High order parametric polynomial approximation of conic sections

V. Vitrih

Raziskovalni matematični seminar

14. 3. 2011

- Conic sections are standard objects in CAGD.
- A general conic is given with the equation

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0.$$

• Eigenvalues of the matrix

$$\left(egin{array}{c} a & b/2 \ b/2 & c \end{array}
ight)$$

determine the type of a conic: ellipse, hyperbola, parabola.

- Conic sections are standard objects in CAGD.
- A general conic is given with the equation

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0.$$

Eigenvalues of the matrix

$$\left(egin{array}{c} a & b/2 \ b/2 & c \end{array}
ight)$$

determine the type of a conic: ellipse, hyperbola, parabola.

• In practice, parametric representation is often required.

- Conic sections are standard objects in CAGD.
- A general conic is given with the equation

 $ax^{2} + bxy + cy^{2} + dx + ey + f = 0.$

• Eigenvalues of the matrix

$$\left(egin{array}{c} a & b/2 \ b/2 & c \end{array}
ight)$$

determine the type of a conic: ellipse, hyperbola, parabola.

- In practice, parametric representation is often required.
- Ellipse and hyperbola can be parametrically represented by trigonometric and hyperbolic functions.
- Conics can be presented also by quadratic rational curves.

●
●
●
●
●
●
○
0
0
2/32

- Conic sections are standard objects in CAGD.
- A general conic is given with the equation

 $ax^{2} + bxy + cy^{2} + dx + ey + f = 0.$

• Eigenvalues of the matrix

$$\left(egin{array}{c} a & b/2 \ b/2 & c \end{array}
ight)$$

determine the type of a conic: ellipse, hyperbola, parabola.

- In practice, parametric representation is often required.
- Ellipse and hyperbola can be parametrically represented by trigonometric and hyperbolic functions.
- Conics can be presented also by quadratic rational curves.
- But: in many applications we need polynomial parametric representation.

 • Only parabola has exact parametric polynomial representation.

- Only parabola has exact parametric polynomial representation.
- We need good polynomial approximant.

- Only parabola has exact parametric polynomial representation.
- We need good polynomial approximant.
- We will require the interpolation of at least one point on a conic and tangent direction at this point.

- Only parabola has exact parametric polynomial representation.
- We need good polynomial approximant.
- We will require the interpolation of at least one point on a conic and tangent direction at this point.
- But: such an approximant is "good" only close to the interpolation point.

Motivation: Compare the following two polynomial parametric approximants of degree 5 for approximation of the unit circle:

$$\begin{pmatrix} 1 - \frac{1}{2}t^2 + \frac{1}{24}t^4 \\ t - \frac{1}{6}t^3 + \frac{1}{120}t^5 \end{pmatrix}; \quad \begin{pmatrix} 1 - (3 + \sqrt{5})t^2 + (1 + \sqrt{5})t^4 \\ (1 + \sqrt{5})t - (3 + \sqrt{5})t^3 + t^5 \end{pmatrix}$$

The implicit equations of the unit circle and the unit hyperbola are

$$x^2 \pm y^2 = 1.$$

• Task: find two nonconstant polynomials x_n , $y_n \in \mathbb{R}[t]$ of degree $\leq n$, such that

$$x_n^2(t) + y_n^2(t) = 1 + t^{2n}$$
(1)

for the elliptic case and

$$x_n^2(t) - y_n^2(t) = 1 \pm t^{2n}$$
 (2)

< □ < □ < □ < □ < 0 へ C 5 / 32

for the hyperbolic case.

Our aim:

- find all possible solutions for equations (1) and (2),
- precisely analyse the best solution,
- show, that the error of this best approximant decreases exponentially with the growing degree n.

 By choosing an appropriate coordinate system, ellipse and hyperbola can be written as

$$\left(\frac{x-x_0}{a}\right)^2 \pm \left(\frac{y-y_0}{b}\right)^2 = 1.$$

• By a translation and scaling we can further obtain

$$x^2 \pm y^2 = 1.$$

(骨) •

 By choosing an appropriate coordinate system, ellipse and hyperbola can be written as

$$\left(\frac{x-x_0}{a}\right)^2 \pm \left(\frac{y-y_0}{b}\right)^2 = 1.$$

• By a translation and scaling we can further obtain

$$x^2 \pm y^2 = 1.$$

• We have to find two nonconstant polynomials x_n in y_n , of degree $\leq n$, such that

$$x_n^2(t) \pm y_n^2(t) = 1 + \varepsilon(t). \tag{3}$$

Since we will interpolate one point and tangent direction at this point:

 $x_n(0) = 1$, $x'_n(0) = 0$, $y_n(0) = 0$, $y'_n(0) = 1$.

A residual polynomial ε is of degree at most 2n. To have the approximation error as small as possible in the vicinity of the interpolation point, ε should be spanned by t²ⁿ only. Thus

 $\varepsilon(t) := c t^{2n}.$

Since we will interpolate one point and tangent direction at this point:

 $x_n(0) = 1$, $x'_n(0) = 0$, $y_n(0) = 0$, $y'_n(0) = 1$.

 A residual polynomial ε is of degree at most 2n. To have the approximation error as small as possible in the vicinity of the interpolation point, ε should be spanned by t²ⁿ only. Thus

 $\varepsilon(t) := c t^{2n}.$

• Polynomials x_n and y_n are now of the form

$$x_n(t) := 1 + \sum_{\ell=2}^n a_\ell t^\ell, \quad y_n(t) := t + \sum_{\ell=2}^n b_\ell t^\ell,$$

which gives

$$\left(1+\sum_{\ell=2}^{n}a_{\ell}t^{\ell}\right)^{2}\pm\left(t+\sum_{\ell=2}^{n}b_{\ell}t^{\ell}\right)^{2}=1+\left(a_{n}^{2}\pm b_{n}^{2}\right)t^{2n}.$$

Let

$$A:=\frac{1}{\sqrt[2^n]{|a_n^2\pm b_n^2|}}.$$

Linear scaling of the parameter $t \mapsto t/A$ and introduction of new variables

$$lpha_{\boldsymbol{\ell}} := a_{\ell} A^{\ell}, \quad eta_{\boldsymbol{\ell}} := b_{\ell} A^{\ell}, \quad \ell = 1, 2, \dots, n,$$

where $a_1 := 0, b_1 := 1$, transform the problem into the problem of finding

$$\begin{aligned} x_n(t) &:= 1 + \sum_{\ell=2}^n \alpha_\ell t^\ell, \quad y_n(t) := \sum_{\ell=1}^n \beta_\ell t^\ell, \quad \beta_1 > 0; \\ x_n^2(t) \pm y_n^2(t) = 1 + \operatorname{sign}(a_n^2 \pm b_n^2) t^{2n}. \end{aligned}$$
(4)

<日 <日> <日>

Elliptic case: one possibility.
Hyperbolic case: two possibilities.

Solutions for the elliptic case:

• The equation $x_n^2(t) + y_n^2(t) = 1 + t^{2n}$ can be rewritten as

$$(x_n(t) + i y_n(t)) (x_n(t) - i y_n(t)) = \prod_{k=0}^{2n-1} \left(t - e^{i \frac{2k+1}{2n}\pi} \right).$$
(5)

Solutions for the elliptic case:

• The equation $x_n^2(t) + y_n^2(t) = 1 + t^{2n}$ can be rewritten as

$$(x_n(t) + i y_n(t)) (x_n(t) - i y_n(t)) = \prod_{k=0}^{2n-1} \left(t - e^{i \frac{2k+1}{2n}\pi} \right).$$
 (5)

 From the uniqueness of the polynomial factorization over C up to a constant factor, and from the fact that the factors in (5) appear in conjugate pairs, it follows

$$x_n(t) + \mathrm{i} y_n(t) = \gamma \prod_{k=0}^{n-1} \left(t - e^{\mathrm{i} \sigma_k \frac{2k+1}{2n}\pi} \right), \quad \gamma \in \mathbb{C}, \quad |\gamma| = 1,$$

▲ ≣ ト Ξ シ ۹ (ペ 10 / 32

where $\sigma_k = \pm 1$.

Solutions for the elliptic case:

In order to interpolate the point (1,0):

$$\gamma := (-1)^n \prod_{k=0}^{n-1} e^{-i\sigma_k \frac{2k+1}{2n}\pi}$$

•
$$x_n(t) + i y_n(t) = (-1)^n \prod_{k=0}^{n-1} \left(t e^{-i \sigma_k \frac{2k+1}{2n}\pi} - 1 \right) =: p_e(t; \sigma),$$

where $\sigma = (\sigma_k)_{k=0}^{n-1} \in \{-1, 1\}^n.$

- Therefore we have 2ⁿ solutions.
- We have to eliminate those with $z \beta_1 = 0$.
- The remaining ones appear in pairs (x_n, ±y_n), thus precisely half of them fulfill the requirement β₁ > 0.

• Our equation:

$$x_n^2(t) - y_n^2(t) = 1 + \operatorname{sign}(a_n^2 - b_n^2)t^{2n}$$

• Our equation:

$$x_n^2(t) - y_n^2(t) = 1 + \operatorname{sign}(a_n^2 - b_n^2)t^{2n}$$

• For $a_n^2 < b_n^2$: $(x_n(t) + y_n(t)) (x_n(t) - y_n(t)) = 1 - t^{2n} =$ $(1 - t^2) \prod_{k=1}^{n-1} \left(t^2 - 2\cos\left(\frac{k\pi}{n}\right) t + 1 \right).$ (6)

• For $a_n^2 > b_n^2$:

$$\sum_{k=0}^{n-1} \left(t^2 - 2\cos\left(\frac{2k+1}{2n}\pi\right)t + 1 \right).$$
 (7)

• The right sides of equations (6) and (7) can be written as a product of two polynomials p_h and q_h . Then we can take

$$x_n(t) = \frac{1}{2}(p_h(t) + q_h(t)), \quad y_n(t) = \pm \frac{1}{2}(p_h(t) - q_h(t)).$$

Since x_n and y_n are of degree ≤ n, also both p_h and q_h must be of degree n.

• The right sides of equations (6) and (7) can be written as a product of two polynomials p_h and q_h . Then we can take

$$x_n(t) = \frac{1}{2}(p_h(t) + q_h(t)), \quad y_n(t) = \pm \frac{1}{2}(p_h(t) - q_h(t)).$$

- Since x_n and y_n are of degree ≤ n, also both p_h and q_h must be of degree n.
- In the case $a_n^2 < b_n^2$, we take $p_h(t) := p_h(t; \mathcal{I}_n) :=$ $(1+t)^{\frac{1-(-1)^n}{2}} \prod_{\substack{k \in \mathcal{I}_n \subseteq \{1,2,...,n-1\} \\ |\mathcal{I}_n| = \lfloor \frac{n}{2} \rfloor}} \left(t^2 - 2\cos\left(\frac{k\pi}{n}\right)t + 1 \right).$ (8)

• The right sides of equations (6) and (7) can be written as a product of two polynomials p_h and q_h . Then we can take

$$x_n(t) = \frac{1}{2}(p_h(t) + q_h(t)), \quad y_n(t) = \pm \frac{1}{2}(p_h(t) - q_h(t)).$$

Since x_n and y_n are of degree ≤ n, also both p_h and q_h must be of degree n.

• In the case
$$a_n^2 < b_n^2$$
, we take
 $p_h(t) := p_h(t; \mathcal{I}_n) :=$
 $(1+t)^{\frac{1-(-1)^n}{2}} \prod_{\substack{k \in \mathcal{I}_n \subseteq \{1, 2, \dots, n-1\} \\ |\mathcal{I}_n| = \lfloor \frac{n}{2} \rfloor}} \left(t^2 - 2\cos\left(\frac{k\pi}{n}\right)t + 1 \right).$ (8)

• In the case $a_n^2 > b_n^2$ the solutions exist only for even *n* and we take

$$p_{h}(t) := p_{h}(t; \mathcal{I}_{n}) := \prod_{\substack{k \in \mathcal{I}_{n} \subseteq \{1, 2, \dots, n-1\} \\ |\mathcal{I}_{n}| = \frac{n}{2}}} \left(t^{2} - 2\cos\left(\frac{2k+1}{2n}\pi\right) t + 1 \right).$$

• Again we have to eliminate solutions with $\beta_1 = 0$ and from the remaining pairs $(x_n, \pm y_n)$ select only those with $\beta_1 > 0$.

Again we have to eliminate solutions with β₁ = 0 and from the remaining pairs (x_n, ±y_n) select only those with β₁ > 0.

The number of admissible solutions grows exponentially with *n*:

n	2	3	4	5	6	7	8	9	10
ellipt. case	1	3	6	15	27	64	120	254	495
hyper. $a_n^2 < b_n^2$	0	1	2	5	8	20	32	70	120
hyper. $a_n^2 > b_n^2$	1	0	2	0	9	0	32	0	125

● 注)
◆ 注)
● 注)
● 14/32

Solutions of the problem:

The example of all admissible solutions for the elliptic case for n = 4:

◆ ■ ト
◆ ■ ト
◆ ■ ト
◆ ■ ト
● ■ ○ ○ ○
15 / 32

Solutions of the problem:

The example of all admissible solutions for the elliptic case for n = 5:

• The error will be the smallest when $A = \beta_1$ will be the largest.

・ロト ・ 回 ト ・ 三 ト ・ 三 ト うへで 17/32 • The error will be the smallest when $A = \beta_1$ will be the largest.

Theorem:

The best solution for the elliptic case is

 $x_n(t) = \operatorname{Re}\left(p_e\left(t;\sigma^*\right)\right), \quad y_n(t) = \operatorname{Im}\left(p_e\left(t;\sigma^*\right)\right), \quad \sigma^* = (1)_{k=0}^{n-1}.$

The best solution for the hyperbolic case is

$$x_{n}(t) = \frac{1}{2} \left(p_{h}(t; \mathcal{I}_{n}^{*}) + p_{h}(-t; \mathcal{I}_{n}^{*}) \right), \quad y_{n}(t) = \frac{1}{2} \left(p_{h}(t; \mathcal{I}_{n}^{*}) - p_{h}(-t; \mathcal{I}_{n}^{*}) \right),$$

where p_h is defined in (8) for odd *n* and in (9) for even *n*, and

$$\mathcal{I}_n^* = \left\{ \left\lfloor \frac{n+1}{2} \right\rfloor, \left\lfloor \frac{n+1}{2} \right\rfloor + 1, \dots, n-1 \right\}.$$

↓ ≣ ↓ Ξ つ Q (~ 17 / 32)

In all cases: $\beta_1 = \frac{1}{\omega_n}, \quad \omega_n := \sin \frac{\pi}{2n}.$

Any solution for the elliptic case, for which x_n is an even and y_n an odd function, can be transformed into a solution for the hyperbolic case by using the map

$$x_n(t) \mapsto x_n(i t),$$
 (10)
 $y_n(t) \mapsto -i y_n(i t).$

 Any solution for the elliptic case, for which x_n is an even and y_n an odd function, can be transformed into a solution for the hyperbolic case by using the map

$$\begin{aligned} x_n(t) &\mapsto x_n(\mathrm{i}\,t), \\ y_n(t) &\mapsto -\mathrm{i}\,y_n(\mathrm{i}\,t). \end{aligned}$$

 The coefficient β₁ is equal for both best solutions, and it is preserved by the map (10).

 Any solution for the elliptic case, for which x_n is an even and y_n an odd function, can be transformed into a solution for the hyperbolic case by using the map

$$x_n(t) \mapsto x_n(i t),$$
 (10)
 $y_n(t) \mapsto -i y_n(i t).$

- The coefficient β₁ is equal for both best solutions, and it is preserved by the map (10).
- Therefore: If we can prove that in the elliptic case the polynomial x_n is an even and y_n an odd function, then the best solution for the elliptic case is mapped by (10) to the best solution for the hyperbolic case.

Theorem:

The coefficients of the best solution in the elliptic case are obtained as

$$\alpha_{k} = \begin{cases} \sum_{j=0}^{k(n-k)} P(j,k,n-k) \cos\left(\frac{k^{2}}{2n}\pi + \frac{j}{n}\pi\right), & k \text{ is even,} \\ 0, & k \text{ is odd,} \end{cases}$$
$$\beta_{k} = \begin{cases} 0, & k \text{ is even,} \\ \sum_{j=0}^{k(n-k)} P(j,k,n-k) \sin\left(\frac{k^{2}}{2n}\pi + \frac{j}{n}\pi\right), & k \text{ is odd,} \end{cases}$$

• P(j, k, r) denotes the number of integer partitions of $j \in \mathbb{N}$ with $\leq k$ parts, all between 1 and r, where $k, r \in \mathbb{N}$,

•
$$P(0, k, r) := 1.$$

◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
○ へ ○
19 / 32

Corollary:

- For the best solution (in both cases), the polynomial x_n is an even function, and y_n is an odd one.
- The best solution is symmetric w.r.t. the x-axis.

Corollary:

- For the best solution (in both cases), the polynomial x_n is an even function, and y_n is an odd one.
- The best solution is symmetric w.r.t. the x-axis.

Corollary:

For the coefficients of the polynomials x_n and y_n in the elliptic case it holds

$$\alpha_{n-k} + i\beta_{n-k} = i^n(\alpha_k - i\beta_k), \quad k = 0, 1, \dots, \lfloor n/2 \rfloor.$$

Moreover:

$$\begin{aligned} \alpha_k &= \pm \beta_{n-k}, & \text{for } n = 4\ell \pm 1, \\ \alpha_{n-k} &= \mp \alpha_k, \quad \beta_{n-k} = \pm \beta_k, & \text{for } n = 4\ell + 1 \pm 1. \end{aligned}$$

n	$x_n(t), y_n(t)$
2	$x_2(t) = 1 \mp t^2, y_2(t) = \sqrt{2} t$
3	$x_3(t) = 1 \mp 2 t^2, y_3(t) = 2 t \mp t^3$
4	$x_4(t) = 1 \mp (2 + \sqrt{2})t^2 + t^4$
	$y_4(t)=\sqrt{4+2\sqrt{2}}(t\mp t^3)$
5	$x_5(t) = 1 \mp (3 + \sqrt{5})t^2 + (1 + \sqrt{5})t^4$
	$y_5(t) = (1 + \sqrt{5})t \mp (3 + \sqrt{5})t^3 + t^5$
6	$x_6(t) = 1 \mp 2(2 + \sqrt{3})t^2 + 2(2 + \sqrt{3})t^4 \mp t^6$
	$y_6(t) = (\sqrt{2} + \sqrt{6})t \mp \sqrt{2}(3 + 2\sqrt{3})t^3 + (\sqrt{2} + \sqrt{6})t^5$

< 回
 < 回

 < 回
 < 回

< ● 里 → ■ 王 のへで

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Error analysis - elliptic case:

• The number of winds of polynomial curve around the origin is $\lfloor \frac{n}{4} \rfloor$.

Radial distance of the segment of the polynomial curve $(x_n(t), y_n(t))^T$, which approximates the unit circle, can be expressed as $\left(\frac{\pi^2}{2n}\right)^{2n} + O\left(\left(\frac{\pi^2}{2n}\right)^{2n+1}\right)$.

◆ □ →
◆ □ →
◆ □ →
● □ →
○ へ ○
29 / 32

	ellip. case ($\boldsymbol{s} \in [-\pi, \pi]$)					
n	h _n	error				
4	1	0.41421				
5	0.84612	0.08999				
6	0.74225	0.01389				
7	0.65658	0.00138				
8	0.58526	9.5 · 10 ⁻⁵				
9	0.52643	4.8 · 10 ⁻⁶				
10	0.47766	$1.9 \cdot 10^{-7}$				
11	0.43680	6.1 · 10 ⁻⁹				
12	0.40217	$1.6 \cdot 10^{-10}$				
13	0.37249	$3.5 \cdot 10^{-12}$				
14	0.34681	$6.6 \cdot 10^{-14}$				
15	0.32438	1.1 · 10 ⁻¹⁵				

< 🗗 > < ≣ → < 臣→ æ 30/32

Generalizations:

▲ ■
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 <l

Thank you!

