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Problem:

Conic sections are standard objects in CAGD.

A general conic is given with the equation

ax2 + bxy + cy2 + dx + ey + f = 0.

Eigenvalues of the matrix(
a b/2

b/2 c

)
determine the type of a conic: ellipse, hyperbola, parabola.

In practice, parametric representation is often required.

Ellipse and hyperbola can be parametrically represented by
trigonometric and hyperbolic functions.

Conics can be presented also by quadratic rational curves.

But: in many applications we need polynomial parametric
representation.
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Problem:

Only parabola has exact parametric polynomial representation.

We need good polynomial approximant.

We will require the interpolation of at least one point on a conic
and tangent direction at this point.

But: such an approximant is “good” only close to the
interpolation point.
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Problem:
Motivation: Compare the following two polynomial parametric
approximants of degree 5 for approximation of the unit circle:(

1− 1
2 t2 + 1

24 t4

t − 1
6 t3 + 1

120 t5

)
;

(
1− (3 +

√
5)t2 + (1 +

√
5)t4

(1 +
√

5)t − (3 +
√

5)t3 + t5

)
.
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Problem:

The implicit equations of the unit circle and the unit hyperbola
are

x2 ± y2 = 1.

Task: find two nonconstant polynomials xn, yn ∈ R[t ] of degree
≤ n, such that

x2
n (t) + y2

n (t) = 1 + t2n (1)

for the elliptic case and

x2
n (t)− y2

n (t) = 1± t2n (2)

for the hyperbolic case.
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Problem:

Our aim:

find all possible solutions for equations (1) and (2),

precisely analyse the best solution,

show, that the error of this best approximant decreases
exponentially with the growing degree n.
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Conic sections:

By choosing an appropriate coordinate system, ellipse and
hyperbola can be written as(

x − x0

a

)2

±
(

y − y0

b

)2

= 1.

By a translation and scaling we can further obtain

x2 ± y2 = 1.

We have to find two nonconstant polynomials xn in yn, of degree
≤ n, such that

x2
n (t)± y2

n (t) = 1 + ε(t). (3)
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Conic sections:

Since we will interpolate one point and tangent direction at this
point:

xn(0) = 1, x ′n(0) = 0, yn(0) = 0, y ′n(0) = 1.

A residual polynomial ε is of degree at most 2n. To have the
approximation error as small as possible in the vicinity of the
interpolation point, ε should be spanned by t2n only. Thus

ε(t) := c t2n.

Polynomials xn and yn are now of the form

xn(t) := 1 +
n∑
`=2

a` t`, yn(t) := t +
n∑
`=2

b` t`,

which gives(
1 +

n∑
`=2

a` t`
)2

±

(
t +

n∑
`=2

b` t`
)2

= 1 +
(
a2

n ± b2
n
)

t2n.
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Conic sections:

Let
A :=

1
2n
√
|a2

n ± b2
n|
.

Linear scaling of the parameter t 7→ t/A and introduction of new
variables

α` := a` A`, β` := b` A`, ` = 1,2, . . . ,n,

where a1 := 0,b1 := 1, transform the problem into the problem of
finding

xn(t) := 1 +
n∑
`=2

α` t`, yn(t) :=
n∑
`=1

β` t`, β1 > 0;

x2
n (t)± y2

n (t) = 1 + sign(a2
n ± b2

n) t2n. (4)

Elliptic case: one possibility.

Hyperbolic case: two possibilities.
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Solutions for the elliptic case:

The equation x2
n (t) + y2

n (t) = 1 + t2n can be rewritten as

(xn(t) + i yn(t)) (xn(t)− i yn(t)) =
2n−1∏
k=0

(
t − ei 2k+1

2n π
)
. (5)

From the uniqueness of the polynomial factorization over C up to
a constant factor, and from the fact that the factors in (5) appear
in conjugate pairs, it follows

xn(t) + i yn(t) = γ

n−1∏
k=0

(
t − eiσk

2k+1
2n π
)
, γ ∈ C, |γ| = 1,

where σk = ±1.
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Solutions for the elliptic case:

In order to interpolate the point (1,0):

γ := (−1)n
n−1∏
k=0

e− iσk
2k+1

2n π.

xn(t) + i yn(t) = (−1)n
n−1∏
k=0

(
t e− iσk

2k+1
2n π − 1

)
=: pe(t ;σ),

where σ = (σk )
n−1
k=0 ∈ {−1,1}n.

Therefore we have 2n solutions.

We have to eliminate those with z β1 = 0.

The remaining ones appear in pairs (xn,±yn), thus precisely half
of them fulfill the requirement β1 > 0.
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Solutions for the hyperbolic case:

Our equation:

x2
n (t)− y2

n (t) = 1 + sign(a2
n − b2

n)t
2n.

For a2
n < b2

n:

(xn(t) + yn(t)) (xn(t)− yn(t)) = 1−t2n =

(1− t2)
n−1∏
k=1

(
t2 − 2 cos

(
kπ
n

)
t + 1

)
. (6)

For a2
n > b2

n:

(xn(t) + yn(t)) (xn(t)− yn(t)) = 1+t2n =

n−1∏
k=0

(
t2 − 2 cos

(
2k + 1

2n
π

)
t + 1

)
. (7)
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Solutions for the hyperbolic case:

The right sides of equations (6) and (7) can be written as a
product of two polynomials ph and qh. Then we can take

xn(t) =
1
2
(ph(t) + qh(t)), yn(t) = ±

1
2
(ph(t)− qh(t)).

Since xn and yn are of degree ≤ n, also both ph and qh must be
of degree n.

In the case a2
n < b2

n, we take

ph(t) :=ph (t ; In) :=

(1 + t)
1−(−1)n

2

∏
k∈In⊆{1,2,...,n−1}

|In|=b n
2c

(
t2 − 2 cos

(
kπ
n

)
t + 1

)
. (8)

In the case a2
n > b2

n the solutions exist only for even n and we
take

ph(t) := ph (t ; In) :=
∏

k∈In⊆{1,2,...,n−1}
|In|= n

2

(
t2 − 2 cos

(
2k + 1

2n
π

)
t + 1

)
.

(9)
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Solutions for the hyperbolic case:

Again we have to eliminate solutions with β1 = 0 and from the
remaining pairs (xn,±yn) select only those with β1 > 0.

The number of admissible solutions grows exponentially with n:

n 2 3 4 5 6 7 8 9 10
ellipt. case 1 3 6 15 27 64 120 254 495

hyper. a2
n < b2

n 0 1 2 5 8 20 32 70 120
hyper. a2

n > b2
n 1 0 2 0 9 0 32 0 125
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Solutions of the problem:

The example of all admissible solutions for the elliptic case for n = 4:

-1.0 -0.5 0.0 0.5

-1.0

-0.5

0.5

1.0
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Solutions of the problem:

The example of all admissible solutions for the elliptic case for n = 5:

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.5

1.0
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Best solution:

The error will be the smallest when A = β1 will be the largest.

Theorem:
The best solution for the elliptic case is

xn(t) = Re (pe (t ;σ∗)), yn(t) = Im (pe (t ;σ∗)), σ∗ = (1)n−1
k=0.

The best solution for the hyperbolic case is

xn(t) =
1
2
(ph (t ; I∗n ) + ph (−t ; I∗n )), yn(t) =

1
2
(ph (t ; I∗n )− ph (−t ; I∗n )),

where ph is defined in (8) for odd n and in (9) for even n, and

I∗n =

{⌊
n + 1

2

⌋
,

⌊
n + 1

2

⌋
+ 1, . . . ,n − 1

}
.

In all cases: β1 =
1
ωn
, ωn := sin

π

2n
.
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Best solution:

Any solution for the elliptic case, for which xn is an even and yn
an odd function, can be transformed into a solution for the
hyperbolic case by using the map

xn(t) 7→ xn(i t), (10)
yn(t) 7→ − i yn(i t).

The coefficient β1 is equal for both best solutions, and it is
preserved by the map (10).

Therefore: If we can prove that in the elliptic case the polynomial
xn is an even and yn an odd function, then the best solution for
the elliptic case is mapped by (10) to the best solution for the
hyperbolic case.
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Best solution:

Theorem:
The coefficients of the best solution in the elliptic case are obtained
as

αk =


k(n−k)∑

j=0

P(j , k ,n − k) cos
(

k2

2n
π +

j
n
π

)
, k is even,

0, k is odd,

βk =


0, k is even,

k(n−k)∑
j=0

P(j , k ,n − k) sin
(

k2

2n
π +

j
n
π

)
, k is odd,

P(j , k , r) denotes the number of integer partitions of j ∈ N with
≤ k parts, all between 1 and r , where k , r ∈ N,

P(0, k , r) := 1.
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Best solution:

Corollary:

For the best solution (in both cases), the polynomial xn is an
even function, and yn is an odd one.

The best solution is symmetric w.r.t. the x-axis.

Corollary:

For the coefficients of the polynomials xn and yn in the elliptic case it
holds

αn−k + iβn−k = in(αk − iβk ), k = 0,1, . . . , bn/2c.

Moreover:

αk = ±βn−k , for n = 4`± 1,
αn−k = ∓αk , βn−k = ±βk , for n = 4`+ 1± 1.
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Best solution:

n xn(t), yn(t)

2 x2(t) = 1∓ t2, y2(t) =
√

2 t

3 x3(t) = 1∓ 2 t2, y3(t) = 2 t ∓ t3

4 x4(t) = 1∓ (2 +
√

2)t2 + t4

y4(t) =
√

4 + 2
√

2(t ∓ t3)

5 x5(t) = 1∓ (3 +
√

5)t2 + (1 +
√

5)t4

y5(t) = (1 +
√

5)t ∓ (3 +
√

5)t3 + t5

6 x6(t) = 1∓ 2(2 +
√

3)t2 + 2(2 +
√

3)t4 ∓ t6

y6(t) = (
√

2 +
√

6)t ∓
√

2 (3 + 2
√

3)t3 + (
√

2 +
√

6)t5
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Best solution:
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Error analysis - elliptic case:

The number of winds of polynomial curve around the origin is⌊ n
4

⌋
.
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Error analysis - elliptic case:

Radial distance of the segment of the polynomial curve

(xn(t), yn(t))
T
,

which approximates the unit circle, can be expressed as(
π2

2n

)2n

+O

((
π2

2n

)2n+1)
.
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Error analysis - elliptic case:

ellip. case ( s ∈ [−π, π])
n hn error
4 1 0.41421
5 0.84612 0.08999
6 0.74225 0.01389
7 0.65658 0.00138
8 0.58526 9.5 · 10−5

9 0.52643 4.8 · 10−6

10 0.47766 1.9 · 10−7

11 0.43680 6.1 · 10−9

12 0.40217 1.6 · 10−10

13 0.37249 3.5 · 10−12

14 0.34681 6.6 · 10−14

15 0.32438 1.1 · 10−15
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Generalizations:
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Thank you!
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