Mapping Hypersets into Numbers

G. D'Agostino ${ }^{\text {a }}$, E. G. Omodeo ${ }^{\text {b }}$, A. Policriti ${ }^{\text {a }}$, Alexandru I. Tomescu ${ }^{\text {a,c }}$

${ }^{a}$ Dip. Matematica e Informatica Università di Udine
${ }^{b}$ Dip. Matematica e Informatica, Università di Trieste
${ }^{c}$ Fac. Mathematics and Computer Science, University of Bucharest

October 11, 2010

Outline

Sets and Hypersets

ACKERMANN'S BIJECTION

Extending Ackermann's Order to Hypersets

(Well-Founded) Sets

- We assume the axioms of Zermelo-Fraenkel, including
- Axiom of Foundation: there are no membership cycles or infinite descending membership chains
- Axiom of Extensionality: two sets are equal iff they have the same elements
- The standard model: von Neumann's cumulative hierarchy of sets, \mathcal{V} :
- $\mathcal{V}_{0}=\emptyset$
- $\mathcal{V}_{i}=\bigcup_{j<i} \mathscr{P}\left(\mathcal{V}_{j}\right)$
- $\mathcal{V}=\bigcup_{i} \mathcal{V}_{i}$, over all ordinals i
- For example,
- $\mathcal{V}_{1}=\{\emptyset\}$
- $\mathcal{V}_{2}=\{\emptyset,\{\emptyset\}\}$
- $\mathcal{V}_{3}=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}, \ldots$

Representing sets by directed graphs

$$
\{\emptyset,\{\phi\},\{\emptyset,\{\theta\}\}\}
$$

Representing sets by directed graphs

$O\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$

Representing sets by directed graphs

- A node x is redundant in an acyclic digraph G if there is another node of G with the same set of out-neighbors as x.

DEFINITION

A set $={ }_{\text {def }}$ a pointed acyclic digraph without redundant nodes.

$$
x \in y \Longleftrightarrow x \leftarrow y
$$

Hypersets

Modern modeling approaches may require \in to be cyclic.
DEFINITION
A hyperset $=_{\text {def }}$ a pointed digraph without redundant nodes.

- A node x is redundant in a digraph G if there is another node of G bisimilar to x.

Hypersets

Modern modeling approaches may require \in to be cyclic.

DEFINITION

A hyperset $=_{\text {def }}$ a pointed digraph without redundant nodes.

- A node x is redundant in a digraph G if there is another node of G bisimilar to x.

DEFINITION

Given a digraph G, a bisimulation on G is a relation
$b \subseteq V(G) \times V(G)$ iff for all $x, y \in V(G)$ s.t. $x b y$

- $\forall x^{\prime}\left(x \rightarrow x^{\prime}\right) \Rightarrow \exists y^{\prime}\left(y \rightarrow y^{\prime} \wedge x^{\prime} b y^{\prime}\right)$;
- $\forall y^{\prime}\left(y \rightarrow y^{\prime}\right) \Rightarrow \exists x^{\prime}\left(x \rightarrow x^{\prime} \wedge x^{\prime} b y^{\prime}\right)$.
- Bisimilarity in G is an equivalence relation on G.

Bisimulation - Example

The bisimilarity relation is $[a, b][c, d]$

ACKERMANN'S ENCODING

Let

- HF be the set of all hereditarily finite sets.
- $\overline{\mathrm{HF}} \supsetneq \mathrm{HF}$ be the set of all hereditarily finite hypersets.

Ackermann's bijection (1937) $\mathbb{N}_{A}: \mathrm{HF} \rightarrow \mathbb{N}$, where

$$
\mathbb{N}_{A}(F)={ }_{\operatorname{Def}} \sum_{h \in F} 2^{\mathbb{N}_{A}(h)}
$$

$$
\mathbb{N}_{A}(\{\emptyset,\{\emptyset\}\})=3 \quad \mathbb{N}_{A}(\{\{\emptyset\}\})=2
$$

ACKERMANN'S ENCODING

Let

- HF be the set of all hereditarily finite sets.
- $\overline{\mathrm{HF}} \supsetneq \mathrm{HF}$ be the set of all hereditarily finite hypersets.

Ackermann's bijection (1937) $\mathbb{N}_{A}: \mathrm{HF} \rightarrow \mathbb{N}$, where

$$
\mathbb{N}_{A}(F)=\operatorname{Def} \sum_{h \in F} 2^{\mathbb{N}_{A}(h)}
$$

It induces the linear order \prec_{A} on HF , also expressible as

$$
F \prec_{A} F^{\prime} \Leftrightarrow_{\operatorname{Def}} \mathbb{N}_{A}(F)<\mathbb{N}_{A}\left(F^{\prime}\right) \Leftrightarrow \max _{\prec_{A}}\left(F \backslash F^{\prime}\right) \prec_{A} \max _{\prec_{A}}\left(F^{\prime} \backslash F\right) .
$$

MAIN CONTRIBUTION

A natural extension of \mathbb{N}_{A} to $\overline{\mathrm{HF}}$.

Applications of \mathbb{N}_{A}

RECURSION, DECIDABILITY RESULTS

Sets: Since \prec_{A} is a well-founded order, it is easy to do recursion over HF.
Hypersets: Ad-hoc solutions.

COUNTING (COMBINATORIAL ENUMERATION)

Sets: We know the number of transitive sets with n elements, because of an Ackermann-like bijection between them and the set $\left\{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right): x_{0}=0, x_{i-1}<x_{i}<2^{i}, 1 \leq i \leq n-1\right\}$. (Peddicord, 1962)
Hypersets: OPEN (to our knowledge)

Applications of \mathbb{N}_{A} (2)

AlGORITHMICS

Sets: The problem "Given an acyclic digraph G on n nodes and m arcs, compute the maximum bisimulation on $G^{\prime \prime}$ can be solved in time $\mathcal{O}(m)$ by trying to find \prec_{A} on G.
(Dovier, Piazza, Policriti, 2004)

Applications of \mathbb{N}_{A} (2)

Algorithmics

Sets: The problem "Given an acyclic digraph G on n nodes and m arcs, compute the maximum bisimulation on $G^{\prime \prime}$ can be solved in time $\mathcal{O}(m)$ by trying to find \prec_{A} on G.
(Dovier, Piazza, Policriti, 2004)
Hypersets: The problem "Given a digraph G on n nodes and m arcs, compute the maximum bisimulation on G " can be solved

- $\mathcal{O}(m \log n)$ (Paige, Tarjan, 1987)
- $\mathcal{O}(m \log n)$ with improvements when G is resembles an acyclic digraph (Dovier, Piazza, Policriti, 2004)

Applications of \mathbb{N}_{A} (2)

Algorithmics

Sets: The problem "Given an acyclic digraph G on n nodes and m arcs, compute the maximum bisimulation on G " can be solved in time $\mathcal{O}(m)$ by trying to find \prec_{A} on G.
(Dovier, Piazza, Policriti, 2004)
Hypersets: The problem "Given a digraph G on n nodes and m arcs, compute the maximum bisimulation on $G^{\prime \prime}$ can be solved

- $\mathcal{O}(m \log n)$ (Paige, Tarjan, 1987)
- $\mathcal{O}(m \log n)$ with improvements when G is resembles an acyclic digraph (Dovier, Piazza, Policriti, 2004)
Linear algorithm?
- when $E(G)$ corresponds to a function: $\mathcal{O}(m)$ (Paige, Tajan, Bonic, 1985);
- the general case: OPEN

A naive extension of \prec_{A} to $\overline{\mathrm{HF}}$ fails

Consider $a=\{b\}, b=\{a, \emptyset\}$.
Note that $\emptyset \prec a$.
$a \prec b \Leftrightarrow \max _{\prec}\{b\} \prec \max _{\prec}\{a, \emptyset\} \Leftrightarrow b \prec a$.

OUR APproach

- Instead of defining first \mathbb{Q}_{A}, and then taking the induced order, we do the opposite.

OUR APproach

- Instead of defining first \mathbb{Q}_{A}, and then taking the induced order, we do the opposite.
- How do we do it?
\prec_{A} over G acyclic \Longrightarrow algorithm to compute the maximum bisimulation over G (DPP'04).
\prec_{H} over any $G \Longleftarrow$ algorithm to compute the maximum bisimulation over G ($\mathrm{PT}^{\prime} 87$)

OUR APPROACH

- Instead of defining first \mathbb{Q}_{A}, and then taking the induced order, we do the opposite.
- How do we do it?
\prec_{A} over G acyclic \Longrightarrow algorithm to compute the maximum bisimulation over G (DPP'04).
\prec_{H} over any $G \Longleftarrow$ algorithm to compute the maximum bisimulation over G ($\mathrm{PT}^{\prime} 87$)
- Finally, for all $a \in \overline{\mathrm{HF}}$, define:

$$
\begin{gathered}
\mathbb{Z}_{A}(a)=\left\{\begin{array}{cl}
\left|\left\{b \in \mathrm{HF}: b \prec_{H} a\right\}\right|=\mathbb{N}_{A}(a) & \text { if } a \in \mathrm{HF}, \\
-\left|\left\{b \in \overline{\mathrm{HF}} \backslash \mathrm{HF}: b \prec_{H} a\right\}\right|-1 & \text { if } a \in \overline{\mathrm{HF}} \backslash \mathrm{HF} . \\
\mathbb{Q}_{A}: \overline{\mathrm{HF}} \rightarrow\left\{\frac{m}{2^{n}}: n, m \in \mathbb{N}\right\}, \quad \mathbb{Q}_{A}(a)=\sum_{b \in a} 2^{\mathbb{Z}_{A}(b)} .
\end{array}\right.
\end{gathered}
$$

Stable partitioning

DEFINITION

- Given a set V, a relation $E \subseteq V \times V$, and a partition P of V, P is stable w.r.t. E iff

$$
\left.\forall B_{1}, B_{2} \in P\left(B_{1} \subseteq E^{-1}\left(B_{2}\right) \vee B_{1} \cap E^{-1}\left(B_{2}\right)=\emptyset\right)\right)
$$

- Given a set V and partitions P, Q of V,
- P refines Q iff $\forall B \in P \exists C \in Q(B \subseteq C)$
- Q is coarser than P iff P refines Q
- Paige-Tarjan's 1987 algorithm solves the problem of finding the coarsest partition of $V(G)$, stable w.r.t. $E(G)$
- Finding the maximum bisimulation is equivalent to the coarsest partition problem (Kannellakis, Smolka, 1990)

THE SPLITTING TECHNIQUE

THE BASIC PRIMITIVE OF THE PT'87 ALGORITHM

Given $S \in P$, replace P by

$$
\left\{B \cap E^{-1}(S), B \backslash E^{-1}(S): B \in P\right\}
$$

We will do the opposite: Given $T \in P$, replace T by all the equivalence classes of T induced by

$$
x \sim_{E} y \Leftrightarrow_{\text {Def }} \forall B \in P\left(x \in E^{-1}(B) \leftrightarrow y \in E^{-1}(B)\right)
$$

[$\emptyset, a, b]$
[Ø] $[a, b]$
[$\emptyset][a][b]$

The Rank notion for HF

RaNK

Define rk: $\mathrm{HF} \rightarrow \mathbb{N}$ as

$$
\operatorname{rk}(v)=\max \{1+\operatorname{rk}(u): \forall u \in v\} .
$$

It holds that $\mathrm{rk}(u)<\operatorname{rk}(v) \Rightarrow u \prec_{A} v$.

The Rank notion for HF

RANK

Define rk: $\mathrm{HF} \rightarrow \mathbb{N}$ as

$$
\operatorname{rk}(v)=\max \{1+\operatorname{rk}(u): \forall u \in v\} .
$$

It holds that $\operatorname{rk}(u)<\operatorname{rk}(v) \Rightarrow u \prec_{A} v$.

We can obtain the partition of HF whose blocks are the rank-equality classes: Start with $P_{0}=\{\mathrm{HF}\}$

- That there is exactly one infinite block S_{n} of P_{n}
- S_{n} is a culprit of the instability of P_{n}
- $P_{n+1}=\left(P_{n} \backslash\left\{S_{n}\right\}\right) \cup\left\{\left\{x \in S_{n} \mid x \cap S_{n}=\emptyset\right\},\left\{x \in S_{n} \mid x \cap S_{n} \neq \emptyset\right\}\right\}$
$[\emptyset, \quad\{\emptyset\}, \quad\{\{\emptyset\}\}, \quad\{\emptyset,\{\emptyset\}\}, \quad\{\{\{\emptyset\}\}\}, \ldots]$ $[\emptyset] \prec_{A}[\{\emptyset\}, \quad\{\{\emptyset\}\}, \quad\{\emptyset,\{\emptyset\}\}, \quad\{\{\{\emptyset\}\}\}, \ldots]$
$[\emptyset] \prec_{A}[\{\emptyset\}] \prec_{A}[\{\{\emptyset\}\}, \quad\{\emptyset,\{\emptyset\}\}, \quad\{\{\{\emptyset\}\}\}, \ldots]$
$[\emptyset] \prec_{A}[\{\emptyset\}] \prec_{A}[\{\{\emptyset\}\}, \quad\{\emptyset,\{\emptyset\}\}] \prec_{A}[\{\{\{\emptyset\}\}\}, \ldots]$

A NEW DEFINITION OF \prec_{A}

- Define a countable sequence $\left(\mathcal{X}^{n}\right)_{n \in \mathbb{N}}$ of ordered partitions, $\mathcal{X}^{n}=\left\{X_{i}^{n}: i \in \mathbb{N}\right\}$
- Each \mathcal{X}^{n+1} is an ordered refinement of \mathcal{X}^{n}
- Initially, $\mathcal{X}_{i}^{0}=\{x \in \mathrm{HF}: \operatorname{rk}(x)=i\}$

A NEW DEFINITION OF \prec_{A}

- Define a countable sequence $\left(\mathcal{X}^{n}\right)_{n \in \mathbb{N}}$ of ordered partitions, $\mathcal{X}^{n}=\left\{X_{i}^{n}: i \in \mathbb{N}\right\}$
- Each \mathcal{X}^{n+1} is an ordered refinement of \mathcal{X}^{n}
- Initially, $\mathcal{X}_{i}^{0}=\{x \in \mathrm{HF}: \operatorname{rk}(x)=i\}$
- Consider the smallest index h such that \mathcal{X}_{h}^{n} can be split, and the relation on \mathcal{X}_{h}^{n}

$$
x \sim_{\ni} y \Leftrightarrow_{\text {Def }} \forall k\left(X_{k}^{n} \cap x \neq \emptyset \leftrightarrow X_{k}^{n} \cap y \neq \emptyset\right)
$$

A NEW DEFINITION OF \prec_{A}

- Define a countable sequence $\left(\mathcal{X}^{n}\right)_{n \in \mathbb{N}}$ of ordered partitions, $\mathcal{X}^{n}=\left\{X_{i}^{n}: i \in \mathbb{N}\right\}$
- Each \mathcal{X}^{n+1} is an ordered refinement of \mathcal{X}^{n}
- Initially, $\mathcal{X}_{i}^{0}=\{x \in \mathrm{HF}: \operatorname{rk}(x)=i\}$
- Consider the smallest index h such that \mathcal{X}_{h}^{n} can be split, and the relation on \mathcal{X}_{h}^{n}

$$
x \sim_{\ni} y \Leftrightarrow_{\text {Def }} \forall k\left(X_{k}^{n} \cap x \neq \emptyset \leftrightarrow X_{k}^{n} \cap y \neq \emptyset\right)
$$

- Given two \sim_{\ni}-classes $Z^{\prime}, Z \subseteq X_{h}^{n}$, put Z^{\prime} before Z iff, for $x \in Z^{\prime}$ and $y \in Z$, the largest mismatch position k between x, y 'favors' y, i.e.
$X_{k}^{n} \cap x=\emptyset \wedge X_{k}^{n} \cap y \neq \emptyset \wedge \forall j>k\left(X_{j}^{n} \cap x=\emptyset \leftrightarrow X_{j}^{n} \cap y=\emptyset\right)$

A NEW DEFINITION OF $\prec_{A}(2)$

THEOREM

At limit,

- Every $x \in \mathrm{HF}$ remains in a singleton block.
- Ackermann's order is the limit of the \mathcal{X}^{n} 's.

Why is the Rank important?

- It guarantees correctness, i.e., the order is à la Ackermann.
- It guarantees convergence, i.e., the blocks become singletons after ω steps.
- The set $\{x \in \mathrm{HF}: \operatorname{rk}(x)=i\}$ is finite, $\forall i$.

A RANK NOTION FOR HF

DEFINITION

Define rk: $\overline{\mathrm{HF}} \rightarrow \mathbb{N}$ as
$\mathrm{rk}(x)=$ the maximum length of all simple directed paths in x, issuing from the point of x.

- rk is an extension of the standard notion for HF.

A Rank notion for $\overline{\mathrm{HF}}$

DEFINITION

Define rk: $\overline{\mathrm{HF}} \rightarrow \mathbb{N}$ as
$\operatorname{rk}(x)=$ the maximum length of all simple directed paths in x, issuing from the point of x.

- rk is an extension of the standard notion for HF.

LEMMA

There exists a function $r(n)$ s.t. $|\{x \in \overline{\mathrm{HF}} \mid \mathrm{rk}(x) \leq n\}|<r(n)$.
For arbitrary graphs of bounded 'diameter' this is not the case:

The order for Hypersets

Start with the partition $\mathcal{X}^{0}=\left\{X_{i}^{0}: i \in \mathbb{N}\right\}$, where $X_{i}^{0}=\{x \in \overline{\mathrm{HF}}: \operatorname{rk}(x)=i\}$, and iteratively apply the operation of ordered refinement.

THEOREM

At limit,

- every $x \in \overline{\mathrm{HF}}$ remains in a singleton block;
- the induced order \prec_{H} extends \prec_{A}.

The order for Hypersets

Start with the partition $\mathcal{X}^{0}=\left\{X_{i}^{0}: i \in \mathbb{N}\right\}$, where $X_{i}^{0}=\{x \in \overline{\mathrm{HF}}: \operatorname{rk}(x)=i\}$, and iteratively apply the operation of ordered refinement.

THEOREM

At limit,

- every $x \in \overline{\mathrm{HF}}$ remains in a singleton block;
- the induced order \prec_{H} extends \prec_{A}.

The order for Hypersets

Start with the partition $\mathcal{X}^{0}=\left\{X_{i}^{0}: i \in \mathbb{N}\right\}$, where $X_{i}^{0}=\{x \in \overline{\mathrm{HF}}: \mathrm{rk}(x)=i\}$, and iteratively apply the operation of ordered refinement.

THEOREM

At limit,

- every $x \in \overline{\mathrm{HF}}$ remains in a singleton block;
- the induced order \prec_{H} extends \prec_{A}.

[Ø] [$b, c, e, f, \ldots][a, d, \ldots]$
$[\emptyset][e, \ldots][c, f, \ldots][b, \ldots][a, d, \ldots]$

The order for Hypersets

Start with the partition $\mathcal{X}^{0}=\left\{X_{i}^{0}: i \in \mathbb{N}\right\}$, where $X_{i}^{0}=\{x \in \overline{\mathrm{HF}}: \mathrm{rk}(x)=i\}$, and iteratively apply the operation of ordered refinement.

THEOREM

At limit,

- every $x \in \overline{\mathrm{HF}}$ remains in a singleton block;
- the induced order \prec_{H} extends \prec_{A}.

[ø] [$b, c, e, f, \ldots][a, d, \ldots]$
[$\emptyset][e, \ldots][c, f, \ldots][b, \ldots][a, d, \ldots]$
$[\emptyset][e, \ldots][c, f, \ldots][b, \ldots][d, \ldots][a, \ldots]$

The order for Hypersets

Start with the partition $\mathcal{X}^{0}=\left\{X_{i}^{0}: i \in \mathbb{N}\right\}$, where $X_{i}^{0}=\{x \in \overline{\mathrm{HF}}: \mathrm{rk}(x)=i\}$, and iteratively apply the operation of ordered refinement.

THEOREM

At limit,

- every $x \in \overline{\mathrm{HF}}$ remains in a singleton block;
- the induced order \prec_{H} extends \prec_{A}.

[Ø] [$b, c, e, f, \ldots][a, d, \ldots]$
$[\emptyset][e, \ldots][c, f, \ldots][b, \ldots][a, d, \ldots]$
$[\emptyset][e, \ldots][c, f, \ldots][b, \ldots][d, \ldots][a, \ldots]$
$[\emptyset][e, \ldots][f, \ldots][c, \ldots][b, \ldots][d, \ldots][a, \ldots]$

CONCLUSIONS

- A step closer in better understanding bisimulations, hypersets
- Connection between recognizing a hyperset, counting, and enumerating them
- A new definition of Ackermann's order for HF
- A new notion of rank for hypersets
- Used here to get correctness and convergence
- Any other adequate rank notion may give another order on $\overline{\mathrm{HF}} \backslash \mathrm{HF}$
- Possible applications
- To show that any hyperset can be transformed into any other one by adding/removing arcs (useful in random generation by Markov Chains)
- Deeper exploration of the connection between sets and numbers
- Which sets have a prime number encoding?

