High order parametric polynomial approximation of conic sections

V. Vitrih

Raziskovalni matematični seminar
14. 3. 2011

- Conic sections are standard objects in CAGD.
- A general conic is given with the equation

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

- Eigenvalues of the matrix

$$
\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)
$$

determine the type of a conic: ellipse, hyperbola, parabola.

- Conic sections are standard objects in CAGD.
- A general conic is given with the equation

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

- Eigenvalues of the matrix

$$
\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)
$$

determine the type of a conic: ellipse, hyperbola, parabola.

- In practice, parametric representation is often required.
- Conic sections are standard objects in CAGD.
- A general conic is given with the equation

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

- Eigenvalues of the matrix

$$
\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)
$$

determine the type of a conic: ellipse, hyperbola, parabola.

- In practice, parametric representation is often required.
- Ellipse and hyperbola can be parametrically represented by trigonometric and hyperbolic functions.
- Conics can be presented also by quadratic rational curves.
- Conic sections are standard objects in CAGD.
- A general conic is given with the equation

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

- Eigenvalues of the matrix

$$
\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)
$$

determine the type of a conic: ellipse, hyperbola, parabola.

- In practice, parametric representation is often required.
- Ellipse and hyperbola can be parametrically represented by trigonometric and hyperbolic functions.
- Conics can be presented also by quadratic rational curves.
- But: in many applications we need polynomial parametric representation.

Problem:

- Only parabola has exact parametric polynomial representation.

Problem:

- Only parabola has exact parametric polynomial representation.
- We need good polynomial approximant.

Problem:

- Only parabola has exact parametric polynomial representation.
- We need good polynomial approximant.
- We will require the interpolation of at least one point on a conic and tangent direction at this point.
- Only parabola has exact parametric polynomial representation.
- We need good polynomial approximant.
- We will require the interpolation of at least one point on a conic and tangent direction at this point.
- But: such an approximant is "good" only close to the interpolation point.

Problem:

Motivation: Compare the following two polynomial parametric approximants of degree 5 for approximation of the unit circle:

$$
\binom{1-\frac{1}{2} t^{2}+\frac{1}{24} t^{4}}{t-\frac{1}{6} t^{3}+\frac{1}{120} t^{5}} ; \quad\binom{1-(3+\sqrt{5}) t^{2}+(1+\sqrt{5}) t^{4}}{(1+\sqrt{5}) t-(3+\sqrt{5}) t^{3}+t^{5}} .
$$

- The implicit equations of the unit circle and the unit hyperbola are

$$
x^{2} \pm y^{2}=1
$$

- Task: find two nonconstant polynomials $x_{n}, y_{n} \in \mathbb{R}[t]$ of degree $\leq n$, such that

$$
\begin{equation*}
x_{n}^{2}(t)+y_{n}^{2}(t)=1+t^{2 n} \tag{1}
\end{equation*}
$$

for the elliptic case and

$$
\begin{equation*}
x_{n}^{2}(t)-y_{n}^{2}(t)=1 \pm t^{2 n} \tag{2}
\end{equation*}
$$

for the hyperbolic case.

Problem:

Our aim:

- find all possible solutions for equations (1) and (2),
- precisely analyse the best solution,
- show, that the error of this best approximant decreases exponentially with the growing degree n.

Conic sections:

- By choosing an appropriate coordinate system, ellipse and hyperbola can be written as

$$
\left(\frac{x-x_{0}}{a}\right)^{2} \pm\left(\frac{y-y_{0}}{b}\right)^{2}=1
$$

- By a translation and scaling we can further obtain

$$
x^{2} \pm y^{2}=1
$$

Conic sections:

- By choosing an appropriate coordinate system, ellipse and hyperbola can be written as

$$
\left(\frac{x-x_{0}}{a}\right)^{2} \pm\left(\frac{y-y_{0}}{b}\right)^{2}=1
$$

- By a translation and scaling we can further obtain

$$
x^{2} \pm y^{2}=1
$$

- We have to find two nonconstant polynomials x_{n} in y_{n}, of degree $\leq n$, such that

$$
\begin{equation*}
x_{n}^{2}(t) \pm y_{n}^{2}(t)=1+\varepsilon(t) \tag{3}
\end{equation*}
$$

Conic sections:

- Since we will interpolate one point and tangent direction at this point:

$$
x_{n}(0)=1, \quad x_{n}^{\prime}(0)=0, \quad y_{n}(0)=0, \quad y_{n}^{\prime}(0)=1 .
$$

- A residual polynomial ε is of degree at most $2 n$. To have the approximation error as small as possible in the vicinity of the interpolation point, ε should be spanned by $t^{2 n}$ only. Thus

$$
\varepsilon(t):=c t^{2 n} .
$$

Conic sections:

- Since we will interpolate one point and tangent direction at this point:

$$
x_{n}(0)=1, \quad x_{n}^{\prime}(0)=0, \quad y_{n}(0)=0, \quad y_{n}^{\prime}(0)=1 .
$$

- A residual polynomial ε is of degree at most $2 n$. To have the approximation error as small as possible in the vicinity of the interpolation point, ε should be spanned by $t^{2 n}$ only. Thus

$$
\varepsilon(t):=c t^{2 n} .
$$

- Polynomials x_{n} and y_{n} are now of the form

$$
x_{n}(t):=1+\sum_{\ell=2}^{n} a_{\ell} t^{\ell}, \quad y_{n}(t):=t+\sum_{\ell=2}^{n} b_{\ell} t^{\ell}
$$

which gives

$$
\left(1+\sum_{\ell=2}^{n} a_{\ell} t^{\ell}\right)^{2} \pm\left(t+\sum_{\ell=2}^{n} b_{\ell} t^{\ell}\right)^{2}=1+\left(a_{n}^{2} \pm b_{n}^{2}\right) t^{2 n}
$$

Conic sections:

- Let

$$
A:=\frac{1}{\sqrt[2 n]{\left|a_{n}^{2} \pm b_{n}^{2}\right|}}
$$

Linear scaling of the parameter $t \mapsto t / A$ and introduction of new variables

$$
\alpha_{\ell}:=a_{\ell} A^{\ell}, \quad \beta_{\ell}:=b_{\ell} A^{\ell}, \quad \ell=1,2, \ldots, n,
$$

where $a_{1}:=0, b_{1}:=1$, transform the problem into the problem of finding

$$
\begin{gather*}
x_{n}(t):=1+\sum_{\ell=2}^{n} \alpha_{\ell} t^{\ell}, \quad y_{n}(t):=\sum_{\ell=1}^{n} \beta_{\ell} t^{\ell}, \quad \beta_{1}>0 \\
x_{n}^{2}(t) \pm y_{n}^{2}(t)=1+\operatorname{sign}\left(a_{n}^{2} \pm b_{n}^{2}\right) t^{2 n} . \tag{4}
\end{gather*}
$$

- Elliptic case: one possibility.
- Hyperbolic case: two possibilities.

Solutions for the elliptic case:

- The equation $x_{n}^{2}(t)+y_{n}^{2}(t)=1+t^{2 n}$ can be rewritten as

$$
\begin{equation*}
\left(x_{n}(t)+\mathrm{i} y_{n}(t)\right)\left(x_{n}(t)-\mathrm{i} y_{n}(t)\right)=\prod_{k=0}^{2 n-1}\left(t-e^{\mathrm{i} \frac{2 k+1}{2 n} \pi}\right) . \tag{5}
\end{equation*}
$$

Solutions for the elliptic case:

- The equation $x_{n}^{2}(t)+y_{n}^{2}(t)=1+t^{2 n}$ can be rewritten as

$$
\begin{equation*}
\left(x_{n}(t)+\mathrm{i} y_{n}(t)\right)\left(x_{n}(t)-\mathrm{i} y_{n}(t)\right)=\prod_{k=0}^{2 n-1}\left(t-e^{\mathrm{i} \frac{2 \kappa+1}{2 n} \pi}\right) . \tag{5}
\end{equation*}
$$

- From the uniqueness of the polynomial factorization over \mathbb{C} up to a constant factor, and from the fact that the factors in (5) appear in conjugate pairs, it follows

$$
x_{n}(t)+\mathrm{i} y_{n}(t)=\gamma \prod_{k=0}^{n-1}\left(t-e^{\mathrm{i} \sigma_{k} \frac{2 k+1}{2 n} \pi}\right), \quad \gamma \in \mathbb{C}, \quad|\gamma|=1
$$

where $\sigma_{k}= \pm 1$.

Solutions for the elliptic case:

- In order to interpolate the point $(1,0)$:

$$
\gamma:=(-1)^{n} \prod_{k=0}^{n-1} e^{-\mathrm{i} \sigma_{k} \frac{2 k+1}{2 n} \pi}
$$

- $x_{n}(t)+\mathrm{i} y_{n}(t)=(-1)^{n} \prod_{k=0}^{n-1}\left(t e^{-\mathrm{i} \sigma_{k} \frac{2 k+1}{2 n} \pi}-1\right)=: p_{e}(t ; \sigma)$, where $\sigma=\left(\sigma_{k}\right)_{k=0}^{n-1} \in\{-1,1\}^{n}$.
- Therefore we have 2^{n} solutions.
- We have to eliminate those with z $\beta_{1}=0$.
- The remaining ones appear in pairs $\left(x_{n}, \pm y_{n}\right)$, thus precisely half of them fulfill the requirement $\beta_{1}>0$.

Solutions for the hyperbolic case:

- Our equation:

$$
x_{n}^{2}(t)-y_{n}^{2}(t)=1+\operatorname{sign}\left(a_{n}^{2}-b_{n}^{2}\right) t^{2 n} .
$$

Solutions for the hyperbolic case:

- Our equation:

$$
x_{n}^{2}(t)-y_{n}^{2}(t)=1+\operatorname{sign}\left(a_{n}^{2}-b_{n}^{2}\right) t^{2 n}
$$

- For $a_{n}^{2}<b_{n}^{2}$:

$$
\begin{align*}
& \left(x_{n}(t)+y_{n}(t)\right)\left(x_{n}(t)-y_{n}(t)\right)=1-t^{2 n}= \\
& \quad\left(1-t^{2}\right) \prod_{k=1}^{n-1}\left(t^{2}-2 \cos \left(\frac{k \pi}{n}\right) t+1\right) . \tag{6}
\end{align*}
$$

- For $a_{n}^{2}>b_{n}^{2}$:

$$
\begin{align*}
& \left(x_{n}(t)+y_{n}(t)\right)\left(x_{n}(t)-y_{n}(t)\right)=1+t^{2 n}= \\
& \quad \prod_{k=0}^{n-1}\left(t^{2}-2 \cos \left(\frac{2 k+1}{2 n} \pi\right) t+1\right) . \tag{7}
\end{align*}
$$

Solutions for the hyperbolic case:

- The right sides of equations (6) and (7) can be written as a product of two polynomials p_{h} and q_{h}. Then we can take

$$
x_{n}(t)=\frac{1}{2}\left(p_{h}(t)+q_{h}(t)\right), \quad y_{n}(t)= \pm \frac{1}{2}\left(p_{h}(t)-q_{h}(t)\right) .
$$

- Since x_{n} and y_{n} are of degree $\leq n$, also both p_{h} and q_{h} must be of degree n.

Solutions for the hyperbolic case:

- The right sides of equations (6) and (7) can be written as a product of two polynomials p_{h} and q_{h}. Then we can take

$$
x_{n}(t)=\frac{1}{2}\left(p_{h}(t)+q_{h}(t)\right), \quad y_{n}(t)= \pm \frac{1}{2}\left(p_{h}(t)-q_{h}(t)\right) .
$$

- Since x_{n} and y_{n} are of degree $\leq n$, also both p_{h} and q_{h} must be of degree n.
- In the case $a_{n}^{2}<b_{n}^{2}$, we take

$$
\begin{align*}
& p_{h}(t):=p_{h}\left(t ; \mathcal{I}_{n}\right):= \\
& \qquad(1+t)^{\frac{1-(-1)^{n}}{2}} \prod_{\substack{k \in \mathcal{I}_{n} \subseteq\{1,2, \ldots, n-1\} \\
\left|\mathcal{I}_{n}\right|=\left\lfloor\frac{n}{2}\right\rfloor}}\left(t^{2}-2 \cos \left(\frac{k \pi}{n}\right) t+1\right) . \tag{8}
\end{align*}
$$

Solutions for the hyperbolic case:

- The right sides of equations (6) and (7) can be written as a product of two polynomials p_{h} and q_{h}. Then we can take

$$
x_{n}(t)=\frac{1}{2}\left(p_{h}(t)+q_{h}(t)\right), \quad y_{n}(t)= \pm \frac{1}{2}\left(p_{h}(t)-q_{h}(t)\right)
$$

- Since x_{n} and y_{n} are of degree $\leq n$, also both p_{h} and q_{h} must be of degree n.
- In the case $a_{n}^{2}<b_{n}^{2}$, we take

$$
\begin{align*}
& p_{h}(t):=p_{h}\left(t ; \mathcal{I}_{n}\right):= \\
& \qquad(1+t)^{\frac{1-(-1)^{n}}{2}} \prod_{\substack{k \in \mathcal{I}_{n} \subseteq\{1,2, \ldots, n-1\} \\
\left|\mathcal{I}_{n}\right|=\left\lfloor\frac{n}{2}\right\rfloor}}\left(t^{2}-2 \cos \left(\frac{k \pi}{n}\right) t+1\right) . \tag{8}
\end{align*}
$$

- In the case $a_{n}^{2}>b_{n}^{2}$ the solutions exist only for even n and we take

$$
p_{h}(t):=p_{h}\left(t ; \mathcal{I}_{n}\right):=\prod_{\substack{k \in \mathcal{I}_{n} \subseteq\{1,2, \ldots, n-1\} \\\left|\mathcal{I}_{n}\right|=\frac{\pi}{2}}}\left(t^{2}-2 \cos \left(\frac{2 k+1}{2 n} \pi\right) t+1\right) .
$$

Solutions for the hyperbolic case:

- Again we have to eliminate solutions with $\beta_{1}=0$ and from the remaining pairs $\left(x_{n}, \pm y_{n}\right)$ select only those with $\beta_{1}>0$.

Solutions for the hyperbolic case:

- Again we have to eliminate solutions with $\beta_{1}=0$ and from the remaining pairs $\left(x_{n}, \pm y_{n}\right)$ select only those with $\beta_{1}>0$.

The number of admissible solutions grows exponentially with n :

n	2	3	4	5	6	7	8	9	10
ellipt. case	1	3	6	15	27	64	120	254	495
hyper. $a_{n}^{2}<b_{n}^{2}$	0	1	2	5	8	20	32	70	120
hyper. $a_{n}^{2}>b_{n}^{2}$	1	0	2	0	9	0	32	0	125

Solutions of the problem:

The example of all admissible solutions for the elliptic case for $n=4$:

Solutions of the problem:

The example of all admissible solutions for the elliptic case for $n=5$:

Best solution:

- The error will be the smallest when $A=\beta_{1}$ will be the largest.

Best solution:

- The error will be the smallest when $A=\beta_{1}$ will be the largest.

Theorem:

The best solution for the elliptic case is

$$
x_{n}(t)=\operatorname{Re}\left(p_{e}\left(t ; \sigma^{*}\right)\right), \quad y_{n}(t)=\operatorname{Im}\left(p_{e}\left(t ; \sigma^{*}\right)\right), \quad \sigma^{*}=(1)_{k=0}^{n-1} .
$$

The best solution for the hyperbolic case is
$x_{n}(t)=\frac{1}{2}\left(p_{h}\left(t ; \mathcal{I}_{n}^{*}\right)+p_{h}\left(-t ; \mathcal{I}_{n}^{*}\right)\right), \quad y_{n}(t)=\frac{1}{2}\left(p_{h}\left(t ; \mathcal{I}_{n}^{*}\right)-p_{h}\left(-t ; \mathcal{I}_{n}^{*}\right)\right)$,
where p_{h} is defined in (8) for odd n and in (9) for even n, and

$$
\mathcal{I}_{n}^{*}=\left\{\left\lfloor\frac{n+1}{2}\right\rfloor,\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n-1\right\} .
$$

In all cases: $\quad \beta_{1}=\frac{1}{\omega_{n}}, \quad \omega_{n}:=\sin \frac{\pi}{2 n}$.

Best solution:

- Any solution for the elliptic case, for which x_{n} is an even and y_{n} an odd function, can be transformed into a solution for the hyperbolic case by using the map

$$
\begin{align*}
& x_{n}(t) \mapsto x_{n}(\mathrm{i} t), \tag{10}\\
& y_{n}(t) \mapsto-\mathrm{i} y_{n}(\mathrm{i} t) .
\end{align*}
$$

Best solution:

- Any solution for the elliptic case, for which x_{n} is an even and y_{n} an odd function, can be transformed into a solution for the hyperbolic case by using the map

$$
\begin{align*}
& x_{n}(t) \mapsto x_{n}(\mathrm{i} t), \tag{10}\\
& y_{n}(t) \mapsto-\mathrm{i} y_{n}(\mathrm{i} t) .
\end{align*}
$$

- The coefficient β_{1} is equal for both best solutions, and it is preserved by the map (10).

Best solution:

- Any solution for the elliptic case, for which x_{n} is an even and y_{n} an odd function, can be transformed into a solution for the hyperbolic case by using the map

$$
\begin{align*}
& x_{n}(t) \mapsto x_{n}(\mathrm{i} t), \tag{10}\\
& y_{n}(t) \mapsto-\mathrm{i} y_{n}(\mathrm{i} t) .
\end{align*}
$$

- The coefficient β_{1} is equal for both best solutions, and it is preserved by the map (10).
- Therefore: If we can prove that in the elliptic case the polynomial x_{n} is an even and y_{n} an odd function, then the best solution for the elliptic case is mapped by (10) to the best solution for the hyperbolic case.

Best solution:

Theorem:

The coefficients of the best solution in the elliptic case are obtained as

$$
\begin{aligned}
& \alpha_{k}=\left\{\begin{array}{cc}
\sum_{j=0}^{k(n-k)} P(j, k, n-k) \cos \left(\frac{k^{2}}{2 n} \pi+\frac{j}{n} \pi\right), & k \text { is even, } \\
0, & k \text { is odd }
\end{array}\right. \\
& \beta_{k}=\left\{\begin{array}{cc}
k \text { is even, } \\
\sum_{j=0}^{k(n-k)} P(j, k, n-k) \sin \left(\frac{k^{2}}{2 n} \pi+\frac{j}{n} \pi\right), & k \text { is odd }
\end{array}\right.
\end{aligned}
$$

- $P(j, k, r)$ denotes the number of integer partitions of $j \in \mathbb{N}$ with $\leq k$ parts, all between 1 and r, where $k, r \in \mathbb{N}$,
- $P(0, k, r):=1$.

Best solution:

Corollary:

- For the best solution (in both cases), the polynomial x_{n} is an even function, and y_{n} is an odd one.
- The best solution is symmetric w.r.t. the x-axis.

Best solution:

Corollary:

- For the best solution (in both cases), the polynomial x_{n} is an even function, and y_{n} is an odd one.
- The best solution is symmetric w.r.t. the x-axis.

Corollary:

For the coefficients of the polynomials x_{n} and y_{n} in the elliptic case it holds

$$
\alpha_{n-k}+\mathrm{i} \beta_{n-k}=\mathrm{i}^{n}\left(\alpha_{k}-\mathrm{i} \beta_{k}\right), \quad k=0,1, \ldots,\lfloor n / 2\rfloor .
$$

Moreover:

$$
\begin{aligned}
& \alpha_{k}= \pm \beta_{n-k}, \quad \text { for } n=4 \ell \pm 1 \\
& \alpha_{n-k}=\mp \alpha_{k}, \quad \beta_{n-k}= \pm \beta_{k}, \quad \text { for } n=4 \ell+1 \pm 1
\end{aligned}
$$

Best solution:

n	$x_{n}(t), \quad y_{n}(t)$
2	$x_{2}(t)=1 \mp t^{2}, \quad y_{2}(t)=\sqrt{2} t$
3	$x_{3}(t)=1 \mp 2 t^{2}, \quad y_{3}(t)=2 t \mp t^{3}$
4	$x_{4}(t)=1 \mp(2+\sqrt{2}) t^{2}+t^{4}$
	$y_{4}(t)=\sqrt{4+2 \sqrt{2}}\left(t \mp t^{3}\right)$
5	$x_{5}(t)=1 \mp(3+\sqrt{5}) t^{2}+(1+\sqrt{5}) t^{4}$
$y_{5}(t)=(1+\sqrt{5}) t \mp(3+\sqrt{5}) t^{3}+t^{5}$	
6	$x_{6}(t)=1 \mp 2(2+\sqrt{3}) t^{2}+2(2+\sqrt{3}) t^{4} \mp t^{6}$
	$y_{6}(t)=(\sqrt{2}+\sqrt{6}) t \mp \sqrt{2}(3+2 \sqrt{3}) t^{3}+(\sqrt{2}+\sqrt{6}) t^{5}$

Best solution:

Error analysis - elliptic case:

- The number of winds of polynomial curve around the origin is $\left\lfloor\frac{n}{4}\right\rfloor$.

Error analysis - elliptic case:

Radial distance of the segment of the polynomial curve

$$
\left(x_{n}(t), y_{n}(t)\right)^{T}
$$

which approximates the unit circle, can be expressed as

$$
\left(\frac{\pi^{2}}{2 n}\right)^{2 n}+\mathcal{O}\left(\left(\frac{\pi^{2}}{2 n}\right)^{2 n+1}\right)
$$

Error analysis - elliptic case:

	ellip. case $(s \in[-\pi, \pi])$	
n	h_{n}	error
4	1	0.41421
5	0.84612	0.08999
6	0.74225	0.01389
7	0.65658	0.00138
8	0.58526	$9.5 \cdot 10^{-5}$
9	0.52643	$4.8 \cdot 10^{-6}$
10	0.47766	$1.9 \cdot 10^{-7}$
11	0.43680	$6.1 \cdot 10^{-9}$
12	0.40217	$1.6 \cdot 10^{-10}$
13	0.37249	$3.5 \cdot 10^{-12}$
14	0.34681	$6.6 \cdot 10^{-14}$
15	0.32438	$1.1 \cdot 10^{-15}$

Generalizations:

Thank you!

