Reachability relations, transitive digraphs and groups

A. Malnič, P. Potočnik, N. Seifter, P. Šparl

May 2, 2013
Introduction

Reachability relation on edges: e is reachable from f if there exists an alternating walk containing e and f.

Reachability relation on vertices:
$W = (v_0, \epsilon_1, v_1, \epsilon_2, v_2, \ldots, \epsilon_n, v_n)$ from v_0 to v_n is a sequence of $n + 1$ vertices and n indicators $\epsilon_1, \ldots, \epsilon_n$ such that

$$
\epsilon_j = 1 \implies (v_{j-1}, v_j) \in E(W),
$$

$$
\epsilon_j = -1 \implies (v_j, v_{j-1}) \in E(W).
$$

Weight $\omega(W) = \sum_{i=1}^{n} \epsilon_i$
\[uR_k^+ v \]

if there exists a walk \(W \) from \(u \) to \(v \) with \(\omega(W) = 0 \) and \(\omega(0 \cdot W_j) \in [0, k] \) for every \(0 \leq j \leq |W| \). Analogously \(uR_k^- v \).

\[
R_k^+(v) = \{ u \in V(D) | vR_k^+ u \} \\
R_k^-(v) = \{ u \in V(D) | vR_k^- u \}
\]

\(R_k^+ \subseteq R_{k+1}^+ \), \(R_k^- \subseteq R_{k+1}^- \)

\[
R^+ = \bigcup_{k \in \mathbb{Z}^+} R_k^+ , \quad R^- = \bigcup_{k \in \mathbb{Z}^+} R_k^-
\]

\((R_k^+)_{k \in \mathbb{Z}^+}, (R_k^-)_{k \in \mathbb{Z}^+}\)

exponent \(\exp^+(D) \) is the smallest nonnegative integer \(k \) such that \(R_k^+ = R^+ \). Analogously \(\exp^-(D) \).
D is connected, vertex-transitive, infinite, locally finite

Structure of D/R^+:

- a finite cycle
- directed infinite line
- regular tree with indegree 1 and outdegree >1

Are there connections between R^+_k (R^-_k) and the end structure of D?

D has property Z if there exists a homomorphism from D onto the directed infinite line.
If D has infinitely many ends, then it has property Z if and only if at least one of the sequences $(R^+_k)_{k \in \mathbb{Z}^+}$ and $(R^-_k)_{k \in \mathbb{Z}^+}$ is infinite.

If D has property Z and the sequences $(R^+_k)_{k \in \mathbb{Z}^+}$ and $(R^-_k)_{k \in \mathbb{Z}^+}$ are both finite and there exists an integer $k \geq 1$ such that R^+_k (and hence R^-_k) has infinite equivalence classes, then D has one end.

If D has two ends, then it has property Z if and only if for each integer $k \geq 1$ at least one (and hence both) of the relations R^+_k and R^-_k have finite equivalence classes.
Connections between R_k^+ (R_k^-) and growth properties?

$$f_D(v, n) = |\{ u \in V(D) | \text{dist}_D(v, u) \leq n \}|$$

- polynomial growth: $f_D(n) \leq cn^d$ for all $n \geq 1$
- exponential growth: $f_D \geq c^n$ for all $n \geq 1$
- intermediate growth: E. g. $2^{\sqrt{n}} < f_D(n) < 2^{n \log_{32}^{31}}$

If at least one of the sequences $(R_k^+)_k \in \mathbb{Z}^+$ and $(R_k^-)_k \in \mathbb{Z}^+$ is infinite, then D has exponential growth.
Both sequences finite \Rightarrow polynomial or intermediate growth

A. Malnič, P. Potočnik, N.S., P. Šparl

- Is it possible to find conditions for $R_k^+(R_k^-)$ which imply polynomial or intermediate growth?
- Do there exist bounds for $\exp^+(D) (\exp^-(D))$ in the case of polynomial growth?
If an abelian group acts transitively on D, then
$\exp^+ (D) = \exp^- (D) = 1$.

Nilpotent groups?

$G^0 = G$, $G^{i+1} = [G^0, G^i], i \geq 0$

\[G = G^0 \triangleright G^1 \triangleright \ldots \triangleright G^k \triangleright G^{k+1} = 1 \]

nilpotent of class k.

Let G be a nilpotent group of class $k \geq 0$ acting transitively on D. Then $\exp^+ (D) \leq k + 1$ and $\exp^- (D) \leq k + 1$.
This bound is tight! \(\rightarrow D_8 \)

Infinite family of nilpotent groups:

\(G_n \) semidirect product of the elementary abelian group \(\mathbb{Z}_{2^n} \) by the cyclic group \(\mathbb{Z}_{2^{n-1}} \) generated by \(G_n = \langle f, a_1, a_2, \ldots, a_n \rangle \). \(f \) cyclic of order \(2^{n-1} \), \(a_i \) involutions. \(fa_i f^{-1} = a_i a_{i+1}, 1 \leq i \leq n - 1 \). \(a_i a_j = a_j a_i, fa_n = a_n f \).

\(S = \{ f, fa_1 \}, \langle S^{-i} S^i \rangle = \langle a_1, a_2, \ldots, a_i \rangle, 1 \leq i \leq n. \Rightarrow \exp^{-}(Cay(G_n, S)) = n. \)

\(G_n \) is nilpotent of class \(n - 1 \). \(G^{(i)} = \langle a_{i+1}, a_{i+2}, \ldots, a_n \rangle \) holds for each \(i, 1 \leq i \leq n - 1 \). Also \(G^{(n)} = 1. \)
No bound for solvable groups! → lamplighter group. L is the wreath product $\mathbb{Z}_2 \wr \mathbb{Z}$

$$L = \langle a, t | a^2, [t^m at^{-m}, t^n at^{-n}], m, n \in \mathbb{Z} \rangle.$$

$S = \{t, at\}$, $\text{Cay}(L, S)$ horocyclic product of two trees with indegree 1, outdegree 2.
\(R_k^+ (R_k^-) \) and growth of groups

\[G \text{ finitely generated with polynomial growth} \Rightarrow G \text{ contains a normal nilpotent subgroup } N \text{ of finite index.} \]

- Let the finitely generated group \(G \) act transitively on the connected digraph \(D \) such that a normal nilpotent subgroup \(N \) of \(G \), where \(N \) is nilpotent of class \(k \geq 0 \), acts with \(m, 1 \leq m < \infty \), orbits on \(D \). Then
 \[\exp^+(D) \leq m(k + 1) + m - 1 \text{ and } \exp^-(D) \leq m(k + 1) + m - 1. \]

All examples we know satisfy \(\exp^+(D) \leq m(k + 1) \) and \(\exp^-(D) \leq m(k + 1) \).

- Let the finitely generated group \(G \) act transitively on the connected digraph \(D \) such that a normal abelian subgroup \(N \) of \(G \) acts with \(m, 1 \leq m < \infty \), orbits on \(D \). Then
 \[\exp^+(D) \leq m \text{ and } \exp^-(D) \leq m. \]
The orders of the finite subgroups of $\text{GL}(n, \mathbb{Z})$ are bounded by some function $g(n)$ alone.

Let G be a finitely generated torsion-free group with polynomial growth of degree d. Then G contains a normal nilpotent subgroup of class $< \sqrt{2d}$ and index at most $g(d)$, where $g(d)$ is the above function.

Let G be a finitely generated torsion-free group with polynomial growth of degree d. Then for any Cayley graph D of G, $\exp^+(D) \leq g(d)(\sqrt{2d} + 1) + g(d) - 1$ and $\exp^-(D) \leq g(d)(\sqrt{2d} + 1) + g(d) - 1$.
Is it true that every finitely generated infinite simple group has exponential growth? (Grigorchuk)

- If a finitely generated infinite simple group G does not have exponential growth, then for every finite generating set S of G there is a finite integer $k_S \geq 1$, such that $R_{k_S}^+ = R_{k_S}^-$ is universal in $C(G, S)$.
- Let G be a finitely generated infinite simple group and let S denote a finite generating set. Furthermore, let $H \subseteq G$ denote the set of all those $h \in G$ which leave invariant at least one equivalence class of R_1^+ on $C(G, S)$. Then $\langle H \rangle = G$.