Mapping Hypersets into Numbers

G. D'Agostino^a, E. G. Omodeo^b, A. Policriti^a, Alexandru I. Tomescu^{a,c}

^aDip. Matematica e Informatica Università di Udine ^bDip. Matematica e Informatica, Università di Trieste ^cFac. Mathematics and Computer Science, University of Bucharest

October 11, 2010

OUTLINE

SETS AND HYPERSETS

ACKERMANN'S BIJECTION

EXTENDING ACKERMANN'S ORDER TO HYPERSETS

(Well-founded) Sets

- ► We assume the axioms of Zermelo-Fraenkel, including
 - ► Axiom of Foundation: there are no membership cycles or infinite descending membership chains
 - Axiom of Extensionality: two sets are equal iff they have the same elements
- ► The standard model: von Neumann's cumulative hierarchy of sets, *V*:
 - $\mathcal{V}_0 = \emptyset$
 - $\mathcal{V}_i = \bigcup_{j < i} \mathscr{P}(\mathcal{V}_j)$
 - $\mathcal{V} = \bigcup_i \mathcal{V}_i$, over all ordinals *i*
- ► For example,

•
$$\mathcal{V}_1 = \{\emptyset\}$$

•
$$\mathcal{V}_2 = \{\emptyset, \{\emptyset\}\}$$

• $\mathcal{V}_3 = \left\{ \emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\} \right\}, \dots$

 $\left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$

 $\bigcirc \ \left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$

 $\left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$

 $\left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$ **)**{Ø}

 $\left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$){Ø}) $\{\emptyset, \{\emptyset\}\}$ Ø

 $\left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$ $\{\emptyset\}$ $\{\emptyset, \{\emptyset\}\}$ Ŵ Ø

 $\left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$ {Ø} $\{\emptyset, \{\emptyset\}\}$ Ŵ Ø

 $\left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$ {Ø} $\{\emptyset, \{\emptyset\}\}$ Ø $\{\emptyset\}$ Ø

 $\left\{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right\}$ {Ø} $\{\emptyset, \{\emptyset\}\}$ Ø {Ø} Ø Ø

REPRESENTING SETS BY DIRECTED GRAPHS

REPRESENTING SETS BY DIRECTED GRAPHS

► A node *x* is *redundant* in an acyclic digraph *G* if there is another node of *G* with the same set of out-neighbors as *x*.

DEFINITION

A set $=_{def}$ a pointed acyclic digraph without *redundant* nodes. $x \in y \iff x \leftarrow y$

HYPERSETS

Modern modeling approaches may require \in to be cyclic.

DEFINITION

A hyperset $=_{def}$ a pointed digraph without *redundant* nodes.

► A node *x* is *redundant* in a digraph *G* if there is another node of *G* bisimilar to *x*.

HYPERSETS

Modern modeling approaches may require \in to be cyclic.

DEFINITION

A hyperset $=_{def}$ a pointed digraph without *redundant* nodes.

► A node *x* is *redundant* in a digraph *G* if there is another node of *G* bisimilar to *x*.

DEFINITION

Given a digraph *G*, a bisimulation on *G* is a relation $\flat \subseteq V(G) \times V(G)$ iff for all $x, y \in V(G)$ s.t. $x \flat y$

$$\blacktriangleright \forall x' (x \to x') \Rightarrow \exists y' (y \to y' \land x' \flat y');$$

$$\blacktriangleright \forall y' (y \to y') \Rightarrow \exists x' (x \to x' \land x' \flat y').$$

► Bisimilarity in *G* is an equivalence relation on *G*.

BISIMULATION - EXAMPLE

The bisimilarity relation is [a, b] [c, d]

ACKERMANN'S ENCODING

Let

- HF be the set of all hereditarily finite sets.
- $\overline{HF} \supseteq HF$ be the set of all hereditarily finite hypersets.

Ackermann's bijection (1937) $\mathbb{N}_A : \mathsf{HF} \to \mathbb{N}$, where

$$\mathbb{N}_A(F) =_{Def} \sum_{h \in F} 2^{\mathbb{N}_A(h)}$$

ACKERMANN'S ENCODING

Let

- HF be the set of all hereditarily finite sets.
- $\overline{HF} \supseteq HF$ be the set of all hereditarily finite hypersets.

Ackermann's bijection (1937) $\mathbb{N}_A : \mathsf{HF} \to \mathbb{N}$, where

$$\mathbb{N}_A(F) =_{Def} \sum_{h \in F} 2^{\mathbb{N}_A(h)}.$$

It induces the linear order \prec_A on HF, also expressible as

$$F \prec_A F' \Leftrightarrow_{Def} \mathbb{N}_A(F) < \mathbb{N}_A(F') \Leftrightarrow \max_{\prec_A}(F \setminus F') \prec_A \max_{\prec_A}(F' \setminus F).$$

MAIN CONTRIBUTION

A *natural* extension of \mathbb{N}_A to $\overline{\mathsf{HF}}$.

APPLICATIONS OF \mathbb{N}_A

RECURSION, DECIDABILITY RESULTS

Sets: Since \prec_A is a well-founded order, it is easy to do recursion over HF.

Hypersets: Ad-hoc solutions.

COUNTING (COMBINATORIAL ENUMERATION)

Sets: We know the number of transitive sets with *n* elements, because of an Ackermann-like bijection between them and the set $\{(x_0, x_1, \ldots, x_{n-1}) : x_0 = 0, x_{i-1} < x_i < 2^i, 1 \le i \le n-1\}$. (Peddicord, 1962) **Hypersets: OPEN** (to our knowledge)

APPLICATIONS OF \mathbb{N}_A (2)

ALGORITHMICS

Sets: The problem "Given an acyclic digraph *G* on *n* nodes and *m* arcs, compute the maximum bisimulation on *G*" can be solved in time $\mathcal{O}(m)$ by trying to find \prec_A on *G*. (Dovier, Piazza, Policriti, 2004)

Applications of \mathbb{N}_A (2)

Algorithmics

Sets: The problem "Given an acyclic digraph *G* on *n* nodes and *m* arcs, compute the maximum bisimulation on *G*" can be solved in time $\mathcal{O}(m)$ by trying to find \prec_A on *G*. (Dovier, Piazza, Policriti, 2004)

Hypersets: The problem "Given a digraph *G* on *n* nodes and *m* arcs, compute the maximum bisimulation on *G*" can be solved

- $\mathcal{O}(m \log n)$ (Paige, Tarjan, 1987)
- ► O(m log n) with improvements when G is resembles an acyclic digraph (Dovier, Piazza, Policriti, 2004)

Applications of \mathbb{N}_A (2)

Algorithmics

Sets: The problem "Given an acyclic digraph *G* on *n* nodes and *m* arcs, compute the maximum bisimulation on *G*" can be solved in time $\mathcal{O}(m)$ by trying to find \prec_A on *G*. (Dovier, Piazza, Policriti, 2004)

Hypersets: The problem "Given a digraph *G* on *n* nodes and *m* arcs, compute the maximum bisimulation on *G*" can be solved

- $\mathcal{O}(m \log n)$ (Paige, Tarjan, 1987)
- ► O(m log n) with improvements when G is resembles an acyclic digraph (Dovier, Piazza, Policriti, 2004)

Linear algorithm?

- ► when *E*(*G*) corresponds to a function: *O*(*m*) (Paige, Tajan, Bonic, 1985);
- ► the general case: **OPEN**

A NAIVE EXTENSION OF \prec_A to $\overline{\mathsf{HF}}$ fails

$$a \bigcirc b \qquad \text{Conside} \\ & & & \\$$

Consider $a = \{b\}, b = \{a, \emptyset\}$. Note that $\emptyset \prec a$. $a \prec b \Leftrightarrow \max_{\prec} \{b\} \prec \max_{\prec} \{a, \emptyset\} \Leftrightarrow b \prec a$.

OUR APPROACH

► Instead of defining first Q_A, and then taking the induced order, we do the opposite.

OUR APPROACH

- ► Instead of defining first Q_A, and then taking the induced order, we do the opposite.
- ► How do we do it?

 \prec_A over *G* acyclic \Longrightarrow algorithm to compute the maximum bisimulation over *G* (DPP'04).

 \prec_H over any $G \Leftarrow$ algorithm to compute the maximum bisimulation over G (PT'87)

OUR APPROACH

- ► Instead of defining first Q_A, and then taking the induced order, we do the opposite.
- ▶ How do we do it?
 ≺_A over *G* acyclic ⇒ algorithm to compute the maximum bisimulation over *G* (DPP'04).
 ≺_H over any *G* ⇐ algorithm to compute the maximum bisimulation over *G* (PT'87)
- Finally, for all $a \in \overline{HF}$, define:

$$\mathbb{Z}_{A}(a) = \begin{cases} |\{b \in \mathsf{HF} : b \prec_{H} a\}| = \mathbb{N}_{A}(a) & \text{if } a \in \mathsf{HF}, \\ -|\{b \in \overline{\mathsf{HF}} \setminus \mathsf{HF} : b \prec_{H} a\}| - 1 & \text{if } a \in \overline{\mathsf{HF}} \setminus \mathsf{HF}. \end{cases}$$

$$\mathbb{Q}_A: \overline{\mathsf{HF}} \to \Big\{ rac{m}{2^n} \, : \, n,m \in \mathbb{N} \Big\}, \quad \mathbb{Q}_A(a) = \sum_{b \in a} 2^{\mathbb{Z}_A(b)}.$$

STABLE PARTITIONING

DEFINITION

- ► Given a set *V*, a relation $E \subseteq V \times V$, and a partition *P* of *V*, P is stable w.r.t. E iff $\forall B_1, B_2 \in P(B_1 \subseteq E^{-1}(B_2) \lor B_1 \cap E^{-1}(B_2) = \emptyset))$
- ► Given a set *V* and partitions *P*, *Q* of *V*,
 - *P* refines *Q* iff $\forall B \in P \exists C \in Q(B \subseteq C)$
 - *Q* is coarser than *P* iff *P* refines *Q*
- Paige-Tarjan's 1987 algorithm solves the problem of finding the coarsest partition of V(G), stable w.r.t. E(G)
- Finding the maximum bisimulation is equivalent to the coarsest partition problem (Kannellakis, Smolka, 1990)

THE SPLITTING TECHNIQUE

THE BASIC PRIMITIVE OF THE PT'87 ALGORITHM

Given $S \in P$, replace *P* by

$$\{B \cap E^{-1}(S), B \setminus E^{-1}(S) : B \in P\}$$

We will do the opposite: Given $T \in P$, replace *T* by all the equivalence classes of *T* induced by

$$x \sim_E y \Leftrightarrow_{Def} \forall B \in P(x \in E^{-1}(B) \leftrightarrow y \in E^{-1}(B))$$

The Rank notion for HF

Rank

Define $\mathsf{rk} : \mathsf{HF} \to \mathbb{N}$ as $\mathsf{rk}(v) = \max\{1 + \mathsf{rk}(u) : \forall u \in v\}.$ It holds that $\mathsf{rk}(u) < \mathsf{rk}(v) \Rightarrow u \prec_A v.$

The Rank notion for HF

Rank

Define $\mathsf{rk} : \mathsf{HF} \to \mathbb{N}$ as $\mathsf{rk}(v) = \max\{1 + \mathsf{rk}(u) : \forall u \in v\}.$

It holds that $\mathsf{rk}(u) < \mathsf{rk}(v) \Rightarrow u \prec_A v$.

We can obtain the partition of HF whose blocks are the rank-equality classes: Start with $P_0 = \{HF\}$

- That there is exactly one infinite block S_n of P_n
- S_n is a culprit of the instability of P_n
- $\bullet P_{n+1} = (P_n \setminus \{S_n\}) \cup \{\{x \in S_n | x \cap S_n = \emptyset\}, \{x \in S_n | x \cap S_n \neq \emptyset\}\}$

A NEW DEFINITION OF \prec_A

- Define a countable sequence (Xⁿ)_{n∈ℕ} of ordered partitions,
 Xⁿ = {Xⁿ_i : i ∈ ℕ}
- Each \mathcal{X}^{n+1} is an ordered refinement of \mathcal{X}^n
- Initially, $\mathcal{X}_i^0 = \{x \in \mathsf{HF} : \mathsf{rk}(x) = i\}$

A NEW DEFINITION OF \prec_A

- ► Define a countable sequence $(\mathcal{X}^n)_{n \in \mathbb{N}}$ of ordered partitions, $\mathcal{X}^n = \{X_i^n : i \in \mathbb{N}\}$
- Each \mathcal{X}^{n+1} is an ordered refinement of \mathcal{X}^n
- Initially, $\mathcal{X}_i^0 = \{x \in \mathsf{HF} : \mathsf{rk}(x) = i\}$
- ► Consider the smallest index h such that Xⁿ_h can be split, and the relation on Xⁿ_h

$$x \sim_{\ni} y \Leftrightarrow_{Def} \forall k \big(X_k^n \cap x \neq \emptyset \leftrightarrow X_k^n \cap y \neq \emptyset \big)$$

A NEW DEFINITION OF \prec_A

- Define a countable sequence (Xⁿ)_{n∈ℕ} of ordered partitions,
 Xⁿ = {Xⁿ_i : i ∈ ℕ}
- Each \mathcal{X}^{n+1} is an ordered refinement of \mathcal{X}^n
- Initially, $\mathcal{X}_i^0 = \{x \in \mathsf{HF} : \mathsf{rk}(x) = i\}$
- ► Consider the smallest index *h* such that Xⁿ_h can be split, and the relation on Xⁿ_h

$$x \sim_{\ni} y \Leftrightarrow_{Def} \forall k \big(X_k^n \cap x \neq \emptyset \leftrightarrow X_k^n \cap y \neq \emptyset \big)$$

► Given two ~_∋-classes $Z', Z \subseteq X_h^n$, put Z' before Z iff, for $x \in Z'$ and $y \in Z$, the largest mismatch position k between x, y 'favors' y, i.e.

$$X_k^n \cap x = \emptyset \land X_k^n \cap y \neq \emptyset \land \forall j > k(X_j^n \cap x = \emptyset \leftrightarrow X_j^n \cap y = \emptyset)$$

A NEW DEFINITION OF \prec_A (2)

THEOREM

At limit,

- Every $x \in HF$ remains in a singleton block.
- Ackermann's order is the limit of the \mathcal{X}^{n} 's.

Why is the Rank important?

- ▶ It guarantees *correctness*, i.e., the order is *à la* Ackermann.
- It guarantees *convergence*, i.e., the blocks become singletons after ω steps.
 - The set $\{x \in \mathsf{HF} : \mathsf{rk}(x) = i\}$ is finite, $\forall i$.

A RANK NOTION FOR $\overline{\mathsf{HF}}$

DEFINITION

Define $\mathsf{rk} : \overline{\mathsf{HF}} \to \mathbb{N}$ as

- $\mathsf{rk}(x) =$ the maximum length of all simple directed paths in *x*, issuing from the point of *x*.
 - rk is an extension of the standard notion for HF.

A RANK NOTION FOR $\overline{\mathsf{HF}}$

DEFINITION

Define $\mathsf{rk} : \overline{\mathsf{HF}} \to \mathbb{N}$ as

- $\mathsf{rk}(x) =$ the maximum length of all simple directed paths in *x*, issuing from the point of *x*.
 - rk is an extension of the standard notion for HF.

LEMMA

There exists a function r(n) *s.t.* $|\{x \in \overline{\mathsf{HF}} | \mathsf{rk}(x) \le n\}| < r(n)$.

For arbitrary graphs of bounded 'diameter' this is not the case:

Start with the partition $\mathcal{X}^0 = \{X_i^0 : i \in \mathbb{N}\}$, where $X_i^0 = \{x \in \overline{\mathsf{HF}} : \mathsf{rk}(x) = i\}$, and iteratively apply the operation of *ordered refinement*.

THEOREM

- every $x \in \overline{\mathsf{HF}}$ remains in a singleton block;
- the induced order \prec_H extends \prec_A .

Start with the partition $\mathcal{X}^0 = \{X_i^0 : i \in \mathbb{N}\}$, where $X_i^0 = \{x \in \overline{\mathsf{HF}} : \mathsf{rk}(x) = i\}$, and iteratively apply the operation of *ordered refinement*.

THEOREM

- every $x \in \overline{\mathsf{HF}}$ remains in a singleton block;
- the induced order \prec_H extends \prec_A .

$$[\emptyset] [b, c, e, f, ...] [a, d, ...]$$

Start with the partition $\mathcal{X}^0 = \{X_i^0 : i \in \mathbb{N}\}$, where $X_i^0 = \{x \in \overline{\mathsf{HF}} : \mathsf{rk}(x) = i\}$, and iteratively apply the operation of *ordered refinement*.

THEOREM

- every $x \in \overline{\mathsf{HF}}$ remains in a singleton block;
- the induced order \prec_H extends \prec_A .

Start with the partition $\mathcal{X}^0 = \{X_i^0 : i \in \mathbb{N}\}$, where $X_i^0 = \{x \in \overline{\mathsf{HF}} : \mathsf{rk}(x) = i\}$, and iteratively apply the operation of *ordered refinement*.

THEOREM

- every $x \in \overline{\mathsf{HF}}$ remains in a singleton block;
- the induced order \prec_H extends \prec_A .

Start with the partition $\mathcal{X}^0 = \{X_i^0 : i \in \mathbb{N}\}$, where $X_i^0 = \{x \in \overline{\mathsf{HF}} : \mathsf{rk}(x) = i\}$, and iteratively apply the operation of *ordered refinement*.

THEOREM

- every $x \in \overline{\mathsf{HF}}$ remains in a singleton block;
- the induced order \prec_H extends \prec_A .

CONCLUSIONS

- A step closer in better understanding bisimulations, hypersets
 - Connection between recognizing a hyperset, counting, and enumerating them
- ► A new definition of Ackermann's order for HF
- A new notion of *rank* for hypersets
 - Used here to get correctness and convergence
 - Any other *adequate rank* notion may give another order on $\overline{HF} \setminus HF$
- Possible applications
 - To show that any hyperset can be transformed into any other one by adding/removing arcs (useful in random generation by Markov Chains)
- Deeper exploration of the connection between sets and numbers
 - Which sets have a prime number encoding?