Towards a combinatorial characterization of equistable graphs

 (Partial results on a conjecture of Orlin)

 (Partial results on a conjecture of Orlin)}

Martin Milanič
UP FAMNIT and UP PINT, University of Primorska

Raziskovalni matematični seminar, FAMNIT, 28. marec 2011

Graphs and stable sets

- $G=(V, E)$ - a finite simple undirected graph
- stable (independent) set: a subset $S \subseteq V$ of pairwise non-adjacent vertices
- a stable set is maximal if it is not contained in any larger stable set

Equistable graphs

Definition

A graph $G=(V, E)$ is equistable if there exists a function $w: V \rightarrow \mathbb{N}$ and a positive integer t such that
$\forall S \subseteq V$:
S is a maximal stable set in $G \Leftrightarrow w(S)=\sum_{v \in S} w(v)=t$.

Equistable graphs: example

The following graph is equistable:

Equistable graphs: example

The following graph is equistable:

Equistable graphs: example

The following graph is equistable:

Equistable graphs: example

The following graph is equistable:

Equistable graphs: example

The following graph is equistable:

Equistable graphs: example

The following graph is not equistable:

Equistable graphs: example

The following graph is not equistable:

If

$$
\begin{aligned}
& w_{1}+w_{3}=t \\
& w_{2}+w_{4}=t \\
& w_{1}+w_{4}=t
\end{aligned}
$$

Equistable graphs: example

The following graph is not equistable:

If

$$
\begin{aligned}
& w_{1}+w_{3}=t \\
& w_{2}+w_{4}=t \\
& w_{1}+w_{4}=t
\end{aligned}
$$

then

$$
w_{2}+w_{3}=t
$$

Equistable graphs: motivation

- threshold graphs (Chvátal-Hammer 1977):
$\exists w, t$ s.t. $S \subseteq V$ stable $\Leftrightarrow w(S) \leq t$
- equistable graphs (Payan 1980):
$\exists w, t$ s.t. $S \subseteq V$ maximal stable $\Leftrightarrow w(S)=t$
- threshold graphs (Chvátal-Hammer 1977): $\exists w, t$ s.t. $S \subseteq V$ stable $\Leftrightarrow w(S) \leq t$
- equistable graphs (Payan 1980): $\exists w, t$ s.t. $S \subseteq V$ maximal stable $\Leftrightarrow w(S)=t$

Equistable graphs generalize:

- threshold graphs (Payan, 1980);
- co-graphs (graphs without an induced 3-edge path) (Mahadev-Peled-Sun, 1994).

General partition graphs

Definition

A graph $G=(V, E)$ is a general partition graph ($\mathbf{g p g}$) if there exists a finite set U and an assignment of nonempty subsets $U_{x} \subseteq U$ to vertices of V such that

- $x y \in E$ if and only if $U_{x} \cap U_{y} \neq \emptyset$, and
- for every maximal stable set S in G, the set $\left\{U_{x}: x \in S\right\}$ forms a partition of U.

General partition graphs: example

The following graph is a gpg:

General partition graphs: example

The following graph is a gpg:

General partition graphs: a characterization

Theorem (McAvaney-Robertson-DeTemple, 1993)

For every graph G, the following are equivalent:

- G is a gpg,
- every edge of G is contained in a strong clique.
strong clique $=$ a clique meeting all maximal stable sets

General partition graphs: example

The following graph is a gpg (every edge is contained in a strong clique):

General partition graphs: example

The following graph is a gpg (every edge is contained in a strong clique):

General partition graphs: example

The following graph is not a gpg (there exists an edge not contained in any strong clique):

General partition graphs: example

The following graph is not a gpg (there exists an edge not contained in any strong clique):

Triangle graphs

Definition

A graph $G=(V, E)$ is a triangle graph if it satisfies the following triangle condition:

- for every maximal stable set S in G and every edge $u v \in E(G-S)$, u and v have a common neighbor in S.

Triangle graphs: example

The following graph is a triangle graph:

Triangle graphs: example

The following graph is a triangle graph:

Triangle graphs: example

The following graph is a triangle graph:

Triangle graphs: example

The following graph is a triangle graph:

Triangle graphs: example

The following graph is not a triangle graph:

Triangle graphs: example

The following graph is not a triangle graph:

Inclusion relations among these classes

The following inclusion relations hold:
general partition graphs
\subseteq
strongly equistable graphs

A condition equivalent to the triangle condition

In the equistable graphs literature, the triangle condition was replaced with the following equivalent condition:

"absence of a bad P_{4} ":

For each induced P_{4} on the vertices a, b, c, d, each maximal stable set containing the end-vertices a and d has a common neighbor of the middle vertices b and c.

Inclusion relations among these classes

The following inclusion relations hold:
general partition graphs
\subseteq
strongly equistable graphs

General partition graphs are equistable

Theorem (Jim Orlin, 2009)

Every gpg is equistable.

Proof idea:

General partition graphs are equistable

Theorem (Jim Orlin, 2009)

Every gpg is equistable.

Proof idea:

Let $\left(U_{x}: x \in V\right)$ with $U=\left\{u_{1}, \ldots, u_{k}\right\}$ be a set system realizing G.

Let $n=|V(G)|$ and assign to each $x \in V$ weight

$$
w(x)=\sum\left\{n^{j}: u_{j} \in U_{x}\right\},
$$

also let

$$
t=\sum_{j=1}^{k} n^{j}
$$

Example

General partition graphs are strongly equistable

Theorem (Jim Orlin, 2009)

Every gpg is equistable.

Theorem (McAvaney-Robertson-DeTemple, 1993)

G is a gpg if and only if every edge of G is contained in a strong clique.

Theorem (Mahadev-Peled-Sun, 1994)

Every equistable with a strong clique is strongly equistable.

General partition graphs are strongly equistable

Theorem (Jim Orlin, 2009)

Every gpg is equistable.

Theorem (McAvaney-Robertson-DeTemple, 1993)

G is a gpg if and only if every edge of G is contained in a strong clique.

Theorem (Mahadev-Peled-Sun, 1994)

Every equistable with a strong clique is strongly equistable.

Corollary

Every gpg is strongly equistable.

Inclusion relations among these classes

general partition graphs
$\stackrel{\subseteq}{\text { strongly equistable graphs }}$
\subseteq
equistable graphs
\subset
triangle
graphs

Conjecture (Mahadev-Peled-Sun, 1994)

Every equistable graph is strongly equistable.

Conjecture (Jim Orlin, 2009)

Every equistable graph is a gpg.
If true, Orlin's conjecture would provide a combinatorial characterization of equistable graphs.

Known results

Orlin's conjecture holds within the following graph classes:

- chordal graphs,
- graphs obtained from triangle-free graphs by gluing chordal graphs along edges,

Known results

Orlin's conjecture holds within the following graph classes:

- chordal graphs,
- graphs obtained from triangle-free graphs by gluing chordal graphs along edges,
- outerplanar graphs,
- series-parallel graphs $\equiv K_{4}$-minor-free graphs.

Inclusion relations among these classes

general partition graphs

equistable graphs
c triangle graphs
combinatorial definition
algebraic definition
algebraic definition
combinatorial definition

Our goal:
Identify further combinatorially defined graph classes \mathcal{C} such that within \mathcal{C}, some of the above inclusions become equalities.

First example: AT-free graphs

Asteroidal triple (AT): a triple of vertices x, y, z such that for every pair of them there is a path connecting the two vertices that avoids the neighborhood of the remaining vertex.

First example: AT-free graphs

Asteroidal triple (AT): a triple of vertices x, y, z such that for every pair of them there is a path connecting the two vertices that avoids the neighborhood of the remaining vertex.

Theorem (Kloks-Lee-Liu-Müller, 2003)

Every AT-free triangle graph is a gpg.

First example: AT-free graphs

Asteroidal triple (AT): a triple of vertices x, y, z such that for every pair of them there is a path connecting the two vertices that avoids the neighborhood of the remaining vertex.

Theorem (Kloks-Lee-Liu-Müller, 2003)

Every AT-free triangle graph is a gpg.

Corollary

Orlin's conjecture holds within the class of AT-free graphs.

Tensor products

Definition

The tensor (or direct) product of graphs G and H is the graph $G \times H$ such that:

- $V(G \times H)=V(G) \times V(H)$,
- $(u, x)(v, y) \in E(G \times H)$ if and only if $u v \in E(G) \wedge x y \in E(H)$.

Equistable tensor products

Theorem

Let $G=G_{1} \times G_{2}$, where G_{1}, G_{2} are connected, with more than just one vertex. The following are equivalent:
(i) G is a gpg.
(ii) G is strongly equistable.
(iii) G is equistable.
(iv) $\exists m \geq 2$ such that G_{1} and G_{2} are complete m-partite graphs.

Proof sketch of $(i i i) \Rightarrow$ (iv)

$G=G_{1} \times G_{2}$ equistable.

Claim

No induced subgraph of G_{1} is isomorphic to P_{4} or a paw.

P_{4}

paw

Proof sketch of $(i i i) \Rightarrow$ (iv)

$G=G_{1} \times G_{2}$ equistable.

Proof sketch of $(i i i) \Rightarrow(i v)$

S : a maximal stable set of G containing $(a, u),(c, v),(d, v)$

Proof sketch of $(i i i) \Rightarrow$ (iv)

Every equistable graph satisfies the triangle condition:

- for every maximal stable set S in G and every edge $u v \in E(G-S)$,
u and v have a common neighbor in S.

Proof sketch of $(i i i) \Rightarrow(i v)$

$(e, x) \in S$: a common neighbor of (b, v) and (c, u)

Proof sketch of $(i i i) \Rightarrow$ (iv)

$(e, x)(c, u) \in E\left(G_{1} \times G_{2}\right) \Rightarrow c e \in E\left(G_{1}\right)$
$(e, x)(b, v) \in E\left(G_{1} \times G_{2}\right) \Rightarrow v x \in E\left(G_{2}\right)$

Proof sketch of $(i i i) \Rightarrow$ (iv)

$$
c e \in E\left(G_{1}\right) \wedge v x \in E\left(G_{2}\right) \Rightarrow(c, v)(e, x) \in E\left(G_{1} \times G_{2}\right)
$$

Contradiction with the fact that S is a stable set.

Proof sketch of $(i i i) \Rightarrow$ (iv)

$G=G_{1} \times G_{2}$ equistable.

Claim

G_{1} is (P_{4}, paw)-free.

Lemma

Every connected (P_{4}, paw)-free graph is complete multipartite.

So both G_{1} and G_{2} are complete multipartite.

Proof sketch of $(i i i) \Rightarrow(i v)$

$G=G_{1} \times G_{2}$ equistable.

Claim

G_{1} is (P_{4}, paw)-free.
G_{2} is (P_{4}, paw)-free.

Lemma

Every connected (P_{4}, paw)-free graph is complete multipartite.

So both G_{1} and G_{2} are complete multipartite.

Proof sketch of $(i i i) \Rightarrow(i v)$

G_{1} and G_{2} have the same number of parts:

Proof sketch of $(i i i) \Rightarrow(i v)$

G_{1} and G_{2} have the same number of parts:

Cartesian products

Definition

The Cartesian product of graphs G and H is the graph $G \square H$ such that:

- $V(G \square H)=V(G) \times V(H)$,
- $(u, x)(v, y) \in E(G \square H)$ if and only if $(u=v \wedge x y \in E(H)) \vee(x=y \wedge u v \in E(G))$.

Equistable Cartesian products

Theorem

Let $G=G_{1} \square G_{2}$, where G_{1}, G_{2} are connected, with more than just one vertex. The following are equivalent:
(i) G is a gpg.
(ii) G is strongly equistable.
(iii) G is equistable.
(iv) G is a triangle graph.
(v) $\exists m \geq 2$ such that $G_{1} \cong G_{2} \cong K_{m}$.

Proof sketch of $(i v) \Rightarrow(v)$

For a graph K, we denote:

- by $\delta(K)$ the minimum vertex degree,
- by $\Delta(K)$ the maximum vertex degree,
- for $u v \in E(K)$, let $\lambda(u v)=|N(u) \cap N(v)|$,
- $\lambda(K)=\min \{\lambda(u v): u v \in E(K)\}$.

Observation

$$
\lambda(K) \leq \delta(K)-1 .
$$

Proof sketch of $(i v) \Rightarrow(v)$

$G=G_{1} \square G_{2}$ triangle graph

Claim

$\lambda\left(G_{2}\right) \geq \Delta\left(G_{1}\right)-1$.

Suppose for a contradiction that $\lambda\left(G_{2}\right) \leq \Delta\left(G_{1}\right)-2$.

Proof sketch of $(i v) \Rightarrow(v)$

$\lambda\left(G_{2}\right) \leq \Delta\left(G_{1}\right)-2$.
x : vertex of maximum degree in $G_{1}(d(x) \geq 2)$
y, z : two neighbors of x, $u v \in E\left(G_{2}\right): \lambda(u v)=\lambda\left(G_{2}\right)$.

Proof sketch of $(i v) \Rightarrow(v)$

$\lambda\left(G_{2}\right) \leq \Delta\left(G_{1}\right)-2$.
x : vertex of maximum degree in $G_{1}(d(x) \geq 2)$
y, z : two neighbors of x, $u v \in E\left(G_{2}\right): \lambda(u v)=\lambda\left(G_{2}\right)$.

Proof sketch of $(i v) \Rightarrow(v)$

$\lambda\left(G_{2}\right) \leq \Delta\left(G_{1}\right)-2$.
x : vertex of maximum degree in $G_{1}(d(x) \geq 2)$
y, z : two neighbors of x, $u v \in E\left(G_{2}\right): \lambda(u v)=\lambda\left(G_{2}\right)$.

Proof sketch of $(i v) \Rightarrow(v)$

$$
\begin{aligned}
& \lambda\left(G_{2}\right) \leq \Delta\left(G_{1}\right)-2 \\
& |N(x) \backslash\{y, z\}| \geq \lambda\left(G_{2}\right) .
\end{aligned}
$$

Proof sketch of $(i v) \Rightarrow(v)$

$\lambda\left(G_{2}\right) \leq \Delta\left(G_{1}\right)-2$.
S : a maximal stable set containing all yellow vertices.

Contradiction.

Proof sketch of $(i v) \Rightarrow(v)$

Claim

$\lambda\left(G_{2}\right) \geq \Delta\left(G_{1}\right)-1$.

Consequently

$$
\lambda\left(G_{1}\right) \geq \Delta\left(G_{2}\right)-1 \geq \delta\left(G_{2}\right)-1 \geq \lambda\left(G_{2}\right) \geq \Delta\left(G_{1}\right)-1 \geq \delta\left(G_{1}\right)-1 \geq \lambda\left(G_{1}\right) .
$$

Equalities hold, therefore:

- $\delta\left(G_{1}\right)-\Lambda(G)-\delta\left(G_{2}\right)=\Delta\left(G_{2}\right)$.
- G_{1} and G_{2} are both regular of the same degree $m-1$ - $\lambda\left(G_{i}\right)=m-2$ implies that $G_{1} \cong G_{2} \cong K_{m}$.

Proof sketch of $(i v) \Rightarrow(v)$

Claim

$$
\begin{aligned}
& \lambda\left(G_{2}\right) \geq \Delta\left(G_{1}\right)-1 . \\
& \lambda\left(G_{1}\right) \geq \Delta\left(G_{2}\right)-1 .
\end{aligned}
$$

Consequently

$$
\lambda\left(G_{1}\right) \geq \Delta\left(G_{2}\right)-1 \geq \delta\left(G_{2}\right)-1 \geq \lambda\left(G_{2}\right) \geq \Delta\left(G_{1}\right)-1 \geq \delta\left(G_{1}\right)-1 \geq \lambda\left(G_{1}\right) .
$$

Proof sketch of $(i v) \Rightarrow(v)$

Claim

$$
\begin{aligned}
& \lambda\left(G_{2}\right) \geq \Delta\left(G_{1}\right)-1 . \\
& \lambda\left(G_{1}\right) \geq \Delta\left(G_{2}\right)-1 .
\end{aligned}
$$

Consequently

$$
\lambda\left(G_{1}\right) \geq \Delta\left(G_{2}\right)-1 \geq \delta\left(G_{2}\right)-1 \geq \lambda\left(G_{2}\right) \geq \Delta\left(G_{1}\right)-1 \geq \delta\left(G_{1}\right)-1 \geq \lambda\left(G_{1}\right)
$$

Equalities hold, therefore:

- $\delta\left(G_{1}\right)=\Delta\left(G_{1}\right)=\delta\left(G_{2}\right)=\Delta\left(G_{2}\right)$.
- G_{1} and G_{2} are both regular of the same degree $m-1$.
- $\lambda\left(G_{i}\right)=m-2$ implies that $G_{1} \cong G_{2} \cong K_{m}$.

Strong products

Definition

The strong product of graphs G and H is the graph $G \boxtimes H$ such that:

- $V(G \boxtimes H)=V(G) \times V(H)$,
- $E(G \boxtimes H)=E(G \times H) \cup E(G \square H)$.

Equistable strong products

Theorem (McAvaney-Robertson-DeTemple, 1993)
 If $G_{1} \boxtimes G_{2}$ is a gpg, then G_{1} and G_{2} are gpgs.

Equistable strong products

Theorem (McAvaney-Robertson-DeTemple, 1993)

If $G_{1} \boxtimes G_{2}$ is a gpg, then G_{1} and G_{2} are gpgs.

Proposition

The general partition (equistable, strongly equistable, triangle) graphs are not closed under the strong product.

Counterexample: $\left(K_{3} \square K_{3}\right) \boxtimes\left(K_{3} \square K_{3}\right)$.

Equistable strong products

Theorem

If $G_{1} \boxtimes G_{2}$ is a triangle graph, then G_{1} and G_{2} are triangle graphs.

Theorem

If every edge of G_{1} and G_{2} is contained in a simplicial clique, then $G_{1} \boxtimes G_{2}$ is a gpg.
simplicial clique: a clique of the form $K=N(v) \cup\{v\}$.

Lexicographic products

Definition

The lexicographic product of graphs G and H is the graph $\operatorname{Lex}(G, H)$ such that:

- $V(\operatorname{Lex}(G, H))=V(G) \times V(H)$,
- $(u, x)(v, y) \in E(\operatorname{Lex}(G, H))$ if and only if $(u v \in E(G)) \vee(u=v \wedge x y \in E(H))$.

Lexicographic products

Theorem (McAvaney-Robertson-DeTemple, 1993)

$\operatorname{Lex}\left(G_{1}, G_{2}\right)$ is a gpg if and only if G_{1} and G_{2} are gpgs.

Theorem

$\operatorname{Lex}\left(G_{1}, G_{2}\right)$ is a triangle graph if and only if G_{1} and G_{2} are triangle graphs.

Theorem

(i) If $\operatorname{Lex}\left(G_{1}, G_{2}\right)$ is equistable, then G_{1} and G_{2} are equistable.
(ii) If G_{1} and G_{2} are equistable and G_{2} contains an isolated vertex, then $\operatorname{Lex}\left(G_{1}, G_{2}\right)$ is equistable.

Deleted lexicographic products

Definition

The deleted lexicographic product of graphs G and H is the graph $\operatorname{DLex}(G, H)$ such that:

- $V(\operatorname{DLex}(G, H))=V(G) \times V(H)$,
- $(u, x)(v, y) \in E(\operatorname{DLex}(G, H))$ if and only if $(u v \in E(G) \wedge x \neq y) \vee(u=v \wedge x y \in E(H))$.

Deleted lexicographic products

Theorem

Let G be connected, triangle-free, with at least two vertices, H with at least one edge. The following are equivalent:
(i) $\operatorname{DLex}(G, H)$ is a gpg.
(ii) $\operatorname{DLex}(G, H)$ is strongly equistable.
(iii) $\operatorname{DLex}(G, H)$ is equistable.
(iv) $\operatorname{DLex}(G, H)$ is a triangle graph.
(v) Either $G=K_{2}$ and the complement of H is of maximum degree at most 1 , or $G \neq K_{2}$ is complete bipartite and $H=K_{t \times 2}$ for some $t \geq 2$.

Open problems

Determine the complexity of recognizing equistable graphs.

Conjecture (Mahadev-Peled-Sun, 1994)

Every equistable graph is strongly equistable.

Conjecture (Jim Orlin, 2009)

Every equistable graph is a gpg.

Conjecture (ŠM-MM, 2011)

Every equistable graph contains a strong clique.

The end

Thank you

