SETS AND HYPERSETS ACKERMANN’S BIJECTION EXTENDING ACKERMANN'S ORDER TO HYPERSETS
! !

Mapping Hypersets into Numbers

G. D’Agostino?, E. G. OmodeoP, A. Policriti?,
Alexandru I. Tomescu®*©

“Dip. Matematica e Informatica Universita di Udine

"Dip. Matematica e Informatica, Universita di Trieste
“Fac. Mathematics and Computer Science, University of Bucharest

October 11, 2010



SETS AND HYPERSETS ACKERMANN’S BIJECTION EXTENDING ACKERMANN'S ORDER TO HYPERSETS

OUTLINE

SETS AND HYPERSETS

ACKERMANN'S BIJECTION

EXTENDING ACKERMANN’S ORDER TO HYPERSETS

2/20



SETS AND HYPERSETS ACKERMANN’S BIJECTION EXTENDING ACKERMANN'S ORDER TO HYPERSETS
!

(WELL-FOUNDED) SETS

» We assume the axioms of Zermelo-Fraenkel, including

» Axiom of Foundation: there are no membership cycles or
infinite descending membership chains

» Axiom of Extensionality: two sets are equal iff they have the
same elements

» The standard model: von Neumann’s cumulative
hierarchy of sets, V:
> Vo = @
> Vi= Uj<i 2(V)
» V =,V over all ordinals

» For example,
» V1 = {0}
> Vo = {0,{0}}
> Vs = {0, {0}, ({0}, 0. (01} ).
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REPRESENTING SETS BY DIRECTED GRAPHS
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REPRESENTING SETS BY DIRECTED GRAPHS
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{0, {0}} {0,{0}}
{0} {0}
0

» A node x is redundant in an acyclic digraph G if there is
another node of G with the same set of out-neighbors as x.

DEFINITION

A set =, a pointed acyclic digraph without redundant nodes.

XEY<=x+y
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HYPERSETS
Modern modeling approaches may require € to be cyclic.

DEFINITION

A hyperset =4, a pointed digraph without redundant nodes.

» A node x is redundant in a digraph G if there is another
node of G bisimilar to x.
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HYPERSETS
Modern modeling approaches may require € to be cyclic.

DEFINITION

A hyperset =4, a pointed digraph without redundant nodes.

» A node x is redundant in a digraph G if there is another
node of G bisimilar to x.

DEFINITION

Given a digraph G, a bisimulation on G is a relation
b CV(G) x V(G)iffforallx,y € V(G)st. xby

» VY (x =)= (Y=Y AXDbY);

» VY (y—=y) =W (x =X AXDby).

» Bisimilarity in G is an equivalence relation on G.
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BISIMULATION - EXAMPLE

The bisimilarity relation is [a, b] [c, d]
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ACKERMANN’S ENCODING
Let
» HF be the set of all hereditarily finite sets.
» HF 2 HF be the set of all hereditarily finite hypersets.
Ackermann’s bijection (1937) N4 : HF — N, where

NA(F) =pg »_ 2N,
heF

Na({0,{0}}) =3 Na({{0}}) =2

Na({0}) =1

Na(0) =0
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ACKERMANN’S ENCODING
Let
» HF be the set of all hereditarily finite sets.
» HF D HF be the set of all hereditarily finite hypersets.
Ackermann’s bijection (1937) N4 : HF — N, where

Na(F) =pef Z oNah),
heF

It induces the linear order <4 on HF, also expressible as

F <4 F' ©pg Na(F) < Nu(F) & rrLax(F\F') <A rrLax(F’\F).
A A

MAIN CONTRIBUTION

A natural extension of N4 to HF.
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APPLICATIONS OF Ny

RECURSION, DECIDABILITY RESULTS

Sets: Since <4 is a well-founded order, it is easy to do recursion
over HF.
Hypersets: Ad-hoc solutions.

COUNTING (COMBINATORIAL ENUMERATION)

Sets: We know the number of transitive sets with 7 elements,
because of an Ackermann-like bijection between them and the
set {(x0,X1,...,%,-1) : X0 =0,x_1 <x; <2, 1<i<n-—1}.
(Peddicord, 1962)

Hypersets: OPEN (to our knowledge)
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APPLICATIONS OF Ny (2)

ALGORITHMICS

Sets: The problem “Given an acyclic digraph G on n nodes and
m arcs, compute the maximum bisimulation on G” can be
solved in time O(m) by trying to find <4 on G.

(Dovier, Piazza, Policriti, 2004)
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APPLICATIONS OF Ny (2)
ALGORITHMICS

Sets: The problem “Given an acyclic digraph G on n nodes and
m arcs, compute the maximum bisimulation on G” can be
solved in time O(m) by trying to find <4 on G.

(Dovier, Piazza, Policriti, 2004)

Hypersets: The problem “Given a digraph G on n nodes and m
arcs, compute the maximum bisimulation on G” can be solved

» O(mlogn) (Paige, Tarjan, 1987)

» O(mlogn) with improvements when G is resembles an
acyclic digraph (Dovier, Piazza, Policriti, 2004)
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APPLICATIONS OF Ny (2)

ALGORITHMICS

Sets: The problem “Given an acyclic digraph G on n nodes and
m arcs, compute the maximum bisimulation on G” can be
solved in time O(m) by trying to find <4 on G.
(Dovier, Piazza, Policriti, 2004)
Hypersets: The problem “Given a digraph G on n nodes and m
arcs, compute the maximum bisimulation on G” can be solved
» O(mlogn) (Paige, Tarjan, 1987)
» O(mlogn) with improvements when G is resembles an
acyclic digraph (Dovier, Piazza, Policriti, 2004)
Linear algorithm?
» when E(G) corresponds to a function: O(m) (Paige, Tajan,
Bonic, 1985);
» the general case: OPEN
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A NAIVE EXTENSION OF <4 TO HF FAILS

Consider a = {b}, b = {a, 0}.
Note that ) < a.

a b

0 a < b < max<{b} < max~{a,0} < b <a.
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OUR APPROACH

» Instead of defining first Q4, and then taking the induced
order, we do the opposite.
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OUR APPROACH

» Instead of defining first Q4, and then taking the induced
order, we do the opposite.

» How do we do it?
<4 over G acyclic = algorithm to compute the maximum
bisimulation over G (DPP’04).
<p over any G <= algorithm to compute the maximum
bisimulation over G (PT'87)
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OUR APPROACH

» Instead of defining first Q4, and then taking the induced
order, we do the opposite.

» How do we do it?
<4 over G acyclic = algorithm to compute the maximum
bisimulation over G (DPP’04).
<p over any G <= algorithm to compute the maximum
bisimulation over G (PT'87)

» Finally, for all a € HF, define:

sy = | HEEHF b <yal=Na(e) if acHF,
A= 1 —{{b e HF\HF : b<ya}|—1 if ac HF\HF.

Q4 : HF — {zﬂn : n,meN}, QA(a):ZZZA(b).

bea
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STABLE PARTITIONING

DEFINITION

» Givenaset V,arelation E C V x V, and a partition P of V,
P is stable w.r.t. E iff
VB1,B, € P(By C E"Y(By) vV Bi NE~Y(By) = 1))

» Given a set V and partitions P, Q of V,

» P refines Qiff VB € P3C € Q(B C C)
» Qis coarser than P iff P refines Q

» Paige-Tarjan’s 1987 algorithm solves the problem of
finding the coarsest partition of V(G), stable w.r.t. E(G)

» Finding the maximum bisimulation is equivalent to the
coarsest partition problem (Kannellakis, Smolka, 1990)
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THE SPLITTING TECHNIQUE
THE BASIC PRIMITIVE OF THE PT’87 ALGORITHM

Given S € P, replace P by
{BNE"YS),B\E"'(S) : BeP}

We will do the opposite: Given T € P, replace T by all the
equivalence classes of T induced by

X ~pY <py VBEP(x € ETY(B) <+ y € ET'(B))

a b [0,a,b]
[0] [a,b]
0 [01 [a] [b]
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THE RANK NOTION FOR HF

RANK

Define rk : HF — N as
rk(v) = max{1 + rk(u) : Vu € v}.
It holds that rk(u) < rk(v) = u <4 v.
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THE RANK NOTION FOR HF

RANK

Define rk : HF — N as
rk(v) = max{1 + rk(u) : Vu € v}.
It holds that rk(u) < rk(v) = u <4 v.

We can obtain the partition of HF whose blocks are the
rank-equality classes: Start with Py = {HF}

» That there is exactly one infinite block S, of P,

» S, is a culprit of the instability of P,

> Puy1 = (P \{SuHU{{x € Sy|xNS, = 0}, {x € Su|xNS, # 0} }

0, {0y, {0}, 0.0}, {{{0}}},...]
01 <4 [0}, {03}, {0.{0}}, {{{0}}},...]
01 <4 [0} <4 {03}, {0,403}, {{{0}}},...]
01 <4 [0 <4 [0}, {04031 <a K{{0}}},...]
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A NEW DEFINITION OF <4

» Define a countable sequence (X"),cn of ordered partitions,
X" ={X":ieN}

» Bach X"*!is an ordered refinement of X"

» Initially, X? = {x € HF : rk(x) =i}
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» Define a countable sequence (X"),cn of ordered partitions,
X" ={X":ieN}

» Bach X"*!is an ordered refinement of X"

» Initially, X? = {x € HF : rk(x) =i}

» Consider the smallest index & such that A} can be split,
and the relation on &}

X ~s Y Sper VR(XENx £ 0 < XNy #£0)
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EXTENDING ACKERMANN'’S ORDER TO HYPERSETS

A NEW DEFINITION OF <4

>

Define a countable sequence (X"),cn of ordered partitions,
X" ={X":ieN}

Each X"t1 is an ordered refinement of X"

Initially, X = {x € HF : rk(x) =i}

Consider the smallest index / such that A} can be split,
and the relation on &}

X ~s Y Sper VR(XENx £ 0 < XNy #£0)

Given two ~5-classes Z', Z C X}, put Z' before Z iff, for
x € Z' and y € Z, the largest mismatch position k between
x,y ‘favors’ y, i.e.

Xgnx=0AXgny#0AY > KX nx=0< X'Nny=0)

16 / 20
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A NEW DEFINITION OF <4 (2)

THEOREM
At limit,

» Every x € HF remains in a singleton block.

» Ackermann’s order is the limit of the X™’s.

Why is the Rank important?

» It guarantees correctness, i.e., the order is i la Ackermann.

» It guarantees convergence, i.e., the blocks become singletons
after w steps.

» The set {x € HF : rk(x) = i} is finite, Vi.
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A RANK NOTION FOR HF

DEFINITION

Define rk : HF — N as
rk(x) = the maximum length of all simple directed paths in x,

issuing from the point of x.
» rkis an extension of the standard notion for HF.
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A RANK NOTION FOR HF
DEFINITION

Define rk : HF — N as
rk(x) = the maximum length of all simple directed paths in x,

issuing from the point of x.
» rkis an extension of the standard notion for HF.

LEMMA
There exists a function r(n) s.t. |{x € HF | rk(x) < n}| < r(n).

For arbitrary graphs of bounded ‘diameter’ this is not the case:

O

18 / 20
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THE ORDER FOR HYPERSETS
Start with the partition X° = {X? : i € N}, where
XY = {x € HF : rk(x) = i}, and iteratively apply the operation
of ordered refinement.

THEOREM

At limit,
» every x € HF remains in a singleton block;
» the induced order <y extends < 4.
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THE ORDER FOR HYPERSETS
Start with the partition X° = {X? : i € N}, where
XY = {x € HF : rk(x) = i}, and iteratively apply the operation
of ordered refinement.
THEOREM
At limit,

» every x € HF remains in a singleton block;

» the induced order <y extends < 4.

01 [b,c,e.f,...] [a,d,..]
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XY = {x € HF : rk(x) = i}, and iteratively apply the operation
of ordered refinement.
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THE ORDER FOR HYPERSETS
Start with the partition X° = {X? : i € N}, where

XY = {x € HF : rk(x) = i}, and iteratively apply the operation
of ordered refinement.

THEOREM
At limit,

» every x € HF remains in a singleton block;

» the induced order <y extends < 4.

[0] [b,c,e,f, .. .
[01 Ie,. ][Cf . la,d, ..
[01 [e,...] [c,f,...] ,...] d,..1 [a,..]
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THE ORDER FOR HYPERSETS
Start with the partition X° = {X? : i € N}, where

XY = {x € HF : rk(x) = i}, and iteratively apply the operation
of ordered refinement.

THEOREM
At limit,

» every x € HF remains in a singleton block;

» the induced order <y extends < 4.

[0] [b,c,e,f, .. .

[01 Ie,. ][Cf . la,d, ..

01 Le,..] [c,f,...] ,...] .1 [a,..]

01 le,..1 If,..]1 [c,...] [b,...] [d,..] [a,..]
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CONCLUSIONS

» A step closer in better understanding bisimulations,
hypersets
» Connection between recognizing a hyperset, counting, and
enumerating them

v

A new definition of Ackermann’s order for HF

» A new notion of rank for hypersets
» Used here to get correctness and convergence
» Any other adequate rank notion may give another order on

HF\ HF

Possible applications
» To show that any hyperset can be transformed into any
other one by adding/removing arcs (useful in random
generation by Markov Chains)

v

v

Deeper exploration of the connection between sets and
numbers
» Which sets have a prime number encoding?
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