On an inverse problem to Frobenius＇theorem

Jiangtao Shi
This is a joint work with Wei Meng

School of Mathematical Sciences，Peking University

标 题 页

4

E－mail：shijt＠math．pku．edu．cn

Let G be a finite group and e a positive integer dividing $|G|$ ，the order of G ．
Denoting $L_{e}(G)=\left\{x \in G \mid x^{e}=1\right\}$ ．

标 题 页

第 2 页共 16 页

Go Back

Frobenius＇Theorem（1895）：

For every $e||G|$ ，there exists a positive integer k such that $| L_{e}(G) \mid=k e$ ．

标 题 页
$44>$

第 3 页共 16 页

Go Back

全屏显示

关 闭

退 出

Inverse Problem to Frobenius＇Theorem：

For a small positive integer k ，give a complete classification of all finite groups G with $\left|L_{e}(G)\right| \leq k e$ for every $e||G|$ ．

It is easy to prove that $\left|L_{e}(G)\right|=e$ for every $e||G|$ if and only if G is a cyclic group．

In this talk，we give a complete classification of finite groups G with $\left|L_{e}(G)\right| \leq$

标 题 页

Lemma 1．1 Let G be a p－group of order p^{n} for a prime p ．Then $\left|L_{p^{i}}(G)\right| \leq 2 p^{i}$ $(0 \leq i \leq n)$ if and only if one of the following holds：
（1）G is a cyclic group；
（2）$G \cong Z_{2^{n-1}} \times Z_{2}$ ，where $n \geq 2$ ；
（3）$G \cong Q_{8}$ ；
（4）$G \cong\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1, b^{-1} a b=a^{1+2^{n-2}}\right\rangle$ ，where $n \geq 4$ ．

Lemma 1．2 Let G be a finite group whose order has at least two distinct prime divisors and e a positive integer dividing $|G|$ ．Then $\left|L_{e}(G)\right| \leq 2 e$ if and only if one of the following holds：
（1）G is a cyclic group；
返 回
（2）$G \cong Z_{m} \times T$ ，where $m>1$ is an odd integer and $T \cong Z_{2^{n-1}} \times Z_{2}(n \geq 2)$ or Q_{8} or $\left\langle a, b \mid a^{2^{t-1}}=b^{2}=1, b^{-1} a b=a^{1+2^{t-2}}\right\rangle(t \geq 4)$ ；
（3）$G \cong Z_{m} \times T$ ，where $T \cong\left\langle a, b \mid a^{3}=b^{2^{n}}=1, b^{-1} a b=a^{-1}\right\rangle, n \geq 1$ and $(m, 6)=1$ ．

标 题 页

4

By Lemmas 1.1 and 1．2，our main result is as follows：
Theorem 1．3 Let G be a finite group and e a positive integer dividing $|G|$ ．Then $\left|L_{e}(G)\right| \leq 2 e$ for every $e||G|$ if and only if one of the following statements holds：
（1）G is a cyclic group；
（2）$G \cong Z_{m} \times T$ ，where $m \geq 1$ is an odd integer and $T \cong Z_{2^{n-1}} \times Z_{2}(n \geq 2)$ or Q_{8} or $\left\langle a, b \mid a^{2^{t-1}}=b^{2}=1, b^{-1} a b=a^{1+2^{t-2}}\right\rangle(t \geq 4)$ ；
（3）$G \cong Z_{m} \times T$ ，where $T \cong\left\langle a, b \mid a^{3}=b^{2^{n}}=1, b^{-1} a b=a^{-1}\right\rangle, n \geq 1$ and

标 题 页

4

Corollary 1．4 Let G be a finite group and e a positive integer dividing $|G|$ ． Then $\left|L_{e}(G)\right|=2 e$ for every proper divisor e of $|G|$ if and only if G is isomor－ phic to one of the following groups：

标 题 页

44

4

Corollary 1．5 Let G be a finite group of odd order and e a positive integer dividing $|G|$ ．Then $\left|L_{e}(G)\right| \leq 2 e$ for every $e||G|$ if and only if G is a cyclic group．

Corollary 1．5，Let G be a finite group of odd order and e a positive integer dividing $|G|$ ．If $\left|L_{e}(G)\right| \leq 2 e$ for every $e||G|$ ，then $| L_{e}(G) \mid=e$ for every $e||G|$ ．

第 11 页共 16 页

Go Back

The classification of finite groups G with $\left|L_{e}(G)\right| \leq 3 e$ for every $e||G|$ ，is almost finished by W．Meng and J．T．Shi．

Problem 1 When $k=4,5,6, \ldots$ ，give a complete classification of finite groups G with $\left|L_{e}(G)\right| \leq k e$ for every $e||G|$ ．

第 12 页共 16 页
Go Back

Is there an upper bound for k such that a finite group G is solvable if $\left|L_{e}(G)\right| \leq$ $k e$ for every $e||G|$ ？

Theorem 1．6 Let G be a finite group．If $\left|L_{e}(G)\right| \leq 7 e$ for every $e||G|$ ，then G is solvable．

第 13 页共 16 页

Go Back

The alternating group A_{5} of degree 5 shows that a finite group G with $\left|L_{e}(G)\right| \leq$ $8 e$ for every $e||G|$ may be non－solvable．

Problem 2 Classify finite non－solvable groups G with $\left|L_{e}(G)\right| \leq 8 e$ for every $e||G|$ ．

Proposition 1．7 Let G be a characteristically simple group．If $\left|L_{e}(G)\right| \leq 8 e$ for every $e\left||G|\right.$ ，then $G \cong A_{5}$ ．

标 题 页
44

Problem 3 For any positive integer k ，does there always exist a finite group G such that $\left|L_{e}(G)\right|=k e$ for some $e||G|$ ？

Problem 4 Denoting $\mathcal{K}=\left\{k| | L_{e}(G) \mid=k e\right.$ for some $\left.e| | G \mid\right\}$ ．
（1）If $\mathcal{K}=\{1, m\}$ consists of two distinct positive integers，what can we say about G ？
（2）If $\mathcal{K}=\{1,2,3, \ldots, n\}$ consists of continuous positive integers，is there an upper bound for n ？

Thank you！

返 回
标 题 页

4 〉
第 16 页共 16 页

Go Back

全 屏 显示

关 闭

退 出

