HAMILTONICITY OF VERTEX-TRANSITIVE GRAPHS

Dragan Marušič

University of Primorska & University of Ljubljana

June, 2011

Dragan Marušič HAMILTONICITY OF VERTEX-TRANSITIVE GRAPHS

3 × 4 3 ×

Announcing two opening positions at UP Famnit / Pint in 2011/12

- \bullet Young Research position \cong PhD Grant
- PostDoc / Visiting Professor position(s)

But why would one want to do a PhD in mathematics (among all other possibilities)

A B K A B K

Crispin Nash-Williams

Reading University, Friday, October 7, 1977

Lovasz problem, 1969

Let us construct a finite, connected, undirected graph which is symmetric and has no simple path containing all vertices.

Folklore conjecture

Every connected Cayley graph has a Hamilton cycle.

Dragan Marušič HAMILTONICITY OF VERTEX-TRANSITIVE GRAPHS

(3)

- VTG of order p, 2p, 3p, 4p, 5p, 6p, 2p², p^k (for k ≤ 4), (Alspach, Chen, Du, Marušič, Parsons, Šparl, KK, etc.);
- VTG having groups with a cyclic commutator subgroup of order p^k (Durenberger, Gavlas, Keating, Marušič, Morris, Morris-Witte, etc.).

(p a prime)

How does one prove/disprove the existence of Hamilton cycles/paths in vertex-transitive graphs?

Sufficient knowledge about the structure of a graph is needed, where "sufficient" depends on the particular graphs in question.

For example, how does one prove the existence of Hamilton cycles in VTGs of prime order.

Description:

X := VTG order 2pSylow *p*-subgroup *P* of Aut(X) contains a semiregular automorphism π which gives rise to an algebraic description of

$$X := [R, S, T]$$
 where $R, S \subseteq \mathbb{Z}_p^*$ and $R \subseteq \mathbb{Z}_p$.

Existence of a Hamilton cycle in VTGs of order 2p, p a prime, proven in

B. Alspach, Hamiltonian cycles in vertex-transitive graphs of order 2*p*, Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 131–139, *Congress. Numer.*, XXIII–XX, Utilitas Math., Winnipeg, Man., 1979.

The proof contains two crucial steps:

- Step 1: a p-circulant of valency ≥ 4 is Hamilton-connected (for any two vertices u, v there exists a hamiltonian (u - v)-path).
- Step 2: every vertex-transitive generalized Petersen graph GP(p,k) is hamiltonian (with the exception of the Petersen graph).

$p = 11, X = Cay(\mathbb{Z}_{11}, \{\pm 1, \pm 3\})$

Dragan Marušič HAMILTONICITY OF VERTEX-TRANSITIVE GRAPHS

æ

p=11, $X=\mathsf{Cay}(\mathbb{Z}_{11},\{\pm 1,\pm 3\})$

< ≣⇒

æ

X := [R, S, T] vertex-transitive graph of order 2p.

Existence of a Hamilton cycle is clear when

•
$$|T| \ge 2$$

This leaves us with the case where X is a generalized Petersen graph GP(p, k), $S = \{\pm 1\}$, $R = \{\pm k\}$ and $T = \{0\}$ (because of vertex-transitivity we need additional assumption that $k^2 \equiv \pm 1 \pmod{p}$).

Dragan Marušič HAMILTONICITY OF VERTEX-TRANSITIVE GRAPHS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

9 Q (?

Chen-Quimpo, 1981

A connected Cayley graph on an abelian group of valency ≥ 3 is Hamilton-connected or Hamilton-laceable.

• E • • E •

When non-abelian groups are involved hamiltonian connectedness is not necessary true.

Distance 2 ?

(E) < E)</p>

Generalized Petersen graphs GP(n, k) with Hamilton cycles are completely classified (finished by Alspach):

GP(n, 2), $n \equiv 5 \pmod{6}$ are the only exceptions.

Hamilton cycles in VTGs of order pq, p and q primes

Dragan Marušič HAMILTONICITY OF VERTEX-TRANSITIVE GRAPHS

< 注 → < 注 →

From independent work of Praeger-Xu-Wang and DM-Scapellato

A vertex-transitive graph of order pq must be one of the following:

- a metacirculant,
- a certain family of graphs obtained as generalized Z_q-covers of K_p, p a Fermat prime,
- a generalized orbital graph associated with certain primitive groups.

X VTG of order pq, $G \leq AutX$ transitive

- *G*-imprimitive blocks of size *p*;
- *G*-imprimitive blocks of size *q*;
- G is primitive.

From DM, Scapellato, Combinatorica 1994:

X VTG of order pq, $G \leq AutX$ transitive

- *G*-imprimitive blocks of size $p \iff \text{metacirculants}$;
- G-imprimitive blocks of size q, but no other transitive group with blocks of size p exists (⇒ special graph associated with Fermat primes);
- G and every other transitive subgroup of the automorphism group is primitive (the possible groups are listed in the table).

soc G	(<i>p</i> , <i>q</i>)	action	comment
$P\Omega^+(2d,k)$	$(k^d+1, \frac{k^{d-1}-1}{k-1})$	singular	d a power of 2
		1-spaces	p a Fermat prime
M ₂₂	(11,7)	see Atlas	
A ₇	(7,5)	triples	
<i>PSL</i> (2, 61)	(61, 31)	cosets of	
		A_5	
$PSL(2, q^2)$	$(\frac{q^2+1}{2},q)$	cosets of	$q \ge 5$
		PGL(2,q)	
PSL(2, p)	$(p, \frac{p+1}{2})$	cosets of	$p \equiv 1 \pmod{4}$
		D_{p-1}	$p \ge 13$

Dragan Marušič HAMILTONICITY OF VERTEX-TRANSITIVE GRAPHS

< 注→ < 注→

Definition

A graph X is an (m, n)-metacirculant if it admits a transitive group $G = \langle \rho, \sigma \rangle$, where ρ is a product of *m* disjoint copies of *n*-cycles and σ is a twister $\sigma^{-1}\rho\sigma = \rho^r$ (*G* is a semidirect product of $\langle \rho \rangle \rtimes \langle \sigma \rangle$).

Vertex-transitive graphs with *p*-blocks.

Step 1: May assume that the bipartite graph induced by two adjacent blocks (orbits of ρ) is a perfect matching. For otherwise a "spiral path" in the quotient lifts to a Hamilton cycle in the graph.

Step 2: Because of Chen-Quimpo result the degree of circulants induced on the blocks is 2, and the graph is a "twisted product" of C_p with a *q*-circulant, and therefore contains a twisted product of C_p with C_q .

"Twisted product" of C_p with C_q

A Hamilton cycle is obtained by glueing together Hamilton paths inside the orbits.

Hamilton cycles in VTGs with q-blocks

Every such graph X must be of the following form:

- $p = 2^{2^s} + 1$ is a Femat prime;
- *q* divides *p* − 2;
- X must contain a subgraph isomorphic to a \mathbb{Z}_q -cover of $Y \cong K_p$;
- $ho \in S_q$ is the q-cycle $(01 \ldots q 1);$
- $\tau \in S_q$ is the involution interchanging *i* with -i ($i \in \mathbb{Z}_q$);

•
$$\tau_i = \rho^i \tau \rho^{-i} \ (i \in \mathbb{Z}_q);$$

• ω is a generator of the cyclic group $GF(2^{2^s})^*$.

 $V(Y) = PG(1, 2^{s}) = GF(2^{2^{s}}) \cup \{\infty\}.$ The voltage function ζ satisfies:

$$\zeta(u, v) = \begin{cases} id; & u = \infty \text{ or } v = \infty \\ \tau_i; & u + v = \omega^i \end{cases}$$

伺い イヨト イヨト

The smallest example is the line graph of the Petersen graph with q = 3, p = 5

Red: τ_0 Yellow: τ_1 Blue: τ_2

물 제 문 제 문 제

Based on the classification of vertex-transitive graphs of order *pq*, done independently Praeger, Xu, Wang and by DM, Scapellato (early 90s).

Almost Theorem (Du, Kutnar, DM)

A connected vertex-transitive graph of order *pq* other then the Petersen graph contains a Hamilton cycle.

- ∃ transitive G ≤ AutX with p-blocks
 ⇔ X = metacirculant (Alspach, Parsons, DM, early 80s)
- ∃ transitive G ≤ AutX with q-blocks (and no subgroup with p-blocks)
 ⇔ X = Fermat graph (p = 2^{2^s} + 1, q divides 2^{2^s} 1, etc.) (DM, '92)
- all transitive subgroups of AutX are primitive

Primitive groups of degree pq without imprimitive subgroups and with non-isomorphic generalized orbital graphs

soc G	(<i>p</i> , <i>q</i>)	action	comment
$P\Omega^+(2d,k)$	$(k^d+1, \frac{k^{d-1}-1}{k-1})$	singular	d a power of 2
		1-spaces	p a Fermat prime
M ₂₂	(11,7)		
A ₇	(7,5)	triples	
<i>PSL</i> (2, 61)	(61, 31)	cosets of	
		A ₅	
$PSL(2, q^2)$	$(\frac{q^2+1}{2},q)$	cosets of	$q \ge 5$
		PGL(2,q)	
<i>PSL</i> (2, <i>p</i>)	$(p, \frac{p+1}{2})$	cosets of	$p \equiv 1 \pmod{4}$
		D_{p-1}	$p \ge 13$

• E • • E •

Chvátal, '72

Let X be a graph and let $S_i = \{x \in V(X) \mid deg(x) \le i\}$. Then X has a HC if for each i < n/2 either $|S_i| \le i-1$ or $|S_{n-i-1}| \le n-i-1$.

個 と く ヨ と く ヨ と …

3

 \Rightarrow By Chvátal the graph has a Hamilton cycle.

(4) (5) (4) (5) (4)

The strategy consists in:

- first, quotiening the graph with respect to a semiregular automorphism of order *p*,
- second, using Chvátal theorem, finding a Hamilton cycle in the corresponding quotient graph of order q,
- third, lifting this cycle to a Hamilton cycle in the original graph.

A 3 1 A 3 1

Example - A graph arising from the action of PSL(2, 13) on the cosets of D_{12}

p = 13 and q = 7

Example - A graph arising from the action of PSL(2, 13) on the cosets of D_{12}

p = 13 and q = 7

This approach works in all cases with the exception of the case when G = PSL(2, p), $p \equiv 1 \pmod{8}$ and the corresponding graph of order p(p+1)/2 has valency (p-1)/4.

Work in progress linking the existence of Hamilton cycles with certain number-theoretic conditions.

通 と く 思 と く 思 と

1. SMALL RANK GROUPS

soc G	(<i>p</i> , <i>q</i>)	action	comment
$P\Omega^+(2d,k)$	$(k^d+1, \frac{k^{d-1}-1}{k-1})$	singular	d a power of 2
		1-spaces	p a Fermat prime
M ₂₂	(11,7)	see Atlas	degrees: 60, 16
A ₇	(7,5)	triples	degrees: 4,12,18

• Every 2-connected regular graph of order n and valency at least n/3 is hamiltonian. [Jackson, 1978]

• Using Gap and Magma.

2. "SMALL" GRAPH

soc G	(<i>p</i> , <i>q</i>)	action	comment
<i>PSL</i> (2, 61)	(61, 31)	cosets of	
		A_5	

- Using Gap and Magma (Conder, '03).
- 3. ACTION OF $PSL(2, q^2)$

soc G	(<i>p</i> , <i>q</i>)	action	comment
$PSL(2,q^2)$	$\left(\frac{q^2+1}{2},q\right)$	cosets of PGL(2, q)	$q \ge 5$

E 🖌 🖌 E 🕨

4. ACTION OF PSL(2, p)

soc G	(p,q)	action	comment
<i>PSL</i> (2, <i>p</i>)	$(p, \frac{p+1}{2})$	cosets of D_{p-1}	$p \equiv 1 \pmod{4}$ $p \ge 13$

- For $q = \frac{p+1}{2}$ to be a prime we must have $p \equiv 1 \pmod{4}$.
- Let G = PSL(2, p), $H = D_{p-1}$, F = GF(p) and $F^* = F \setminus \{0\}$.
- For simplicity reasons we refer to the elements of G as matrices.
- Let H consist of all the matrices of the form

$$\left[\begin{array}{cc} x & 0 \\ 0 & x^{-1} \end{array}\right] \text{ and } \left[\begin{array}{cc} 0 & -x \\ x^{-1} & 0 \end{array}\right] (x \in F^*).$$

• For a typical element

$$g = \left[egin{array}{c} a & b \\ c & d \end{array}
ight] ext{ of } G ext{ we let } \xi(g) = ad ext{ and } \eta(g) = a^{-1}b.$$

- Let $\chi(g) = (\xi(g), \eta(g))$ be the character of g.
- Let \sim be the equivalence relation on $F imes F^*$ defined by

$$(\xi,\eta) \sim (1-\xi,\frac{\xi\eta}{\xi-1})$$
 for $\xi \neq 0,1.$

• There is then a natural identification of the set of cosets \mathcal{H} and $(F \times F^*)/_{\sim} \cup \{\infty\}$ where ∞ corresponds to H and (ξ, η) corresponds to the coset Hg satisfying $\chi(g) = (\xi, \eta)$.

・吊り イヨト イヨト ニヨ

- Let S^* denote the set of all non-zero squares in F and let $N^* = F^* \setminus S^*$.
- For each $\xi \in S^*$ define the following subsets of \mathcal{H} :

$$S_{\xi}^{+} = \{(\xi, \eta) : \eta \in S^{*}\},$$
$$S_{\xi}^{-} = \{(\xi, \eta) : \eta \in N^{*}\}$$
$$S_{\xi} = S_{\xi}^{+} \cup S_{\xi}^{-}.$$

• For $\xi \neq 0, 1$, the sets $\{S_{\xi}^+, S_{\xi}^-\}$ and $\{S_{1-\xi}^+, S_{1-\xi}^-\}$ coincide.

伺下 イヨト イヨト

3

The following result determines the suborbits of the action of G on \mathcal{H} .

Theorem [Marušič and Scapellato, '92]

The action of G on \mathcal{H} has

- (i) $\frac{p+7}{4}$ suborbits of length p-1, all of them self-paired. These are $S_0^+ \cup S_1^+$, $S_0^- \cup S_1^-$ and S_{ξ} for all those ξ which satisfy $\xi^{-1} 1 \in N^*$.
- (ii) $\frac{p-5}{2}$ suborbits of length $\frac{p-1}{2}$, namely S_{ξ}^+ and S_{ξ}^- where $\xi^{-1} 1 \in S^*$. Among them the self-paired suborbits correspond to all those ξ for which both ξ and $\xi 1$ belong to N^* and so their number is $\frac{p-9}{4}$ if $p \equiv 1 \pmod{8}$ and $\frac{p-5}{4}$ if $p \equiv 5 \pmod{8}$.
- (iii) 2 suborbits of length $\frac{p-1}{4}$, namely $S_{\frac{1}{2}}^+$ and $S_{\frac{1}{2}}^-$ which are self-paired if and only if $p \equiv 1 \pmod{8}$.

Each graph arising from the action of G on \mathcal{H} is a generalized orbital graph X = X(G, H, W) where W is a self-paired union of suborbits of G.

The generalized orbital graph X = X(G, H, W), where W is a self-paired union of suborbits of G has vertex set

$$V(X) = \{Hg \mid g \in G\}$$

and edge set

$$E(X) = \{\{Hg, Hwg\} \mid g \in G, w \in W\}$$

The description of these graphs is best done via a factorization modulo the Sylow p-subgroup generated by the matrix

$$g = \left[egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight].$$

(4回) (注) (注) (注) (注)

Example:

The smallest admissible pair of primes p = 13 and q = (p + 1)/2 = 7 give rise to the following suborbits:

- $S_0^+ \cup S_1^+$, $S_0^- \cup S_1^-$, S_2 , S_3 , S_5 of size 12 all of them self-paired;
- S_4^+ , S_4^- of size 6 all of them self-paired;
- S_6^+ , S_6^- of size 6, which are not self-paired;
- S_7^+ , S_7^- of size 3 which are not self-paired.

Each of the corresponding generalized orbital graphs is a union of the graphs X(G, H, W) with W a self-paired union of the above suborbits of G.

Part (i) and (ii) of the theorem are solved using the following result due to Chvatal.

Theorem [Chvatal, '72] Let X be a graph and let $S_i = \{x \in V(X) \mid deg(x) \leq i\}$. Then X has a Hamilton cycle if for each i < n/2 one of the following is true.

- (i) either $|S_i| \leq i 1$;
- (ii) or $|S_{n-i-1}| \le n-i-1$.

(4回) (注) (注) (注) (注)

Part (iii): 2 suborbits of length $\frac{p-1}{4}$, namely $S_{\frac{1}{2}}^+$ and $S_{\frac{1}{2}}^-$ which are self-paired if and only if $p \equiv 1 \pmod{8}$.

★ 문 ► ★ 문 ►