
The Graph Isomorphism Problem and coherent
configurations. I, II.

Ilya Ponomarenko

St. Petersburg Department of V.A.Steklov
Institute of Mathematics, Russia

Algebraic Graph Theory Summer School,
June 26 - July 2, 2011, Rogla, Slovenia

The Graph Isomorphism Problem (ISO).

In what follows graph is a pair G = (Ω,E) where Ω is a finite set
of vertices and E ⊂ Ω× Ω is the set of (directed) edges.

Definition.

Graphs G1 = (Ω1,E1) and G2 = (Ω2,E2) are called isomorphic,
G1
∼= G2, if there is a bijection f : Ω1 → Ω2 such that

∀α1, β1 ∈ Ω1 : (αf
1, β

f
1) ∈ E2 ⇔ (α1, β1) ∈ E1.

Such a bijection is called the isomorphism from G1 to G2; the set
of all of them is denoted by Iso(G1,G2).

The Graph Isomorphism Problem is to estimate the computational
complexity of the isomorphism testing:

ISO(G1,G2): given graphs G1 and G2 test whether or not G1
∼= G2.

The Graph Isomorphism Problem (ISO).

In what follows graph is a pair G = (Ω,E) where Ω is a finite set
of vertices and E ⊂ Ω× Ω is the set of (directed) edges.

Definition.

Graphs G1 = (Ω1,E1) and G2 = (Ω2,E2) are called isomorphic,
G1
∼= G2, if there is a bijection f : Ω1 → Ω2 such that

∀α1, β1 ∈ Ω1 : (αf
1, β

f
1) ∈ E2 ⇔ (α1, β1) ∈ E1.

Such a bijection is called the isomorphism from G1 to G2; the set
of all of them is denoted by Iso(G1,G2).

The Graph Isomorphism Problem is to estimate the computational
complexity of the isomorphism testing:

ISO(G1,G2): given graphs G1 and G2 test whether or not G1
∼= G2.

The Graph Isomorphism Problem (ISO).

In what follows graph is a pair G = (Ω,E) where Ω is a finite set
of vertices and E ⊂ Ω× Ω is the set of (directed) edges.

Definition.

Graphs G1 = (Ω1,E1) and G2 = (Ω2,E2) are called isomorphic,
G1
∼= G2, if there is a bijection f : Ω1 → Ω2 such that

∀α1, β1 ∈ Ω1 : (αf
1, β

f
1) ∈ E2 ⇔ (α1, β1) ∈ E1.

Such a bijection is called the isomorphism from G1 to G2; the set
of all of them is denoted by Iso(G1,G2).

The Graph Isomorphism Problem is to estimate the computational
complexity of the isomorphism testing:

ISO(G1,G2): given graphs G1 and G2 test whether or not G1
∼= G2.

The Graph Isomorphism Problem (ISO).

In what follows graph is a pair G = (Ω,E) where Ω is a finite set
of vertices and E ⊂ Ω× Ω is the set of (directed) edges.

Definition.

Graphs G1 = (Ω1,E1) and G2 = (Ω2,E2) are called isomorphic,
G1
∼= G2, if there is a bijection f : Ω1 → Ω2 such that

∀α1, β1 ∈ Ω1 : (αf
1, β

f
1) ∈ E2 ⇔ (α1, β1) ∈ E1.

Such a bijection is called the isomorphism from G1 to G2; the set
of all of them is denoted by Iso(G1,G2).

The Graph Isomorphism Problem is to estimate the computational
complexity of the isomorphism testing:

ISO(G1,G2): given graphs G1 and G2 test whether or not G1
∼= G2.

Current state of the ISO.

Given graphs G1 and G2 with n vertices, and a bijection
f : Ω1 → Ω2 one can test in time O(n2) whether or not
f ∈ Iso(G1,G2).

Therefore ISO∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether ISO∈P.

The proof of the time bound of the best algorithm (up to now) for
the ISO depends on the Classification of Finite Simple Groups.

Theorem (L.Babai, E.Luks and W.Kantor, 1984).

The isomorphism of n-vertex graphs can be tested in time
exp(O(

√
n log n)).

Current state of the ISO.

Given graphs G1 and G2 with n vertices, and a bijection
f : Ω1 → Ω2 one can test in time O(n2) whether or not
f ∈ Iso(G1,G2).

Therefore ISO∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether ISO∈P.

The proof of the time bound of the best algorithm (up to now) for
the ISO depends on the Classification of Finite Simple Groups.

Theorem (L.Babai, E.Luks and W.Kantor, 1984).

The isomorphism of n-vertex graphs can be tested in time
exp(O(

√
n log n)).

Current state of the ISO.

Given graphs G1 and G2 with n vertices, and a bijection
f : Ω1 → Ω2 one can test in time O(n2) whether or not
f ∈ Iso(G1,G2).

Therefore ISO∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether ISO∈P.

The proof of the time bound of the best algorithm (up to now) for
the ISO depends on the Classification of Finite Simple Groups.

Theorem (L.Babai, E.Luks and W.Kantor, 1984).

The isomorphism of n-vertex graphs can be tested in time
exp(O(

√
n log n)).

Current state of the ISO.

Given graphs G1 and G2 with n vertices, and a bijection
f : Ω1 → Ω2 one can test in time O(n2) whether or not
f ∈ Iso(G1,G2).

Therefore ISO∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether ISO∈P.

The proof of the time bound of the best algorithm (up to now) for
the ISO depends on the Classification of Finite Simple Groups.

Theorem (L.Babai, E.Luks and W.Kantor, 1984).

The isomorphism of n-vertex graphs can be tested in time
exp(O(

√
n log n)).

Current state of the ISO.

Given graphs G1 and G2 with n vertices, and a bijection
f : Ω1 → Ω2 one can test in time O(n2) whether or not
f ∈ Iso(G1,G2).

Therefore ISO∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether ISO∈P.

The proof of the time bound of the best algorithm (up to now) for
the ISO depends on the Classification of Finite Simple Groups.

Theorem (L.Babai, E.Luks and W.Kantor, 1984).

The isomorphism of n-vertex graphs can be tested in time
exp(O(

√
n log n)).

Current state of the ISO.

Given graphs G1 and G2 with n vertices, and a bijection
f : Ω1 → Ω2 one can test in time O(n2) whether or not
f ∈ Iso(G1,G2).

Therefore ISO∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether ISO∈P.

The proof of the time bound of the best algorithm (up to now) for
the ISO depends on the Classification of Finite Simple Groups.

Theorem (L.Babai, E.Luks and W.Kantor, 1984).

The isomorphism of n-vertex graphs can be tested in time
exp(O(

√
n log n)).

Isomorphism complete classes of graphs.

Definition.

A class K of graphs is called the isomorphism complete if the ISO
can be reduced in a polynomial time to the isomorphism problem
for graphs in K.

As K one can take a category of combinatorial objects.

The class of undirected graphs is isomorphism complete:

a directed edge α //____ β
is replaced by an undirected graph γn

...
α γ0 γ1 β

A number of classes of undirected graphs are known to be
isomorphism complete: connected, bipartite, of diameter 2, regular,
etc.

Isomorphism complete classes of graphs.

Definition.

A class K of graphs is called the isomorphism complete if the ISO
can be reduced in a polynomial time to the isomorphism problem
for graphs in K.

As K one can take a category of combinatorial objects.

The class of undirected graphs is isomorphism complete:

a directed edge α //____ β
is replaced by an undirected graph γn

...
α γ0 γ1 β

A number of classes of undirected graphs are known to be
isomorphism complete: connected, bipartite, of diameter 2, regular,
etc.

Isomorphism complete classes of graphs.

Definition.

A class K of graphs is called the isomorphism complete if the ISO
can be reduced in a polynomial time to the isomorphism problem
for graphs in K.

As K one can take a category of combinatorial objects.

The class of undirected graphs is isomorphism complete:

a directed edge α //____ β
is replaced by an undirected graph γn

...
α γ0 γ1 β

A number of classes of undirected graphs are known to be
isomorphism complete: connected, bipartite, of diameter 2, regular,
etc.

Isomorphism complete classes of graphs.

Definition.

A class K of graphs is called the isomorphism complete if the ISO
can be reduced in a polynomial time to the isomorphism problem
for graphs in K.

As K one can take a category of combinatorial objects.

The class of undirected graphs is isomorphism complete:

a directed edge α //____ β
is replaced by an undirected graph γn

...
α γ0 γ1 β

A number of classes of undirected graphs are known to be
isomorphism complete:

connected, bipartite, of diameter 2, regular,
etc.

Isomorphism complete classes of graphs.

Definition.

A class K of graphs is called the isomorphism complete if the ISO
can be reduced in a polynomial time to the isomorphism problem
for graphs in K.

As K one can take a category of combinatorial objects.

The class of undirected graphs is isomorphism complete:

a directed edge α //____ β
is replaced by an undirected graph γn

...
α γ0 γ1 β

A number of classes of undirected graphs are known to be
isomorphism complete: connected,

bipartite, of diameter 2, regular,
etc.

Isomorphism complete classes of graphs.

Definition.

A class K of graphs is called the isomorphism complete if the ISO
can be reduced in a polynomial time to the isomorphism problem
for graphs in K.

As K one can take a category of combinatorial objects.

The class of undirected graphs is isomorphism complete:

a directed edge α //____ β
is replaced by an undirected graph γn

...
α γ0 γ1 β

A number of classes of undirected graphs are known to be
isomorphism complete: connected, bipartite,

of diameter 2, regular,
etc.

Isomorphism complete classes of graphs.

Definition.

A class K of graphs is called the isomorphism complete if the ISO
can be reduced in a polynomial time to the isomorphism problem
for graphs in K.

As K one can take a category of combinatorial objects.

The class of undirected graphs is isomorphism complete:

a directed edge α //____ β
is replaced by an undirected graph γn

...
α γ0 γ1 β

A number of classes of undirected graphs are known to be
isomorphism complete: connected, bipartite, of diameter 2,

regular,
etc.

Isomorphism complete classes of graphs.

Definition.

A class K of graphs is called the isomorphism complete if the ISO
can be reduced in a polynomial time to the isomorphism problem
for graphs in K.

As K one can take a category of combinatorial objects.

The class of undirected graphs is isomorphism complete:

a directed edge α //____ β
is replaced by an undirected graph γn

...
α γ0 γ1 β

A number of classes of undirected graphs are known to be
isomorphism complete: connected, bipartite, of diameter 2, regular,

etc.

Isomorphism complete classes of graphs.

Definition.

A class K of graphs is called the isomorphism complete if the ISO
can be reduced in a polynomial time to the isomorphism problem
for graphs in K.

As K one can take a category of combinatorial objects.

The class of undirected graphs is isomorphism complete:

a directed edge α //____ β
is replaced by an undirected graph γn

...
α γ0 γ1 β

A number of classes of undirected graphs are known to be
isomorphism complete: connected, bipartite, of diameter 2, regular,
etc.

Isomorphism problem for colored graphs.

Definition.

A pair (G , c) where G = (Ω,E) is a graph and c : Ω→ {1, . . . ,m}
is a surjection, is called a colored graph with the color function c
and color classes c−1(i), i = 1, . . . ,m.

The isomorphisms between colored graphs are ordinary
isomorphisms that preserve the colors of vertices.

Proposition.

The category of colored graphs is isomorphism complete.

any graph can be considered as colored (m = 1),

any vertex α ∈ Ω of a colored graph is replaced by a clique of
size n + 2c(α).

Isomorphism problem for colored graphs.

Definition.

A pair (G , c) where G = (Ω,E) is a graph and c : Ω→ {1, . . . ,m}
is a surjection, is called a colored graph with the color function c
and color classes c−1(i), i = 1, . . . ,m.

The isomorphisms between colored graphs are ordinary
isomorphisms that preserve the colors of vertices.

Proposition.

The category of colored graphs is isomorphism complete.

any graph can be considered as colored (m = 1),

any vertex α ∈ Ω of a colored graph is replaced by a clique of
size n + 2c(α).

Isomorphism problem for colored graphs.

Definition.

A pair (G , c) where G = (Ω,E) is a graph and c : Ω→ {1, . . . ,m}
is a surjection, is called a colored graph with the color function c
and color classes c−1(i), i = 1, . . . ,m.

The isomorphisms between colored graphs are ordinary
isomorphisms that preserve the colors of vertices.

Proposition.

The category of colored graphs is isomorphism complete.

any graph can be considered as colored (m = 1),

any vertex α ∈ Ω of a colored graph is replaced by a clique of
size n + 2c(α).

Isomorphism problem for colored graphs.

Definition.

A pair (G , c) where G = (Ω,E) is a graph and c : Ω→ {1, . . . ,m}
is a surjection, is called a colored graph with the color function c
and color classes c−1(i), i = 1, . . . ,m.

The isomorphisms between colored graphs are ordinary
isomorphisms that preserve the colors of vertices.

Proposition.

The category of colored graphs is isomorphism complete.

any graph can be considered as colored (m = 1),

any vertex α ∈ Ω of a colored graph is replaced by a clique of
size n + 2c(α).

Isomorphism problem for colored graphs.

Definition.

A pair (G , c) where G = (Ω,E) is a graph and c : Ω→ {1, . . . ,m}
is a surjection, is called a colored graph with the color function c
and color classes c−1(i), i = 1, . . . ,m.

The isomorphisms between colored graphs are ordinary
isomorphisms that preserve the colors of vertices.

Proposition.

The category of colored graphs is isomorphism complete.

any graph can be considered as colored (m = 1),

any vertex α ∈ Ω of a colored graph is replaced by a clique of
size n + 2c(α).

Isomorphism problem for colored graphs.

Definition.

A pair (G , c) where G = (Ω,E) is a graph and c : Ω→ {1, . . . ,m}
is a surjection, is called a colored graph with the color function c
and color classes c−1(i), i = 1, . . . ,m.

The isomorphisms between colored graphs are ordinary
isomorphisms that preserve the colors of vertices.

Proposition.

The category of colored graphs is isomorphism complete.

any graph can be considered as colored (m = 1),

any vertex α ∈ Ω of a colored graph is replaced by a clique of
size n + 2c(α).

Isomorphism problem for other categories. Geometry.

Notation.

Denote by K the category of finite incidence structures
G = (P,B, I) with the point set P, the block set B and the
incidence relation I ⊂ P × B.

Construction.

Set G (G) = (P ∪ B, I) to be a graph with two color classes P
and B.

Then G ∼= G′ ⇔ G (G) ∼= G (G′).

Thus ISOK ∝pISO.

It is known that the isomorphism of finite projective planes of order
n can be tested in time nO(log log n).

Isomorphism problem for other categories. Geometry.

Notation.

Denote by K the category of finite incidence structures
G = (P,B, I) with the point set P, the block set B and the
incidence relation I ⊂ P × B.

Construction.

Set G (G) = (P ∪ B, I) to be a graph with two color classes P
and B.

Then G ∼= G′ ⇔ G (G) ∼= G (G′).

Thus ISOK ∝pISO.

It is known that the isomorphism of finite projective planes of order
n can be tested in time nO(log log n).

Isomorphism problem for other categories. Geometry.

Notation.

Denote by K the category of finite incidence structures
G = (P,B, I) with the point set P, the block set B and the
incidence relation I ⊂ P × B.

Construction.

Set G (G) = (P ∪ B, I) to be a graph with two color classes P
and B.

Then G ∼= G′ ⇔ G (G) ∼= G (G′).

Thus ISOK ∝pISO.

It is known that the isomorphism of finite projective planes of order
n can be tested in time nO(log log n).

Isomorphism problem for other categories. Geometry.

Notation.

Denote by K the category of finite incidence structures
G = (P,B, I) with the point set P, the block set B and the
incidence relation I ⊂ P × B.

Construction.

Set G (G) = (P ∪ B, I) to be a graph with two color classes P
and B.

Then G ∼= G′ ⇔ G (G) ∼= G (G′).

Thus ISOK ∝pISO.

It is known that the isomorphism of finite projective planes of order
n can be tested in time nO(log log n).

Isomorphism problem for other categories. Geometry.

Notation.

Denote by K the category of finite incidence structures
G = (P,B, I) with the point set P, the block set B and the
incidence relation I ⊂ P × B.

Construction.

Set G (G) = (P ∪ B, I) to be a graph with two color classes P
and B.

Then G ∼= G′ ⇔ G (G) ∼= G (G′).

Thus ISOK ∝pISO.

It is known that the isomorphism of finite projective planes of order
n can be tested in time nO(log log n).

Isomorphism problem for other categories. Geometry.

Notation.

Denote by K the category of finite incidence structures
G = (P,B, I) with the point set P, the block set B and the
incidence relation I ⊂ P × B.

Construction.

Set G (G) = (P ∪ B, I) to be a graph with two color classes P
and B.

Then G ∼= G′ ⇔ G (G) ∼= G (G′).

Thus ISOK ∝pISO.

It is known that the isomorphism of finite projective planes of order
n can be tested in time nO(log log n).

Isomorphism problem for other categories. Algebra.

Let K be the category of finite groups (given by the Cayley tables).

Construction.

Let K ∈ K, K1,K2,K3 copies of K and K4 = K × K .

Construction: K1 K2 K3 K4

...
...

... (k , l)

k //

22dddddddddddddddddddddddd ++k //k

l // ++l //

66mmmmmmmmmmmmmmmmm l

kl // ++kl //kl

AA�������������

Thus ISOK ∝pISO.

The isomorphism of groups of order n is tested in time nO(log n).

Isomorphism problem for other categories. Algebra.

Let K be the category of finite groups (given by the Cayley tables).

Construction.

Let K ∈ K, K1,K2,K3 copies of K and K4 = K × K .

Construction: K1 K2 K3 K4

...
...

... (k , l)

k //

22dddddddddddddddddddddddd ++k //k

l // ++l //

66mmmmmmmmmmmmmmmmm l

kl // ++kl //kl

AA�������������

Thus ISOK ∝pISO.

The isomorphism of groups of order n is tested in time nO(log n).

Isomorphism problem for other categories. Algebra.

Let K be the category of finite groups (given by the Cayley tables).

Construction.

Let K ∈ K, K1,K2,K3 copies of K and K4 = K × K .

Construction: K1 K2 K3 K4

...
...

... (k , l)

k //

22dddddddddddddddddddddddd ++k //k

l // ++l //

66mmmmmmmmmmmmmmmmm l

kl // ++kl //kl

AA�������������

Thus ISOK ∝pISO.

The isomorphism of groups of order n is tested in time nO(log n).

Isomorphism problem for other categories. Algebra.

Let K be the category of finite groups (given by the Cayley tables).

Construction.

Let K ∈ K, K1,K2,K3 copies of K and K4 = K × K .

Construction: K1 K2 K3 K4

...
...

... (k , l)

k //

22dddddddddddddddddddddddd ++k //k

l // ++l //

66mmmmmmmmmmmmmmmmm l

kl // ++kl //kl

AA�������������

Thus ISOK ∝pISO.

The isomorphism of groups of order n is tested in time nO(log n).

Isomorphism problem for other categories. Algebra.

Let K be the category of finite groups (given by the Cayley tables).

Construction.

Let K ∈ K, K1,K2,K3 copies of K and K4 = K × K .

Construction: K1 K2 K3 K4

...
...

... (k , l)

k //

22dddddddddddddddddddddddd ++k //k

l // ++l //

66mmmmmmmmmmmmmmmmm l

kl // ++kl //kl

AA�������������

Thus ISOK ∝pISO.

The isomorphism of groups of order n is tested in time nO(log n).

Some problems equivalent to the ISO (R.Mathon,1979).

The following problems are equivalent to the ISO:

IMAP: given G and H find f ∈ Iso(G ,H) (if it exists),

ICOUNT: given G and H find | Iso(G ,H)|,
ACOUNT: given G find |Aut(G)|,
AGEN: given G find a set of generators of Aut(G),

APART: given G find Ω/Aut(G).

Vertex individualization. Given G and α1, . . . , αi ∈ Ω set:

Gα1,...,αi to be the colored graph in which each {αj} is a color class.

IMAP∝pISO: recursively find α1, . . . , αi ∈ Ω, β1, . . . , βi ∈ Ξ
and f : αi 7→ βi so that G ∼= H iff Gα1,...,αi

∼= Hβ1,...,βi
.

ISO∝pAPART: β ∈ αAut(G) iff Gβ ∼= Gα.

Some problems equivalent to the ISO (R.Mathon,1979).

The following problems are equivalent to the ISO:

IMAP: given G and H find f ∈ Iso(G ,H) (if it exists),

ICOUNT: given G and H find | Iso(G ,H)|,

ACOUNT: given G find |Aut(G)|,
AGEN: given G find a set of generators of Aut(G),

APART: given G find Ω/Aut(G).

Vertex individualization. Given G and α1, . . . , αi ∈ Ω set:

Gα1,...,αi to be the colored graph in which each {αj} is a color class.

IMAP∝pISO: recursively find α1, . . . , αi ∈ Ω, β1, . . . , βi ∈ Ξ
and f : αi 7→ βi so that G ∼= H iff Gα1,...,αi

∼= Hβ1,...,βi
.

ISO∝pAPART: β ∈ αAut(G) iff Gβ ∼= Gα.

Some problems equivalent to the ISO (R.Mathon,1979).

The following problems are equivalent to the ISO:

IMAP: given G and H find f ∈ Iso(G ,H) (if it exists),

ICOUNT: given G and H find | Iso(G ,H)|,
ACOUNT: given G find |Aut(G)|,

AGEN: given G find a set of generators of Aut(G),

APART: given G find Ω/Aut(G).

Vertex individualization. Given G and α1, . . . , αi ∈ Ω set:

Gα1,...,αi to be the colored graph in which each {αj} is a color class.

IMAP∝pISO: recursively find α1, . . . , αi ∈ Ω, β1, . . . , βi ∈ Ξ
and f : αi 7→ βi so that G ∼= H iff Gα1,...,αi

∼= Hβ1,...,βi
.

ISO∝pAPART: β ∈ αAut(G) iff Gβ ∼= Gα.

Some problems equivalent to the ISO (R.Mathon,1979).

The following problems are equivalent to the ISO:

IMAP: given G and H find f ∈ Iso(G ,H) (if it exists),

ICOUNT: given G and H find | Iso(G ,H)|,
ACOUNT: given G find |Aut(G)|,
AGEN: given G find a set of generators of Aut(G),

APART: given G find Ω/Aut(G).

Vertex individualization. Given G and α1, . . . , αi ∈ Ω set:

Gα1,...,αi to be the colored graph in which each {αj} is a color class.

IMAP∝pISO: recursively find α1, . . . , αi ∈ Ω, β1, . . . , βi ∈ Ξ
and f : αi 7→ βi so that G ∼= H iff Gα1,...,αi

∼= Hβ1,...,βi
.

ISO∝pAPART: β ∈ αAut(G) iff Gβ ∼= Gα.

Some problems equivalent to the ISO (R.Mathon,1979).

The following problems are equivalent to the ISO:

IMAP: given G and H find f ∈ Iso(G ,H) (if it exists),

ICOUNT: given G and H find | Iso(G ,H)|,
ACOUNT: given G find |Aut(G)|,
AGEN: given G find a set of generators of Aut(G),

APART: given G find Ω/Aut(G).

Vertex individualization. Given G and α1, . . . , αi ∈ Ω set:

Gα1,...,αi to be the colored graph in which each {αj} is a color class.

IMAP∝pISO: recursively find α1, . . . , αi ∈ Ω, β1, . . . , βi ∈ Ξ
and f : αi 7→ βi so that G ∼= H iff Gα1,...,αi

∼= Hβ1,...,βi
.

ISO∝pAPART: β ∈ αAut(G) iff Gβ ∼= Gα.

Some problems equivalent to the ISO (R.Mathon,1979).

The following problems are equivalent to the ISO:

IMAP: given G and H find f ∈ Iso(G ,H) (if it exists),

ICOUNT: given G and H find | Iso(G ,H)|,
ACOUNT: given G find |Aut(G)|,
AGEN: given G find a set of generators of Aut(G),

APART: given G find Ω/Aut(G).

Vertex individualization. Given G and α1, . . . , αi ∈ Ω set:

Gα1,...,αi to be the colored graph in which each {αj} is a color class.

IMAP∝pISO: recursively find α1, . . . , αi ∈ Ω, β1, . . . , βi ∈ Ξ
and f : αi 7→ βi so that G ∼= H iff Gα1,...,αi

∼= Hβ1,...,βi
.

ISO∝pAPART: β ∈ αAut(G) iff Gβ ∼= Gα.

Some problems equivalent to the ISO (R.Mathon,1979).

The following problems are equivalent to the ISO:

IMAP: given G and H find f ∈ Iso(G ,H) (if it exists),

ICOUNT: given G and H find | Iso(G ,H)|,
ACOUNT: given G find |Aut(G)|,
AGEN: given G find a set of generators of Aut(G),

APART: given G find Ω/Aut(G).

Vertex individualization. Given G and α1, . . . , αi ∈ Ω set:

Gα1,...,αi to be the colored graph in which each {αj} is a color class.

IMAP∝pISO: recursively find α1, . . . , αi ∈ Ω, β1, . . . , βi ∈ Ξ
and f : αi 7→ βi so that G ∼= H iff Gα1,...,αi

∼= Hβ1,...,βi
.

ISO∝pAPART: β ∈ αAut(G) iff Gβ ∼= Gα.

Some problems equivalent to the ISO (R.Mathon,1979).

The following problems are equivalent to the ISO:

IMAP: given G and H find f ∈ Iso(G ,H) (if it exists),

ICOUNT: given G and H find | Iso(G ,H)|,
ACOUNT: given G find |Aut(G)|,
AGEN: given G find a set of generators of Aut(G),

APART: given G find Ω/Aut(G).

Vertex individualization. Given G and α1, . . . , αi ∈ Ω set:

Gα1,...,αi to be the colored graph in which each {αj} is a color class.

IMAP∝pISO: recursively find α1, . . . , αi ∈ Ω, β1, . . . , βi ∈ Ξ
and f : αi 7→ βi so that G ∼= H iff Gα1,...,αi

∼= Hβ1,...,βi
.

ISO∝pAPART: β ∈ αAut(G) iff Gβ ∼= Gα.

Naive vertex classification.

Vertex partition by valences.

Denote by dG (α) the valency of the vertex α in the graph G ;

the
valency of α in a color class C is denoted by dG (α,C).

To find Ω/Aut(G) put vertices α and β in the same class iff
dG (α) = dG (β).

Iteratively, put vertices α and β in the same class iff
c(α) = c(β), and dG (α,C) = dG (β,C) for all color classes C .

Comments.

The algorithm correctly finds Ω/Aut(G) for the class of trees
(G.Tinhofer, 1985), for almost all graphs (L.Babai, P.Erdös,
S.Selkow, 1980).

The algorithm fails when G is a regular graphs and the group
Aut(G) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dG (α) the valency of the vertex α in the graph G ; the
valency of α in a color class C is denoted by dG (α,C).

To find Ω/Aut(G) put vertices α and β in the same class iff
dG (α) = dG (β).

Iteratively, put vertices α and β in the same class iff
c(α) = c(β), and dG (α,C) = dG (β,C) for all color classes C .

Comments.

The algorithm correctly finds Ω/Aut(G) for the class of trees
(G.Tinhofer, 1985), for almost all graphs (L.Babai, P.Erdös,
S.Selkow, 1980).

The algorithm fails when G is a regular graphs and the group
Aut(G) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dG (α) the valency of the vertex α in the graph G ; the
valency of α in a color class C is denoted by dG (α,C).

To find Ω/Aut(G) put vertices α and β in the same class iff
dG (α) = dG (β).

Iteratively, put vertices α and β in the same class iff
c(α) = c(β), and dG (α,C) = dG (β,C) for all color classes C .

Comments.

The algorithm correctly finds Ω/Aut(G) for the class of trees
(G.Tinhofer, 1985), for almost all graphs (L.Babai, P.Erdös,
S.Selkow, 1980).

The algorithm fails when G is a regular graphs and the group
Aut(G) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dG (α) the valency of the vertex α in the graph G ; the
valency of α in a color class C is denoted by dG (α,C).

To find Ω/Aut(G) put vertices α and β in the same class iff
dG (α) = dG (β).

Iteratively, put vertices α and β in the same class iff
c(α) = c(β), and dG (α,C) = dG (β,C) for all color classes C .

Comments.

The algorithm correctly finds Ω/Aut(G) for the class of trees
(G.Tinhofer, 1985), for almost all graphs (L.Babai, P.Erdös,
S.Selkow, 1980).

The algorithm fails when G is a regular graphs and the group
Aut(G) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dG (α) the valency of the vertex α in the graph G ; the
valency of α in a color class C is denoted by dG (α,C).

To find Ω/Aut(G) put vertices α and β in the same class iff
dG (α) = dG (β).

Iteratively, put vertices α and β in the same class iff
c(α) = c(β), and dG (α,C) = dG (β,C) for all color classes C .

Comments.

The algorithm correctly finds Ω/Aut(G) for the class of trees
(G.Tinhofer, 1985), for almost all graphs (L.Babai, P.Erdös,
S.Selkow, 1980).

The algorithm fails when G is a regular graphs and the group
Aut(G) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dG (α) the valency of the vertex α in the graph G ; the
valency of α in a color class C is denoted by dG (α,C).

To find Ω/Aut(G) put vertices α and β in the same class iff
dG (α) = dG (β).

Iteratively, put vertices α and β in the same class iff
c(α) = c(β), and dG (α,C) = dG (β,C) for all color classes C .

Comments.

The algorithm correctly finds Ω/Aut(G) for the class of trees
(G.Tinhofer, 1985), for almost all graphs (L.Babai, P.Erdös,
S.Selkow, 1980).

The algorithm fails when G is a regular graphs and the group
Aut(G) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dG (α) the valency of the vertex α in the graph G ; the
valency of α in a color class C is denoted by dG (α,C).

To find Ω/Aut(G) put vertices α and β in the same class iff
dG (α) = dG (β).

Iteratively, put vertices α and β in the same class iff
c(α) = c(β), and dG (α,C) = dG (β,C) for all color classes C .

Comments.

The algorithm correctly finds Ω/Aut(G) for the class of trees
(G.Tinhofer, 1985), for almost all graphs (L.Babai, P.Erdös,
S.Selkow, 1980).

The algorithm fails when G is a regular graphs and the group
Aut(G) is intransitive.

The Weisfeiler-Leman algorithm, 1968.

No automorphism takes a dushed edge to an undashed one.

• ___________
RRRRRRR •

lllllll

• ____ •
RRRRRRR

• ___________
lllllll •

To distinguish edges of G we construct a partition S of Ω× Ω s.t.
E belongs the set S∪ of all unions of the elements of S .

Algorithm. Set S = 1Ω ∪ E ∪ E c (E c is the complement of E).

For all (α, β) ∈ Ω× Ω and r , s ∈ S find the number
c(α, β; r , s) = |{γ ∈ Ω : (α, γ) ∈ r , (γ, β) ∈ s}|.
Put (α, β) and (α′, β′) in the same class of a new partition S ′

if they belong the same class of S and
c(α, β; r , s) = c(α′, β′; r , s) for all r , s.

Repeat the procedure till |S ′| stop to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism takes a dushed edge to an undashed one.

• ___________
RRRRRRR •

lllllll

• ____ •
RRRRRRR

• ___________
lllllll •

To distinguish edges of G we construct a partition S of Ω× Ω s.t.
E belongs the set S∪ of all unions of the elements of S .

Algorithm. Set S = 1Ω ∪ E ∪ E c (E c is the complement of E).

For all (α, β) ∈ Ω× Ω and r , s ∈ S find the number
c(α, β; r , s) = |{γ ∈ Ω : (α, γ) ∈ r , (γ, β) ∈ s}|.
Put (α, β) and (α′, β′) in the same class of a new partition S ′

if they belong the same class of S and
c(α, β; r , s) = c(α′, β′; r , s) for all r , s.

Repeat the procedure till |S ′| stop to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism takes a dushed edge to an undashed one.

• ___________
RRRRRRR •

lllllll

• ____ •
RRRRRRR

• ___________
lllllll •

To distinguish edges of G we construct a partition S of Ω× Ω s.t.
E belongs the set S∪ of all unions of the elements of S .

Algorithm. Set S = 1Ω ∪ E ∪ E c (E c is the complement of E).

For all (α, β) ∈ Ω× Ω and r , s ∈ S find the number
c(α, β; r , s) = |{γ ∈ Ω : (α, γ) ∈ r , (γ, β) ∈ s}|.
Put (α, β) and (α′, β′) in the same class of a new partition S ′

if they belong the same class of S and
c(α, β; r , s) = c(α′, β′; r , s) for all r , s.

Repeat the procedure till |S ′| stop to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism takes a dushed edge to an undashed one.

• ___________
RRRRRRR •

lllllll

• ____ •
RRRRRRR

• ___________
lllllll •

To distinguish edges of G we construct a partition S of Ω× Ω s.t.
E belongs the set S∪ of all unions of the elements of S .

Algorithm. Set S = 1Ω ∪ E ∪ E c (E c is the complement of E).

For all (α, β) ∈ Ω× Ω and r , s ∈ S find the number
c(α, β; r , s) = |{γ ∈ Ω : (α, γ) ∈ r , (γ, β) ∈ s}|.

Put (α, β) and (α′, β′) in the same class of a new partition S ′

if they belong the same class of S and
c(α, β; r , s) = c(α′, β′; r , s) for all r , s.

Repeat the procedure till |S ′| stop to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism takes a dushed edge to an undashed one.

• ___________
RRRRRRR •

lllllll

• ____ •
RRRRRRR

• ___________
lllllll •

To distinguish edges of G we construct a partition S of Ω× Ω s.t.
E belongs the set S∪ of all unions of the elements of S .

Algorithm. Set S = 1Ω ∪ E ∪ E c (E c is the complement of E).

For all (α, β) ∈ Ω× Ω and r , s ∈ S find the number
c(α, β; r , s) = |{γ ∈ Ω : (α, γ) ∈ r , (γ, β) ∈ s}|.
Put (α, β) and (α′, β′) in the same class of a new partition S ′

if they belong the same class of S and
c(α, β; r , s) = c(α′, β′; r , s) for all r , s.

Repeat the procedure till |S ′| stop to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism takes a dushed edge to an undashed one.

• ___________
RRRRRRR •

lllllll

• ____ •
RRRRRRR

• ___________
lllllll •

To distinguish edges of G we construct a partition S of Ω× Ω s.t.
E belongs the set S∪ of all unions of the elements of S .

Algorithm. Set S = 1Ω ∪ E ∪ E c (E c is the complement of E).

For all (α, β) ∈ Ω× Ω and r , s ∈ S find the number
c(α, β; r , s) = |{γ ∈ Ω : (α, γ) ∈ r , (γ, β) ∈ s}|.
Put (α, β) and (α′, β′) in the same class of a new partition S ′

if they belong the same class of S and
c(α, β; r , s) = c(α′, β′; r , s) for all r , s.

Repeat the procedure till |S ′| stop to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism takes a dushed edge to an undashed one.

• ___________
RRRRRRR •

lllllll

• ____ •
RRRRRRR

• ___________
lllllll •

To distinguish edges of G we construct a partition S of Ω× Ω s.t.
E belongs the set S∪ of all unions of the elements of S .

Algorithm. Set S = 1Ω ∪ E ∪ E c (E c is the complement of E).

For all (α, β) ∈ Ω× Ω and r , s ∈ S find the number
c(α, β; r , s) = |{γ ∈ Ω : (α, γ) ∈ r , (γ, β) ∈ s}|.
Put (α, β) and (α′, β′) in the same class of a new partition S ′

if they belong the same class of S and
c(α, β; r , s) = c(α′, β′; r , s) for all r , s.

Repeat the procedure till |S ′| stop to increase.

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, S) such that:

1Ω = {(α, α) : α ∈ Ω} is a union of relations from S ,

S contains s∗ = {(α, β) : (β, α) ∈ s} for all s ∈ S ,

for all r , s, t ∈ S the intersection number ct
rs = c(α, β; r , s)

does not depend on the choice of (α, β) ∈ t.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ S ,

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, S) such that:

1Ω = {(α, α) : α ∈ Ω} is a union of relations from S ,

S contains s∗ = {(α, β) : (β, α) ∈ s} for all s ∈ S ,

for all r , s, t ∈ S the intersection number ct
rs = c(α, β; r , s)

does not depend on the choice of (α, β) ∈ t.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ S ,

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, S) such that:

1Ω = {(α, α) : α ∈ Ω} is a union of relations from S ,

S contains s∗ = {(α, β) : (β, α) ∈ s} for all s ∈ S ,

for all r , s, t ∈ S the intersection number ct
rs = c(α, β; r , s)

does not depend on the choice of (α, β) ∈ t.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ S ,

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, S) such that:

1Ω = {(α, α) : α ∈ Ω} is a union of relations from S ,

S contains s∗ = {(α, β) : (β, α) ∈ s} for all s ∈ S ,

for all r , s, t ∈ S the intersection number ct
rs = c(α, β; r , s)

does not depend on the choice of (α, β) ∈ t.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ S ,

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, S) such that:

1Ω = {(α, α) : α ∈ Ω} is a union of relations from S ,

S contains s∗ = {(α, β) : (β, α) ∈ s} for all s ∈ S ,

for all r , s, t ∈ S the intersection number ct
rs = c(α, β; r , s)

does not depend on the choice of (α, β) ∈ t.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ S ,

Coherent configurations. Fibers and relations.

the degree and rank of X are the numbers |Ω| and |S |,

the basic relations and relations of X are the relations of S
and of S∪ (the set of all unions of basic relations),

the fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ S ; the set of all
fibers is denoted by Φ = Φ(X).

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆ and S =
⋃

Γ,∆∈Φ SΓ,∆ (are disjoint unions
where SΓ,∆ = {s ∈ S : s ⊂ Γ×∆},
for any s ∈ SΓ,∆ and α ∈ ∆ we have |αs| = ct

ss∗ where
t = 1∆ and αs is the set of s-neighbours of α.

The number ns = ct
ss∗ is called the valency of s.

Coherent configurations. Fibers and relations.

the degree and rank of X are the numbers |Ω| and |S |,
the basic relations and relations of X are the relations of S
and of S∪ (the set of all unions of basic relations),

the fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ S ; the set of all
fibers is denoted by Φ = Φ(X).

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆ and S =
⋃

Γ,∆∈Φ SΓ,∆ (are disjoint unions
where SΓ,∆ = {s ∈ S : s ⊂ Γ×∆},
for any s ∈ SΓ,∆ and α ∈ ∆ we have |αs| = ct

ss∗ where
t = 1∆ and αs is the set of s-neighbours of α.

The number ns = ct
ss∗ is called the valency of s.

Coherent configurations. Fibers and relations.

the degree and rank of X are the numbers |Ω| and |S |,
the basic relations and relations of X are the relations of S
and of S∪ (the set of all unions of basic relations),

the fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ S ; the set of all
fibers is denoted by Φ = Φ(X).

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆ and S =
⋃

Γ,∆∈Φ SΓ,∆ (are disjoint unions
where SΓ,∆ = {s ∈ S : s ⊂ Γ×∆},
for any s ∈ SΓ,∆ and α ∈ ∆ we have |αs| = ct

ss∗ where
t = 1∆ and αs is the set of s-neighbours of α.

The number ns = ct
ss∗ is called the valency of s.

Coherent configurations. Fibers and relations.

the degree and rank of X are the numbers |Ω| and |S |,
the basic relations and relations of X are the relations of S
and of S∪ (the set of all unions of basic relations),

the fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ S ; the set of all
fibers is denoted by Φ = Φ(X).

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆ and S =
⋃

Γ,∆∈Φ SΓ,∆ (are disjoint unions
where SΓ,∆ = {s ∈ S : s ⊂ Γ×∆},
for any s ∈ SΓ,∆ and α ∈ ∆ we have |αs| = ct

ss∗ where
t = 1∆ and αs is the set of s-neighbours of α.

The number ns = ct
ss∗ is called the valency of s.

Coherent configurations. Fibers and relations.

the degree and rank of X are the numbers |Ω| and |S |,
the basic relations and relations of X are the relations of S
and of S∪ (the set of all unions of basic relations),

the fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ S ; the set of all
fibers is denoted by Φ = Φ(X).

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆ and S =
⋃

Γ,∆∈Φ SΓ,∆ (are disjoint unions
where SΓ,∆ = {s ∈ S : s ⊂ Γ×∆},

for any s ∈ SΓ,∆ and α ∈ ∆ we have |αs| = ct
ss∗ where

t = 1∆ and αs is the set of s-neighbours of α.

The number ns = ct
ss∗ is called the valency of s.

Coherent configurations. Fibers and relations.

the degree and rank of X are the numbers |Ω| and |S |,
the basic relations and relations of X are the relations of S
and of S∪ (the set of all unions of basic relations),

the fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ S ; the set of all
fibers is denoted by Φ = Φ(X).

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆ and S =
⋃

Γ,∆∈Φ SΓ,∆ (are disjoint unions
where SΓ,∆ = {s ∈ S : s ⊂ Γ×∆},
for any s ∈ SΓ,∆ and α ∈ ∆ we have |αs| = ct

ss∗ where
t = 1∆ and αs is the set of s-neighbours of α.

The number ns = ct
ss∗ is called the valency of s.

Coherent configurations. Fibers and relations.

the degree and rank of X are the numbers |Ω| and |S |,
the basic relations and relations of X are the relations of S
and of S∪ (the set of all unions of basic relations),

the fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ S ; the set of all
fibers is denoted by Φ = Φ(X).

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆ and S =
⋃

Γ,∆∈Φ SΓ,∆ (are disjoint unions
where SΓ,∆ = {s ∈ S : s ⊂ Γ×∆},
for any s ∈ SΓ,∆ and α ∈ ∆ we have |αs| = ct

ss∗ where
t = 1∆ and αs is the set of s-neighbours of α.

The number ns = ct
ss∗ is called the valency of s.

Coherent configurations of degree 3.

Let X = (Ω, S) with |Ω| = 3. Set r := |S |, f := |Φ|. Then one of
the following cases occurs:

(r , f) = (2, 1): s0 = •
• •

s1 = •}} AA
• •

(r , f) = (3, 1): s0 = •
• •

s1 = •~~}} `` AA
• //•

s2 = •>>}} AA
•oo •

(r , f) = (5, 2): s0 = •
•

s1 =
•

s2 = •}}•

s3 = • AA
• //•

s4 = •̀̀ AA
• oo •

(r , f) = (9, 3): S = { {(α, β)} : α, β ∈ Ω}.

Coherent configurations of degree 3.

Let X = (Ω, S) with |Ω| = 3. Set r := |S |, f := |Φ|. Then one of
the following cases occurs:

(r , f) = (2, 1): s0 = •
• •

s1 = •}} AA
• •

(r , f) = (3, 1): s0 = •
• •

s1 = •~~}} `` AA
• //•

s2 = •>>}} AA
•oo •

(r , f) = (5, 2): s0 = •
•

s1 =
•

s2 = •}}•

s3 = • AA
• //•

s4 = •̀̀ AA
• oo •

(r , f) = (9, 3): S = { {(α, β)} : α, β ∈ Ω}.

Coherent configurations of degree 3.

Let X = (Ω, S) with |Ω| = 3. Set r := |S |, f := |Φ|. Then one of
the following cases occurs:

(r , f) = (2, 1): s0 = •
• •

s1 = •}} AA
• •

(r , f) = (3, 1): s0 = •
• •

s1 = •~~}} `` AA
• //•

s2 = •>>}} AA
•oo •

(r , f) = (5, 2): s0 = •
•

s1 =
•

s2 = •}}•

s3 = • AA
• //•

s4 = •̀̀ AA
• oo •

(r , f) = (9, 3): S = { {(α, β)} : α, β ∈ Ω}.

Coherent configurations of degree 3.

Let X = (Ω, S) with |Ω| = 3. Set r := |S |, f := |Φ|. Then one of
the following cases occurs:

(r , f) = (2, 1): s0 = •
• •

s1 = •}} AA
• •

(r , f) = (3, 1): s0 = •
• •

s1 = •~~}} `` AA
• //•

s2 = •>>}} AA
•oo •

(r , f) = (5, 2): s0 = •
•

s1 =
•

s2 = •}}•

s3 = • AA
• //•

s4 = •̀̀ AA
• oo •

(r , f) = (9, 3): S = { {(α, β)} : α, β ∈ Ω}.

Coherent configurations of degree 3.

Let X = (Ω, S) with |Ω| = 3. Set r := |S |, f := |Φ|. Then one of
the following cases occurs:

(r , f) = (2, 1): s0 = •
• •

s1 = •}} AA
• •

(r , f) = (3, 1): s0 = •
• •

s1 = •~~}} `` AA
• //•

s2 = •>>}} AA
•oo •

(r , f) = (5, 2): s0 = •
•

s1 =
•

s2 = •}}•

s3 = • AA
• //•

s4 = •̀̀ AA
• oo •

(r , f) = (9, 3): S = { {(α, β)} : α, β ∈ Ω}.

Coherent configurations of degree 3.

Let X = (Ω, S) with |Ω| = 3. Set r := |S |, f := |Φ|. Then one of
the following cases occurs:

(r , f) = (2, 1): s0 = •
• •

s1 = •}} AA
• •

(r , f) = (3, 1): s0 = •
• •

s1 = •~~}} `` AA
• //•

s2 = •>>}} AA
•oo •

(r , f) = (5, 2): s0 = •
•

s1 =
•

s2 = •}}•

s3 = • AA
• //•

s4 = •̀̀ AA
• oo •

(r , f) = (9, 3): S = { {(α, β)} : α, β ∈ Ω}.

Examples. Symmetric designs.

Let (P,B) be a symmetric design with the point set P and the
block set B (in particular, any pair of distinct points is contained
in λ blocks for some integer λ > 0).

Set

Ω = P ∪ B,

S∆,∆ = {1∆,∆
2 \ 1∆}, ∆ ∈ {P,B},

S∆,Γ = {I∆,Γ, I ′∆,Γ}, {∆, Γ} = {P,B}, where I∆,Γ, and I ′∆,Γ
are the incidence and non-incidence relations respectively.

S = SP,P ∪ SB,B ∪ SP,B ∪ SB,P .

Proposition. Set X = (Ω, S). Then

S is a partition of Ω× Ω,

X is a coherent configuration (e.g. if r = IP,B and
s = P2 \ 1P , then cs

rr∗ = λ),

Φ(X) = {P,B}; in particular X is non-homogeneous.

Examples. Symmetric designs.

Let (P,B) be a symmetric design with the point set P and the
block set B (in particular, any pair of distinct points is contained
in λ blocks for some integer λ > 0). Set

Ω = P ∪ B,

S∆,∆ = {1∆,∆
2 \ 1∆}, ∆ ∈ {P,B},

S∆,Γ = {I∆,Γ, I ′∆,Γ}, {∆, Γ} = {P,B}, where I∆,Γ, and I ′∆,Γ
are the incidence and non-incidence relations respectively.

S = SP,P ∪ SB,B ∪ SP,B ∪ SB,P .

Proposition. Set X = (Ω, S). Then

S is a partition of Ω× Ω,

X is a coherent configuration (e.g. if r = IP,B and
s = P2 \ 1P , then cs

rr∗ = λ),

Φ(X) = {P,B}; in particular X is non-homogeneous.

Examples. Symmetric designs.

Let (P,B) be a symmetric design with the point set P and the
block set B (in particular, any pair of distinct points is contained
in λ blocks for some integer λ > 0). Set

Ω = P ∪ B,

S∆,∆ = {1∆,∆
2 \ 1∆}, ∆ ∈ {P,B},

S∆,Γ = {I∆,Γ, I ′∆,Γ}, {∆, Γ} = {P,B}, where I∆,Γ, and I ′∆,Γ
are the incidence and non-incidence relations respectively.

S = SP,P ∪ SB,B ∪ SP,B ∪ SB,P .

Proposition. Set X = (Ω, S). Then

S is a partition of Ω× Ω,

X is a coherent configuration (e.g. if r = IP,B and
s = P2 \ 1P , then cs

rr∗ = λ),

Φ(X) = {P,B}; in particular X is non-homogeneous.

Examples. Symmetric designs.

Let (P,B) be a symmetric design with the point set P and the
block set B (in particular, any pair of distinct points is contained
in λ blocks for some integer λ > 0). Set

Ω = P ∪ B,

S∆,∆ = {1∆,∆
2 \ 1∆}, ∆ ∈ {P,B},

S∆,Γ = {I∆,Γ, I ′∆,Γ}, {∆, Γ} = {P,B}, where I∆,Γ, and I ′∆,Γ
are the incidence and non-incidence relations respectively.

S = SP,P ∪ SB,B ∪ SP,B ∪ SB,P .

Proposition. Set X = (Ω, S). Then

S is a partition of Ω× Ω,

X is a coherent configuration (e.g. if r = IP,B and
s = P2 \ 1P , then cs

rr∗ = λ),

Φ(X) = {P,B}; in particular X is non-homogeneous.

Examples. Symmetric designs.

Let (P,B) be a symmetric design with the point set P and the
block set B (in particular, any pair of distinct points is contained
in λ blocks for some integer λ > 0). Set

Ω = P ∪ B,

S∆,∆ = {1∆,∆
2 \ 1∆}, ∆ ∈ {P,B},

S∆,Γ = {I∆,Γ, I ′∆,Γ}, {∆, Γ} = {P,B}, where I∆,Γ, and I ′∆,Γ
are the incidence and non-incidence relations respectively.

S = SP,P ∪ SB,B ∪ SP,B ∪ SB,P .

Proposition. Set X = (Ω, S). Then

S is a partition of Ω× Ω,

X is a coherent configuration (e.g. if r = IP,B and
s = P2 \ 1P , then cs

rr∗ = λ),

Φ(X) = {P,B}; in particular X is non-homogeneous.

Examples. Symmetric designs.

Let (P,B) be a symmetric design with the point set P and the
block set B (in particular, any pair of distinct points is contained
in λ blocks for some integer λ > 0). Set

Ω = P ∪ B,

S∆,∆ = {1∆,∆
2 \ 1∆}, ∆ ∈ {P,B},

S∆,Γ = {I∆,Γ, I ′∆,Γ}, {∆, Γ} = {P,B}, where I∆,Γ, and I ′∆,Γ
are the incidence and non-incidence relations respectively.

S = SP,P ∪ SB,B ∪ SP,B ∪ SB,P .

Proposition. Set X = (Ω, S). Then

S is a partition of Ω× Ω,

X is a coherent configuration (e.g. if r = IP,B and
s = P2 \ 1P , then cs

rr∗ = λ),

Φ(X) = {P,B}; in particular X is non-homogeneous.

Examples. Symmetric designs.

Let (P,B) be a symmetric design with the point set P and the
block set B (in particular, any pair of distinct points is contained
in λ blocks for some integer λ > 0). Set

Ω = P ∪ B,

S∆,∆ = {1∆,∆
2 \ 1∆}, ∆ ∈ {P,B},

S∆,Γ = {I∆,Γ, I ′∆,Γ}, {∆, Γ} = {P,B}, where I∆,Γ, and I ′∆,Γ
are the incidence and non-incidence relations respectively.

S = SP,P ∪ SB,B ∪ SP,B ∪ SB,P .

Proposition. Set X = (Ω, S). Then

S is a partition of Ω× Ω,

X is a coherent configuration (e.g. if r = IP,B and
s = P2 \ 1P , then cs

rr∗ = λ),

Φ(X) = {P,B}; in particular X is non-homogeneous.

Examples. Symmetric designs.

Let (P,B) be a symmetric design with the point set P and the
block set B (in particular, any pair of distinct points is contained
in λ blocks for some integer λ > 0). Set

Ω = P ∪ B,

S∆,∆ = {1∆,∆
2 \ 1∆}, ∆ ∈ {P,B},

S∆,Γ = {I∆,Γ, I ′∆,Γ}, {∆, Γ} = {P,B}, where I∆,Γ, and I ′∆,Γ
are the incidence and non-incidence relations respectively.

S = SP,P ∪ SB,B ∪ SP,B ∪ SB,P .

Proposition. Set X = (Ω, S). Then

S is a partition of Ω× Ω,

X is a coherent configuration (e.g. if r = IP,B and
s = P2 \ 1P , then cs

rr∗ = λ),

Φ(X) = {P,B}; in particular X is non-homogeneous.

Examples. Symmetric designs.

Let (P,B) be a symmetric design with the point set P and the
block set B (in particular, any pair of distinct points is contained
in λ blocks for some integer λ > 0). Set

Ω = P ∪ B,

S∆,∆ = {1∆,∆
2 \ 1∆}, ∆ ∈ {P,B},

S∆,Γ = {I∆,Γ, I ′∆,Γ}, {∆, Γ} = {P,B}, where I∆,Γ, and I ′∆,Γ
are the incidence and non-incidence relations respectively.

S = SP,P ∪ SB,B ∪ SP,B ∪ SB,P .

Proposition. Set X = (Ω, S). Then

S is a partition of Ω× Ω,

X is a coherent configuration (e.g. if r = IP,B and
s = P2 \ 1P , then cs

rr∗ = λ),

Φ(X) = {P,B}; in particular X is non-homogeneous.

Examples. Distance-regular graphs.

Let G = (Ω,E) be an undirected graph of diameter d .

Set ri = {(α, β) ∈ Ω2 : d(α, β) = i} where i = 0, . . . , d and
d(α, β) is the distance between α and β in G .

Then r0 = 1Ω and r1 = E .

Set S = {ri : i = 0, . . . , d}.

Proposition. The graph Γ is distance-regular iff X = (Ω,S) is a
coherent configuration. If it is so, then

X is an association scheme; it is the output of the
Weisfeiler-Leman algorithm applied to G .

X is symmetric, i.e. ns = ns∗ for all s ∈ S .

The intersection numbers of X are uniquely determined by the
numbers c

ri−1
r1ri and c ri

r1ri−1
for i = 1, . . . , d (that are the

parameters of G).

Examples. Distance-regular graphs.

Let G = (Ω,E) be an undirected graph of diameter d .

Set ri = {(α, β) ∈ Ω2 : d(α, β) = i} where i = 0, . . . , d and
d(α, β) is the distance between α and β in G .

Then r0 = 1Ω and r1 = E .

Set S = {ri : i = 0, . . . , d}.

Proposition. The graph Γ is distance-regular iff X = (Ω,S) is a
coherent configuration. If it is so, then

X is an association scheme; it is the output of the
Weisfeiler-Leman algorithm applied to G .

X is symmetric, i.e. ns = ns∗ for all s ∈ S .

The intersection numbers of X are uniquely determined by the
numbers c

ri−1
r1ri and c ri

r1ri−1
for i = 1, . . . , d (that are the

parameters of G).

Examples. Distance-regular graphs.

Let G = (Ω,E) be an undirected graph of diameter d .

Set ri = {(α, β) ∈ Ω2 : d(α, β) = i} where i = 0, . . . , d and
d(α, β) is the distance between α and β in G .

Then r0 = 1Ω and r1 = E .

Set S = {ri : i = 0, . . . , d}.

Proposition. The graph Γ is distance-regular iff X = (Ω,S) is a
coherent configuration. If it is so, then

X is an association scheme; it is the output of the
Weisfeiler-Leman algorithm applied to G .

X is symmetric, i.e. ns = ns∗ for all s ∈ S .

The intersection numbers of X are uniquely determined by the
numbers c

ri−1
r1ri and c ri

r1ri−1
for i = 1, . . . , d (that are the

parameters of G).

Examples. Distance-regular graphs.

Let G = (Ω,E) be an undirected graph of diameter d .

Set ri = {(α, β) ∈ Ω2 : d(α, β) = i} where i = 0, . . . , d and
d(α, β) is the distance between α and β in G .

Then r0 = 1Ω and r1 = E .

Set S = {ri : i = 0, . . . , d}.

Proposition. The graph Γ is distance-regular iff X = (Ω,S) is a
coherent configuration. If it is so, then

X is an association scheme; it is the output of the
Weisfeiler-Leman algorithm applied to G .

X is symmetric, i.e. ns = ns∗ for all s ∈ S .

The intersection numbers of X are uniquely determined by the
numbers c

ri−1
r1ri and c ri

r1ri−1
for i = 1, . . . , d (that are the

parameters of G).

Examples. Distance-regular graphs.

Let G = (Ω,E) be an undirected graph of diameter d .

Set ri = {(α, β) ∈ Ω2 : d(α, β) = i} where i = 0, . . . , d and
d(α, β) is the distance between α and β in G .

Then r0 = 1Ω and r1 = E .

Set S = {ri : i = 0, . . . , d}.

Proposition. The graph Γ is distance-regular iff X = (Ω,S) is a
coherent configuration.

If it is so, then

X is an association scheme; it is the output of the
Weisfeiler-Leman algorithm applied to G .

X is symmetric, i.e. ns = ns∗ for all s ∈ S .

The intersection numbers of X are uniquely determined by the
numbers c

ri−1
r1ri and c ri

r1ri−1
for i = 1, . . . , d (that are the

parameters of G).

Examples. Distance-regular graphs.

Let G = (Ω,E) be an undirected graph of diameter d .

Set ri = {(α, β) ∈ Ω2 : d(α, β) = i} where i = 0, . . . , d and
d(α, β) is the distance between α and β in G .

Then r0 = 1Ω and r1 = E .

Set S = {ri : i = 0, . . . , d}.

Proposition. The graph Γ is distance-regular iff X = (Ω,S) is a
coherent configuration. If it is so, then

X is an association scheme; it is the output of the
Weisfeiler-Leman algorithm applied to G .

X is symmetric, i.e. ns = ns∗ for all s ∈ S .

The intersection numbers of X are uniquely determined by the
numbers c

ri−1
r1ri and c ri

r1ri−1
for i = 1, . . . , d (that are the

parameters of G).

Examples. Distance-regular graphs.

Let G = (Ω,E) be an undirected graph of diameter d .

Set ri = {(α, β) ∈ Ω2 : d(α, β) = i} where i = 0, . . . , d and
d(α, β) is the distance between α and β in G .

Then r0 = 1Ω and r1 = E .

Set S = {ri : i = 0, . . . , d}.

Proposition. The graph Γ is distance-regular iff X = (Ω,S) is a
coherent configuration. If it is so, then

X is an association scheme; it is the output of the
Weisfeiler-Leman algorithm applied to G .

X is symmetric, i.e. ns = ns∗ for all s ∈ S .

The intersection numbers of X are uniquely determined by the
numbers c

ri−1
r1ri and c ri

r1ri−1
for i = 1, . . . , d (that are the

parameters of G).

Examples. Distance-regular graphs.

Let G = (Ω,E) be an undirected graph of diameter d .

Set ri = {(α, β) ∈ Ω2 : d(α, β) = i} where i = 0, . . . , d and
d(α, β) is the distance between α and β in G .

Then r0 = 1Ω and r1 = E .

Set S = {ri : i = 0, . . . , d}.

Proposition. The graph Γ is distance-regular iff X = (Ω,S) is a
coherent configuration. If it is so, then

X is an association scheme; it is the output of the
Weisfeiler-Leman algorithm applied to G .

X is symmetric, i.e. ns = ns∗ for all s ∈ S .

The intersection numbers of X are uniquely determined by the
numbers c

ri−1
r1ri and c ri

r1ri−1
for i = 1, . . . , d (that are the

parameters of G).

Examples. Distance-regular graphs.

Let G = (Ω,E) be an undirected graph of diameter d .

Set ri = {(α, β) ∈ Ω2 : d(α, β) = i} where i = 0, . . . , d and
d(α, β) is the distance between α and β in G .

Then r0 = 1Ω and r1 = E .

Set S = {ri : i = 0, . . . , d}.

Proposition. The graph Γ is distance-regular iff X = (Ω,S) is a
coherent configuration. If it is so, then

X is an association scheme; it is the output of the
Weisfeiler-Leman algorithm applied to G .

X is symmetric, i.e. ns = ns∗ for all s ∈ S .

The intersection numbers of X are uniquely determined by the
numbers c

ri−1
r1ri and c ri

r1ri−1
for i = 1, . . . , d (that are the

parameters of G).

Examples. Permutation groups.

Let Γ ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)γ := (αγ , βγ), α, β ∈ Ω, γ ∈ Γ.

Set X = (Ω,S) where S := Ω2/Γ. Then

1 Inv(Γ) := X is a coherent configuration (of Γ),

2 S is the set of all 2-orbits of Γ,

3 X is a scheme iff Γ is transitive;

4 S∪ is a complete set of Γ-invariant binary relations.

Definition.

A coherent configuration X is called schurian if X = Inv(Γ) for
some group Γ.

Examples. Permutation groups.

Let Γ ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)γ := (αγ , βγ), α, β ∈ Ω, γ ∈ Γ.

Set X = (Ω,S) where S := Ω2/Γ. Then

1 Inv(Γ) := X is a coherent configuration (of Γ),

2 S is the set of all 2-orbits of Γ,

3 X is a scheme iff Γ is transitive;

4 S∪ is a complete set of Γ-invariant binary relations.

Definition.

A coherent configuration X is called schurian if X = Inv(Γ) for
some group Γ.

Examples. Permutation groups.

Let Γ ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)γ := (αγ , βγ), α, β ∈ Ω, γ ∈ Γ.

Set X = (Ω,S) where S := Ω2/Γ. Then

1 Inv(Γ) := X is a coherent configuration (of Γ),

2 S is the set of all 2-orbits of Γ,

3 X is a scheme iff Γ is transitive;

4 S∪ is a complete set of Γ-invariant binary relations.

Definition.

A coherent configuration X is called schurian if X = Inv(Γ) for
some group Γ.

Examples. Permutation groups.

Let Γ ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)γ := (αγ , βγ), α, β ∈ Ω, γ ∈ Γ.

Set X = (Ω,S) where S := Ω2/Γ. Then

1 Inv(Γ) := X is a coherent configuration (of Γ),

2 S is the set of all 2-orbits of Γ,

3 X is a scheme iff Γ is transitive;

4 S∪ is a complete set of Γ-invariant binary relations.

Definition.

A coherent configuration X is called schurian if X = Inv(Γ) for
some group Γ.

Examples. Permutation groups.

Let Γ ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)γ := (αγ , βγ), α, β ∈ Ω, γ ∈ Γ.

Set X = (Ω,S) where S := Ω2/Γ. Then

1 Inv(Γ) := X is a coherent configuration (of Γ),

2 S is the set of all 2-orbits of Γ,

3 X is a scheme iff Γ is transitive;

4 S∪ is a complete set of Γ-invariant binary relations.

Definition.

A coherent configuration X is called schurian if X = Inv(Γ) for
some group Γ.

Examples. Permutation groups.

Let Γ ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)γ := (αγ , βγ), α, β ∈ Ω, γ ∈ Γ.

Set X = (Ω,S) where S := Ω2/Γ. Then

1 Inv(Γ) := X is a coherent configuration (of Γ),

2 S is the set of all 2-orbits of Γ,

3 X is a scheme iff Γ is transitive;

4 S∪ is a complete set of Γ-invariant binary relations.

Definition.

A coherent configuration X is called schurian if X = Inv(Γ) for
some group Γ.

Examples. Permutation groups.

Let Γ ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)γ := (αγ , βγ), α, β ∈ Ω, γ ∈ Γ.

Set X = (Ω,S) where S := Ω2/Γ. Then

1 Inv(Γ) := X is a coherent configuration (of Γ),

2 S is the set of all 2-orbits of Γ,

3 X is a scheme iff Γ is transitive;

4 S∪ is a complete set of Γ-invariant binary relations.

Definition.

A coherent configuration X is called schurian if X = Inv(Γ) for
some group Γ.

Isomorphisms of coherent configurations.

Definition.

Coherent configurations X = (Ω,S) and X ′ = (Ω′, S ′) are
isomorphic if there is a bijection f : Ω→ Ω′, the isomorphism from
X to X ′, such that S f = S ′.

The set of all f is denoted by
Iso(X ,X ′).

Notation.

The coherent configuration constructed from a graph G by the
Weisfeiler-Leman algorithm is denoted by 〈〈G 〉〉.

Proposition.

Let G = (Ω,E) and G ′ = (Ω,E ′) be graphs, and X = 〈〈G 〉〉 and
X ′ = 〈〈G ′〉〉. Then f ∈ Iso(G ,G ′) iff f ∈ Iso(X ,X ′) and E f = E ′.
Proof. On each step of the Weisfeiler-Leman algorithm
c(α, β; r , s) = c(αf , βf ; r f , s f) for all α, β, r , s.

Isomorphisms of coherent configurations.

Definition.

Coherent configurations X = (Ω,S) and X ′ = (Ω′, S ′) are
isomorphic if there is a bijection f : Ω→ Ω′, the isomorphism from
X to X ′, such that S f = S ′. The set of all f is denoted by
Iso(X ,X ′).

Notation.

The coherent configuration constructed from a graph G by the
Weisfeiler-Leman algorithm is denoted by 〈〈G 〉〉.

Proposition.

Let G = (Ω,E) and G ′ = (Ω,E ′) be graphs, and X = 〈〈G 〉〉 and
X ′ = 〈〈G ′〉〉. Then f ∈ Iso(G ,G ′) iff f ∈ Iso(X ,X ′) and E f = E ′.
Proof. On each step of the Weisfeiler-Leman algorithm
c(α, β; r , s) = c(αf , βf ; r f , s f) for all α, β, r , s.

Isomorphisms of coherent configurations.

Definition.

Coherent configurations X = (Ω,S) and X ′ = (Ω′, S ′) are
isomorphic if there is a bijection f : Ω→ Ω′, the isomorphism from
X to X ′, such that S f = S ′. The set of all f is denoted by
Iso(X ,X ′).

Notation.

The coherent configuration constructed from a graph G by the
Weisfeiler-Leman algorithm is denoted by 〈〈G 〉〉.

Proposition.

Let G = (Ω,E) and G ′ = (Ω,E ′) be graphs, and X = 〈〈G 〉〉 and
X ′ = 〈〈G ′〉〉. Then f ∈ Iso(G ,G ′) iff f ∈ Iso(X ,X ′) and E f = E ′.
Proof. On each step of the Weisfeiler-Leman algorithm
c(α, β; r , s) = c(αf , βf ; r f , s f) for all α, β, r , s.

Isomorphisms of coherent configurations.

Definition.

Coherent configurations X = (Ω,S) and X ′ = (Ω′, S ′) are
isomorphic if there is a bijection f : Ω→ Ω′, the isomorphism from
X to X ′, such that S f = S ′. The set of all f is denoted by
Iso(X ,X ′).

Notation.

The coherent configuration constructed from a graph G by the
Weisfeiler-Leman algorithm is denoted by 〈〈G 〉〉.

Proposition.

Let G = (Ω,E) and G ′ = (Ω,E ′) be graphs, and X = 〈〈G 〉〉 and
X ′ = 〈〈G ′〉〉.

Then f ∈ Iso(G ,G ′) iff f ∈ Iso(X ,X ′) and E f = E ′.
Proof. On each step of the Weisfeiler-Leman algorithm
c(α, β; r , s) = c(αf , βf ; r f , s f) for all α, β, r , s.

Isomorphisms of coherent configurations.

Definition.

Coherent configurations X = (Ω,S) and X ′ = (Ω′, S ′) are
isomorphic if there is a bijection f : Ω→ Ω′, the isomorphism from
X to X ′, such that S f = S ′. The set of all f is denoted by
Iso(X ,X ′).

Notation.

The coherent configuration constructed from a graph G by the
Weisfeiler-Leman algorithm is denoted by 〈〈G 〉〉.

Proposition.

Let G = (Ω,E) and G ′ = (Ω,E ′) be graphs, and X = 〈〈G 〉〉 and
X ′ = 〈〈G ′〉〉. Then f ∈ Iso(G ,G ′) iff f ∈ Iso(X ,X ′) and E f = E ′.

Proof. On each step of the Weisfeiler-Leman algorithm
c(α, β; r , s) = c(αf , βf ; r f , s f) for all α, β, r , s.

Isomorphisms of coherent configurations.

Definition.

Coherent configurations X = (Ω,S) and X ′ = (Ω′, S ′) are
isomorphic if there is a bijection f : Ω→ Ω′, the isomorphism from
X to X ′, such that S f = S ′. The set of all f is denoted by
Iso(X ,X ′).

Notation.

The coherent configuration constructed from a graph G by the
Weisfeiler-Leman algorithm is denoted by 〈〈G 〉〉.

Proposition.

Let G = (Ω,E) and G ′ = (Ω,E ′) be graphs, and X = 〈〈G 〉〉 and
X ′ = 〈〈G ′〉〉. Then f ∈ Iso(G ,G ′) iff f ∈ Iso(X ,X ′) and E f = E ′.
Proof. On each step of the Weisfeiler-Leman algorithm
c(α, β; r , s) = c(αf , βf ; r f , s f) for all α, β, r , s.

The automorphism group and schurian closure.

Definition. Let X be a coherent configuration. The group

Aut(X) = {f ∈ Sym(Ω) : s f = s for all s ∈ S}

is the automorphism group of X ; we have Aut(X) E Iso(X ,X).

Schurian closure of X is defined to be Sch(X) = Inv(Aut(X)).
One can prove that X is schurian iff X = Sch(X).
For any graph G : Aut(G) = Aut(X) where X = 〈〈G 〉〉.
In particular, Ω/Aut(G) = Φ(Sch(X)).

Theorem.

The ISO is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.

If all coherent configurations were schurian, then the
Weisfeiler-Leman algorithm solves the ISO.

The automorphism group and schurian closure.

Definition. Let X be a coherent configuration. The group

Aut(X) = {f ∈ Sym(Ω) : s f = s for all s ∈ S}

is the automorphism group of X ; we have Aut(X) E Iso(X ,X).

Schurian closure of X is defined to be Sch(X) = Inv(Aut(X)).

One can prove that X is schurian iff X = Sch(X).
For any graph G : Aut(G) = Aut(X) where X = 〈〈G 〉〉.
In particular, Ω/Aut(G) = Φ(Sch(X)).

Theorem.

The ISO is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.

If all coherent configurations were schurian, then the
Weisfeiler-Leman algorithm solves the ISO.

The automorphism group and schurian closure.

Definition. Let X be a coherent configuration. The group

Aut(X) = {f ∈ Sym(Ω) : s f = s for all s ∈ S}

is the automorphism group of X ; we have Aut(X) E Iso(X ,X).

Schurian closure of X is defined to be Sch(X) = Inv(Aut(X)).
One can prove that X is schurian iff X = Sch(X).

For any graph G : Aut(G) = Aut(X) where X = 〈〈G 〉〉.
In particular, Ω/Aut(G) = Φ(Sch(X)).

Theorem.

The ISO is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.

If all coherent configurations were schurian, then the
Weisfeiler-Leman algorithm solves the ISO.

The automorphism group and schurian closure.

Definition. Let X be a coherent configuration. The group

Aut(X) = {f ∈ Sym(Ω) : s f = s for all s ∈ S}

is the automorphism group of X ; we have Aut(X) E Iso(X ,X).

Schurian closure of X is defined to be Sch(X) = Inv(Aut(X)).
One can prove that X is schurian iff X = Sch(X).
For any graph G : Aut(G) = Aut(X) where X = 〈〈G 〉〉.

In particular, Ω/Aut(G) = Φ(Sch(X)).

Theorem.

The ISO is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.

If all coherent configurations were schurian, then the
Weisfeiler-Leman algorithm solves the ISO.

The automorphism group and schurian closure.

Definition. Let X be a coherent configuration. The group

Aut(X) = {f ∈ Sym(Ω) : s f = s for all s ∈ S}

is the automorphism group of X ; we have Aut(X) E Iso(X ,X).

Schurian closure of X is defined to be Sch(X) = Inv(Aut(X)).
One can prove that X is schurian iff X = Sch(X).
For any graph G : Aut(G) = Aut(X) where X = 〈〈G 〉〉.
In particular, Ω/Aut(G) = Φ(Sch(X)).

Theorem.

The ISO is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.

If all coherent configurations were schurian, then the
Weisfeiler-Leman algorithm solves the ISO.

The automorphism group and schurian closure.

Definition. Let X be a coherent configuration. The group

Aut(X) = {f ∈ Sym(Ω) : s f = s for all s ∈ S}

is the automorphism group of X ; we have Aut(X) E Iso(X ,X).

Schurian closure of X is defined to be Sch(X) = Inv(Aut(X)).
One can prove that X is schurian iff X = Sch(X).
For any graph G : Aut(G) = Aut(X) where X = 〈〈G 〉〉.
In particular, Ω/Aut(G) = Φ(Sch(X)).

Theorem.

The ISO is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.

If all coherent configurations were schurian, then the
Weisfeiler-Leman algorithm solves the ISO.

The automorphism group and schurian closure.

Definition. Let X be a coherent configuration. The group

Aut(X) = {f ∈ Sym(Ω) : s f = s for all s ∈ S}

is the automorphism group of X ; we have Aut(X) E Iso(X ,X).

Schurian closure of X is defined to be Sch(X) = Inv(Aut(X)).
One can prove that X is schurian iff X = Sch(X).
For any graph G : Aut(G) = Aut(X) where X = 〈〈G 〉〉.
In particular, Ω/Aut(G) = Φ(Sch(X)).

Theorem.

The ISO is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.

If all coherent configurations were schurian, then the
Weisfeiler-Leman algorithm solves the ISO.

The automorphism group and schurian closure.

Definition. Let X be a coherent configuration. The group

Aut(X) = {f ∈ Sym(Ω) : s f = s for all s ∈ S}

is the automorphism group of X ; we have Aut(X) E Iso(X ,X).

Schurian closure of X is defined to be Sch(X) = Inv(Aut(X)).
One can prove that X is schurian iff X = Sch(X).
For any graph G : Aut(G) = Aut(X) where X = 〈〈G 〉〉.
In particular, Ω/Aut(G) = Φ(Sch(X)).

Theorem.

The ISO is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.

If all coherent configurations were schurian, then the
Weisfeiler-Leman algorithm solves the ISO.

The schurity problem.

Problem: characterize all schurian coherent configurations
belonging to a given a class.

The smallest degree of a non-schurian

scheme is 15 (the Hanaki-Miamoto list),

coherent configuration is ≥ 8 (A.Leman, 1970).

The coherent configuration of a finite projective plane is schurian
iff the plane is desarguesian (S.Evdokimov-I.Ponomarenko, 2000).

Remark

When a class K consists of graphs G for which 〈〈G 〉〉 is schurian,
then usually ISOK is solved by the W-L algorithm.

Example: trees and interval graphs
(S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

The schurity problem.

Problem: characterize all schurian coherent configurations
belonging to a given a class.

The smallest degree of a non-schurian

scheme is 15 (the Hanaki-Miamoto list),

coherent configuration is ≥ 8 (A.Leman, 1970).

The coherent configuration of a finite projective plane is schurian
iff the plane is desarguesian (S.Evdokimov-I.Ponomarenko, 2000).

Remark

When a class K consists of graphs G for which 〈〈G 〉〉 is schurian,
then usually ISOK is solved by the W-L algorithm.

Example: trees and interval graphs
(S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

The schurity problem.

Problem: characterize all schurian coherent configurations
belonging to a given a class.

The smallest degree of a non-schurian

scheme is 15 (the Hanaki-Miamoto list),

coherent configuration is ≥ 8 (A.Leman, 1970).

The coherent configuration of a finite projective plane is schurian
iff the plane is desarguesian (S.Evdokimov-I.Ponomarenko, 2000).

Remark

When a class K consists of graphs G for which 〈〈G 〉〉 is schurian,
then usually ISOK is solved by the W-L algorithm.

Example: trees and interval graphs
(S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

The schurity problem.

Problem: characterize all schurian coherent configurations
belonging to a given a class.

The smallest degree of a non-schurian

scheme is 15 (the Hanaki-Miamoto list),

coherent configuration is ≥ 8 (A.Leman, 1970).

The coherent configuration of a finite projective plane is schurian
iff the plane is desarguesian (S.Evdokimov-I.Ponomarenko, 2000).

Remark

When a class K consists of graphs G for which 〈〈G 〉〉 is schurian,
then usually ISOK is solved by the W-L algorithm.

Example: trees and interval graphs
(S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

The schurity problem.

Problem: characterize all schurian coherent configurations
belonging to a given a class.

The smallest degree of a non-schurian

scheme is 15 (the Hanaki-Miamoto list),

coherent configuration is ≥ 8 (A.Leman, 1970).

The coherent configuration of a finite projective plane is schurian
iff the plane is desarguesian (S.Evdokimov-I.Ponomarenko, 2000).

Remark

When a class K consists of graphs G for which 〈〈G 〉〉 is schurian,
then usually ISOK is solved by the W-L algorithm.

Example: trees and interval graphs
(S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

The schurity problem.

Problem: characterize all schurian coherent configurations
belonging to a given a class.

The smallest degree of a non-schurian

scheme is 15 (the Hanaki-Miamoto list),

coherent configuration is ≥ 8 (A.Leman, 1970).

The coherent configuration of a finite projective plane is schurian
iff the plane is desarguesian (S.Evdokimov-I.Ponomarenko, 2000).

Remark

When a class K consists of graphs G for which 〈〈G 〉〉 is schurian,
then usually ISOK is solved by the W-L algorithm.

Example: trees and interval graphs
(S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

The schurity problem.

Problem: characterize all schurian coherent configurations
belonging to a given a class.

The smallest degree of a non-schurian

scheme is 15 (the Hanaki-Miamoto list),

coherent configuration is ≥ 8 (A.Leman, 1970).

The coherent configuration of a finite projective plane is schurian
iff the plane is desarguesian (S.Evdokimov-I.Ponomarenko, 2000).

Remark

When a class K consists of graphs G for which 〈〈G 〉〉 is schurian,
then usually ISOK is solved by the W-L algorithm.

Example: trees and interval graphs
(S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Algebraic isomorphisms. I.

Definition.

Coherent configurations X = (Ω,S) and X ′ = (Ω′, S ′) are
algebraically isomorphic if there is a bijection ϕ : S → S ′ such that

ct
r s = ctϕ

rϕsϕ , r , s, t ∈ S ;

it is called the algebraic isomorphism from X to X ′.

Notation.

Any f ∈ Iso(X ,X ′) induces the algebraic isomorphism ϕf defined
by sϕf = s f for all s ∈ S . We set

Iso(X ,X ′, ϕ) = {f ∈ Iso(X ,X ′) : ϕf = ϕ}.

One can see that Aut(X) = Iso(X ,X , idS).

Algebraic isomorphisms. I.

Definition.

Coherent configurations X = (Ω,S) and X ′ = (Ω′, S ′) are
algebraically isomorphic if there is a bijection ϕ : S → S ′ such that

ct
r s = ctϕ

rϕsϕ , r , s, t ∈ S ;

it is called the algebraic isomorphism from X to X ′.

Notation.

Any f ∈ Iso(X ,X ′) induces the algebraic isomorphism ϕf defined
by sϕf = s f for all s ∈ S .

We set

Iso(X ,X ′, ϕ) = {f ∈ Iso(X ,X ′) : ϕf = ϕ}.

One can see that Aut(X) = Iso(X ,X , idS).

Algebraic isomorphisms. I.

Definition.

Coherent configurations X = (Ω,S) and X ′ = (Ω′, S ′) are
algebraically isomorphic if there is a bijection ϕ : S → S ′ such that

ct
r s = ctϕ

rϕsϕ , r , s, t ∈ S ;

it is called the algebraic isomorphism from X to X ′.

Notation.

Any f ∈ Iso(X ,X ′) induces the algebraic isomorphism ϕf defined
by sϕf = s f for all s ∈ S . We set

Iso(X ,X ′, ϕ) = {f ∈ Iso(X ,X ′) : ϕf = ϕ}.

One can see that Aut(X) = Iso(X ,X , idS).

Algebraic isomorphisms. I.

Definition.

Coherent configurations X = (Ω,S) and X ′ = (Ω′, S ′) are
algebraically isomorphic if there is a bijection ϕ : S → S ′ such that

ct
r s = ctϕ

rϕsϕ , r , s, t ∈ S ;

it is called the algebraic isomorphism from X to X ′.

Notation.

Any f ∈ Iso(X ,X ′) induces the algebraic isomorphism ϕf defined
by sϕf = s f for all s ∈ S . We set

Iso(X ,X ′, ϕ) = {f ∈ Iso(X ,X ′) : ϕf = ϕ}.

One can see that Aut(X) = Iso(X ,X , idS).

Algebraic isomorphisms. II.

Not each algebraic isomorphism is induced by an isomorphism.

Let P and P ′ be finite projective planes of the same order. Then

X (P) ∼= X (P ′) iff P is isomorphic to P ′ or dual to P ′,
X (P) and X (P ′) are algebraically isomorphic.

The canonical modification of the Weisfeiler-Leman algorithm.

At the first step S = {s0, s1, s2} where s0 = 1Ω and s1 = E .

At each iteration S = {s0, . . . , si} where the indices are
chosen according to the lex. order of {c(α, β; r , s)}r ,s .

If X = 〈〈G 〉〉 and X ′ = 〈〈G 〉〉 are obtained by the canonical W-L
algorithm, then G ∼= G ′ only if |S | = |S ′| and the bijection si 7→ s ′i
is an algebraic isomorphism.

Algebraic isomorphisms. II.

Not each algebraic isomorphism is induced by an isomorphism.

Let P and P ′ be finite projective planes of the same order. Then

X (P) ∼= X (P ′) iff P is isomorphic to P ′ or dual to P ′,

X (P) and X (P ′) are algebraically isomorphic.

The canonical modification of the Weisfeiler-Leman algorithm.

At the first step S = {s0, s1, s2} where s0 = 1Ω and s1 = E .

At each iteration S = {s0, . . . , si} where the indices are
chosen according to the lex. order of {c(α, β; r , s)}r ,s .

If X = 〈〈G 〉〉 and X ′ = 〈〈G 〉〉 are obtained by the canonical W-L
algorithm, then G ∼= G ′ only if |S | = |S ′| and the bijection si 7→ s ′i
is an algebraic isomorphism.

Algebraic isomorphisms. II.

Not each algebraic isomorphism is induced by an isomorphism.

Let P and P ′ be finite projective planes of the same order. Then

X (P) ∼= X (P ′) iff P is isomorphic to P ′ or dual to P ′,
X (P) and X (P ′) are algebraically isomorphic.

The canonical modification of the Weisfeiler-Leman algorithm.

At the first step S = {s0, s1, s2} where s0 = 1Ω and s1 = E .

At each iteration S = {s0, . . . , si} where the indices are
chosen according to the lex. order of {c(α, β; r , s)}r ,s .

If X = 〈〈G 〉〉 and X ′ = 〈〈G 〉〉 are obtained by the canonical W-L
algorithm, then G ∼= G ′ only if |S | = |S ′| and the bijection si 7→ s ′i
is an algebraic isomorphism.

Algebraic isomorphisms. II.

Not each algebraic isomorphism is induced by an isomorphism.

Let P and P ′ be finite projective planes of the same order. Then

X (P) ∼= X (P ′) iff P is isomorphic to P ′ or dual to P ′,
X (P) and X (P ′) are algebraically isomorphic.

The canonical modification of the Weisfeiler-Leman algorithm.

At the first step S = {s0, s1, s2} where s0 = 1Ω and s1 = E .

At each iteration S = {s0, . . . , si} where the indices are
chosen according to the lex. order of {c(α, β; r , s)}r ,s .

If X = 〈〈G 〉〉 and X ′ = 〈〈G 〉〉 are obtained by the canonical W-L
algorithm, then G ∼= G ′ only if |S | = |S ′| and the bijection si 7→ s ′i
is an algebraic isomorphism.

Algebraic isomorphisms. II.

Not each algebraic isomorphism is induced by an isomorphism.

Let P and P ′ be finite projective planes of the same order. Then

X (P) ∼= X (P ′) iff P is isomorphic to P ′ or dual to P ′,
X (P) and X (P ′) are algebraically isomorphic.

The canonical modification of the Weisfeiler-Leman algorithm.

At the first step S = {s0, s1, s2} where s0 = 1Ω and s1 = E .

At each iteration S = {s0, . . . , si} where the indices are
chosen according to the lex. order of {c(α, β; r , s)}r ,s .

If X = 〈〈G 〉〉 and X ′ = 〈〈G 〉〉 are obtained by the canonical W-L
algorithm, then G ∼= G ′ only if |S | = |S ′| and the bijection si 7→ s ′i
is an algebraic isomorphism.

Algebraic isomorphisms. II.

Not each algebraic isomorphism is induced by an isomorphism.

Let P and P ′ be finite projective planes of the same order. Then

X (P) ∼= X (P ′) iff P is isomorphic to P ′ or dual to P ′,
X (P) and X (P ′) are algebraically isomorphic.

The canonical modification of the Weisfeiler-Leman algorithm.

At the first step S = {s0, s1, s2} where s0 = 1Ω and s1 = E .

At each iteration S = {s0, . . . , si} where the indices are
chosen according to the lex. order of {c(α, β; r , s)}r ,s .

If X = 〈〈G 〉〉 and X ′ = 〈〈G 〉〉 are obtained by the canonical W-L
algorithm, then G ∼= G ′ only if |S | = |S ′| and the bijection si 7→ s ′i
is an algebraic isomorphism.

Algebraic isomorphisms. II.

Not each algebraic isomorphism is induced by an isomorphism.

Let P and P ′ be finite projective planes of the same order. Then

X (P) ∼= X (P ′) iff P is isomorphic to P ′ or dual to P ′,
X (P) and X (P ′) are algebraically isomorphic.

The canonical modification of the Weisfeiler-Leman algorithm.

At the first step S = {s0, s1, s2} where s0 = 1Ω and s1 = E .

At each iteration S = {s0, . . . , si} where the indices are
chosen according to the lex. order of {c(α, β; r , s)}r ,s .

If X = 〈〈G 〉〉 and X ′ = 〈〈G 〉〉 are obtained by the canonical W-L
algorithm, then G ∼= G ′ only if |S | = |S ′| and the bijection si 7→ s ′i
is an algebraic isomorphism.

Algebraic forests.

Proposition.

The ISO is polynomially equivalent to the following problem: given
an algebraic isomorphism ϕ : X → X ′ test whether Iso(X ,X ′, ϕ) is
not empty.

Definition. A graph G is an algebraic forest if there is a forest T
such that 〈〈G 〉〉 = 〈〈T 〉〉.

Almost all graphs are algebraic forests; the class of them contains
trees, interval graphs, cographs, etc.

Theorem (S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Any algebraic isomorphism ϕ : 〈〈G 〉〉 → 〈〈G ′〉〉 where G and G ′ are
algebraic forests, is induced by isomorphism.Thus ISO for algebraic
forests is solved by the canonical modification of the W-L
algorithm.

Algebraic forests.

Proposition.

The ISO is polynomially equivalent to the following problem: given
an algebraic isomorphism ϕ : X → X ′ test whether Iso(X ,X ′, ϕ) is
not empty.

Definition. A graph G is an algebraic forest if there is a forest T
such that 〈〈G 〉〉 = 〈〈T 〉〉.

Almost all graphs are algebraic forests; the class of them contains
trees, interval graphs, cographs, etc.

Theorem (S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Any algebraic isomorphism ϕ : 〈〈G 〉〉 → 〈〈G ′〉〉 where G and G ′ are
algebraic forests, is induced by isomorphism.Thus ISO for algebraic
forests is solved by the canonical modification of the W-L
algorithm.

Algebraic forests.

Proposition.

The ISO is polynomially equivalent to the following problem: given
an algebraic isomorphism ϕ : X → X ′ test whether Iso(X ,X ′, ϕ) is
not empty.

Definition. A graph G is an algebraic forest if there is a forest T
such that 〈〈G 〉〉 = 〈〈T 〉〉.

Almost all graphs are algebraic forests;

the class of them contains
trees, interval graphs, cographs, etc.

Theorem (S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Any algebraic isomorphism ϕ : 〈〈G 〉〉 → 〈〈G ′〉〉 where G and G ′ are
algebraic forests, is induced by isomorphism.Thus ISO for algebraic
forests is solved by the canonical modification of the W-L
algorithm.

Algebraic forests.

Proposition.

The ISO is polynomially equivalent to the following problem: given
an algebraic isomorphism ϕ : X → X ′ test whether Iso(X ,X ′, ϕ) is
not empty.

Definition. A graph G is an algebraic forest if there is a forest T
such that 〈〈G 〉〉 = 〈〈T 〉〉.

Almost all graphs are algebraic forests; the class of them contains

trees, interval graphs, cographs, etc.

Theorem (S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Any algebraic isomorphism ϕ : 〈〈G 〉〉 → 〈〈G ′〉〉 where G and G ′ are
algebraic forests, is induced by isomorphism.Thus ISO for algebraic
forests is solved by the canonical modification of the W-L
algorithm.

Algebraic forests.

Proposition.

The ISO is polynomially equivalent to the following problem: given
an algebraic isomorphism ϕ : X → X ′ test whether Iso(X ,X ′, ϕ) is
not empty.

Definition. A graph G is an algebraic forest if there is a forest T
such that 〈〈G 〉〉 = 〈〈T 〉〉.

Almost all graphs are algebraic forests; the class of them contains
trees,

interval graphs, cographs, etc.

Theorem (S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Any algebraic isomorphism ϕ : 〈〈G 〉〉 → 〈〈G ′〉〉 where G and G ′ are
algebraic forests, is induced by isomorphism.Thus ISO for algebraic
forests is solved by the canonical modification of the W-L
algorithm.

Algebraic forests.

Proposition.

The ISO is polynomially equivalent to the following problem: given
an algebraic isomorphism ϕ : X → X ′ test whether Iso(X ,X ′, ϕ) is
not empty.

Definition. A graph G is an algebraic forest if there is a forest T
such that 〈〈G 〉〉 = 〈〈T 〉〉.

Almost all graphs are algebraic forests; the class of them contains
trees, interval graphs,

cographs, etc.

Theorem (S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Any algebraic isomorphism ϕ : 〈〈G 〉〉 → 〈〈G ′〉〉 where G and G ′ are
algebraic forests, is induced by isomorphism.Thus ISO for algebraic
forests is solved by the canonical modification of the W-L
algorithm.

Algebraic forests.

Proposition.

The ISO is polynomially equivalent to the following problem: given
an algebraic isomorphism ϕ : X → X ′ test whether Iso(X ,X ′, ϕ) is
not empty.

Definition. A graph G is an algebraic forest if there is a forest T
such that 〈〈G 〉〉 = 〈〈T 〉〉.

Almost all graphs are algebraic forests; the class of them contains
trees, interval graphs, cographs,

etc.

Theorem (S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Any algebraic isomorphism ϕ : 〈〈G 〉〉 → 〈〈G ′〉〉 where G and G ′ are
algebraic forests, is induced by isomorphism.Thus ISO for algebraic
forests is solved by the canonical modification of the W-L
algorithm.

Algebraic forests.

Proposition.

The ISO is polynomially equivalent to the following problem: given
an algebraic isomorphism ϕ : X → X ′ test whether Iso(X ,X ′, ϕ) is
not empty.

Definition. A graph G is an algebraic forest if there is a forest T
such that 〈〈G 〉〉 = 〈〈T 〉〉.

Almost all graphs are algebraic forests; the class of them contains
trees, interval graphs, cographs, etc.

Theorem (S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Any algebraic isomorphism ϕ : 〈〈G 〉〉 → 〈〈G ′〉〉 where G and G ′ are
algebraic forests, is induced by isomorphism.Thus ISO for algebraic
forests is solved by the canonical modification of the W-L
algorithm.

Algebraic forests.

Proposition.

The ISO is polynomially equivalent to the following problem: given
an algebraic isomorphism ϕ : X → X ′ test whether Iso(X ,X ′, ϕ) is
not empty.

Definition. A graph G is an algebraic forest if there is a forest T
such that 〈〈G 〉〉 = 〈〈T 〉〉.

Almost all graphs are algebraic forests; the class of them contains
trees, interval graphs, cographs, etc.

Theorem (S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Any algebraic isomorphism ϕ : 〈〈G 〉〉 → 〈〈G ′〉〉 where G and G ′ are
algebraic forests, is induced by isomorphism.

Thus ISO for algebraic
forests is solved by the canonical modification of the W-L
algorithm.

Algebraic forests.

Proposition.

The ISO is polynomially equivalent to the following problem: given
an algebraic isomorphism ϕ : X → X ′ test whether Iso(X ,X ′, ϕ) is
not empty.

Definition. A graph G is an algebraic forest if there is a forest T
such that 〈〈G 〉〉 = 〈〈T 〉〉.

Almost all graphs are algebraic forests; the class of them contains
trees, interval graphs, cographs, etc.

Theorem (S.Evdokimov-I.Ponomarenko-G.Tinhofer, 2000).

Any algebraic isomorphism ϕ : 〈〈G 〉〉 → 〈〈G ′〉〉 where G and G ′ are
algebraic forests, is induced by isomorphism.Thus ISO for algebraic
forests is solved by the canonical modification of the W-L
algorithm.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω; the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ; the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,
b = 0 iff X is complete, and b = n − 1 iff |S | ≤ 2.
b(Aut(X)) ≤ b(X); in particular, |Aut(X)| ≤ nb.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω;

the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ; the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,
b = 0 iff X is complete, and b = n − 1 iff |S | ≤ 2.
b(Aut(X)) ≤ b(X); in particular, |Aut(X)| ≤ nb.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω; the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ; the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,
b = 0 iff X is complete, and b = n − 1 iff |S | ≤ 2.
b(Aut(X)) ≤ b(X); in particular, |Aut(X)| ≤ nb.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω; the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ; the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,
b = 0 iff X is complete, and b = n − 1 iff |S | ≤ 2.
b(Aut(X)) ≤ b(X); in particular, |Aut(X)| ≤ nb.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω; the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ;

the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,
b = 0 iff X is complete, and b = n − 1 iff |S | ≤ 2.
b(Aut(X)) ≤ b(X); in particular, |Aut(X)| ≤ nb.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω; the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ; the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,
b = 0 iff X is complete, and b = n − 1 iff |S | ≤ 2.
b(Aut(X)) ≤ b(X); in particular, |Aut(X)| ≤ nb.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω; the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ; the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,

b = 0 iff X is complete, and b = n − 1 iff |S | ≤ 2.
b(Aut(X)) ≤ b(X); in particular, |Aut(X)| ≤ nb.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω; the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ; the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,
b = 0 iff X is complete,

and b = n − 1 iff |S | ≤ 2.
b(Aut(X)) ≤ b(X); in particular, |Aut(X)| ≤ nb.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω; the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ; the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,
b = 0 iff X is complete, and b = n − 1 iff |S | ≤ 2.

b(Aut(X)) ≤ b(X); in particular, |Aut(X)| ≤ nb.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω; the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ; the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,
b = 0 iff X is complete, and b = n − 1 iff |S | ≤ 2.
b(Aut(X)) ≤ b(X);

in particular, |Aut(X)| ≤ nb.

Bases of coherent configurations.

There is a natural partial order v on the set of all coherent
configurations on Ω: if X = (Ω,S) and Y = (Ω,T), then

X v Y ⇔ S∪ ⊂ T∪.

The greatest element is the complete coherent configuration, i.e.
S∪ = 2Ω×Ω; the smallest configuration is of rank ≤ 2.

Definition. Let ∆ ⊂ Ω and X ′ be the smallest configuration s.t.

X ′ w X and Φ(X ′) ⊃ {{δ} : δ ∈ ∆}.

If X ′ is complete, then ∆ is the base of X ; the minimum |∆| is
denoted by b(X).

0 ≤ b ≤ n − 1 where b = b(X) and n = |Ω|,
b = 0 iff X is complete, and b = n − 1 iff |S | ≤ 2.
b(Aut(X)) ≤ b(X); in particular, |Aut(X)| ≤ nb.

Bases and isomorphisms.

Theorem.

Let G be a graph on n vertices and b = b(X) where X = 〈〈G 〉〉.
Then for any G ′ the set Iso(G ,G ′) can be found in time nO(b).

Let H = Gα1,...,αb
where {α1, . . . , αb} is a base of X .

Then the coherent configuration X = 〈〈H〉〉 is complete.

So | Iso(X ,X ′, ϕ)| ≤ 1 for any algebraic isomorphism
ϕ : X → X ′: the unique possible isomorphism in
Iso(X ,X ′, ϕ) is induced by the bijection Φ(X)→ Φ(X ′).

Thus
Iso(G ,G ′) =

⋃
Iso(〈〈H〉〉, 〈〈H ′〉〉, ϕH′)

where H ′ runs over all colored graphs Hα′1,...,α′b for which there
is the algebraic isomorphism ϕH′ : 〈〈H〉〉 → 〈〈H ′〉〉 found by
the canonical W-L algorithm.

Bases and isomorphisms.

Theorem.

Let G be a graph on n vertices and b = b(X) where X = 〈〈G 〉〉.
Then for any G ′ the set Iso(G ,G ′) can be found in time nO(b).

Let H = Gα1,...,αb
where {α1, . . . , αb} is a base of X .

Then the coherent configuration X = 〈〈H〉〉 is complete.

So | Iso(X ,X ′, ϕ)| ≤ 1 for any algebraic isomorphism
ϕ : X → X ′: the unique possible isomorphism in
Iso(X ,X ′, ϕ) is induced by the bijection Φ(X)→ Φ(X ′).

Thus
Iso(G ,G ′) =

⋃
Iso(〈〈H〉〉, 〈〈H ′〉〉, ϕH′)

where H ′ runs over all colored graphs Hα′1,...,α′b for which there
is the algebraic isomorphism ϕH′ : 〈〈H〉〉 → 〈〈H ′〉〉 found by
the canonical W-L algorithm.

Bases and isomorphisms.

Theorem.

Let G be a graph on n vertices and b = b(X) where X = 〈〈G 〉〉.
Then for any G ′ the set Iso(G ,G ′) can be found in time nO(b).

Let H = Gα1,...,αb
where {α1, . . . , αb} is a base of X .

Then the coherent configuration X = 〈〈H〉〉 is complete.

So | Iso(X ,X ′, ϕ)| ≤ 1 for any algebraic isomorphism
ϕ : X → X ′: the unique possible isomorphism in
Iso(X ,X ′, ϕ) is induced by the bijection Φ(X)→ Φ(X ′).

Thus
Iso(G ,G ′) =

⋃
Iso(〈〈H〉〉, 〈〈H ′〉〉, ϕH′)

where H ′ runs over all colored graphs Hα′1,...,α′b for which there
is the algebraic isomorphism ϕH′ : 〈〈H〉〉 → 〈〈H ′〉〉 found by
the canonical W-L algorithm.

Bases and isomorphisms.

Theorem.

Let G be a graph on n vertices and b = b(X) where X = 〈〈G 〉〉.
Then for any G ′ the set Iso(G ,G ′) can be found in time nO(b).

Let H = Gα1,...,αb
where {α1, . . . , αb} is a base of X .

Then the coherent configuration X = 〈〈H〉〉 is complete.

So | Iso(X ,X ′, ϕ)| ≤ 1 for any algebraic isomorphism
ϕ : X → X ′:

the unique possible isomorphism in
Iso(X ,X ′, ϕ) is induced by the bijection Φ(X)→ Φ(X ′).

Thus
Iso(G ,G ′) =

⋃
Iso(〈〈H〉〉, 〈〈H ′〉〉, ϕH′)

where H ′ runs over all colored graphs Hα′1,...,α′b for which there
is the algebraic isomorphism ϕH′ : 〈〈H〉〉 → 〈〈H ′〉〉 found by
the canonical W-L algorithm.

Bases and isomorphisms.

Theorem.

Let G be a graph on n vertices and b = b(X) where X = 〈〈G 〉〉.
Then for any G ′ the set Iso(G ,G ′) can be found in time nO(b).

Let H = Gα1,...,αb
where {α1, . . . , αb} is a base of X .

Then the coherent configuration X = 〈〈H〉〉 is complete.

So | Iso(X ,X ′, ϕ)| ≤ 1 for any algebraic isomorphism
ϕ : X → X ′: the unique possible isomorphism in
Iso(X ,X ′, ϕ) is induced by the bijection Φ(X)→ Φ(X ′).

Thus
Iso(G ,G ′) =

⋃
Iso(〈〈H〉〉, 〈〈H ′〉〉, ϕH′)

where H ′ runs over all colored graphs Hα′1,...,α′b for which there
is the algebraic isomorphism ϕH′ : 〈〈H〉〉 → 〈〈H ′〉〉 found by
the canonical W-L algorithm.

Bases and isomorphisms.

Theorem.

Let G be a graph on n vertices and b = b(X) where X = 〈〈G 〉〉.
Then for any G ′ the set Iso(G ,G ′) can be found in time nO(b).

Let H = Gα1,...,αb
where {α1, . . . , αb} is a base of X .

Then the coherent configuration X = 〈〈H〉〉 is complete.

So | Iso(X ,X ′, ϕ)| ≤ 1 for any algebraic isomorphism
ϕ : X → X ′: the unique possible isomorphism in
Iso(X ,X ′, ϕ) is induced by the bijection Φ(X)→ Φ(X ′).

Thus
Iso(G ,G ′) =

⋃
Iso(〈〈H〉〉, 〈〈H ′〉〉, ϕH′)

where H ′ runs over all colored graphs Hα′1,...,α′b for which there
is the algebraic isomorphism ϕH′ : 〈〈H〉〉 → 〈〈H ′〉〉 found by
the canonical W-L algorithm.

Bases and isomorphisms.

Theorem.

Let G be a graph on n vertices and b = b(X) where X = 〈〈G 〉〉.
Then for any G ′ the set Iso(G ,G ′) can be found in time nO(b).

Let H = Gα1,...,αb
where {α1, . . . , αb} is a base of X .

Then the coherent configuration X = 〈〈H〉〉 is complete.

So | Iso(X ,X ′, ϕ)| ≤ 1 for any algebraic isomorphism
ϕ : X → X ′: the unique possible isomorphism in
Iso(X ,X ′, ϕ) is induced by the bijection Φ(X)→ Φ(X ′).

Thus
Iso(G ,G ′) =

⋃
Iso(〈〈H〉〉, 〈〈H ′〉〉, ϕH′)

where H ′ runs over all colored graphs Hα′1,...,α′b for which there
is the algebraic isomorphism ϕH′ : 〈〈H〉〉 → 〈〈H ′〉〉 found by
the canonical W-L algorithm.

Applications of bases.

G.Miller (1978), J.Leon (1979).

Let X be the coherent configuration of a projective plane (resp.
group, skew Hadamard matrix, Latin square) of order n.

Then
b(X) is at most O(log log n) (resp. O(log n)). This gives the
isomorphism test running in time nO(log log n) (resp. nO(log n)).

A homogeneous coherent configuration X is called primitive if the
only equivalence relations in S∪ are 1Ω and Ω× Ω.

Inv(Γ) is primitive iff so is Γ.

b(X) < 4
√

n log n for primitive X of rank ≥ 3 (L.Babai,
1981).

The coherent configuration of a non-trivial strongly regular graph
is primitive. Thus the isomorphism of n-vertex strongly regular
graphs can be tested in time nO(

√
n log n). The bound was improved

to nO(n1/3) by D.Spielman (1996).

Applications of bases.

G.Miller (1978), J.Leon (1979).

Let X be the coherent configuration of a projective plane (resp.
group, skew Hadamard matrix, Latin square) of order n. Then
b(X) is at most O(log log n) (resp. O(log n)).

This gives the
isomorphism test running in time nO(log log n) (resp. nO(log n)).

A homogeneous coherent configuration X is called primitive if the
only equivalence relations in S∪ are 1Ω and Ω× Ω.

Inv(Γ) is primitive iff so is Γ.

b(X) < 4
√

n log n for primitive X of rank ≥ 3 (L.Babai,
1981).

The coherent configuration of a non-trivial strongly regular graph
is primitive. Thus the isomorphism of n-vertex strongly regular
graphs can be tested in time nO(

√
n log n). The bound was improved

to nO(n1/3) by D.Spielman (1996).

Applications of bases.

G.Miller (1978), J.Leon (1979).

Let X be the coherent configuration of a projective plane (resp.
group, skew Hadamard matrix, Latin square) of order n. Then
b(X) is at most O(log log n) (resp. O(log n)). This gives the
isomorphism test running in time nO(log log n) (resp. nO(log n)).

A homogeneous coherent configuration X is called primitive if the
only equivalence relations in S∪ are 1Ω and Ω× Ω.

Inv(Γ) is primitive iff so is Γ.

b(X) < 4
√

n log n for primitive X of rank ≥ 3 (L.Babai,
1981).

The coherent configuration of a non-trivial strongly regular graph
is primitive. Thus the isomorphism of n-vertex strongly regular
graphs can be tested in time nO(

√
n log n). The bound was improved

to nO(n1/3) by D.Spielman (1996).

Applications of bases.

G.Miller (1978), J.Leon (1979).

Let X be the coherent configuration of a projective plane (resp.
group, skew Hadamard matrix, Latin square) of order n. Then
b(X) is at most O(log log n) (resp. O(log n)). This gives the
isomorphism test running in time nO(log log n) (resp. nO(log n)).

A homogeneous coherent configuration X is called primitive if the
only equivalence relations in S∪ are 1Ω and Ω× Ω.

Inv(Γ) is primitive iff so is Γ.

b(X) < 4
√

n log n for primitive X of rank ≥ 3 (L.Babai,
1981).

The coherent configuration of a non-trivial strongly regular graph
is primitive. Thus the isomorphism of n-vertex strongly regular
graphs can be tested in time nO(

√
n log n). The bound was improved

to nO(n1/3) by D.Spielman (1996).

Applications of bases.

G.Miller (1978), J.Leon (1979).

Let X be the coherent configuration of a projective plane (resp.
group, skew Hadamard matrix, Latin square) of order n. Then
b(X) is at most O(log log n) (resp. O(log n)). This gives the
isomorphism test running in time nO(log log n) (resp. nO(log n)).

A homogeneous coherent configuration X is called primitive if the
only equivalence relations in S∪ are 1Ω and Ω× Ω.

Inv(Γ) is primitive iff so is Γ.

b(X) < 4
√

n log n for primitive X of rank ≥ 3 (L.Babai,
1981).

The coherent configuration of a non-trivial strongly regular graph
is primitive. Thus the isomorphism of n-vertex strongly regular
graphs can be tested in time nO(

√
n log n). The bound was improved

to nO(n1/3) by D.Spielman (1996).

Applications of bases.

G.Miller (1978), J.Leon (1979).

Let X be the coherent configuration of a projective plane (resp.
group, skew Hadamard matrix, Latin square) of order n. Then
b(X) is at most O(log log n) (resp. O(log n)). This gives the
isomorphism test running in time nO(log log n) (resp. nO(log n)).

A homogeneous coherent configuration X is called primitive if the
only equivalence relations in S∪ are 1Ω and Ω× Ω.

Inv(Γ) is primitive iff so is Γ.

b(X) < 4
√

n log n for primitive X of rank ≥ 3 (L.Babai,
1981).

The coherent configuration of a non-trivial strongly regular graph
is primitive. Thus the isomorphism of n-vertex strongly regular
graphs can be tested in time nO(

√
n log n). The bound was improved

to nO(n1/3) by D.Spielman (1996).

Applications of bases.

G.Miller (1978), J.Leon (1979).

Let X be the coherent configuration of a projective plane (resp.
group, skew Hadamard matrix, Latin square) of order n. Then
b(X) is at most O(log log n) (resp. O(log n)). This gives the
isomorphism test running in time nO(log log n) (resp. nO(log n)).

A homogeneous coherent configuration X is called primitive if the
only equivalence relations in S∪ are 1Ω and Ω× Ω.

Inv(Γ) is primitive iff so is Γ.

b(X) < 4
√

n log n for primitive X of rank ≥ 3 (L.Babai,
1981).

The coherent configuration of a non-trivial strongly regular graph
is primitive.

Thus the isomorphism of n-vertex strongly regular
graphs can be tested in time nO(

√
n log n). The bound was improved

to nO(n1/3) by D.Spielman (1996).

Applications of bases.

G.Miller (1978), J.Leon (1979).

Let X be the coherent configuration of a projective plane (resp.
group, skew Hadamard matrix, Latin square) of order n. Then
b(X) is at most O(log log n) (resp. O(log n)). This gives the
isomorphism test running in time nO(log log n) (resp. nO(log n)).

A homogeneous coherent configuration X is called primitive if the
only equivalence relations in S∪ are 1Ω and Ω× Ω.

Inv(Γ) is primitive iff so is Γ.

b(X) < 4
√

n log n for primitive X of rank ≥ 3 (L.Babai,
1981).

The coherent configuration of a non-trivial strongly regular graph
is primitive. Thus the isomorphism of n-vertex strongly regular
graphs can be tested in time nO(

√
n log n).

The bound was improved
to nO(n1/3) by D.Spielman (1996).

Applications of bases.

G.Miller (1978), J.Leon (1979).

Let X be the coherent configuration of a projective plane (resp.
group, skew Hadamard matrix, Latin square) of order n. Then
b(X) is at most O(log log n) (resp. O(log n)). This gives the
isomorphism test running in time nO(log log n) (resp. nO(log n)).

A homogeneous coherent configuration X is called primitive if the
only equivalence relations in S∪ are 1Ω and Ω× Ω.

Inv(Γ) is primitive iff so is Γ.

b(X) < 4
√

n log n for primitive X of rank ≥ 3 (L.Babai,
1981).

The coherent configuration of a non-trivial strongly regular graph
is primitive. Thus the isomorphism of n-vertex strongly regular
graphs can be tested in time nO(

√
n log n). The bound was improved

to nO(n1/3) by D.Spielman (1996).

Applications of bases.

G.Miller (1978), J.Leon (1979).

Let X be the coherent configuration of a projective plane (resp.
group, skew Hadamard matrix, Latin square) of order n. Then
b(X) is at most O(log log n) (resp. O(log n)). This gives the
isomorphism test running in time nO(log log n) (resp. nO(log n)).

A homogeneous coherent configuration X is called primitive if the
only equivalence relations in S∪ are 1Ω and Ω× Ω.

Inv(Γ) is primitive iff so is Γ.

b(X) < 4
√

n log n for primitive X of rank ≥ 3 (L.Babai,
1981).

The coherent configuration of a non-trivial strongly regular graph
is primitive. Thus the isomorphism of n-vertex strongly regular
graphs can be tested in time nO(

√
n log n). The bound was improved

to nO(n1/3) by D.Spielman (1996).

Concluding remarks.

A recent survey on bases: R.F.Bailey, P.J.Cameron, Base size,
metric dimension and other invariants of groups and graphs,
Bull. London Math. Soc., 43 (2011) 209–242.

The polynomial time bound for isomorphism testing in the
classes of graphs with bounded spectrum or bounded genus
(L.Babai, D.Grigoriev, D.Mount, 1982 and G.Miller, 1980) can
be proved by finding an upper bound for the base number
(S.Evdokimov-I.Ponomarenko, 1999, and M.Grohe, 2010).

The Babai problem: do exist a function f s.t. any primitive
coherent configuration with non-reflexive basis relation of
valency ≤ k, has a base of size f (k)?

If the Babai problem has a positive answer, then probably the
Luks algorithm for graphs of bounded valency can be
reformulated in terms of bases.

Concluding remarks.

A recent survey on bases: R.F.Bailey, P.J.Cameron, Base size,
metric dimension and other invariants of groups and graphs,
Bull. London Math. Soc., 43 (2011) 209–242.

The polynomial time bound for isomorphism testing in the
classes of graphs with bounded spectrum or bounded genus
(L.Babai, D.Grigoriev, D.Mount, 1982 and G.Miller, 1980) can
be proved by finding an upper bound for the base number
(S.Evdokimov-I.Ponomarenko, 1999, and M.Grohe, 2010).

The Babai problem: do exist a function f s.t. any primitive
coherent configuration with non-reflexive basis relation of
valency ≤ k, has a base of size f (k)?

If the Babai problem has a positive answer, then probably the
Luks algorithm for graphs of bounded valency can be
reformulated in terms of bases.

Concluding remarks.

A recent survey on bases: R.F.Bailey, P.J.Cameron, Base size,
metric dimension and other invariants of groups and graphs,
Bull. London Math. Soc., 43 (2011) 209–242.

The polynomial time bound for isomorphism testing in the
classes of graphs with bounded spectrum or bounded genus
(L.Babai, D.Grigoriev, D.Mount, 1982 and G.Miller, 1980) can
be proved by finding an upper bound for the base number
(S.Evdokimov-I.Ponomarenko, 1999, and M.Grohe, 2010).

The Babai problem: do exist a function f s.t. any primitive
coherent configuration with non-reflexive basis relation of
valency ≤ k, has a base of size f (k)?

If the Babai problem has a positive answer, then probably the
Luks algorithm for graphs of bounded valency can be
reformulated in terms of bases.

Concluding remarks.

A recent survey on bases: R.F.Bailey, P.J.Cameron, Base size,
metric dimension and other invariants of groups and graphs,
Bull. London Math. Soc., 43 (2011) 209–242.

The polynomial time bound for isomorphism testing in the
classes of graphs with bounded spectrum or bounded genus
(L.Babai, D.Grigoriev, D.Mount, 1982 and G.Miller, 1980) can
be proved by finding an upper bound for the base number
(S.Evdokimov-I.Ponomarenko, 1999, and M.Grohe, 2010).

The Babai problem: do exist a function f s.t. any primitive
coherent configuration with non-reflexive basis relation of
valency ≤ k, has a base of size f (k)?

If the Babai problem has a positive answer, then probably the
Luks algorithm for graphs of bounded valency can be
reformulated in terms of bases.

