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X-vertex transitive grapghX acts transitively o’V I".
X-edge transitive graphX acts transitively ot I".

Cayley graph” = Cay(G, S): VI' = G andS C G such that
z,y € VI are adjacentif and only ifz=! € S.

g:G=VI =>VI, z— «xg.

Nauwr(G) = G:Aut(G, S), where
Aut(G,S) = {0 € Aut(G) | S? = S}.

I' = Cay(G, S) is said to benormalif G < Autl’, and!" is said
to benormal edge transitivék Na,:(G) IS transitive onE 1.
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Two primes case Praeger, Wang and Xu (1993), Wang and
Xu (1993), Praeger and Xu (1993), Alspach and Xu (1994),
Lu and Xu (2003), etc.;

Three primes case Miller and Praeger (1994), Gamble
and Praeger (2000), Iranmanesh and Praeger (2001);

Circulant graphs: Li, Marusic and Morris (2001);

Primitive case Li and Seress (2005).
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Let X be a permutation group dncontaining a regular
subgroup’ of square-free order.

Primitive case (LI and Seress)
Imprimitive case:

If Bis anX -invariant partition off2, thenG® contains a
regular subgroup ak”.

X Is soluble if X has soluble normal transitive subgroups.

X = N:Y forsomeY < X, whereN < X is semiregular
such thatX /N acts faithfully on theV-orbits.

Let T’ be a minimal normal subgroup &f. If T' transitive,
thenT is simple, X has a regular subgroup: R for R < G
andC' = Cx(T),and(T,T,, R, C) is explicitly known.

—n. 4/13



—n.5/13



For X < Autl" and anX-invariantpartition 3 of V' I".

—n.5/13



For X < Autl" and anX-invariantpartition 3 of V' I".

Quotient graph s is defined o3 with two blocks
Bi, By € B are adjacent if and only if some, € B, IS
adjacentto some, € By In [

—n.5/13



For X < Autl" and anX-invariantpartition 3 of V' I".

Quotient graph s is defined o3 with two blocks
Bi, By € B are adjacent if and only if some, € B, IS
adjacentto some, € By In [

(m-fold) cover. I' and 'z has the same valency.

—n.5/13



For X < Autl" and anX-invariantpartition 3 of V' I".

Quotient graph s is defined o3 with two blocks
Bi, By € B are adjacent if and only if some, € B, IS
adjacentto some, € By In [

(m-fold) cover. I' and 'z has the same valency.

If B iIs the set of théV-orbits onV I" for someN < X, then
I's, denoted byl 'y, Is called anormal quotienof ', and!’
IS called anormal coveiof [y If further I" is a cover ofl .

—n.5/13
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Quotient graph s is defined o3 with two blocks
Bi, By € B are adjacent if and only if some, € B, IS
adjacentto some, € By In [

(m-fold) cover. I' and 'z has the same valency.

If B iIs the set of théV-orbits onV I" for someN < X, then
I's, denoted byl 'y, Is called anormal quotienof ', and!’
IS called anormal coveiof [y If further I" is a cover ofl .

Let I" = Cay(G, S) be a Cayley graph of square-free order.
Then each quotienty Is also a Cayley graph.
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(5) T = PSL(d, q) < X for somed > 2, andIr is a bipartite edge
transitive Cayley graph of orde¥lla—1).

L,qu_l

(6) X has a normal regular subgrotpwith X/é abelian;

(7) IL; Zp;x I1; T; < X < (I[; AGL(1,p;)x [ ] T}).O for distinct
primesp; and non-isomorphic non-abelian simple grolps
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(1) I'isisomorphic to one of well-defined graphs,, Kff), Kn.n
the point-block (non-)incidence graph of the symmetriagies
S2(2,5;11), the point-hyperplane (non-)incidence graph of the
projective geometr$G(d—1, q); or

(2) I' has prime valency andX = Dy,,:Z,; or

(3) X = N:Y,Y isalmost simple] :=soc(Y) < X, T has at most
two orbits onV' I', X has a subgroup’: R acting regularly on

each off’-orbits, wherel' < N, R < (G, and all possible triples
(T, R, C') are known.
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2-arc transitive case

A graph’ is said to be2-arc transitivaf some X < Autl" acts
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Cor 2 Let G be a group of square-free order aiich connecte@-arc
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2-arc transitive case

A graph’ is said to be2-arc transitivaf some X < Autl" acts
transitively on the2-arcs of/".

Cor 2 Let G be a group of square-free order aiich connecte@-arc
transitive Cayley graph a with valencyk > 5. Then one of the
following holds

(1) I'isisomorphic to one of well-defined graphs: the graphs in Cor
1 (1), ands graphs constructed fromutPSL(5, 2), A,
PSL(2,59), PGL(2,59) andM;;.

(2) val(I') = p®orpe~t, Autl’ = ([¢]xPSL(2,p°)).o, wherec or §
IS a square-free divisor G@(I;e%ll)) ando | e(2,p¢—1);

(3) m-fold covers of the point-hyperplane (non-)incidence tirap
PG(d—1,q), wherem > 1is a square-free divisor qfc%.
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Theorem B

Let G be a group of square-free order afidbe a connected edge
transitive tetravalent Cayley graph Gf Then

(1) Autl’ = G:Z3 or G:Z,, I is arc regular and isomorphic a
well-defined graph; or

(2) Autl' = G:Z,, I' Is edge regular and isomorphic a
well-defined graph; or

(3) I' = C,[Ksy] andAutl” =2 Z3:D,,,; or
(4) I'ist-transitive andAutl’, G, I',t) is explicitly known.
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Table 1.

Line | Autl’ G r t
1 S5 L Ks 2
2 Ss X Zo Z10, D10 Ks5 — Ko | 2
3 Ss X Dg Dg X Zs, D3g unique 2
4 | PGL(2,7) T3 P 1
5 | PGL(2,7)XZs | Zox(Z7:Z3), Zr: s Py 1
6 PGL(2,7)xDg; | Z;x(Z7:Z¢), Doy x(Z7:7Z3) | unique 1
3 G = (c)x({a):(b)) = ZsxDg, S = {cb, c2ab, (cb) "1, (c2ab)~1}.
G = {(a):(b) = D3g, S = {ab, a®b, a*b, a®b}.
4 G={abla’®=a?a"=b3=1),5=1{bab,b" 1, (ab)"1}.
G = (c)x{a,b|a® =a?a" =03 =1),8 = {cb,cab,cb™ 1, c(ab) " '}.
G = {a,b|a® =a3,a” —b6—1>S {b,ab,b=1, (ab)~1}.
6 G={(c)x{a,b|a’=a3a" =b5=1),S = {cb,c Lab,(cb)~ L, (c tab)~1}.
G =

a,b|a®=a",a™ =b% =1),5 = {b,ab, b1, (ab)~1}.
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Table 1.

Line | Autl’ G I S
1 PSL(3,2):Z2 D1y Kr7 —PG(2,2) | 2
2 PSL(3,3):Zs Dog PG(2,3) 4
3 PGL(2,11) Z11:Zs P15 2
4 | PGL(2,11)xZs Zox (Z11:Zs), Z11:Zro | PYYs 2
5 (PSL(2,11)XZ3):Z2 Z3x(Z11:Z5) unique 2
6 Zox (PSL(2,11)x(Z3):Z2) | Z33:Z10,Zex(Z11:Z5) | I'?) 2
7 PSL(2,23) Za3:711 P23.11 2
8 | PSL(2,23) x Z Zo x (Zaz:Z11) PS5y, 2
9 PSL(2,23) X Z Zox(Z23:711) two 2
10 | PSL(2,23) x Dg D¢ % (Z23:7Z11) unique 2
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line 1 Cay(G, {b, ab, a’b, a*b}) for G = {(a):(b)
line 2 Cay(G, {b, ab,a3b,a’b}) for G = {(a):(b)
line 3 Cay(G, {a,a™1,b%,b3}) for G = (a):(b) = Z11:Zs5 with a® = a3.

line 4 Cay(G, {ab5, a_1b5, b, b_l}) for G = <a>:(b> >~ 711:Z10 With ab = a?.
Cay(G, {ac,atc,b2c,b3c}) for G = (a):(b) x (c) =2 Z11:Z5xZo With a® = a3.

line 5 Cay(G, {ac, a le 1 b2 b3}) for G = <a><b> X <C> > 711 :25 X Z3 With ab = a3.

line 6 Cay(G, {ac,a'%c?,b%2c3,b3c3}) for G = (a):(b) x {c) = Z11: Z5 X Zg With a® = a3;
Cay(G, {ab®,a 1b5, ,bg}) for G = {(a):(b) = Z33:Z10 With a® = a?.

line 7 Cay(G, {ab, (ab)_l b4 b7}) forG = > <b> >~ Zo3:711 with CL = CL2

(a
line 8 Cay(G, {abc, (ab)~1c,b*c,b"c}) for G = (a):(b) x (c) = Zosz:7Z11 X Zgo With

ab = a2.

line 9 Cay(G, {abc, (ab)~lc,b*,b7}) andCay(G, {ab, (ab)~1,b*c, b7 c}) for
G = (a):(b)x(a} = Zgg:le X 29 with a,b = CL2.

line 10 Cay(G, {ab, (ab)~1,a?3b*, (a?3b*)~1}) for G = (a):(b) = Zgg:Za2 With a® = a?.

112

D14
Dog

1%
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Thank You!
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