, k) = \text{GP}(n, -k)$.

Define $\tau : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\tau(i, j) = (i + 1, kj)$. In order for τ to be a bijection, $k \in \mathbb{Z}_n^*$. In order for τ to be an automorphism of $\text{GP}(n, k)$, $\tau^2(i, j) = (i, k^2j)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^2 \equiv \pm 1 \pmod{n}$. If $k^2 \equiv \pm 1$, then $\tau((0, j)(0, j + 1)) = (1, kj)(1, kj + k)$, $\tau((1, kj)(1, kj + k)) = (0, \pm j)(0, \pm j \pm 1)$, and $\tau((0, j)(1, j)) = (1, kj)(0, kj)$. Thus $\tau \in \text{Aut}(\text{GP}(n, k))$.
If $k^2 \equiv 1 \pmod{n}$, then set $B(n, k) = \langle \rho, \delta, \tau \rangle$, if $k^2 \equiv -1 \pmod{n}$, set $B(n, k) = \langle \rho, \tau \rangle$, while if $k^2 \not\equiv \pm 1 \pmod{n}$, set $B(n, k) = \langle \rho, \delta \rangle$.

In 1971, Frucht, Graver, and Watkins determined the automorphism groups of the generalized Petersen graphs:

Theorem $\text{Aut}(\text{GP}(n, k)) = B(n, k)$ except for the following pairs (n, k), where $2 \leq 2k < n$:

- $(4, 1)$
- $(5, 2)$
- $(8, 3)$
- $(10, 2)$
- $(10, 3)$
- $(12, 5)$
- $(24, 5)$

They also determined the automorphism groups for the seven exceptional pairs, but we will not discuss them.
If $k^2 \equiv 1 \pmod{n}$, then set $B(n, k) = \langle \rho, \delta, \tau \rangle$, if $k^2 \equiv -1 \pmod{n}$, set $B(n, k) = \langle \rho, \tau \rangle$, while if $k^2 \not\equiv \pm 1 \pmod{n}$, set $B(n, k) = \langle \rho, \delta \rangle$. In 1971, Frucht, Graver, and Watkins determined the automorphism groups of the generalized Petersen graphs:

In 1971, Frucht, Graver, and Watkins determined the automorphism groups of the generalized Petersen graphs:
If $k^2 \equiv 1 \pmod{n}$, then set $B(n, k) = \langle \rho, \delta, \tau \rangle$, if $k^2 \equiv -1 \pmod{n}$, set $B(n, k) = \langle \rho, \tau \rangle$, while if $k^2 \not\equiv \pm 1 \pmod{n}$, set $B(n, k) = \langle \rho, \delta \rangle$. In 1971, Frucht, Graver, and Watkins determined the automorphism groups of the generalized Petersen graphs:

Theorem

$\text{Aut}(\text{GP}(n, k)) = B(n, k)$ except for the following pairs (n, k), where $2 \leq 2k < n$:

$(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5)$.
If $k^2 \equiv 1 \pmod{n}$, then set $B(n, k) = \langle \rho, \delta, \tau \rangle$, if $k^2 \equiv -1 \pmod{n}$, set $B(n, k) = \langle \rho, \tau \rangle$, while if $k^2 \not\equiv \pm 1 \pmod{n}$, set $B(n, k) = \langle \rho, \delta \rangle$. In 1971, Frucht, Graver, and Watkins determined the automorphism groups of the generalized Petersen graphs:

Theorem

$\text{Aut}(\text{GP}(n, k)) = B(n, k)$ except for the following pairs (n, k), where $2 \leq 2k < n$:

$$(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5).$$

They also determined the automorphism groups for the seven exceptional pairs, but we will not discuss them.
Staton and Steimle in 2009 proved the following result:

Staton and Steimle in 2009 proved the following result:
Staton and Steimle in 2009 proved the following result:

Theorem

For $2 \leq k \leq n - 2$ with $\gcd(n, k) = 1$, the generalized Petersen graphs, $\text{GP}(n, k)$ and $\text{GP}(n, \ell)$ are isomorphic if and only if either $k \equiv -\ell \pmod{n}$ or $k\ell \equiv \pm 1 \pmod{n}$.
Staton and Steimle in 2009 proved the following result:

Theorem

For $2 \leq k \leq n - 2$ with $\gcd(n, k) = 1$, the generalized Petersen graphs, $\text{GP}(n, k)$ and $\text{GP}(n, \ell)$ are isomorphic if and only if either $k \equiv -\ell \pmod{n}$ or $k\ell \equiv \pm1 \pmod{n}$.

Their proof very much makes use of the fact that if $\gcd(n, k) = 1$, then the inside graph is a cycle, and not a disjoint union of cycles.
A general strategy to solve an isomorphism problem

Suppose that Γ and Γ' are isomorphic graphs with ϕ and isomorphism, and $G \leq \text{Aut}(\Gamma) \cap \text{Aut}(\Gamma')$. Then $\phi^{-1}G\phi \leq \text{Aut}(\Gamma)$.

If there exists $\delta \in \text{Aut}(\Gamma)$ such that $\delta^{-1}\phi^{-1}G\phi\delta = G$, then $\phi\delta$ is an isomorphism from Γ to Γ' that normalizes G.

If one then calculates this normalizer, then the isomorphism problem is solved.

Of course this strategy will only work well if G is transitive and small, or intransitive and large.

If one is working with Cayley graphs of a group G, then G_L is the obvious small transitive subgroup to work with, and this is exactly how the characterization of which groups are CI-groups with respect to graphs was obtained.
A general strategy to solve an isomorphism problem

Suppose that Γ and Γ' are isomorphic graphs with ϕ and isomorphism, and $G \leq \text{Aut}(\Gamma) \cap \text{Aut}(\Gamma')$. Then $\phi^{-1}G\phi \leq \text{Aut}(\Gamma)$. If there exists $\delta \in \text{Aut}(\Gamma)$ such that $\delta^{-1}\phi^{-1}G\phi\delta = G$, then $\phi\delta$ is an isomorphism from Γ to Γ' that normalizes G. If one then calculates this normalizer, then the isomorphism problem is solved. Of course this strategy will only work well if G is transitive and small, or intransitive and large.

If one is working with Cayley graphs of a group G, then GL is the obvious small transitive subgroup to work with, and this is exactly how the characterization of which groups are CI-groups with respect to graphs was obtained.

Ted Dobson
Mississippi State University

The Isomorphism Classes of All Generalized Petersen Graphs
A general strategy to solve an isomorphism problem

Suppose that Γ and Γ' are isomorphic graphs with ϕ and isomorphism, and $G \leq \text{Aut}(\Gamma) \cap \text{Aut}(\Gamma')$. Then $\phi^{-1}G\phi \leq \text{Aut}(\Gamma)$. If there exists $\delta \in \text{Aut}(\Gamma)$ such that $\delta^{-1}\phi^{-1}G\phi\delta = G$, then $\phi\delta$ is an isomorphism from Γ to Γ' that normalizes G.
A general strategy to solve an isomorphism problem

Suppose that Γ and Γ' are isomorphic graphs with ϕ and isomorphism, and $G \leq \text{Aut}(\Gamma) \cap \text{Aut}(\Gamma')$. Then $\phi^{-1}G\phi \leq \text{Aut}(\Gamma)$. If there exists $\delta \in \text{Aut}(\Gamma)$ such that $\delta^{-1}\phi^{-1}G\phi\delta = G$, then $\phi\delta$ is an isomorphism from Γ to Γ' that normalizes G. If one then calculates this normalizer, then the isomorphism problem is solved.
A general strategy to solve an isomorphism problem

Suppose that Γ and Γ' are isomorphic graphs with ϕ and isomorphism, and $G \leq \text{Aut}(\Gamma) \cap \text{Aut}(\Gamma')$. Then $\phi^{-1}G\phi \leq \text{Aut}(\Gamma)$. If there exists $\delta \in \text{Aut}(\Gamma)$ such that $\delta^{-1}\phi^{-1}G\phi\delta = G$, then $\phi\delta$ is an isomorphism from Γ to Γ' that normalizes G. If one then calculates this normalizer, then the isomorphism problem is solved. Of course this strategy will only work well if G is transitive and small, or \textit{intransitive and large}.
A general strategy to solve an isomorphism problem

Suppose that Γ and Γ' are isomorphic graphs with ϕ and isomorphism, and $G \leq \text{Aut}(\Gamma) \cap \text{Aut}(\Gamma')$. Then $\phi^{-1} G \phi \leq \text{Aut}(\Gamma)$. If there exists $\delta \in \text{Aut}(\Gamma)$ such that $\delta^{-1} \phi^{-1} G \phi \delta = G$, then $\phi \delta$ is an isomorphism from Γ to Γ' that normalizes G. If one then calculates this normalizer, then the isomorphism problem is solved. Of course this strategy will only work well if G is transitive and small, or intransitive and large.

If one is working with Cayley graphs of a group G, then G_L is the obvious small transitive subgroup to work with, and this is exactly how the characterization of which groups are CI-groups with respect to graphs was obtained.
For us with the generalized Petersen graphs, the obvious choice of G is $\langle \rho \rangle$, which has two orbits of size n.

Lemma

Let $\rho : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$. Then $N_{S_2}^{\mathbb{Z}_n}(\langle \rho \rangle) = \{(i, j) \rightarrow (i + a, b j) : a \in \mathbb{Z}_2, b \in \mathbb{Z}_n^*, \delta \in \mathbb{Z}_n\}$.

The only part (sort of) of our strategy remaining is to show that if $\phi^{-1} \langle \rho \rangle \phi \leq \text{Aut}(\text{GP}(n, k))$, then there exists $\delta \in \text{Aut}(\text{GP}(n, k))$ such that $\delta^{-1} \phi^{-1} \langle \rho \rangle \phi \delta = \langle \rho \rangle$.

Ted Dobson Mississippi State University
The Isomorphism Classes of All Generalized Petersen Graphs
For us with the generalized Petersen graphs, the obvious choice of G is $\langle \rho \rangle$, which has two orbits of size n. The normalizer of $\langle \rho \rangle$ is

Lemma

Let $\rho : \mathbb{Z}_2 \times \mathbb{Z}_n \rightarrow \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i, j) = (i, j + 1)$. Then $N_{S_{2n}}(\langle \rho \rangle) = \{(i, j) \rightarrow (i + a, \beta j + b_i) : a \in \mathbb{Z}_2, \beta \in \mathbb{Z}_n^*, b_i \in \mathbb{Z}_n \}$.
For us with the generalized Petersen graphs, the obvious choice of G is $\langle \rho \rangle$, which has two orbits of size n. The normalizer of $\langle \rho \rangle$ is

Lemma

Let $\rho : \mathbb{Z}_2 \times \mathbb{Z}_n \to \mathbb{Z}_2 \times \mathbb{Z}_n$ by $\rho(i,j) = (i, j + 1)$. Then $N_{S_{2n}}(\langle \rho \rangle) = \{(i,j) \to (i + a, \beta j + b_i) : a \in \mathbb{Z}_2, \beta \in \mathbb{Z}_n^*, b_i \in \mathbb{Z}_n\}$.

The only part (sort of) of our strategy remaining is to show that if $\phi^{-1} \langle \rho \rangle \phi \leq \text{Aut}(\text{GP}(n, k))$, then there exists $\delta \in \text{Aut}(\text{GP}(n, k))$ such that $\delta^{-1} \phi^{-1} \langle \rho \rangle \phi \delta = \langle \rho \rangle$.
First, the seven exceptionally pairs \((n, k)\) can be ignored -
First, the seven exceptionally pairs \((n, k)\) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs \(GP(n, k)\) are only isomorphic to \(GP(n, -k)\).

Second, show that if \(k \neq \pm 1\), then \(\langle \rho \rangle\) is the unique maximal cyclic subgroup of \(B(n, k)\).
First, the seven exceptionally pairs \((n, k)\) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs \(\text{GP}(n, k)\) are only isomorphic to \(\text{GP}(n, -k)\).

Second, show that if \(k \neq \pm 1\), then \(\langle \rho \rangle\) is the unique maximal cyclic subgroup of \(B(n, k)\).

In the case where \(k^2 \neq \pm 1\) (and \(B(n, k) = \langle \rho, \delta \rangle\)), any element of \(B(n, k)\) can be written as \(\delta^a \rho^b\), \(a \in \mathbb{Z}_2\), \(b \in \mathbb{Z}_n\) as \(\langle \rho \rangle \triangleleft \langle \rho, \delta \rangle\).
First, the seven exceptionally pairs \((n, k)\) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs \(GP(n, k)\) are only isomorphic to \(GP(n, -k)\).

Second, show that if \(k \neq \pm 1\), then \(\langle \rho \rangle\) is the unique maximal cyclic subgroup of \(B(n, k)\).

In the case where \(k^2 \neq \pm 1\) (and \(B(n, k) = \langle \rho, \delta \rangle\)), any element of \(B(n, k)\) can be written as \(\delta^a \rho^b\), \(a \in \mathbb{Z}_2\), \(b \in \mathbb{Z}_n\) as \(\langle \rho \rangle \triangleleft \langle \rho, \delta \rangle\). If \(a = 0\), then \(\delta^a \rho^b \in \langle \rho \rangle\).
First, the seven exceptionally pairs \((n, k)\) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs \(GP(n, k)\) are only isomorphic to \(GP(n, -k)\).

Second, show that if \(k \neq \pm 1\), then \(\langle \rho \rangle\) is the unique maximal cyclic subgroup of \(B(n, k)\).

In the case where \(k^2 \neq \pm 1\) (and \(B(n, k) = \langle \rho, \delta \rangle\)), any element of \(B(n, k)\) can be written as \(\delta^a \rho^b\), \(a \in \mathbb{Z}_2\), \(b \in \mathbb{Z}_n\) as \(\langle \rho \rangle \triangleleft \langle \rho, \delta \rangle\). If \(a = 0\), then \(\delta^a \rho^b \in \langle \rho \rangle\). If \(a = 1\), then

\[
(\delta \rho^b)^2(i, j) = \delta \rho^b \delta(i, j + b)
\]
First, the seven exceptionally pairs \((n, k)\) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs \(\text{GP}(n, k)\) are only isomorphic to \(\text{GP}(n, -k)\).

Second, show that if \(k \neq \pm 1\), then \(\langle \rho \rangle\) is the unique maximal cyclic subgroup of \(B(n, k)\).

In the case where \(k^2 \neq \pm 1\) (and \(B(n, k) = \langle \rho, \delta \rangle\)), any element of \(B(n, k)\) can be written as \(\delta^a \rho^b, a \in \mathbb{Z}_2, \ b \in \mathbb{Z}_n\) as \(\langle \rho \rangle \triangleleft \langle \rho, \delta \rangle\). If \(a = 0\), then \(\delta^a \rho^b \in \langle \rho \rangle\). If \(a = 1\), then

\[
(\delta \rho^b)^2(i, j) = \delta \rho^b \delta(i, j + b) = \delta \rho^b(i, -j - b)
\]
First, the seven exceptionally pairs \((n, k)\) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs \(\text{GP}(n, k)\) are only isomorphic to \(\text{GP}(n, -k)\).

Second, show that if \(k \neq \pm 1\), then \(\langle \rho \rangle\) is the unique maximal cyclic subgroup of \(B(n, k)\).

In the case where \(k^2 \neq \pm 1\) (and \(B(n, k) = \langle \rho, \delta \rangle\)), any element of \(B(n, k)\) can be written as \(\delta^a \rho^b, a \in \mathbb{Z}_2, b \in \mathbb{Z}_n\) as \(\langle \rho \rangle \triangleleft \langle \rho, \delta \rangle\). If \(a = 0\), then \(\delta^a \rho^b \in \langle \rho \rangle\). If \(a = 1\), then

\[
(\delta \rho^b)^2(i, j) = \delta \rho^b \delta(i, j + b) = \delta \rho^b(i, -j - b) = \delta(i, -j)
\]
First, the seven exceptionally pairs \((n, k)\) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs \(GP(n, k)\) are only isomorphic to \(GP(n, -k)\).

Second, show that if \(k \neq \pm 1\), then \(\langle \rho \rangle\) is the unique maximal cyclic subgroup of \(B(n, k)\).

In the case where \(k^2 \neq \pm 1\) (and \(B(n, k) = \langle \rho, \delta \rangle\)), any element of \(B(n, k)\) can be written as \(\delta^a \rho^b\), \(a \in \mathbb{Z}_2\), \(b \in \mathbb{Z}_n\) as \(\langle \rho \rangle \triangleleft \langle \rho, \delta \rangle\). If \(a = 0\), then \(\delta^a \rho^b \in \langle \rho \rangle\). If \(a = 1\), then

\[
(\delta \rho^b)^2(i, j) = \delta \rho^b \delta(i, j + b) = \delta \rho^b(i, -j - b) = \delta(i, -j) = (i, j)
\]
First, the seven exceptionally pairs \((n, k)\) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs \(GP(n, k)\) are only isomorphic to \(GP(n, -k)\).

Second, show that if \(k \neq \pm 1\), then \(\langle \rho \rangle\) is the unique maximal cyclic subgroup of \(B(n, k)\).

In the case where \(k^2 \neq \pm 1\) (and \(B(n, k) = \langle \rho, \delta \rangle\)), any element of \(B(n, k)\) can be written as \(\delta^a \rho^b\), \(a \in \mathbb{Z}_2\), \(b \in \mathbb{Z}_n\) as \(\langle \rho \rangle \triangleleft \langle \rho, \delta \rangle\). If \(a = 0\), then \(\delta^a \rho^b \in \langle \rho \rangle\). If \(a = 1\), then

\[
(\delta \rho^b)^2(i, j) = \delta \rho^b \delta(i, j + b) = \delta \rho^b(i, -j - b) = \delta(i, -j) = (i, j)
\]

has order 2, not \(n\).
The case where $k^2 = \pm 1$ but $k \neq \pm 1$, is very similar, with the computations being slightly more complicated.
The case where $k^2 = \pm 1$ but $k \neq \pm 1$, is very similar, with the computations being slightly more complicated.

The case where $k^2 = \pm 1$ but $k \pm 1$ are Cayley graphs of $\mathbb{Z}_2 \times \mathbb{Z}_n$, and either contains a cyclic subgroup of order $2n$ if $\gcd(2, n) = 1$,
The case where $k^2 = \pm 1$ but $k \neq \pm 1$, is very similar, with the computations being slightly more complicated.

The case where $k^2 = \pm 1$ but $k \pm 1$ are Cayley graphs of $\mathbb{Z}_2 \times \mathbb{Z}_n$, and either contains a cyclic subgroup of order $2n$ if $\gcd(2, n) = 1$, or contains two maximal cyclic subgroups if $\gcd(2, n) = 2$.
The case where $k^2 = \pm 1$ but $k \neq \pm 1$, is very similar, with the computations being slightly more complicated.

The case where $k^2 = \pm 1$ but $k \pm 1$ are Cayley graphs of $\mathbb{Z}_2 \times \mathbb{Z}_n$, and either contains a cyclic subgroup of order $2n$ if $\gcd(2, n) = 1$, or contains two maximal cyclic subgroups if $\gcd(2, n) = 2$. So the case where $k = \pm 1$ is finished - $\text{GP}(n, 1)$ is only isomorphic to $\text{GP}(n, n-1)$.
The case where $k^2 = \pm 1$ but $k \neq \pm 1$, is very similar, with the computations being slightly more complicated.

The case where $k^2 = \pm 1$ but $k \pm 1$ are Cayley graphs of $\mathbb{Z}_2 \times \mathbb{Z}_n$, and either contains a cyclic subgroup of order $2n$ if $\gcd(2, n) = 1$, or contains two maximal cyclic subgroups if $\gcd(2, n) = 2$. So the case where $k = \pm 1$ is finished - $\text{GP}(n, 1)$ is only isomorphic to $\text{GP}(n, n - 1)$.

So, in the remaining case, we have an isomorphism ϕ between $\text{GP}(n, k)$ and $\text{GP}(n, \ell)$ that is contained in the normalizer in S_{2n} of $\langle \rho \rangle$.
Set $\phi(i, j) = (i + a, \beta j + b_i)$, $a \in \mathbb{Z}_2$, $\beta \in \mathbb{Z}_n^*$, and $b_i \in \mathbb{Z}_n$.
Set $\phi(i, j) = (i + a, \beta j + b_i)$, $a \in \mathbb{Z}_2$, $\beta \in \mathbb{Z}_n^*$, and $b_i \in \mathbb{Z}_n$. As $\rho \in B(n, k)$, we can and do assume without loss of generality that $b_0 = 0$.
Set \(\phi(i, j) = (i + a, \beta j + b_i) \), \(a \in \mathbb{Z}_2 \), \(\beta \in \mathbb{Z}^*_n \), and \(b_i \in \mathbb{Z}_n \). As \(\rho \in B(n, k) \), we can and do assume without loss of generality that \(b_0 = 0 \).

Let \(O = \{(0, j) : j \in \mathbb{Z}_n\} \) (the “outer” vertices of \(\text{GP}(n, k) \)).
Set \(\phi(i, j) = (i + a, \beta j + b_i) \), \(a \in \mathbb{Z}_2 \), \(\beta \in \mathbb{Z}_n^* \), and \(b_i \in \mathbb{Z}_n \). As \(\rho \in B(n, k) \), we can and do assume without loss of generality that \(b_0 = 0 \). Let \(O = \{(0, j) : j \in \mathbb{Z}_n\} \) (the “outer” vertices of \(\text{GP}(n, k) \)), and \(I = \{(1, j) : j \in \mathbb{Z}_n\} \) (the “inner” vertices of \(\text{GP}(n, k) \)).
Set \(\phi(i, j) = (i + a, \beta j + b_i) \), \(a \in \mathbb{Z}_2 \), \(\beta \in \mathbb{Z}^*_n \), and \(b_i \in \mathbb{Z}_n \). As \(\rho \in B(n, k) \), we can and do assume without loss of generality that \(b_0 = 0 \).

Let \(O = \{ (0, j) : j \in \mathbb{Z}_n \} \) (the “outer” vertices of \(\text{GP}(n, k) \)), and \(I = \{ (1, j) : j \in \mathbb{Z}_n \} \) (the “inner” vertices of \(\text{GP}(n, k) \)). We refer to edges of the form \((1, i)(0, i)\) as spoke edges, and set \(\phi(\text{GP}(n, k)) = \text{GP}(n, \ell) \).
If \(a = 0 \), then \(\phi \) maps \(\text{GP}(n, k)[\mathcal{O}] \) to \(\text{GP}(n, \ell)[\mathcal{O}] \),
If $a = 0$, then ϕ maps $\text{GP}(n, k)[\mathcal{O}]$ to $\text{GP}(n, \ell)[\mathcal{O}]$, and these graphs are equal (as the outside cycles of a generalized Petersen graph are always equal).
If $a = 0$, then ϕ maps $\text{GP}(n, k)[\mathcal{O}]$ to $\text{GP}(n, \ell)[\mathcal{O}]$, and these graphs are equal (as the outside cycles of a generalized Petersen graph are always equal). As the automorphism group of cycle is a dihedral group, we conclude that $\beta = \pm 1$.
If $a = 0$, then ϕ maps $\GP(n, k)[\emptyset]$ to $\GP(n, \ell)[\emptyset]$, and these graphs are equal (as the outside cycles of a generalized Petersen graph are always equal). As the automorphism group of cycle is a dihedral group, we conclude that $\beta = \pm 1$. As $\phi(0, 0) = (0, 0)$ and ϕ maps spoke edges to spoke edges, we see that $\phi(1, 0) = (1, 0)$ and so $b_1 = 0$ as well.
If \(a = 0 \), then \(\phi \) maps \(\text{GP}(n, k)[\mathcal{O}] \) to \(\text{GP}(n, \ell)[\mathcal{O}] \), and these graphs are equal (as the outside cycles of a generalized Petersen graph are always equal). As the automorphism group of cycle is a dihedral group, we conclude that \(\beta = \pm 1 \). As \(\phi(0, 0) = (0, 0) \) and \(\phi \) maps spoke edges to spoke edges, we see that \(\phi(1, 0) = (1, 0) \) and so \(b_1 = 0 \) as well. Then \(\phi \in \langle \delta \rangle \), and \(\text{GP}(n, k)[\mathcal{I}] = \text{GP}(n, \ell)[\mathcal{I}] \). Thus \(\ell = \pm k \).
If $a = 1$, then ϕ maps $\text{GP}(n, k)[O]$ to $\text{GP}(n, \ell)[I]$.

As $\phi((0, 0)(0, 1)) = (1, 0)(1, \ell)$ or $(1, 0)(1, -\ell)$, we have that $\beta = \pm \ell$.

As ϕ maps spoke edges to spoke edges and $\phi(0, 0) = (1, 0)$, we have that $\phi(1, 0) = (0, 0)$ and again $b_1 = 0$.

Then $\phi((1, 0)(1, k)) = (0, 0)(0, \pm k\ell) = (0, 0)(0, 1)$ or $(0, 0)(0, -1)$ and so $k\ell = \pm 1$.

The Isomorphism Classes of All Generalized Petersen Graphs

Ted Dobson
Mississippi State University
If $a = 1$, then ϕ maps $\text{GP}(n, k)[O]$ to $\text{GP}(n, \ell)[I]$. As $\phi((0, 0)(0, 1)) = (1, 0)(1, \ell)$ or $(1, 0)(1, -\ell)$, we have that $\beta = \pm \ell$.
If $a = 1$, then ϕ maps $\text{GP}(n, k)[\mathcal{O}]$ to $\text{GP}(n, \ell)[\mathcal{I}]$. As $\phi((0, 0)(0, 1)) = (1, 0)(1, \ell)$ or $(1, 0)(1, -\ell)$, we have that $\beta = \pm \ell$. As ϕ maps spoke edges to spoke edges and $\phi(0, 0) = (1, 0)$, we have that $\phi(1, 0) = (0, 0)$ and again $b_1 = 0$.
If $a = 1$, then ϕ maps $\text{GP}(n, k)[\mathcal{O}]$ to $\text{GP}(n, \ell)[\mathcal{I}]$. As $\phi((0, 0)(0, 1)) = (1, 0)(1, \ell)$ or $(1, 0)(1, -\ell)$, we have that $\beta = \pm \ell$. As ϕ maps spoke edges to spoke edges and $\phi(0, 0) = (1, 0)$, we have that $\phi(1, 0) = (0, 0)$ and again $b_1 = 0$. Then $\phi((1, 0)(1, k)) = (0, 0)(0, \pm k\ell) = (0, 0)(0, 1) \text{ or } (0, 0)(0, -1)$ and so $k\ell = \pm 1$.
Theorem

The generalized Petersen graphs $\text{GP}(n, k)$ and $\text{GP}(n, \ell)$ are isomorphic if and only if either $k \equiv \pm \ell \pmod{n}$ or $k\ell \equiv \pm 1 \pmod{n}$.