On the tree-width of even-hole-free graphs

Isolde Adler
University of Leeds

Joint work with Pierre Aboulker (ENS Paris), Eunjung Kim (Paris Dauphine), Ni Luh Dewi Sintiari (ENS Lyon), Nicolas Trotignon (ENS Lyon); Frederik Harwath

Mathematical Research Seminar
University of Primorska, Slovenia
12th October, 2020

Motivation

Even-hole-free graphs naturally arise in the context of perfect graphs.
Better understanding of the structure of even-hole-free graphs
\sim efficent algorithms for:

- Computational problems on (subclasses of) even-hole-free graphs
Open: Colouring, Stable Set in PTIME?
- Testing even-hole-freeness in the bounded-degree model of Property Testing
'Approximate recognition' in sublinear time

Contents

1. Introduction
2. Even-hole-free graphs excluding a minor
3. On testing even-hole-freeness in the bounded-degree model
4. Outlook

Preliminaries

- All graphs are simple, undirected and finite.
- All graph classes are closed under isomorphism, and a graph class is sometimes called a property.
- Class \mathcal{C} of graphs has bounded degree, if there is a constant $d \in \mathbb{N}$ such that all graphs in \mathcal{C} have degree $\leq d$.
K_{n} denotes the complete graph on n vertices.
C_{n} denotes the cycle of length $n(n \geq 3)$.

Grids and walls

Figure: (5×5)-grid; Triangulated (5×5)-grid

Figure: Elementary (5×5)-wall; Three 'vertical' paths highlighted

Figure: (5×5)-wall.

Subgraphs, contractions and minors

For graphs G and H :

- H is an induced subgraph of G, if H can be obtained from G by vertex deletions.
- H is a subgraph of G, if H can be obtained from G by vertex and/or edge deletions.
- H is a contraction of G, if H can be obtained from G by edge contractions.
- H is a minor of G, if H is a contraction of a subgraph of G.

We say that G is H-free, if G does not contain H as induced subgraph.

Tree-width (Intuitively)

Tree-width measures how close a graph is to being a tree.
G has tree-width $\leq k$, if G can be pieced together from subgraphs of size $\leq k+1$ in a tree-like fashion:

Tree-width (Definition)

Tree decomposition (T, B) of G :

- Tree T
- A family $B=\left(B_{t}\right)_{t \in V(T)}$ with $B_{t} \subseteq V(G) \quad$ (bags)
such that:
(1) $v \in V(G) \Rightarrow v \in B_{t}$ for some $t \in V(T)$
(2) $\{u, v\} \in E(G) \Rightarrow\{u, v\} \subseteq B_{t}$ for some $t \in V(T)$
(3) For every $v \in V(G)$ the set $\left\{t \in V(T) \mid v \in B_{t}\right\}$ is connected in T

Width of a tree decomposition:

$$
\max \left\{\left|B_{t}\right|: t \in V(T)\right\}-1
$$

Tree-width of G :
$\mathrm{tw}(G)=$ Minimum width over all tree decompositions of G

- Introduced in [N. Robertson, P. D. Seymour. Graph Minors. II, 1986.]

Tree-width (Examples)

A graph class \mathcal{C} has bounded tree-width, if there exists a $t \in \mathbb{N}$ such that all members of \mathcal{C} have tree-width at most t.
Otherwise, \mathcal{C} has unbounded tree-width.

Examples

- $\mathrm{tw}($ trees $) \leq 1$,
- $\mathrm{tw}\left(K_{n}\right)=n-1$,
- $\mathrm{tw}((n \times n)$-grid $)=n$,
- Walls have unbounded tree-width.
- H subgraph of $G \Rightarrow \mathrm{tw}(H) \leq \mathrm{tw}(G)$. Similarly, if H is induced subgraph or contraction or minor of G.

Algorithmic use of tree-width

Many problems that are NP-hard in general become tractable on bounded tree-width.

Theorem (B. Courcelle 1990)
Let $t \in \mathbb{N}$, and \mathcal{C} be a class of graphs of tree-width $\leq t$.
Every property expressible in monadic second-order logic with counting (CMSO) is decidable in linear running time on \mathcal{C}.

Examples
Expressible in CMSO:

- stable set, clique, vertex cover, dominating set,
- (non-)existence of a fixed (induced) subgraph H
- planarity, bounded genus, excluded minor
- connectivity, colorability, Hamiltonicity,
- even number of vertices, perfectness, even-hole-freeness

Even-hole-free graphs

Let C be a cycle in G. An edge $e \in E(G)$ is a chord of C, if the endpoints of e are vertices of C that are not adjacent on C.
A hole in a graph is a chordless cycle of length at least 4. It is even or odd according to the parity of its length.
A graph is even-hole-free (ehf) if it does not contain an even hole.

Examples

Complete graphs, trees, chordal (i. e. hole-free) graphs are ehf. Thetas and prisms are not ehf:

Figure: Theta and prism

Remark

Complete graphs are ehf \Rightarrow ehf graphs have unbounded tree-width.

An even-hole-free graph

[On rank-width of even-hole-free graphs, I. A., N.-K. Le, H. Müller, M. Radovanovic, N. Trotignon, K. Vušković, 2017]

Which ehf graphs have bounded tw?

Theorem (A. Silva, A. A. da Silva, C. Linhares Sales, 2010)
Planar ehf graphs have bounded tree-width.

Theorem (K. Cameron, M. da Silva, S. Huang, K. Vušković, 2018)
(Even-hole, K_{3})-free graphs have bounded tree-width.
Do ehf graphs of bounded clique number have bounded tw?
[K. Cameron, S. Chaplick, C. Hoàng, 2018]
Theorem (N. L. D. Sintiari, N. Trotignon, 2019)
No. (Even-hole, K_{4})-free graphs of unbounded tree-width exist.
The construction has unbounded degree and K_{n}-minors for arbitrarily large n.

Question: Are these necessary?

Our contributions (minors)

Theorem (P. Aboulker, I. A., E. Kim, N. L. D. Sintiari, N. Trotignon, 2020) Ehf graphs excluding a minor have bounded tree-width. (theta, prism)-free graphs excluding a minor have bounded tree-width.

This implies that planar ehf graphs have bounded tree-width.

For the proof we establish an 'induced grid theorem' for graphs excluding a minor.

Our contributions (degree)

Conjecture (P. Aboulker, I. A., E. Kim, N. L. D. Sintiari, N. Trotignon, 2020) Ehf graphs of bounded degree have bounded tree-width.

Theorem (P. Aboulker, I. A., E. Kim, N. L. D. Sintiari, N. Trotignon, 2020)

- Subcubic ehf graphs have bounded tree-width. We give a structure theorem for subcubic (theta, prism)-free graphs.
- (Even-hole, pyramid)-free graphs of degree ≤ 4 have bounded tree-width.
Combines structural results to show that no K_{6}-minor occurs.

Figure: Pyramid

- Implications in Property Testing...

The conjecture is proven!

Theorem (T. Abrishami, M. Chudnovsky, K. Vušković, 2020)
Ehf graphs of bounded degree have bounded tree-width.
Even holds for C_{4}-free, odd-signable graphs of bounded degree.

With a theorem from [I. A., F. Harwath, 2018], it follows:

Corollary (T. Abrishami, M. Chudnovsky, K. Vušković, 2020)
Even-hole-freeness is testable in the bounded-degree model of property testing with constant query complexity and sublinear running time.

Contents

1. Introduction
2. Even-hole-free graphs excluding a minor
3. On testing even-hole-freeness in the bounded-degree model
4. Outlook

Even-hole-free graphs excluding a minor

Theorem (P. Aboulker, I. A., E. Kim, N. L. D. Sintiari, N. Trotignon, 2020)
Ehf graphs excluding a minor have bounded tree-width. (theta, prism)-free graphs excluding a minor have bounded tree-width.

- The line graph of G is the graph $L(G)$ with $V(L(G))=E(G)$ and two vertices in $L(G)$ are adjacent, if their corresponding edges in G share a vertex.
- Graph G is chordless, if no cycle in G has a chord.
- We call the line graph of a chordless ($k \times k$)-wall a ($k \times k$)-co-wall.

Figure: $\mathrm{A}(5 \times 5)$-wall and a (5×5)-co-wall.

‘Induced wall theorem’ for graphs excluding a minor

Theorem (P. Aboulker, I. A., E. Kim, N. L. D. Sintiari, N. Trotignon, 2020) Given H, ex. a function f such that for every H-minor-free G and k :

- Tree-width $(G) \leq f(k)$, or
- G contains a $(k \times k)$-wall or a $(k \times k)$-co-wall as induced subgraph.

Figure: A (5×5)-wall and a (5×5)-co-wall.

Even-hole-free graphs excluding a minor

Theorem (P. Aboulker, I. A., E. Kim, N. L. D. Sintiari, N. Trotignon, 2020)
Ehf graphs excluding a minor have bounded tree-width. (theta, prism)-free graphs excluding a minor have bounded tree-width.

Theorem (P. Aboulker, I. A., E. Kim, N. L. D. Sintiari, N. Trotignon, 2020)
For every H ex. a function f such that for every H-minor-free G and k :

- Tree-width $(G) \leq f(k)$, or
- G contains a $(k \times k)$-wall or a $(k \times k)$-co-wall as induced subgraph.

A theta in (3×3)-wall and a prism in the (3×3)-co-wall:

Wall-tw-duality

Theorem (N. Robertson, P. D. Seymour, 1986)
Ex. a function f such that for every graph G and k :

- Tree-width $(G) \leq f(k)$, or
- G contains a $(k \times k)$-wall as a subgraph.

Note, 'subgraph' cannot be replaced by 'induced subgraph'.

Proof sketch, 1

We use:
Theorem (F. Fomin, P. Golovach, D. Thilikos, 2011)
For every H ex. a function f such that for every connected H-minor-free graph G and k :

- Tree-width $(G) \leq f(k)$, or
- G contains $a \Gamma_{k}$ or Π_{k} as a contraction.

Figure: Γ_{6} and Π_{6}

Proof sketch, 2

- Assume G is connected and H-minor-free, let k be large enough, and assume $\mathrm{tw}(G)>f(k)$. Then G contains Γ_{k} or Π_{k}.
- In Π_{k} : delete universal vertex to obtain a Γ_{k}.
- We say: a fork is a tree with exactly three leaves, a semi-fork is a graph obtained from a K_{3} by appending disjoint paths of length at least 1 at each vertex of K_{3}.
- Using a constant size part of Γ_{k} we find an induced fork or semi-fork in G as shown below.

Proof sketch, 3

- In the (huge) Γ_{k} we combine the forks and semi-forks into a stone wall - an 'untidy mix' of a wall and the line graph of a wall:

Figure: Just another brick in the wall...

Proof sketch, 4

We show:

Lemma (tidying up)
For every integer $r \geq 2$ there exists an integer $n=n(r)$ such that every $(n \times n)$-stone wall contains an $(r \times r)$-wall or an $(r \times r)$-co-wall as induced subgraph.

The proof uses a variation of Ramsey's theorem for bipartite graphs:
Theorem (Beineke and Schwenk 1975)
For every integer $r \geq 1$ there exists an integer $n=n(r)$, such that any 2-edge-coloring of the complete bipartite graph $K_{n, n}$ contains a monochromatic $K_{r, r}$.

Proof sketch of the tidying-up lemma, I

Lemma (tidying up)

For every integer $r \geq 2$ there exists an integer $n=n(r)$ such that every $(n \times n)$-stone wall contains an $(r \times r)$-wall or an $(r \times r)$-co-wall as induced subgraph.

- Given an $(n \times n)$-stone wall W, define a wall W^{\prime} by contracting each triangle of W into a vertex, color that vertex 'red'. All other degree-3-vertices of W ' are colored 'green'.
- Define a complete bipartite graph H with $V(H)=A \cup B$, where $A:=\left\{\right.$ horizontal paths of $\left.W^{\prime}\right\}$, $B:=\left\{\right.$ vertical paths in $\left.W^{\prime}\right\}$.
- Note: each vertical path has two colored vertices in common with each horizontal path.

Proof sketch of the tidying-up lemma, 2

- Color the edges of H with three colors. Let $P \in A$ be a horizontal path and let $Q \in B$ be a vertical path.

1. If $V(P) \cap V(Q)$ contains two green vertices, color $P Q$ green.
2. If $V(P) \cap V(Q)$ contains two red vertices, color $P Q$ red.
3. If $V(P) \cap V(Q)$ contains green and red, color $P Q$ black.

- [Beineke \& Schwenk]: H contains a large monochromatic complete bipartite subgraph H^{\prime}

Case 1: We obtain a large wall
Case 2: We obtain a large co-wall.
Case 3: Use local rerouting to obtain a large wall.

‘Induced wall theorem’ for graphs excluding a minor

Theorem (P. Aboulker, I. A., E. Kim, N. L. D. Sintiari, N. Trotignon, 2020) Given H, ex. a function f such that for every H-minor-free G and k :

- Tree-width $(G) \leq f(k)$, or
- G contains a $(k \times k)$-wall or a $(k \times k)$-co-wall as induced subgraph.

Figure: A (5×5)-wall and a (5×5)-co-wall.

Contents

1. Introduction
2. Even-hole-free graphs excluding a minor
3. On testing even-hole-freeness in the bounded-degree model
4. Outlook

Motivation

'Efficiency' when the data set is huge:
Even reading the whole input just once can be too expensive.

Data visualization of Facebook relationships
Author: Kencf0618, License: Creative Commons Attribution-Share Alike 3.0 Unported

Theorem (B. Courcelle 1990)
Let $t \in \mathbb{N}$, and \mathcal{C} be a class of graphs of tree-width $\leq t$. Every property expressible in CMSO is decidable in linear running time on \mathcal{C}.

Can we be faster (sacrificing some accuracy)?

Decision Problems

Property Testing $=$ Relaxation of Decision Problems

On inputs that have the property: YES with probability at least $2 / 3$. On ε-far inputs: NO with probability at least $2 / 3$.
Aim: extremely efficient.

Bounded-degree model

By [O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs, 2002]
All graphs have degree $\leq d$.

- Let $\varepsilon \in[0,1]$.

Graphs G and H, both on n vertices, are ε-close, if we can make them isomorphic by modifying up to $\varepsilon d n$ edges of G or H.
Edge modification $=$ insertion/deletion

- If G, H are not ε-close, then they are ε-far.
- A graph G is ε-close to a class \mathcal{C} if G is ε-close to some $H \in \mathcal{C}$. Otherwise, G is ε-far from \mathcal{C}.

Algorithms with oracle access

- Input: the number n of vertices of G, and
- Oracle access to G
- Query: v, for $v \in V(G)$
- Answer: the 1-neighbourhood of vertex v
- The running time $=$ running time w.r.t. n.
- The query complexity $=$ number of oracle queries w.r.t. n.

Examples

Theorem (Goldreich, Ron, 2002)
On bounded degree graphs:
Testable with constant query complexity and running time:

- k-edge-connectivity
- being Eulerian
- subgraph-freeness
- induced subgraph-freeness

Not testable with constant query complexity:

- Bipartiteness
- Expander graphs

Property testing on bounded tree-width

Theorem (I. A., F. Harwath, 2018)
Let \mathcal{C}_{d}^{t} be the class of all t-bounded tree-width graphs of degree $\leq d$.
Every CMSO-definable property $\mathcal{P} \subseteq \mathcal{C}_{d}^{t}$ is uniformly testable with constant query complexity and polylogarithmic running time.

- Even-hole-freenes can be expressed in CMSO.
- k-bounded tree-width is testable.

Corollary (T. Abrishami, M. Chudnovsky, K. Vušković, 2020)
Even-hole-freeness is testable in the bounded-degree model of property testing with constant query complexity and polylogarithmic running time.

Contents

1. Introduction
2. Even-hole-free graphs excluding a minor
3. On testing even-hole-freeness in the bounded-degree model
4. Outlook

Outlook

- Ehf graphs excluding a minor have bounded tree-width. Via "induced grid theorem" for minor-free graphs
- Subcubic EHF graphs have bounded tree-width. Via decomposition theorem
- (Even-hole, pyramid)-free graphs of degree ≤ 4 have bounded tree-width.
combining structural properties to show they cannot contain a K_{6}-minor.
- Implications in Property Testing

Conjecture (P. Aboulker, I. A., E. Kim, N. L. D. Sintiari, N. Trotignon, 2020) For every $d \in \mathbb{N}$ there is a function $f_{d}: \mathbb{N} \rightarrow \mathbb{N}$ such that every graph with degree at most d and tree-width at least $f_{d}(k)$ contains a ($k \times k$)-wall or the line graph of a $(k \times k)$-wall as an induced subgraph.

Thank you!

Appendix

Theorem

Let G be a (theta, prism)-free subcubic graph. Then one of the following holds:

- G is a basic graph;
- G has a clique separator of size at most 2;
- G has a proper separator.

Basic graphs: chordless cycle, clique of size at most 4, the cube, a proper wheel, a pyramid, or an extended prism.

Proper separation

A proper separation in a graph G is a triple $(\{a, b\}, X, Y)$ s.t.:

1. $\{a, b\}, X, Y$ are disjoint, non-empty and $V(G)=\{a, b\} \cup X \cup Y$.
2. There are no edges from X to Y.
3. a and b are non-adjacent.
4. a and b have exactly two neighbors in X.
5. a and b have exactly one neighbor in Y.
6. There exists a path from a to b with interior in X, and there exists a path from a to b with interior in Y.
7. $G[Y \cup\{a, b\}]$ is not a chordless path from a to b.

Extended prism

Figure: Two different drawings of an extended prism

