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For integers k and n satisfying 1 ≤ k ≤ n − 1, 2k 6= n, define the
generalized Petersen graph GP(n, k) to be the graph with vertex set
Z2 × Zn and edge set

{(0, i)(0, i + 1), (0, i)(1, i), (1, i)(1, i + k) : i ∈ Zn}

The Petersen graph is GP(5, 2):
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Figure: The Petersen graph is GP(5, 2)
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Generalized Petersen graphs were introduced by Watkins in 1969 who was
interested in trivalent graphs without proper three edge-colorings.

A
proper 3-edge coloring of a trivalent graph is called a Tait coloring. The
Petersen graph is not Tait colorable, so it is reasonable to ask whether
“similar” type graphs are Tait colorable.
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Figure: The generalized Petersen graph GP(10, 4).
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Figure: The Desargues configuration and its Levi graph GP(10, 3)
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Many famous graphs are generalized Petersen graphs:

I GP(5, 2) is the Petersen graph

I GP(4, 1) is the skeleton of the cube

I GP(10, 3) is the Desargues graph

I GP(10, 2) is the skeleton of the dodecahedron

I GP(8, 3) is the Möbius-Kantor graph

The generalized Petersen graphs have received a great deal of attention -
their automorphism groups are known, and exactly which contain
Hamilton cycles are known for example.
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The generalized Petersen graphs have received a great deal of attention -
their automorphism groups are known, and exactly which contain
Hamilton cycles are known for example.

Ted Dobson Mississippi State University

The Isomorphism Classes of All Generalized Petersen Graphs



Many famous graphs are generalized Petersen graphs:

I GP(5, 2) is the Petersen graph

I GP(4, 1) is the skeleton of the cube

I GP(10, 3) is the Desargues graph

I GP(10, 2) is the skeleton of the dodecahedron

I GP(8, 3) is the Möbius-Kantor graph
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Automorphisms of generalized Petersen graphs

Define ρ, δ : Z2 × Zn → Z2 × Zn by ρ(i , j) = (i , j + 1) and
δ(i , j) = (i ,−j).

It is then easy to see that ρ, δ ∈ Aut(GP(n, k)) for every
n and k . One consequence of this is that GP(n, k) = GP(n,−k).

Define τ : Z2 × Zn → Z2 × Zn by τ(i , j) = (i + 1, kj). In order for τ to be
a bijection, k ∈ Z∗n. In order for τ to be an automorphism of GP(n, k),
τ2(i , j) = (i , k2j) must fix the outside n-cycle and the inside vertices, and
map spoke edges to spoke edges. As the automorphism group of an
n-cycle is a dihedral group, we conclude that k2 ≡ ±1 (mod n). If
k2 ≡ ±1, then τ((0, j)(0, j + 1)) = (1, kj)(1, kj + k),
τ((1, kj)(1, kj + k)) = (0,±j)(0,±j ± 1), and
τ((0, j)(1, j)) = (1, kj)(0, kj). Thus τ ∈ Aut(GP(n, k)).
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If k2 ≡ 1 (mod n), then set B(n, k) = 〈ρ, δ, τ〉, if k2 ≡ −1 (mod n), set
B(n, k) = 〈ρ, τ〉, while if k2 6≡ ±1 (mod n), set B(n, k) = 〈ρ, δ〉.

In 1971,
Frucht, Graver, and Watkins determined the automorphism groups of the
generalized Petersen graphs:

Theorem
Aut(GP(n, k)) = B(n, k) except for the following pairs (n, k), where
2 ≤ 2k < n:

(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5).

They also determined the automorphism groups for the seven exceptional
pairs, but we will not discuss them.
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They also determined the automorphism groups for the seven exceptional
pairs, but we will not discuss them.
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Staton and Steimle in 2009 proved the following result:

Theorem
For 2 ≤ k ≤ n − 2 with gcd(n, k) = 1, the generalized Petersen graphs,
GP(n, k) and GP(n, `) are isomorphic if and only if either
k ≡ −` (mod n) or k` ≡ ±1 (mod n).

Their proof very much makes use of the fact that if gcd(n, k) = 1, then
the inside graph is a cycle, and not a disjoint union of cycles.
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A general strategy to solve an isomorphism problem

Suppose that Γ and Γ′ are isomorphic graphs with φ and isomorphism, and
G ≤ Aut(Γ) ∩Aut(Γ′).

Then φ−1Gφ ≤ Aut(Γ). If there exists
δ ∈ Aut(Γ) such that δ−1φ−1Gφδ = G , then φδ is an isomorphism from Γ
to Γ′ that normalizes G . If one then calculates this normalizer, then the
isomorphism problem is solved. Of course this strategy will only work well
if G is transitive and small, or intransitive and large.

If one is working with Cayley graphs of a group G , then GL is the obvious
small transitive subgroup to work with, and this is exactly how the
characterization of which groups are CI-groups with respect to graphs was
obtained.
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For us with the generalized Petersen graphs, the obvious choice of G is
〈ρ〉, which has two orbits of size n.

The normalizer of 〈ρ〉 is

Lemma
Let ρ : Z2 × Zn → Z2 × Zn by ρ(i , j) = (i , j + 1). Then
NS2n(〈ρ〉) = {(i , j)→ (i + a, βj + bi ) : a ∈ Z2, β ∈ Z∗n, bi ∈ Zn}.

The only part (sort of) of our strategy remaining is to show that if
φ−1〈ρ〉φ ≤ Aut(GP(n, k)), then there exists δ ∈ Aut(GP(n, k)) such that
δ−1φ−1〈ρ〉φδ = 〈ρ〉.

Ted Dobson Mississippi State University

The Isomorphism Classes of All Generalized Petersen Graphs



For us with the generalized Petersen graphs, the obvious choice of G is
〈ρ〉, which has two orbits of size n. The normalizer of 〈ρ〉 is

Lemma
Let ρ : Z2 × Zn → Z2 × Zn by ρ(i , j) = (i , j + 1). Then
NS2n(〈ρ〉) = {(i , j)→ (i + a, βj + bi ) : a ∈ Z2, β ∈ Z∗n, bi ∈ Zn}.

The only part (sort of) of our strategy remaining is to show that if
φ−1〈ρ〉φ ≤ Aut(GP(n, k)), then there exists δ ∈ Aut(GP(n, k)) such that
δ−1φ−1〈ρ〉φδ = 〈ρ〉.

Ted Dobson Mississippi State University

The Isomorphism Classes of All Generalized Petersen Graphs



For us with the generalized Petersen graphs, the obvious choice of G is
〈ρ〉, which has two orbits of size n. The normalizer of 〈ρ〉 is

Lemma
Let ρ : Z2 × Zn → Z2 × Zn by ρ(i , j) = (i , j + 1). Then
NS2n(〈ρ〉) = {(i , j)→ (i + a, βj + bi ) : a ∈ Z2, β ∈ Z∗n, bi ∈ Zn}.

The only part (sort of) of our strategy remaining is to show that if
φ−1〈ρ〉φ ≤ Aut(GP(n, k)), then there exists δ ∈ Aut(GP(n, k)) such that
δ−1φ−1〈ρ〉φδ = 〈ρ〉.

Ted Dobson Mississippi State University

The Isomorphism Classes of All Generalized Petersen Graphs



First, the seven exceptionally pairs (n, k) can be ignored -

as isomorphic
graphs have isomorphic automorphism groups these generalized Petersen
graphs GP(n, k) are only isomorphic to GP(n,−k).

Second, show that if k 6= ±1, then 〈ρ〉 is the unique maximal cyclic
subgroup of B(n, k).

In the case where k2 6= ±1 (and B(n, k) = 〈ρ, δ〉), any element of B(n, k)
can be written as δaρb, a ∈ Z2, b ∈ Zn as 〈ρ〉/〈ρ, δ〉. If a = 0, then
δaρb ∈ 〈ρ〉. If a = 1, then

(δρb)2(i , j) = δρbδ(i , j + b) = δρb(i ,−j − b) = δ(i ,−j) = (i , j)

has order 2, not n.
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The case where k2 = ±1 but k 6= ±1, is very similar, with the
computations being slightly more complicated.

The case where k2 = ±1 but k ± 1 are Cayley graphs of Z2 × Zn, and
either contains a cyclic subgroup of order 2n if gcd(2, n) = 1, or contains
two maximal cyclic subgroups if gcd(2, n) = 2. So the case where k = ±1
is finished - GP(n, 1) is only isomorphic to GP(n, n − 1).

So, in the remaining case, we have an isomorphism φ between GP(n, k)
and GP(n, `) that is contained in the normalizer in S2n of 〈ρ〉.
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Set φ(i , j) = (i + a, βj + bi ), a ∈ Z2, β ∈ Z∗n, and bi ∈ Zn.

As
ρ ∈ B(n, k), we can and do assume without loss of generality that b0 = 0.
Let O = {(0, j) : j ∈ Zn} (the “outer” vertices of GP(n, k)), and
I = {(1, j) : j ∈ Zn} (the “inner” vertices of GP(n, k)). We refer to edges
of the form (1, i)(0, i) as spoke edges, and set φ(GP(n, k)) = GP(n, `).
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If a = 0, then φ maps GP(n, k)[O] to GP(n, `)[O],

and these graphs are
equal (as the outside cycles of a generalized Petersen graph are always
equal). As the automorphism group of cycle is a dihedral group, we
conclude that β = ±1. As φ(0, 0) = (0, 0) and φ maps spoke edges to
spoke edges, we see that φ(1, 0) = (1, 0) and so b1 = 0 as well. Then
φ ∈ 〈δ〉, and GP(n, k)[I] = GP(n, `)[I]. Thus ` = ±k .
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If a = 1, then φ maps GP(n, k)[O] to GP(n, `)[I].

As
φ((0, 0)(0, 1)) = (1, 0)(1, `) or (1, 0)(1,−`), we have that β = ±`. As φ
maps spoke edges to spoke edges and φ(0, 0) = (1, 0), we have that
φ(1, 0) = (0, 0) and again b1 = 0. Then
φ((1, 0)(1, k)) = (0, 0)(0,±k`) = (0, 0)(0, 1) or (0, 0)(0,−1) and so
k` = ±1.
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Theorem
The generalized Petersen graphs GP(n, k) and GP(n, `) are isomorphic if
and only if either k ≡ ±` (mod n) or k` ≡ ±1 (mod n).
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