Normal subgroups of primitive grou

Graphs from groups

Permutation Groups

John Bamberg, Michael Giudici and Cheryl Praeger

Centre for the Mathematics of Symmetry and Computation

THE UNIVERSITY OF WESTERN AUSTRALIA

Achieve International Excellence

Beamer navigation symbols can

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Primitivity No

Normal subgroups of primitive gro

Graphs from groups

Beamer navigation symbols can

・ロト・4回ト・4回ト・4回ト・4日・

get in the way.

\setbeamertemplate{navigation symbols}{}

Normal subgroups of primitive group

Graphs from groups

Outline

Notation

Basics of permutation group theory

Arc-transitive graphs

Primitivity

Normal subgroups of primitive groups

Graphs from groups

Primitivity Norm

Normal subgroups of primitive gr

Notation

• Action of a group G on a set Ω

 $(\alpha, g) \mapsto \alpha^g$

Notation

• Action of a group G on a set Ω

$$(\alpha, g) \mapsto \alpha^g$$

• Orbit of a point: $\alpha^{\rm G}$

Normal subgroups of primitive

Notation

$$(\alpha, g) \mapsto \alpha^g$$

- Orbit of a point: α^{G}
- Stabiliser of a point: G_{α}

Notation

$$(\alpha, g) \mapsto \alpha^g$$

- Orbit of a point: α^{G}
- Stabiliser of a point: G_{α}
- Setwise stabiliser: G_Δ , where $\Delta \subseteq \Omega$

Notation

$$(\alpha, g) \mapsto \alpha^g$$

- Orbit of a point: α^{G}
- Stabiliser of a point: G_{α}
- Setwise stabiliser: G_Δ , where $\Delta \subseteq \Omega$
- Pointwise stabiliser: G_(Δ)

Normal subgroups of primitive

Notation

$$(\alpha, g) \mapsto \alpha^g$$

- Orbit of a point: α^{G}
- Stabiliser of a point: G_{α}
- Setwise stabiliser: G_Δ , where $\Delta \subseteq \Omega$
- Pointwise stabiliser: G_(Δ)
- Kernel of the action: G_(Ω)

rc-transitive graphs

Primitivity No

Normal subgroups of primitive gr

Graphs from groups

Automorphisms of a graph

• Simple undirected graph Γ , vertices $V\Gamma$, edges $E\Gamma$

Primitivity No

Normal subgroups of primitive gr

Automorphisms of a graph

- Simple undirected graph Γ , vertices $V\Gamma$, edges $E\Gamma$
- Action on vertices induces action on unordered pairs of vertices

$$\{v_1, v_2\}^g := \{v_1^g, v_2^g\}$$

Automorphisms of a graph

- Simple undirected graph Γ , vertices $V\Gamma$, edges $E\Gamma$
- · Action on vertices induces action on unordered pairs of vertices

$$\{v_1, v_2\}^g := \{v_1^g, v_2^g\}$$

• Automorphism: Permutation of $V\Gamma$ preserving $E\Gamma$

 $Aut(\Gamma)$

The permutation group induced ...

• Permutation representation: $\varphi: G \to \mathsf{Sym}(\Omega)$

Primitivity

Permutation groups

The permutation group induced ...

- Permutation representation: $\varphi: G \to \mathsf{Sym}(\Omega)$
- Faithful: ker $\varphi = \{1\}$

The permutation group induced ...

- Permutation representation: $\varphi: \mathcal{G} \to \mathsf{Sym}(\Omega)$
- Faithful: ker $\varphi = \{1\}$
- Permutation group induced: $G^{\Omega} := \operatorname{Im} \varphi \equiv G / \ker \varphi$

The permutation group induced ...

- Permutation representation: $\varphi: \mathcal{G} \to \mathsf{Sym}(\Omega)$
- Faithful: ker $\varphi = \{1\}$
- Permutation group induced: $G^{\Omega} := \operatorname{Im} \varphi \equiv G / \ker \varphi$

Projective groups

• GL(V) acts naturally on the subspaces of a vector space V

The permutation group induced ...

- Permutation representation: $\varphi: \mathcal{G} \to \mathsf{Sym}(\Omega)$
- Faithful: ker $\varphi = \{1\}$
- Permutation group induced: $G^{\Omega} := \operatorname{Im} \varphi \equiv G / \ker \varphi$

Projective groups

- GL(V) acts naturally on the subspaces of a vector space V
- Scalar matrices Z acts trivially on subspaces, $\ker \varphi = Z$

The permutation group induced ...

- Permutation representation: $\varphi: G \to \mathsf{Sym}(\Omega)$
- Faithful: ker $\varphi = \{1\}$
- Permutation group induced: $G^{\Omega} := \operatorname{Im} \varphi \equiv G / \ker \varphi$

Projective groups

- GL(V) acts naturally on the subspaces of a vector space V
- Scalar matrices Z acts trivially on subspaces, $\ker \varphi = Z$
- Permutation group induced: PGL(V)

Primitivity

Normal subgroups of primitive grou

Graphs from groups

Equivalent actions

Left and right coset actions

Let $H \leq G$.

•
$$(Hx)^g := Hxg$$

Equivalent actions

Left and right coset actions

Let $H \leq G$.

- $(Hx)^g := Hxg$
- $(xH)^g := g^{-1}xH$

Note:
$$((xH)^{g_1})^{g_2} = (g_1^{-1}xH)^{g_2} = g_2^{-1}g_1^{-1}xH = (xH)^{g_1g_2}$$

Equivalent actions

Left and right coset actions

Let $H \leq G$.

- $(Hx)^g := Hxg$
- $(xH)^g := g^{-1}xH$ Note: $((xH)^{g_1})^{g_2} = (g_1^{-1}xH)^{g_2} = g_2^{-1}g_1^{-1}xH = (xH)^{g_1g_2}$

Equivalent actions

Suppose G acts on Ω and Θ . Then the actions are equivalent if there is a bijection $\beta: \Omega \to \Theta$ such that

$$(\omega^g)\beta = (\omega)\beta^g$$

for all $\omega \in \Omega$ and $g \in G$.

Transitive actions

Recall that G acts transitively on Ω if for any two elements $\omega,\omega'\in\Omega$ there exists $g\in G$ such that

$$\omega^{g} = \omega'.$$

Transitive actions

Recall that G acts transitively on Ω if for any two elements $\omega, \omega' \in \Omega$ there exists $g \in G$ such that

$$\omega^{g} = \omega'.$$

Theorem (The Fundamental Theorem for Transitive Groups)

Let G act transitively on Ω and let $\alpha \in \Omega$. Then the action of G on Ω is equivalent to the right coset action of G on the right cosets of G_{α} .

$$\alpha^{g} \longleftrightarrow G_{\alpha}g$$

Arc-transitive grap

s Primitivity

Normal subgroups of primitive gro

Graphs from groups

Regular group actions

- G acts transitively on Ω and $G_{\alpha} = \{1\}$.
- Identify Ω with G:

$$\alpha^{g} \longleftrightarrow \mathcal{G}_{\alpha}g = \{g\}$$

y Arc-transitive gra

s Primitivity

Normal subgroups of primitive gro

Graphs from groups

Regular group actions

- G acts transitively on Ω and $G_{\alpha} = \{1\}$.
- Identify Ω with G:

$$\alpha^{g} \longleftrightarrow \mathcal{G}_{\alpha}g = \{g\}$$

Cayley graphs

Suppose G acts regularly on the vertices of Γ . Let $v \in V\Gamma$.

- $v^g \longleftrightarrow g \in G$.
- Let $S \subset G$ be the neighbours of 1.
- Gives rise to Cay(G, S)

$$g_1 \sim g_2 \iff v^{g_1} \sim v^{g_2} \iff v^{g_1g_2^{-1}} \sim v \iff g_1g_2^{-1} \in S.$$

Primitivity

Arc-transitive graphs

Arc = directed, Edge = undirected

¹i.e., an orbit of G on $\Omega \times \Omega$, such that $(\alpha, \beta) \in \mathcal{O} \implies (\beta, \alpha) \in \mathcal{O}$.

Arc-transitive graphs

Arc = directed, Edge = undirected

Lemma

Let Γ be a connected graph, let $G \leq \operatorname{Aut}(\Gamma)$ and let $v \in V\Gamma$. Then G is transitive on arcs of Γ if and only if G is transitive on vertices and G_v is transitive on $\Gamma(v)$.

¹i.e., an orbit of G on $\Omega \times \Omega$, such that $(\alpha, \beta) \in \mathcal{O} \implies (\beta, \alpha) \in \mathcal{O}$.

Primitivity

Arc-transitive graphs

 $\mathsf{Arc} = \mathsf{directed}, \, \mathsf{Edge} = \mathsf{undirected}$

Lemma

Let Γ be a connected graph, let $G \leq \operatorname{Aut}(\Gamma)$ and let $v \in V\Gamma$. Then G is transitive on arcs of Γ if and only if G is transitive on vertices and G_v is transitive on $\Gamma(v)$.

Orbital graph

Let G be a transitive permutation group on Ω . Let \mathcal{O} be a nontrivial self-paired orbital¹. Then the orbital graph $Orb(\mathcal{O})$ has vertices Ω and edges defined by \mathcal{O} .

An orbital graph is always arc-transitive.

¹i.e., an orbit of G on $\Omega \times \Omega$, such that $(\alpha, \beta) \in \mathcal{O} \implies (\beta, \alpha) \in \mathcal{O}$.

Lemma

Let G be a transitive permutation group on V.

- 1. *G* is an arc-trans. grp. of auts. of a connected graph $\Gamma = (V, E)$ $\iff \Gamma$ is an orbital graph (for a self-paired orbital of *G*).
- 2. G is an edge-trans. but not an arc-trans. grp. of auts. of a connected graph $\Gamma = (V, E) \iff$

$$E = \{\{x, y\} \mid (x, y) \in \mathcal{O} \cup \mathcal{O}^*\},\$$

where \mathcal{O} is a nontrivial G-orbital in V with \mathcal{O}^* as its paired orbital and $\mathcal{O} \neq \mathcal{O}^*$.

Primitivity

Blocks

Block

Nonempty subset $\Delta \subseteq \Omega$ such that for all $g \in G$,

 $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \varnothing$.

Primitivity

Normal subgroups of primitive grou

Graphs from groups

Blocks

Block

Nonempty subset $\Delta \subseteq \Omega$ such that for all $g \in G$,

$$\Delta^g = \Delta$$
 or $\Delta^g \cap \Delta = \varnothing$.

Preservation

Intransitive action preserves a proper subset Imprimitive action preserves a partition

G-invariant partition

Suppose G acts transitively on Ω , and let \mathcal{P} be a G-invariant partition of Ω .

• Each part of \mathcal{P} is a block.

G-invariant partition

Suppose G acts transitively on Ω , and let \mathcal{P} be a G-invariant partition of Ω .

- Each part of \mathcal{P} is a block.
- ${\mathcal{P}}$ is sometimes called a block system or system of imprimitivity.

G-invariant partition

Suppose G acts transitively on Ω , and let \mathcal{P} be a G-invariant partition of Ω .

- Each part of \mathcal{P} is a block.
- \mathcal{P} is sometimes called a block system or system of imprimitivity.
- If \mathcal{P} is nontrivial then G is imprimitive.

G-invariant partition

Suppose G acts transitively on Ω , and let \mathcal{P} be a G-invariant partition of Ω .

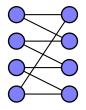
- Each part of \mathcal{P} is a block.
- ${\mathcal{P}}$ is sometimes called a block system or system of imprimitivity.
- If \mathcal{P} is nontrivial then G is imprimitive.
- Often consider the permutation group $G^{\mathcal{P}}$.

Primitivity

Normal subgroups of primitive gro

Bipartite graph F

Two bi-parts Δ_1 and Δ_2 . If $G \leq Aut(\Gamma)$ and G is transitive, then $\{\Delta_1, \Delta_2\}$ is a block system for G.



Primitive groups

Primitive group

Transitive but not imprimitive.

Lemma

Suppose G is transitive on Ω , let $\omega \in \Omega$. Then there is a lattice isomorphism between

- 1. the subgroups of G containing G_{ω} , and
- 2. the blocks of G containing ω .

Primitive groups

Primitive group

Transitive but not imprimitive.

Lemma

Suppose G is transitive on Ω , let $\omega \in \Omega$. Then there is a lattice isomorphism between

- 1. the subgroups of G containing G_{ω} , and
- 2. the blocks of G containing ω .

Corollary

Let G act transitively on Ω and let $\alpha \in \Omega$. If $|\Omega| > 1$, then G is primitive on Ω if and only if G_{α} is a maximal subgroup of G.

Examples of primitive groups

G	G_{lpha}
$S_n, n \ge 2$	S_{n-1}
$A_n, n \ge 3$	A_{n-1}
<i>k</i> -transitive group, $k \ge 2$	(k-1)-transitive group
AGL(V)	GL(V)
$G \rtimes \operatorname{Aut}(G) \leq \operatorname{Sym}(G)$	Aut(G)
prime degree	_
overgroup of primitive group	-

Examples of primitive groups

G	G_{α}
$S_n, n \ge 2$	S_{n-1}
$A_n, n \ge 3$	A_{n-1}
<i>k</i> -transitive group, $k \ge 2$	(k-1)-transitive group
AGL(V)	GL(V)
$G \rtimes \operatorname{Aut}(G) \leqslant \operatorname{Sym}(G)$	Aut(G)
prime degree	-
overgroup of primitive group	

A diagonal action

Let T be a group, let $G = T \times T$ and let $\Omega = T$. Then G acts on Ω via

$$t^{(x_1,x_2)} := x_1^{-1} t x_2.$$

- Faithful $\iff Z(T) = \{1\}.$
- $G_1 = \{(t, t) | t \in T\}.$
- $N \triangleleft T \implies N$ is a block for G.

$$N^{(x_1,x_2)} = x_1^{-1}Nx_2 = x_1^{-1}Nx_1x_1^{-1}x_2 = Nx_1^{-1}x_2$$

The diagonal action of $T \times T$ on T is primitive if and only if T is simple.

The diagonal action of $T \times T$ on T is primitive if and only if T is simple.

Proof.

Already have " \implies ". Suppose *B* is a block containing 1. Now

$$t \in B \implies B^{(1,t)} = Bt \text{ and } t \in B \cap Bt$$
$$\implies Bt = B$$

Thus *B* is closed under multiplication.

The diagonal action of $T \times T$ on T is primitive if and only if T is simple.

Proof.

Already have " \implies ". Suppose *B* is a block containing 1. Now

$$t \in B \implies B^{(1,t)} = Bt \text{ and } t \in B \cap Bt$$

 $\implies Bt = B$

Thus B is closed under multiplication. Also,

$$\begin{split} t \in B \implies B^{(t,1)} = t^{-1}B \text{ and } 1 \in B \cap t^{-1}B \\ \implies t^{-1}B = B \\ \implies t^{-1} \in B \end{split}$$

Thus B is closed under inversion, and hence, $B \leq T$.

The diagonal action of $T \times T$ on T is primitive if and only if T is simple.

Proof.

Already have " \implies ". Suppose *B* is a block containing 1. Now

$$t \in B \implies B^{(1,t)} = Bt \text{ and } t \in B \cap Bt$$

 $\implies Bt = B$

Thus B is closed under multiplication. Also,

$$\begin{split} t \in B \implies B^{(t,1)} = t^{-1}B \text{ and } 1 \in B \cap t^{-1}B \\ \implies t^{-1}B = B \\ \implies t^{-1} \in B \end{split}$$

Thus *B* is closed under inversion, and hence, $B \leq T$. For $x \in T$, we have

$$B^{(x,x)} = x^{-1}Bx$$
 and $1 \in B \cap x^{-1}Bx$

so $B = x^{-1}Bx$. Therefore $B \leq T$.

Normal subgroup N of G

The orbits of N form blocks for G. Now

$$\left(\alpha^{\mathsf{N}}\right)^{\mathsf{g}} = (\alpha^{\mathsf{g}})^{\mathsf{N}}.$$

Normal subgroup N of G

The orbits of N form blocks for G. Now

$$\left(\alpha^{N}\right)^{g} = \left(\alpha^{g}\right)^{N}.$$

so the N-orbits are permuted by G.

• Suppose G is a primitive permutation group on a set Ω .

Primitivity

Normal subgroups of primitive groups

Normal subgroup N of G

The orbits of N form blocks for G. Now

$$\left(\alpha^{N}\right)^{g} = (\alpha^{g})^{N}.$$

- Suppose G is a primitive permutation group on a set Ω .
- \implies the *N*-orbits form a block-system for *G*.

Normal subgroup N of G

The orbits of N form blocks for G. Now

$$(\alpha^N)^g = (\alpha^g)^N.$$

- Suppose G is a primitive permutation group on a set Ω .
- \implies the *N*-orbits form a block-system for *G*.
- \implies each *N*-orbit is either a singleton or the whole of Ω .

Normal subgroup N of G

The orbits of N form blocks for G. Now

$$\left(\alpha^{N}\right)^{g} = (\alpha^{g})^{N}.$$

- Suppose G is a primitive permutation group on a set Ω .
- \implies the *N*-orbits form a block-system for *G*.
- \implies each *N*-orbit is either a singleton or the whole of Ω .
- \implies *N* acts trivially or transitively.

Normal subgroup N of G

The orbits of N form blocks for G. Now

$$\left(\alpha^{N}\right)^{g} = (\alpha^{g})^{N}.$$

so the N-orbits are permuted by G.

- Suppose G is a primitive permutation group on a set Ω .
- \implies the *N*-orbits form a block-system for *G*.
- \implies each *N*-orbit is either a singleton or the whole of Ω .
- \implies *N* acts trivially or transitively.
- \implies $N = \{1\}$ or N is transitive.

So G is quasiprimitive (see later).

Primitivity No

Lemma

Let G be a group acting transitively on Ω , let $N \leq G$ and let $\alpha \in \Omega$. Then N is transitive if and only if $G = G_{\alpha}N$ (= NG_{α}). Primitivity Nor

Lemma

Let G be a group acting transitively on Ω , let $N \leq G$ and let $\alpha \in \Omega$. Then N is transitive if and only if $G = G_{\alpha}N$ (= NG_{α}).

Proof.

$$N \text{ is transitive } \iff (\forall g \in G)(\exists n \in N) \quad (\alpha^g)^n = \alpha$$
$$\iff (\forall g \in G)(\exists n \in N) \quad gn \in G_\alpha$$
$$\iff (\forall g \in G) \quad g \in G_\alpha N$$
$$\iff G = G_\alpha N$$

Primitivity N

Normal subgroups of primitive groups

Graphs from groups

From all point-stabilisers

•
$$G^+ = \langle G_\alpha \mid \alpha \in \Omega \rangle$$

Primitivity N

Normal subgroups of primitive groups

Graphs from groups

From all point-stabilisers

- $G^+ = \langle G_\alpha \mid \alpha \in \Omega \rangle$
- Note that $G^+ \trianglelefteq G$.

Primitivity Nor

Normal subgroups of primitive groups

Graphs from groups

From all point-stabilisers

- $G^+ = \langle G_\alpha \mid \alpha \in \Omega \rangle$
- Note that $G^+ \trianglelefteq G$.
- G quasiprimitive implies
 - $1 = G^+ = G_{\alpha}$ and so G is regular and simple.
 - G^+ is transitive and so $G = G_{\alpha}G^+ = G^+$.

Primitivity No

Normal subgroups of primitive groups

Graphs from groups

From all point-stabilisers

- $G^+ = \langle G_\alpha \mid \alpha \in \Omega \rangle$
- Note that $G^+ \trianglelefteq G$.
- G quasiprimitive implies
 - $1 = G^+ = G_{\alpha}$ and so G is regular and simple.
 - G^+ is transitive and so $G = G_{\alpha}G^+ = G^+$.

Connected bipartite graph **F**

• Two bi-parts Δ_1 and Δ_2 . If $G \leq Aut(\Gamma)$ and G is transitive, then $\{\Delta_1, \Delta_2\}$ is a block system for G.

Primitivity No

Normal subgroups of primitive groups

Graphs from groups

From all point-stabilisers

- $G^+ = \langle G_\alpha \mid \alpha \in \Omega \rangle$
- Note that $G^+ \trianglelefteq G$.
- G quasiprimitive implies
 - $1 = G^+ = G_{\alpha}$ and so G is regular and simple.
 - G^+ is transitive and so $G = G_{\alpha}G^+ = G^+$.

Connected bipartite graph **F**

- Two bi-parts Δ_1 and Δ_2 . If $G \leq Aut(\Gamma)$ and G is transitive, then $\{\Delta_1, \Delta_2\}$ is a block system for G.
- G^+ stabilises Δ_1 and Δ_2 set-wise, and $|G:G^+|=2$.

Primitivity

Normal subgroups of primitive group

Graphs from groups

Graphs from groups

- Cay(*G*, *S*)
- Cos(G, H, HgH)
- Cos(G; {L, R})

Coset graphs

Suppose $H \leq G$ and $g \in G$ such that $g \notin H$ and $g^2 \in H$. Then we define the graph Cos(G, H, HgH) as follows:

Vertices Right cosets of H in GAdjacency $Hx_1 \sim Hx_2 \iff x_1x_2^{-1} \in HgH$

Coset graphs

Suppose $H \leq G$ and $g \in G$ such that $g \notin H$ and $g^2 \in H$. Then we define the graph Cos(G, H, HgH) as follows:

Vertices Right cosets of H in GAdjacency $Hx_1 \sim Hx_2 \iff x_1x_2^{-1} \in HgH$

Properties of Cos(G, H, HgH)

- $g^2 \in H \implies g^{-1} \in HgH \implies \operatorname{Cos}(G, H, HgH)$ is undirected
- G acts transitively on the vertices by right multiplication.
- Cayley graph $Cay(G, \{g\})$ when $H = \{1\}$.
- $\cos(G, H, HgH)$ is connected $\iff \langle H, g \rangle = G$
- Valency $|H:(H\cap H^g)|$
- Arc-transitive.

Theorem

A vertex-transitive graph Γ is arc-transitive if and only if it is isomorphic to some coset graph Cos(G, H, HgH).

Primitivity No

Normal subgroups of primitive gro

Theorem

A vertex-transitive graph Γ is arc-transitive if and only if it is isomorphic to some coset graph $\cos(G, H, HgH)$.

Proof.

- Suppose G acts transitively on $V\Gamma$ and let $v \in V\Gamma$.
- Identify $V\Gamma$ with the right cosets of G_v .
- Suppose the arc (v, w) is mapped to (w, v) under $g \in G$.
- Adjacency relation is determined:

$$G_v x_1 \sim G_v x_2 \longleftrightarrow v^{x_1} \sim v^{x_2} \ \longleftrightarrow x_1 x_2^{-1} \in G_v g G_v$$

Coset "incidence geometry"

Let G be a group and let $L, R \leq G$. Define a graph $Cos(G; \{L, R\})$ by Vertices Right cosets of L in G, and the right cosets of R in G. Adjacency $Lx \sim Ry \iff Lx \cap Ry \neq \emptyset$

Coset "incidence geometry"

Let G be a group and let $L, R \leq G$. Define a graph $Cos(G; \{L, R\})$ by Vertices Right cosets of L in G, and the right cosets of R in G. Adjacency $Lx \sim Ry \iff Lx \cap Ry \neq \emptyset$

Properties of $Cos(G, \{L, R\})$

- Bipartite
- Edge-transitive.

Theorem

If a bipartite graph Γ is edge-transitive but not vertex-transitive, then it is isomorphic to some coset incidence geometry $Cos(G; \{L, R\})$.

Proof.	
Exercise.	