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(WELL-FOUNDED) SETS

I We assume the axioms of Zermelo-Fraenkel, including
I Axiom of Foundation: there are no membership cycles or

infinite descending membership chains
I Axiom of Extensionality: two sets are equal iff they have the

same elements

I The standard model: von Neumann’s cumulative
hierarchy of sets, V :

I V0 = ∅
I Vi =

⋃
j<i P(Vj)

I V =
⋃

i Vi, over all ordinals i

I For example,
I V1 = {∅}
I V2 =

{
∅, {∅}

}
I V3 =

{
∅, {∅}, {{∅}}, {∅, {∅}}

}
, . . .
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REPRESENTING SETS BY DIRECTED GRAPHS{
∅, {∅}, {∅, {∅}}

}

∅ {∅} {∅, {∅}}

∅ ∅ {∅}

∅

{
∅, {∅}, {∅, {∅}}

}
{∅, {∅}}

{∅}

∅

I A node x is redundant in an acyclic digraph G if there is
another node of G with the same set of out-neighbors as x.

DEFINITION

A set =def a pointed acyclic digraph without redundant nodes.

x ∈ y⇐⇒ x← y
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HYPERSETS
Modern modeling approaches may require ∈ to be cyclic.

DEFINITION

A hyperset =def a pointed digraph without redundant nodes.

I A node x is redundant in a digraph G if there is another
node of G bisimilar to x.

DEFINITION

Given a digraph G, a bisimulation on G is a relation
[ ⊆ V(G)× V(G) iff for all x, y ∈ V(G) s.t. x [ y

I ∀x′
(
x→ x′

)
⇒ ∃y′

(
y→ y′ ∧ x′ [ y′

)
;

I ∀y′
(
y→ y′

)
⇒ ∃x′

(
x→ x′ ∧ x′ [ y′

)
.

I Bisimilarity in G is an equivalence relation on G.
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BISIMULATION - EXAMPLE

c d

a b

The bisimilarity relation is [a, b] [c, d]
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ACKERMANN’S ENCODING
Let

I HF be the set of all hereditarily finite sets.
I HF ) HF be the set of all hereditarily finite hypersets.

Ackermann’s bijection (1937) NA : HF→ N, where

NA(F) =Def

∑
h∈F

2NA(h).

NA(∅) = 0

NA({∅}) = 1

NA({{∅}}) = 2NA({∅, {∅}}) = 3

0

1

2

4 5 6 7
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ACKERMANN’S ENCODING
Let

I HF be the set of all hereditarily finite sets.
I HF ) HF be the set of all hereditarily finite hypersets.

Ackermann’s bijection (1937) NA : HF→ N, where

NA(F) =Def

∑
h∈F

2NA(h).

It induces the linear order ≺A on HF, also expressible as

F ≺A F′ ⇔Def NA(F) < NA(F′)⇔ max
≺A

(F \ F′) ≺A max
≺A

(F′ \ F).

MAIN CONTRIBUTION

A natural extension of NA to HF.
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APPLICATIONS OF NA

RECURSION, DECIDABILITY RESULTS

Sets: Since ≺A is a well-founded order, it is easy to do recursion
over HF.
Hypersets: Ad-hoc solutions.

COUNTING (COMBINATORIAL ENUMERATION)

Sets: We know the number of transitive sets with n elements,
because of an Ackermann-like bijection between them and the
set {(x0, x1, . . . , xn−1) : x0 = 0, xi−1 < xi < 2i, 1 ≤ i ≤ n− 1}.
(Peddicord, 1962)
Hypersets: OPEN (to our knowledge)
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APPLICATIONS OF NA (2)
ALGORITHMICS

Sets: The problem “Given an acyclic digraph G on n nodes and
m arcs, compute the maximum bisimulation on G” can be
solved in time O(m) by trying to find ≺A on G.
(Dovier, Piazza, Policriti, 2004)

Hypersets: The problem “Given a digraph G on n nodes and m
arcs, compute the maximum bisimulation on G” can be solved

I O(m log n) (Paige, Tarjan, 1987)
I O(m log n) with improvements when G is resembles an

acyclic digraph (Dovier, Piazza, Policriti, 2004)
Linear algorithm?

I when E(G) corresponds to a function: O(m) (Paige, Tajan,
Bonic, 1985);

I the general case: OPEN
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A NAIVE EXTENSION OF ≺A TO HF FAILS

a b

∅

Consider a = {b}, b = {a, ∅}.

Note that ∅ ≺ a.

a ≺ b⇔ max≺{b} ≺ max≺{a, ∅} ⇔ b ≺ a.
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OUR APPROACH

I Instead of defining first QA, and then taking the induced
order, we do the opposite.

I How do we do it?
≺A over G acyclic =⇒ algorithm to compute the maximum
bisimulation over G (DPP’04).
≺H over any G⇐= algorithm to compute the maximum
bisimulation over G (PT’87)

I Finally, for all a ∈ HF, define:

ZA(a) =

{
|{b ∈ HF : b ≺H a}| = NA(a) if a ∈ HF,
−|{b ∈ HF \ HF : b ≺H a}| − 1 if a ∈ HF \ HF.

QA : HF→
{m

2n : n,m ∈ N
}
, QA(a) =

∑
b∈a

2ZA(b).
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STABLE PARTITIONING

DEFINITION

I Given a set V, a relation E ⊆ V × V, and a partition P of V,
P is stable w.r.t. E iff
∀B1,B2 ∈ P

(
B1 ⊆ E−1(B2) ∨ B1 ∩ E−1(B2) = ∅)

)
I Given a set V and partitions P,Q of V,

I P refines Q iff ∀B ∈ P ∃C ∈ Q
(
B ⊆ C

)
I Q is coarser than P iff P refines Q

I Paige-Tarjan’s 1987 algorithm solves the problem of
finding the coarsest partition of V(G), stable w.r.t. E(G)

I Finding the maximum bisimulation is equivalent to the
coarsest partition problem (Kannellakis, Smolka, 1990)
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THE SPLITTING TECHNIQUE

THE BASIC PRIMITIVE OF THE PT’87 ALGORITHM

Given S ∈ P, replace P by

{B ∩ E−1(S),B \ E−1(S) : B ∈ P}

We will do the opposite: Given T ∈ P, replace T by all the
equivalence classes of T induced by

x ∼E y⇔Def ∀B ∈ P
(
x ∈ E−1(B)↔ y ∈ E−1(B)

)

a b

∅

[∅, a, b]
[∅] [a, b]
[∅] [a] [b]
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THE RANK NOTION FOR HF
RANK

Define rk : HF→ N as
rk(v) = max{1 + rk(u) : ∀u ∈ v}.

It holds that rk(u) < rk(v)⇒ u ≺A v.

We can obtain the partition of HF whose blocks are the
rank-equality classes: Start with P0 = {HF}

I That there is exactly one infinite block Sn of Pn
I Sn is a culprit of the instability of Pn
I Pn+1 = (Pn\{Sn})∪

{
{x ∈ Sn|x∩Sn = ∅}, {x ∈ Sn|x∩Sn 6= ∅}

}
[∅, {∅}, {{∅}}, {∅, {∅}}, {{{∅}}}, . . . ]

[∅] ≺A [{∅}, {{∅}}, {∅, {∅}}, {{{∅}}}, . . . ]
[∅] ≺A [{∅}] ≺A [{{∅}}, {∅, {∅}}, {{{∅}}}, . . . ]

[∅] ≺A [{∅}] ≺A [{{∅}}, {∅, {∅}}] ≺A [{{{∅}}}, . . . ]
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A NEW DEFINITION OF ≺A

I Define a countable sequence (X n)n∈N of ordered partitions,
X n = {Xn

i : i ∈ N}
I Each X n+1 is an ordered refinement of X n

I Initially, X 0
i = {x ∈ HF : rk(x) = i}

I Consider the smallest index h such that X n
h can be split,

and the relation on X n
h

x ∼3 y⇔Def ∀k
(
Xn

k ∩ x 6= ∅ ↔ Xn
k ∩ y 6= ∅

)
I Given two ∼3-classes Z′,Z ⊆ Xn

h , put Z′ before Z iff, for
x ∈ Z′ and y ∈ Z, the largest mismatch position k between
x, y ‘favors’ y, i.e.

Xn
k ∩x = ∅ ∧ Xn

k ∩y 6= ∅ ∧ ∀j > k(Xn
j ∩x = ∅ ↔ Xn

j ∩y = ∅ )
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A NEW DEFINITION OF ≺A (2)

THEOREM

At limit,
I Every x ∈ HF remains in a singleton block.
I Ackermann’s order is the limit of the X n’s.

Why is the Rank important?
I It guarantees correctness, i.e., the order is à la Ackermann.
I It guarantees convergence, i.e., the blocks become singletons

after ω steps.
I The set {x ∈ HF : rk(x) = i} is finite, ∀i.
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A RANK NOTION FOR HF
DEFINITION

Define rk : HF→ N as
rk(x) = the maximum length of all simple directed paths in x,

issuing from the point of x.
I rk is an extension of the standard notion for HF.

LEMMA

There exists a function r(n) s.t. |{x ∈ HF| rk(x) ≤ n}| < r(n).

For arbitrary graphs of bounded ‘diameter’ this is not the case:
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THE ORDER FOR HYPERSETS
Start with the partition X 0 = {X0

i : i ∈ N}, where
X0

i = {x ∈ HF: rk(x) = i}, and iteratively apply the operation
of ordered refinement.

THEOREM

At limit,
I every x ∈ HF remains in a singleton block;
I the induced order ≺H extends ≺A.

∅

f

e

d

c

b

a

[∅] [b, c, e, f , ...] [a, d, ...]
[∅] [e, ...] [c, f , ...] [b, ...] [a, d, ...]
[∅] [e, ...] [c, f , ...] [b, ...] [d, ...] [a, ...]
[∅] [e, ...] [f , ...] [c, ...] [b, ...] [d, ...] [a, ...]
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CONCLUSIONS
I A step closer in better understanding bisimulations,

hypersets
I Connection between recognizing a hyperset, counting, and

enumerating them

I A new definition of Ackermann’s order for HF
I A new notion of rank for hypersets

I Used here to get correctness and convergence
I Any other adequate rank notion may give another order on

HF \ HF

I Possible applications
I To show that any hyperset can be transformed into any

other one by adding/removing arcs (useful in random
generation by Markov Chains)

I Deeper exploration of the connection between sets and
numbers

I Which sets have a prime number encoding?
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