The Isomorphism Classes of All Generalized Petersen Graphs

Ted Dobson
Department of Mathematics \& Statistics
Mississippi State University
dobson@math.msstate.edu
http://www2.msstate.edu/~dobson/

Seminar, University of Primorska, May 9, 2011

For integers k and n satisfying $1 \leq k \leq n-1,2 k \neq n$, define the generalized Petersen graph $\operatorname{GP}(n, k)$ to be the graph with vertex set $\mathbb{Z}_{2} \times \mathbb{Z}_{n}$ and edge set

$$
\left\{(0, i)(0, i+1),(0, i)(1, i),(1, i)(1, i+k): i \in \mathbb{Z}_{n}\right\}
$$

For integers k and n satisfying $1 \leq k \leq n-1,2 k \neq n$, define the generalized Petersen graph $\operatorname{GP}(n, k)$ to be the graph with vertex set $\mathbb{Z}_{2} \times \mathbb{Z}_{n}$ and edge set

$$
\left\{(0, i)(0, i+1),(0, i)(1, i),(1, i)(1, i+k): i \in \mathbb{Z}_{n}\right\}
$$

The Petersen graph is $\operatorname{GP}(5,2)$:

For integers k and n satisfying $1 \leq k \leq n-1,2 k \neq n$, define the generalized Petersen graph $\operatorname{GP}(n, k)$ to be the graph with vertex set $\mathbb{Z}_{2} \times \mathbb{Z}_{n}$ and edge set

$$
\left\{(0, i)(0, i+1),(0, i)(1, i),(1, i)(1, i+k): i \in \mathbb{Z}_{n}\right\}
$$

The Petersen graph is $\operatorname{GP}(5,2)$:

Figure: The Petersen graph is $\operatorname{GP}(5,2)$

Generalized Petersen graphs were introduced by Watkins in 1969 who was interested in trivalent graphs without proper three edge-colorings.

Generalized Petersen graphs were introduced by Watkins in 1969 who was interested in trivalent graphs without proper three edge-colorings. A proper 3-edge coloring of a trivalent graph is called a Tait coloring.

Generalized Petersen graphs were introduced by Watkins in 1969 who was interested in trivalent graphs without proper three edge-colorings. A proper 3-edge coloring of a trivalent graph is called a Tait coloring. The Petersen graph is not Tait colorable, so it is reasonable to ask whether "similar" type graphs are Tait colorable.

Generalized Petersen graphs were introduced by Watkins in 1969 who was interested in trivalent graphs without proper three edge-colorings. A proper 3-edge coloring of a trivalent graph is called a Tait coloring. The Petersen graph is not Tait colorable, so it is reasonable to ask whether "similar" type graphs are Tait colorable.

Figure: The generalized Petersen graph GP $(10,4)$.

Figure: The Desargues configuration and its Levi graph $\operatorname{GP}(10,3)$

Many famous graphs are generalized Petersen graphs:

Many famous graphs are generalized Petersen graphs:

- $\operatorname{GP}(5,2)$ is the Petersen graph

Many famous graphs are generalized Petersen graphs:

- $\operatorname{GP}(5,2)$ is the Petersen graph
- $\operatorname{GP}(4,1)$ is the skeleton of the cube

Many famous graphs are generalized Petersen graphs:

- $\operatorname{GP}(5,2)$ is the Petersen graph
- $\operatorname{GP}(4,1)$ is the skeleton of the cube
- $\operatorname{GP}(10,3)$ is the Desargues graph

Many famous graphs are generalized Petersen graphs:

- $\operatorname{GP}(5,2)$ is the Petersen graph
- $\operatorname{GP}(4,1)$ is the skeleton of the cube
- $\operatorname{GP}(10,3)$ is the Desargues graph
- $\operatorname{GP}(10,2)$ is the skeleton of the dodecahedron

Many famous graphs are generalized Petersen graphs:

- $\operatorname{GP}(5,2)$ is the Petersen graph
- $\operatorname{GP}(4,1)$ is the skeleton of the cube
- $\operatorname{GP}(10,3)$ is the Desargues graph
- $\operatorname{GP}(10,2)$ is the skeleton of the dodecahedron
- $\operatorname{GP}(8,3)$ is the Möbius-Kantor graph

The generalized Petersen graphs have received a great deal of attention -

Many famous graphs are generalized Petersen graphs:

- $\operatorname{GP}(5,2)$ is the Petersen graph
- $\operatorname{GP}(4,1)$ is the skeleton of the cube
- $\operatorname{GP}(10,3)$ is the Desargues graph
- $\operatorname{GP}(10,2)$ is the skeleton of the dodecahedron
- $\operatorname{GP}(8,3)$ is the Möbius-Kantor graph

The generalized Petersen graphs have received a great deal of attention their automorphism groups are known,

Many famous graphs are generalized Petersen graphs:

- $\operatorname{GP}(5,2)$ is the Petersen graph
- $\operatorname{GP}(4,1)$ is the skeleton of the cube
- $\operatorname{GP}(10,3)$ is the Desargues graph
- $\operatorname{GP}(10,2)$ is the skeleton of the dodecahedron
- $\operatorname{GP}(8,3)$ is the Möbius-Kantor graph

The generalized Petersen graphs have received a great deal of attention their automorphism groups are known, and exactly which contain Hamilton cycles are known for example.

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$.

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$. It is then easy to see that $\rho, \delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ for every n and k.

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$. It is then easy to see that $\rho, \delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ for every n and k. One consequence of this is that $\operatorname{GP}(n, k)=\operatorname{GP}(n,-k)$.

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$. It is then easy to see that $\rho, \delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ for every n and k. One consequence of this is that $\operatorname{GP}(n, k)=\operatorname{GP}(n,-k)$.

Define $\tau: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\tau(i, j)=(i+1, k j)$.

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$. It is then easy to see that $\rho, \delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ for every n and k. One consequence of this is that $\operatorname{GP}(n, k)=\operatorname{GP}(n,-k)$.

Define $\tau: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\tau(i, j)=(i+1, k j)$. In order for τ to be a bijection, $k \in \mathbb{Z}_{n}^{*}$.

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$. It is then easy to see that $\rho, \delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ for every n and k. One consequence of this is that $\operatorname{GP}(n, k)=\operatorname{GP}(n,-k)$.

Define $\tau: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\tau(i, j)=(i+1, k j)$. In order for τ to be a bijection, $k \in \mathbb{Z}_{n}^{*}$. In order for τ to be an automorphism of $\operatorname{GP}(n, k)$, $\tau^{2}(i, j)=\left(i, k^{2} j\right)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges.

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$. It is then easy to see that $\rho, \delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ for every n and k. One consequence of this is that $\operatorname{GP}(n, k)=\operatorname{GP}(n,-k)$.

Define $\tau: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\tau(i, j)=(i+1, k j)$. In order for τ to be a bijection, $k \in \mathbb{Z}_{n}^{*}$. In order for τ to be an automorphism of $\operatorname{GP}(n, k)$, $\tau^{2}(i, j)=\left(i, k^{2} j\right)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^{2} \equiv \pm 1(\bmod n)$.

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$. It is then easy to see that $\rho, \delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ for every n and k. One consequence of this is that $\operatorname{GP}(n, k)=\operatorname{GP}(n,-k)$.

Define $\tau: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\tau(i, j)=(i+1, k j)$. In order for τ to be a bijection, $k \in \mathbb{Z}_{n}^{*}$. In order for τ to be an automorphism of $\operatorname{GP}(n, k)$, $\tau^{2}(i, j)=\left(i, k^{2} j\right)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^{2} \equiv \pm 1(\bmod n)$. If $k^{2} \equiv \pm 1$, then $\tau((0, j)(0, j+1))=(1, k j)(1, k j+k)$,

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$. It is then easy to see that $\rho, \delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ for every n and k. One consequence of this is that $\operatorname{GP}(n, k)=\operatorname{GP}(n,-k)$.

Define $\tau: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\tau(i, j)=(i+1, k j)$. In order for τ to be a bijection, $k \in \mathbb{Z}_{n}^{*}$. In order for τ to be an automorphism of $\operatorname{GP}(n, k)$, $\tau^{2}(i, j)=\left(i, k^{2} j\right)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^{2} \equiv \pm 1(\bmod n)$. If $k^{2} \equiv \pm 1$, then $\tau((0, j)(0, j+1))=(1, k j)(1, k j+k)$, $\tau((1, k j)(1, k j+k))=(0, \pm j)(0, \pm j \pm 1)$,

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$. It is then easy to see that $\rho, \delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ for every n and k. One consequence of this is that $\operatorname{GP}(n, k)=\operatorname{GP}(n,-k)$.

Define $\tau: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\tau(i, j)=(i+1, k j)$. In order for τ to be a bijection, $k \in \mathbb{Z}_{n}^{*}$. In order for τ to be an automorphism of $\operatorname{GP}(n, k)$, $\tau^{2}(i, j)=\left(i, k^{2} j\right)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^{2} \equiv \pm 1(\bmod n)$. If $k^{2} \equiv \pm 1$, then $\tau((0, j)(0, j+1))=(1, k j)(1, k j+k)$,
$\tau((1, k j)(1, k j+k))=(0, \pm j)(0, \pm j \pm 1)$, and $\tau((0, j)(1, j))=(1, k j)(0, k j)$.

Automorphisms of generalized Petersen graphs

Define $\rho, \delta: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$ and $\delta(i, j)=(i,-j)$. It is then easy to see that $\rho, \delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ for every n and k. One consequence of this is that $\operatorname{GP}(n, k)=\operatorname{GP}(n,-k)$.

Define $\tau: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\tau(i, j)=(i+1, k j)$. In order for τ to be a bijection, $k \in \mathbb{Z}_{n}^{*}$. In order for τ to be an automorphism of $\operatorname{GP}(n, k)$, $\tau^{2}(i, j)=\left(i, k^{2} j\right)$ must fix the outside n-cycle and the inside vertices, and map spoke edges to spoke edges. As the automorphism group of an n-cycle is a dihedral group, we conclude that $k^{2} \equiv \pm 1(\bmod n)$. If $k^{2} \equiv \pm 1$, then $\tau((0, j)(0, j+1))=(1, k j)(1, k j+k)$, $\tau((1, k j)(1, k j+k))=(0, \pm j)(0, \pm j \pm 1)$, and $\tau((0, j)(1, j))=(1, k j)(0, k j)$. Thus $\tau \in \operatorname{Aut}(\operatorname{GP}(n, k))$.

If $k^{2} \equiv 1(\bmod n)$, then set $B(n, k)=\langle\rho, \delta, \tau\rangle$, if $k^{2} \equiv-1(\bmod n)$, set $B(n, k)=\langle\rho, \tau\rangle$, while if $k^{2} \not \equiv \pm 1(\bmod n)$, set $B(n, k)=\langle\rho, \delta\rangle$.

If $k^{2} \equiv 1(\bmod n)$, then set $B(n, k)=\langle\rho, \delta, \tau\rangle$, if $k^{2} \equiv-1(\bmod n)$, set $B(n, k)=\langle\rho, \tau\rangle$, while if $k^{2} \not \equiv \pm 1(\bmod n)$, set $B(n, k)=\langle\rho, \delta\rangle$. In 1971, Frucht, Graver, and Watkins determined the automorphism groups of the generalized Petersen graphs:

If $k^{2} \equiv 1(\bmod n)$, then set $B(n, k)=\langle\rho, \delta, \tau\rangle$, if $k^{2} \equiv-1(\bmod n)$, set $B(n, k)=\langle\rho, \tau\rangle$, while if $k^{2} \not \equiv \pm 1(\bmod n)$, set $B(n, k)=\langle\rho, \delta\rangle$. In 1971, Frucht, Graver, and Watkins determined the automorphism groups of the generalized Petersen graphs:
Theorem
$\operatorname{Aut}(\operatorname{GP}(n, k))=B(n, k)$ except for the following pairs (n, k), where $2 \leq 2 k<n$:

$$
(4,1),(5,2),(8,3),(10,2),(10,3),(12,5),(24,5)
$$

If $k^{2} \equiv 1(\bmod n)$, then set $B(n, k)=\langle\rho, \delta, \tau\rangle$, if $k^{2} \equiv-1(\bmod n)$, set $B(n, k)=\langle\rho, \tau\rangle$, while if $k^{2} \not \equiv \pm 1(\bmod n)$, set $B(n, k)=\langle\rho, \delta\rangle$. In 1971, Frucht, Graver, and Watkins determined the automorphism groups of the generalized Petersen graphs:
Theorem
$\operatorname{Aut}(\operatorname{GP}(n, k))=B(n, k)$ except for the following pairs (n, k), where $2 \leq 2 k<n$:

$$
(4,1),(5,2),(8,3),(10,2),(10,3),(12,5),(24,5)
$$

They also determined the automorphism groups for the seven exceptional pairs, but we will not discuss them.

Staton and Steimle in 2009 proved the following result:

Staton and Steimle in 2009 proved the following result:
Theorem
For $2 \leq k \leq n-2$ with $\operatorname{gcd}(n, k)=1$, the generalized Petersen graphs, $\mathrm{GP}(n, k)$ and $\mathrm{GP}(n, \ell)$ are isomorphic if and only if either $k \equiv-\ell(\bmod n)$ or $k \ell \equiv \pm 1(\bmod n)$.

Staton and Steimle in 2009 proved the following result:
Theorem
For $2 \leq k \leq n-2$ with $\operatorname{gcd}(n, k)=1$, the generalized Petersen graphs, $\operatorname{GP}(n, k)$ and $\operatorname{GP}(n, \ell)$ are isomorphic if and only if either $k \equiv-\ell(\bmod n)$ or $k \ell \equiv \pm 1(\bmod n)$.
Their proof very much makes use of the fact that if $\operatorname{gcd}(n, k)=1$, then the inside graph is a cycle, and not a disjoint union of cycles.

A general strategy to solve an isomorphism problem

Suppose that Γ and Γ^{\prime} are isomorphic graphs with ϕ and isomorphism, and $G \leq \operatorname{Aut}(\Gamma) \cap \operatorname{Aut}\left(\Gamma^{\prime}\right)$.

A general strategy to solve an isomorphism problem

Suppose that Γ and Γ^{\prime} are isomorphic graphs with ϕ and isomorphism, and $G \leq \operatorname{Aut}(\Gamma) \cap \operatorname{Aut}\left(\Gamma^{\prime}\right)$. Then $\phi^{-1} G \phi \leq \operatorname{Aut}(\Gamma)$.

A general strategy to solve an isomorphism problem

Suppose that Γ and Γ^{\prime} are isomorphic graphs with ϕ and isomorphism, and $G \leq \operatorname{Aut}(\Gamma) \cap \operatorname{Aut}\left(\Gamma^{\prime}\right)$. Then $\phi^{-1} G \phi \leq \operatorname{Aut}(\Gamma)$. If there exists $\delta \in \operatorname{Aut}(\Gamma)$ such that $\delta^{-1} \phi^{-1} G \phi \delta=G$, then $\phi \delta$ is an isomorphism from Γ to Γ^{\prime} that normalizes G.

A general strategy to solve an isomorphism problem

Suppose that Γ and Γ^{\prime} are isomorphic graphs with ϕ and isomorphism, and $G \leq \operatorname{Aut}(\Gamma) \cap \operatorname{Aut}\left(\Gamma^{\prime}\right)$. Then $\phi^{-1} G \phi \leq \operatorname{Aut}(\Gamma)$. If there exists $\delta \in \operatorname{Aut}(\Gamma)$ such that $\delta^{-1} \phi^{-1} G \phi \delta=G$, then $\phi \delta$ is an isomorphism from Γ to Γ^{\prime} that normalizes G. If one then calculates this normalizer, then the isomorphism problem is solved.

A general strategy to solve an isomorphism problem

Suppose that Γ and Γ^{\prime} are isomorphic graphs with ϕ and isomorphism, and $G \leq \operatorname{Aut}(\Gamma) \cap \operatorname{Aut}\left(\Gamma^{\prime}\right)$. Then $\phi^{-1} G \phi \leq \operatorname{Aut}(\Gamma)$. If there exists $\delta \in \operatorname{Aut}(\Gamma)$ such that $\delta^{-1} \phi^{-1} G \phi \delta=G$, then $\phi \delta$ is an isomorphism from Γ to Γ^{\prime} that normalizes G. If one then calculates this normalizer, then the isomorphism problem is solved. Of course this strategy will only work well if G is transitive and small, or intransitive and large.

A general strategy to solve an isomorphism problem

Suppose that Γ and Γ^{\prime} are isomorphic graphs with ϕ and isomorphism, and $G \leq \operatorname{Aut}(\Gamma) \cap \operatorname{Aut}\left(\Gamma^{\prime}\right)$. Then $\phi^{-1} G \phi \leq \operatorname{Aut}(\Gamma)$. If there exists $\delta \in \operatorname{Aut}(\Gamma)$ such that $\delta^{-1} \phi^{-1} G \phi \delta=G$, then $\phi \delta$ is an isomorphism from Γ to Γ^{\prime} that normalizes G. If one then calculates this normalizer, then the isomorphism problem is solved. Of course this strategy will only work well if G is transitive and small, or intransitive and large.

If one is working with Cayley graphs of a group G, then G_{L} is the obvious small transitive subgroup to work with, and this is exactly how the characterization of which groups are Cl -groups with respect to graphs was obtained.

For us with the generalized Petersen graphs, the obvious choice of G is $\langle\rho\rangle$, which has two orbits of size n.

For us with the generalized Petersen graphs, the obvious choice of G is $\langle\rho\rangle$, which has two orbits of size n. The normalizer of $\langle\rho\rangle$ is

```
Lemma
Let \rho: \mathbb{Z}
N\mp@subsup{S}{2n}{}}(\langle\rho\rangle)={(i,j)->(i+a,\betaj+\mp@subsup{b}{i}{}):a\in\mp@subsup{\mathbb{Z}}{2}{},\beta\in\mp@subsup{\mathbb{Z}}{n}{*},\mp@subsup{b}{i}{}\in\mp@subsup{\mathbb{Z}}{n}{}}
```

For us with the generalized Petersen graphs, the obvious choice of G is $\langle\rho\rangle$, which has two orbits of size n. The normalizer of $\langle\rho\rangle$ is

Lemma
Let $\rho: \mathbb{Z}_{2} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{n}$ by $\rho(i, j)=(i, j+1)$. Then
$N_{S_{2 n}}(\langle\rho\rangle)=\left\{(i, j) \rightarrow\left(i+a, \beta j+b_{i}\right): a \in \mathbb{Z}_{2}, \beta \in \mathbb{Z}_{n}^{*}, b_{i} \in \mathbb{Z}_{n}\right\}$.

The only part (sort of) of our strategy remaining is to show that if $\phi^{-1}\langle\rho\rangle \phi \leq \operatorname{Aut}(\operatorname{GP}(n, k))$, then there exists $\delta \in \operatorname{Aut}(\operatorname{GP}(n, k))$ such that $\delta^{-1} \phi^{-1}\langle\rho\rangle \phi \delta=\langle\rho\rangle$.

First, the seven exceptionally pairs (n, k) can be ignored -

First, the seven exceptionally pairs (n, k) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs $\operatorname{GP}(n, k)$ are only isomorphic to $\operatorname{GP}(n,-k)$.

Second, show that if $k \neq \pm 1$, then $\langle\rho\rangle$ is the unique maximal cyclic subgroup of $B(n, k)$.

First, the seven exceptionally pairs (n, k) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs $\operatorname{GP}(n, k)$ are only isomorphic to $\operatorname{GP}(n,-k)$.

Second, show that if $k \neq \pm 1$, then $\langle\rho\rangle$ is the unique maximal cyclic subgroup of $B(n, k)$.

In the case where $k^{2} \neq \pm 1$ (and $\left.B(n, k)=\langle\rho, \delta\rangle\right)$, any element of $B(n, k)$ can be written as $\delta^{a} \rho^{b}, a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{n}$ as $\langle\rho\rangle \triangleleft\langle\rho, \delta\rangle$.

First, the seven exceptionally pairs (n, k) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs $\operatorname{GP}(n, k)$ are only isomorphic to $\operatorname{GP}(n,-k)$.

Second, show that if $k \neq \pm 1$, then $\langle\rho\rangle$ is the unique maximal cyclic subgroup of $B(n, k)$.

In the case where $k^{2} \neq \pm 1$ (and $\left.B(n, k)=\langle\rho, \delta\rangle\right)$, any element of $B(n, k)$ can be written as $\delta^{a} \rho^{b}$, $a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{n}$ as $\langle\rho\rangle \triangleleft\langle\rho, \delta\rangle$. If $a=0$, then $\delta^{a} \rho^{b} \in\langle\rho\rangle$.

First, the seven exceptionally pairs (n, k) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs $\operatorname{GP}(n, k)$ are only isomorphic to $\operatorname{GP}(n,-k)$.

Second, show that if $k \neq \pm 1$, then $\langle\rho\rangle$ is the unique maximal cyclic subgroup of $B(n, k)$.

In the case where $k^{2} \neq \pm 1$ (and $\left.B(n, k)=\langle\rho, \delta\rangle\right)$, any element of $B(n, k)$ can be written as $\delta^{a} \rho^{b}$, $a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{n}$ as $\langle\rho\rangle \triangleleft\langle\rho, \delta\rangle$. If $a=0$, then $\delta^{a} \rho^{b} \in\langle\rho\rangle$. If $a=1$, then

$$
\left(\delta \rho^{b}\right)^{2}(i, j)=\delta \rho^{b} \delta(i, j+b)
$$

First, the seven exceptionally pairs (n, k) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs $\operatorname{GP}(n, k)$ are only isomorphic to $\operatorname{GP}(n,-k)$.

Second, show that if $k \neq \pm 1$, then $\langle\rho\rangle$ is the unique maximal cyclic subgroup of $B(n, k)$.

In the case where $k^{2} \neq \pm 1$ (and $\left.B(n, k)=\langle\rho, \delta\rangle\right)$, any element of $B(n, k)$ can be written as $\delta^{a} \rho^{b}, a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{n}$ as $\langle\rho\rangle \triangleleft\langle\rho, \delta\rangle$. If $a=0$, then $\delta^{a} \rho^{b} \in\langle\rho\rangle$. If $a=1$, then

$$
\left(\delta \rho^{b}\right)^{2}(i, j)=\delta \rho^{b} \delta(i, j+b)=\delta \rho^{b}(i,-j-b)
$$

First, the seven exceptionally pairs (n, k) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs $\operatorname{GP}(n, k)$ are only isomorphic to $\operatorname{GP}(n,-k)$.

Second, show that if $k \neq \pm 1$, then $\langle\rho\rangle$ is the unique maximal cyclic subgroup of $B(n, k)$.

In the case where $k^{2} \neq \pm 1$ (and $\left.B(n, k)=\langle\rho, \delta\rangle\right)$, any element of $B(n, k)$ can be written as $\delta^{a} \rho^{b}, a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{n}$ as $\langle\rho\rangle \triangleleft\langle\rho, \delta\rangle$. If $a=0$, then $\delta^{a} \rho^{b} \in\langle\rho\rangle$. If $a=1$, then

$$
\left(\delta \rho^{b}\right)^{2}(i, j)=\delta \rho^{b} \delta(i, j+b)=\delta \rho^{b}(i,-j-b)=\delta(i,-j)
$$

First, the seven exceptionally pairs (n, k) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs $\operatorname{GP}(n, k)$ are only isomorphic to $\operatorname{GP}(n,-k)$.

Second, show that if $k \neq \pm 1$, then $\langle\rho\rangle$ is the unique maximal cyclic subgroup of $B(n, k)$.

In the case where $k^{2} \neq \pm 1$ (and $\left.B(n, k)=\langle\rho, \delta\rangle\right)$, any element of $B(n, k)$ can be written as $\delta^{a} \rho^{b}, a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{n}$ as $\langle\rho\rangle \triangleleft\langle\rho, \delta\rangle$. If $a=0$, then $\delta^{a} \rho^{b} \in\langle\rho\rangle$. If $a=1$, then

$$
\left(\delta \rho^{b}\right)^{2}(i, j)=\delta \rho^{b} \delta(i, j+b)=\delta \rho^{b}(i,-j-b)=\delta(i,-j)=(i, j)
$$

First, the seven exceptionally pairs (n, k) can be ignored - as isomorphic graphs have isomorphic automorphism groups these generalized Petersen graphs $\operatorname{GP}(n, k)$ are only isomorphic to $\operatorname{GP}(n,-k)$.

Second, show that if $k \neq \pm 1$, then $\langle\rho\rangle$ is the unique maximal cyclic subgroup of $B(n, k)$.

In the case where $k^{2} \neq \pm 1$ (and $\left.B(n, k)=\langle\rho, \delta\rangle\right)$, any element of $B(n, k)$ can be written as $\delta^{a} \rho^{b}, a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{n}$ as $\langle\rho\rangle \triangleleft\langle\rho, \delta\rangle$. If $a=0$, then $\delta^{a} \rho^{b} \in\langle\rho\rangle$. If $a=1$, then

$$
\left(\delta \rho^{b}\right)^{2}(i, j)=\delta \rho^{b} \delta(i, j+b)=\delta \rho^{b}(i,-j-b)=\delta(i,-j)=(i, j)
$$

has order 2 , not n.

The case where $k^{2}= \pm 1$ but $k \neq \pm 1$, is very similar, with the computations being slightly more complicated.

The case where $k^{2}= \pm 1$ but $k \neq \pm 1$, is very similar, with the computations being slightly more complicated.

The case where $k^{2}= \pm 1$ but $k \pm 1$ are Cayley graphs of $\mathbb{Z}_{2} \times \mathbb{Z}_{n}$, and either contains a cyclic subgroup of order $2 n$ if $\operatorname{gcd}(2, n)=1$,

The case where $k^{2}= \pm 1$ but $k \neq \pm 1$, is very similar, with the computations being slightly more complicated.

The case where $k^{2}= \pm 1$ but $k \pm 1$ are Cayley graphs of $\mathbb{Z}_{2} \times \mathbb{Z}_{n}$, and either contains a cyclic subgroup of order $2 n$ if $\operatorname{gcd}(2, n)=1$, or contains two maximal cyclic subgroups if $\operatorname{gcd}(2, n)=2$.

The case where $k^{2}= \pm 1$ but $k \neq \pm 1$, is very similar, with the computations being slightly more complicated.

The case where $k^{2}= \pm 1$ but $k \pm 1$ are Cayley graphs of $\mathbb{Z}_{2} \times \mathbb{Z}_{n}$, and either contains a cyclic subgroup of order $2 n$ if $\operatorname{gcd}(2, n)=1$, or contains two maximal cyclic subgroups if $\operatorname{gcd}(2, n)=2$. So the case where $k= \pm 1$ is finished - $\operatorname{GP}(n, 1)$ is only isomorphic to $\operatorname{GP}(n, n-1)$.

The case where $k^{2}= \pm 1$ but $k \neq \pm 1$, is very similar, with the computations being slightly more complicated.

The case where $k^{2}= \pm 1$ but $k \pm 1$ are Cayley graphs of $\mathbb{Z}_{2} \times \mathbb{Z}_{n}$, and either contains a cyclic subgroup of order $2 n$ if $\operatorname{gcd}(2, n)=1$, or contains two maximal cyclic subgroups if $\operatorname{gcd}(2, n)=2$. So the case where $k= \pm 1$ is finished - $\operatorname{GP}(n, 1)$ is only isomorphic to $\operatorname{GP}(n, n-1)$.

So, in the remaining case, we have an isomorphism ϕ between $\operatorname{GP}(n, k)$ and $\operatorname{GP}(n, \ell)$ that is contained in the normalizer in $S_{2 n}$ of $\langle\rho\rangle$.

Set $\phi(i, j)=\left(i+a, \beta j+b_{i}\right), a \in \mathbb{Z}_{2}, \beta \in \mathbb{Z}_{n}^{*}$, and $b_{i} \in \mathbb{Z}_{n}$.

Set $\phi(i, j)=\left(i+a, \beta j+b_{i}\right), a \in \mathbb{Z}_{2}, \beta \in \mathbb{Z}_{n}^{*}$, and $b_{i} \in \mathbb{Z}_{n}$. As $\rho \in B(n, k)$, we can and do assume without loss of generality that $b_{0}=0$.

Set $\phi(i, j)=\left(i+a, \beta j+b_{i}\right), a \in \mathbb{Z}_{2}, \beta \in \mathbb{Z}_{n}^{*}$, and $b_{i} \in \mathbb{Z}_{n}$. As $\rho \in B(n, k)$, we can and do assume without loss of generality that $b_{0}=0$. Let $\mathcal{O}=\left\{(0, j): j \in \mathbb{Z}_{n}\right\}$ (the "outer" vertices of $\operatorname{GP}(n, k)$),

Set $\phi(i, j)=\left(i+a, \beta j+b_{i}\right), a \in \mathbb{Z}_{2}, \beta \in \mathbb{Z}_{n}^{*}$, and $b_{i} \in \mathbb{Z}_{n}$. As $\rho \in B(n, k)$, we can and do assume without loss of generality that $b_{0}=0$. Let $\mathcal{O}=\left\{(0, j): j \in \mathbb{Z}_{n}\right\}$ (the "outer" vertices of $\operatorname{GP}(n, k)$), and $\mathcal{I}=\left\{(1, j): j \in \mathbb{Z}_{n}\right\}$ (the "inner" vertices of $\operatorname{GP}(n, k)$).

Set $\phi(i, j)=\left(i+a, \beta j+b_{i}\right), a \in \mathbb{Z}_{2}, \beta \in \mathbb{Z}_{n}^{*}$, and $b_{i} \in \mathbb{Z}_{n}$. As $\rho \in B(n, k)$, we can and do assume without loss of generality that $b_{0}=0$. Let $\mathcal{O}=\left\{(0, j): j \in \mathbb{Z}_{n}\right\}$ (the "outer" vertices of $\operatorname{GP}(n, k)$), and $\mathcal{I}=\left\{(1, j): j \in \mathbb{Z}_{n}\right\}$ (the "inner" vertices of $\operatorname{GP}(n, k)$). We refer to edges of the form $(1, i)(0, i)$ as spoke edges, and set $\phi(\operatorname{GP}(n, k))=\operatorname{GP}(n, \ell)$.

If $a=0$, then ϕ maps $\operatorname{GP}(n, k)[\mathcal{O}]$ to $\operatorname{GP}(n, \ell)[\mathcal{O}]$,

If $a=0$, then ϕ maps $\operatorname{GP}(n, k)[\mathcal{O}]$ to $\operatorname{GP}(n, \ell)[\mathcal{O}]$, and these graphs are equal (as the outside cycles of a generalized Petersen graph are always equal).

If $a=0$, then ϕ maps $\operatorname{GP}(n, k)[\mathcal{O}]$ to $\operatorname{GP}(n, \ell)[\mathcal{O}]$, and these graphs are equal (as the outside cycles of a generalized Petersen graph are always equal). As the automorphism group of cycle is a dihedral group, we conclude that $\beta= \pm 1$.

If $a=0$, then ϕ maps $\operatorname{GP}(n, k)[\mathcal{O}]$ to $\operatorname{GP}(n, \ell)[\mathcal{O}]$, and these graphs are equal (as the outside cycles of a generalized Petersen graph are always equal). As the automorphism group of cycle is a dihedral group, we conclude that $\beta= \pm 1$. As $\phi(0,0)=(0,0)$ and ϕ maps spoke edges to spoke edges, we see that $\phi(1,0)=(1,0)$ and so $b_{1}=0$ as well.

If $a=0$, then ϕ maps $\operatorname{GP}(n, k)[\mathcal{O}]$ to $\operatorname{GP}(n, \ell)[\mathcal{O}]$, and these graphs are equal (as the outside cycles of a generalized Petersen graph are always equal). As the automorphism group of cycle is a dihedral group, we conclude that $\beta= \pm 1$. As $\phi(0,0)=(0,0)$ and ϕ maps spoke edges to spoke edges, we see that $\phi(1,0)=(1,0)$ and so $b_{1}=0$ as well. Then $\phi \in\langle\delta\rangle$, and $\operatorname{GP}(n, k)[\mathcal{I}]=\operatorname{GP}(n, \ell)[\mathcal{I}]$. Thus $\ell= \pm k$.

If $a=1$, then ϕ maps $\operatorname{GP}(n, k)[\mathcal{O}]$ to $\operatorname{GP}(n, \ell)[\mathcal{I}]$.

If $a=1$, then ϕ maps $\operatorname{GP}(n, k)[\mathcal{O}]$ to $\operatorname{GP}(n, \ell)[\mathcal{I}]$. As $\phi((0,0)(0,1))=(1,0)(1, \ell)$ or $(1,0)(1,-\ell)$, we have that $\beta= \pm \ell$.

If $a=1$, then ϕ maps $\operatorname{GP}(n, k)[\mathcal{O}]$ to $\operatorname{GP}(n, \ell)[\mathcal{I}]$. As $\phi((0,0)(0,1))=(1,0)(1, \ell)$ or $(1,0)(1,-\ell)$, we have that $\beta= \pm \ell$. As ϕ maps spoke edges to spoke edges and $\phi(0,0)=(1,0)$, we have that $\phi(1,0)=(0,0)$ and again $b_{1}=0$.

If $a=1$, then ϕ maps $\operatorname{GP}(n, k)[\mathcal{O}]$ to $\operatorname{GP}(n, \ell)[\mathcal{I}]$. As $\phi((0,0)(0,1))=(1,0)(1, \ell)$ or $(1,0)(1,-\ell)$, we have that $\beta= \pm \ell$. As ϕ maps spoke edges to spoke edges and $\phi(0,0)=(1,0)$, we have that $\phi(1,0)=(0,0)$ and again $b_{1}=0$. Then $\phi((1,0)(1, k))=(0,0)(0, \pm k \ell)=(0,0)(0,1)$ or $(0,0)(0,-1)$ and so $k \ell= \pm 1$.

Theorem

The generalized Petersen graphs $\operatorname{GP}(n, k)$ and $\operatorname{GP}(n, \ell)$ are isomorphic if and only if either $k \equiv \pm \ell(\bmod n)$ or $k \ell \equiv \pm 1(\bmod n)$.

