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Notation

• Action of a group G on a set Ω

(α, g) 7→ αg

• Orbit of a point: αG

• Stabiliser of a point: Gα

• Setwise stabiliser: G∆, where ∆ ⊆ Ω

• Pointwise stabiliser: G(∆)

• Kernel of the action: G(Ω)
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Automorphisms of a graph

• Simple undirected graph Γ, vertices VΓ, edges EΓ

• Action on vertices induces action on unordered pairs of vertices

{v1, v2}g := {vg
1 , v

g
2 }

• Automorphism: Permutation of VΓ preserving EΓ

Aut(Γ)
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Permutation groups

The permutation group induced ...

• Permutation representation: ϕ : G → Sym(Ω)

• Faithful: kerϕ = {1}
• Permutation group induced: GΩ := Imϕ ≡ G/ kerϕ

Projective groups

• GL(V ) acts naturally on the subspaces of a vector space V

• Scalar matrices Z acts trivially on subspaces, kerϕ = Z

• Permutation group induced: PGL(V )
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Equivalent actions

Left and right coset actions

Let H 6 G .

• (Hx)g := Hxg

• (xH)g := g−1xH

Note: ((xH)g1 )g2 = (g−1
1 xH)g2 = g−1

2 g−1
1 xH = (xH)g1g2

Equivalent actions

Suppose G acts on Ω and Θ. Then the actions are equivalent if there is a
bijection β : Ω→ Θ such that

(ωg )β = (ω)βg

for all ω ∈ Ω and g ∈ G .
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Transitive actions

Recall that G acts transitively on Ω if for any two elements ω, ω′ ∈ Ω
there exists g ∈ G such that

ωg = ω′.

Theorem (The Fundamental Theorem for Transitive Groups)

Let G act transitively on Ω and let α ∈ Ω. Then the action of G on Ω is
equivalent to the right coset action of G on the right cosets of Gα.

αg ←→ Gαg
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Regular group actions

• G acts transitively on Ω and Gα = {1}.
• Identify Ω with G :

αg ←→ Gαg = {g}

Cayley graphs

Suppose G acts regularly on the vertices of Γ. Let v ∈ VΓ.

• vg ←→ g ∈ G .

• Let S ⊂ G be the neighbours of 1.

• Gives rise to Cay(G ,S)

g1 ∼ g2 ⇐⇒ vg1 ∼ vg2 ⇐⇒ vg1g
−1
2 ∼ v ⇐⇒ g1g

−1
2 ∈ S .
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Arc-transitive graphs

Arc = directed, Edge = undirected

Lemma

Let Γ be a connected graph, let G 6 Aut(Γ) and let v ∈ VΓ. Then G is
transitive on arcs of Γ if and only if G is transitive on vertices and Gv is
transitive on Γ(v).

Orbital graph

Let G be a transitive permutation group on Ω. Let O be a nontrivial
self-paired orbital1. Then the orbital graph Orb(O) has vertices Ω and
edges defined by O.

An orbital graph is always arc-transitive.

1i.e., an orbit of G on Ω× Ω, such that (α, β) ∈ O =⇒ (β, α) ∈ O.
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Lemma

Let G be a transitive permutation group on V .

1. G is an arc-trans. grp. of auts. of a connected graph Γ = (V ,E )
⇐⇒ Γ is an orbital graph (for a self-paired orbital of G).

2. G is an edge-trans. but not an arc-trans. grp. of auts. of a
connected graph Γ = (V ,E ) ⇐⇒

E = {{x , y} | (x , y) ∈ O ∪O∗},

where O is a nontrivial G-orbital in V with O∗ as its paired orbital
and O 6= O∗.
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Blocks

Block

Nonempty subset ∆ ⊆ Ω such that for all g ∈ G ,

∆g = ∆ or ∆g ∩∆ = ∅.

Preservation

Intransitive action preserves a proper subset

Imprimitive action preserves a partition
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G -invariant partitions, systems of blocks, imprimitivity

G -invariant partition

Suppose G acts transitively on Ω, and let P be a G -invariant partition of
Ω.

• Each part of P is a block.

• P is sometimes called a block system or system of imprimitivity.

• If P is nontrivial then G is imprimitive.

• Often consider the permutation group GP .
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Bipartite graph Γ

Two bi-parts ∆1 and ∆2. If G 6 Aut(Γ) and G is transitive, then
{∆1,∆2} is a block system for G .
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Primitive groups

Primitive group

Transitive but not imprimitive.

Lemma

Suppose G is transitive on Ω, let ω ∈ Ω. Then there is a lattice
isomorphism between

1. the subgroups of G containing Gω, and

2. the blocks of G containing ω.

Corollary

Let G act transitively on Ω and let α ∈ Ω. If |Ω| > 1, then G is primitive
on Ω if and only if Gα is a maximal subgroup of G.
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Examples of primitive groups
G Gα
Sn, n > 2 Sn−1

An, n > 3 An−1

k-transitive group, k > 2 (k − 1)-transitive group
AGL(V ) GL(V )
G o Aut(G) 6 Sym(G) Aut(G)
prime degree –
overgroup of primitive group –

A diagonal action

Let T be a group, let G = T × T and let Ω = T . Then G acts on Ω via

t(x1,x2) := x−1
1 tx2.

• Faithful ⇐⇒ Z (T ) = {1}.
• G1 = {(t, t)|t ∈ T}.
• N / T =⇒ N is a block for G .

N(x1,x2) = x−1
1 Nx2 = x−1

1 Nx1x
−1
1 x2 = Nx−1

1 x2
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A nice exercise

The diagonal action of T ×T on T is primitive if and only if T is simple.

Proof.
Already have “ =⇒ ”. Suppose B is a block containing 1. Now

t ∈ B =⇒ B(1,t) = Bt and t ∈ B ∩ Bt

=⇒ Bt = B

Thus B is closed under multiplication.
Also,

t ∈ B =⇒ B(t,1) = t−1B and 1 ∈ B ∩ t−1B

=⇒ t−1B = B

=⇒ t−1 ∈ B

Thus B is closed under inversion, and hence, B 6 T .
For x ∈ T , we have

B(x,x) = x−1Bx and 1 ∈ B ∩ x−1Bx

so B = x−1Bx . Therefore B E T .
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Normal subgroups of primitive groups

Normal subgroup N of G

The orbits of N form blocks for G . Now(
αN

)g
= (αg )N .

so the N-orbits are permuted by G .

• Suppose G is a primitive permutation group on a set Ω.

• =⇒ the N-orbits form a block-system for G .

• =⇒ each N-orbit is either a singleton or the whole of Ω.

• =⇒ N acts trivially or transitively.

• =⇒ N = {1} or N is transitive.

So G is quasiprimitive (see later).
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Lemma

Let G be a group acting transitively on Ω, let N E G and let α ∈ Ω.
Then N is transitive if and only if G = GαN (= NGα).

Proof.

N is transitive ⇐⇒ (∀g ∈ G )(∃n ∈ N) (αg )n = α

⇐⇒ (∀g ∈ G )(∃n ∈ N) gn ∈ Gα

⇐⇒ (∀g ∈ G ) g ∈ GαN

⇐⇒ G = GαN
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From all point-stabilisers

• G+ = 〈Gα | α ∈ Ω〉

• Note that G+ E G .

• G quasiprimitive implies
• 1 = G+ = Gα and so G is regular and simple.
• G+ is transitive and so G = GαG

+ = G+.

Connected bipartite graph Γ

• Two bi-parts ∆1 and ∆2. If G 6 Aut(Γ) and G is transitive, then
{∆1,∆2} is a block system for G .

• G+ stabilises ∆1 and ∆2 set-wise, and |G : G+| = 2.
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Graphs from groups

• Cay(G ,S)

• Cos(G ,H,HgH)

• Cos(G ; {L,R})
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Coset graphs

Suppose H 6 G and g ∈ G such that g /∈ H and g2 ∈ H. Then we
define the graph Cos(G ,H,HgH) as follows:

Vertices Right cosets of H in G

Adjacency Hx1 ∼ Hx2 ⇐⇒ x1x
−1
2 ∈ HgH

Properties of Cos(G ,H ,HgH)

• g2 ∈ H =⇒ g−1 ∈ HgH =⇒ Cos(G ,H,HgH) is undirected

• G acts transitively on the vertices by right multiplication.

• Cayley graph Cay(G , {g}) when H = {1}.
• Cos(G ,H,HgH) is connected ⇐⇒ 〈H, g〉 = G

• Valency |H : (H ∩ Hg )|
• Arc-transitive.
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Theorem

A vertex-transitive graph Γ is arc-transitive if and only if it is isomorphic
to some coset graph Cos(G ,H,HgH).

Proof.

• Suppose G acts transitively on VΓ and let v ∈ VΓ.

• Identify VΓ with the right cosets of Gv .

• Suppose the arc (v ,w) is mapped to (w , v) under g ∈ G .

• Adjacency relation is determined:

Gvx1 ∼ Gvx2 ←→ v x1 ∼ v x2

←→ x1x
−1
2 ∈ GvgGv
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Coset “incidence geometry”

Let G be a group and let L,R 6 G . Define a graph Cos(G ; {L,R} by

Vertices Right cosets of L in G , and the right cosets of R in G .

Adjacency Lx ∼ Ry ⇐⇒ Lx ∩ Ry 6= ∅

Properties of Cos(G , {L,R})

• Bipartite

• Edge-transitive.
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Theorem

If a bipartite graph Γ is edge-transitive but not vertex-transitive, then it is
isomorphic to some coset incidence geometry Cos(G ; {L,R}).

Proof.

Exercise.
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