The schurity problem for quasi-thin association schemes

Ilya Ponomarenko
St. Petersburg Department of V.A.Steklov Institute of Mathematics, Russia

(joint with Mikhail Muzychuk,
Netanya Academic College, Netanya, Israel)

August 4, 2010
Coherent configurations (D. Higman, 1970)

A pair $X = (\Omega, S)$ where Ω is a finite set, and S is a partition of $\Omega \times \Omega$, is called a coherent configuration if:

1. $\Omega = \{(\alpha, \alpha) : \alpha \in \Omega\}$ belongs to the set $S \cup$ of all unions of the relations from S,.
2. S contains $s^* = \{(\alpha, \beta) : (\beta, \alpha) \in s\}$ for all $s \in S$,
3. for all $r, s, t \in S$ the intersection number $c_{rs} = \{|\{(\beta \in \Omega : (\alpha, \beta) \in r, (\beta, \gamma) \in s\}|$ does not depend on the choice of $(\alpha, \gamma) \in t$.

The numbers $|\Omega|$ and $|S|$ are the degree and rank of X; when $\Omega \in S$ the coherent configuration X is called homogeneous or association scheme.
Coherent configurations (D. Higman, 1970)

A pair $\mathcal{X} = (\Omega, S)$ where

1. $\Omega = \{(\alpha, \alpha) : \alpha \in \Omega\}$ belongs to the set $S \cup$ of all unions of the relations from S.
2. S contains $s^* = \{(\beta, \alpha) : (\beta, \alpha) \in s\}$ for all $s \in S$.
3. For all $r, s, t \in S$, the intersection number $c_{rs} = |\{\beta \in \Omega : (\alpha, \beta) \in r, (\beta, \gamma) \in s\}|$ does not depend on the choice of $(\alpha, \gamma) \in t$.

The numbers $|\Omega|$ and $|S|$ are the degree and rank of \mathcal{X}; when $\Omega \in S$ the coherent configuration \mathcal{X} is called homogeneous or association scheme.
A pair \(\mathcal{X} = (\Omega, S) \) where \(\Omega \) is a finite set,
A pair \(\mathcal{X} = (\Omega, S) \) where \(\Omega \) is a finite set, and \(S \) is a partition of \(\Omega \times \Omega \),
A pair $\mathcal{X} = (\Omega, S)$ where Ω is a finite set, and S is a partition of $\Omega \times \Omega$, is called a coherent configuration if:

1. $1_{\Omega} = \{(\alpha, \alpha) : \alpha \in \Omega\}$ belongs to the set S^U of all unions of the relations from S,

Coherent configurations (D. Higman, 1970)
A pair $\mathcal{X} = (\Omega, S)$ where Ω is a finite set, and S is a partition of $\Omega \times \Omega$, is called a coherent configuration if:

1. $1_\Omega = \{(\alpha, \alpha) : \alpha \in \Omega\}$ belongs to the set S^\cup of all unions of the relations from S,
2. S contains $s^* = \{(\alpha, \beta) : (\beta, \alpha) \in s\}$ for all $s \in S$,

Coherent configurations (D. Higman, 1970)
Coherent configurations (D. Higman, 1970)

A pair $\mathcal{X} = (\Omega, S)$ where Ω is a finite set, and S is a partition of $\Omega \times \Omega$, is called a coherent configuration if:

1. $1_\Omega = \{(\alpha, \alpha) : \alpha \in \Omega\}$ belongs to the set S^\cup of all unions of the relations from S,
2. S contains $s^* = \{(\alpha, \beta) : (\beta, \alpha) \in s\}$ for all $s \in S$,
3. for all $r, s, t \in S$ the intersection number

$$c_{rs}^t = |\{\beta \in \Omega : (\alpha, \beta) \in r, (\beta, \gamma) \in s\}|$$

does not depend on the choice of $(\alpha, \gamma) \in t$.
A pair $\mathcal{X} = (\Omega, S)$ where Ω is a finite set, and S is a partition of $\Omega \times \Omega$, is called a coherent configuration if:

1. $1_\Omega = \{(\alpha, \alpha) : \alpha \in \Omega\}$ belongs to the set S^\cup of all unions of the relations from S,
2. S contains $s^* = \{(\alpha, \beta) : (\beta, \alpha) \in s\}$ for all $s \in S$,
3. for all $r, s, t \in S$ the intersection number

$$c_{rs}^t = |\{\beta \in \Omega : (\alpha, \beta) \in r, (\beta, \gamma) \in s\}|$$

does not depend on the choice of $(\alpha, \gamma) \in t$.

The numbers $|\Omega|$ and $|S|$ are the degree and rank of \mathcal{X};
Coherent configurations (D. Higman, 1970)

A pair \(\mathcal{X} = (\Omega, S) \) where \(\Omega \) is a finite set, and \(S \) is a partition of \(\Omega \times \Omega \), is called a coherent configuration if:

1. \(1_{\Omega} = \{(\alpha, \alpha) : \alpha \in \Omega\} \) belongs to the set \(S^\cup \) of all unions of the relations from \(S \),

2. \(S \) contains \(s^* = \{(\alpha, \beta) : (\beta, \alpha) \in s\} \) for all \(s \in S \),

3. for all \(r, s, t \in S \) the intersection number

\[
c^t_{rs} = |\{\beta \in \Omega : (\alpha, \beta) \in r, (\beta, \gamma) \in s\}|
\]

does not depend on the choice of \((\alpha, \gamma) \in t \).

The numbers \(|\Omega| \) and \(|S| \) are the degree and rank of \(\mathcal{X} \); when \(1_{\Omega} \in S \) the coherent configuration \(\mathcal{X} \) is called homogeneous or association scheme.
Schurian coherent configurations

A permutation group $G \leq \text{Sym}(\Omega)$ acts naturally on $\Omega \times \Omega$:

$$(\alpha, \beta) g := (\alpha g, \beta g), \quad \alpha, \beta \in \Omega, \quad g \in G.$$

Set $X = (\Omega, S)$ where $S = \text{Orb}(G, \Omega \times \Omega)$.

Proposition

1. X is a coherent configuration,
2. $S \cup \Omega$ is the set of all G-invariant binary relations,
3. X is a scheme iff G is transitive.

We say that X is the coherent configuration of the group G.

Definition

A coherent configuration is called schurian if it the coherent configuration of some permutation group.
Schurian coherent configurations

A permutation group $G \leq \text{Sym}(\Omega)$ acts naturally on $\Omega \times \Omega$:

\[(\alpha, \beta)_g := (\alpha g, \beta g), \quad \alpha, \beta \in \Omega, \quad g \in G. \]

Set $X = (\Omega, S)$ where $S = \text{Orb}(G, \Omega \times \Omega)$.

Proposition 1 X is a coherent configuration,

2 $S \cup \Delta$ is the set of all G-invariant binary relations,

3 X is a scheme iff G is transitive.

We say that X is the coherent configuration of the group G.

Definition A coherent configuration is called schurian if it the coherent configuration of some permutation group.
A permutation group $G \leq \text{Sym}(\Omega)$ acts naturally on $\Omega \times \Omega$:

$$(\alpha, \beta)^g := (\alpha^g, \beta^g), \ \alpha, \beta \in \Omega, \ g \in G.$$
A permutation group $G \leq \text{Sym}(\Omega)$ acts naturally on $\Omega \times \Omega$:

$$(\alpha, \beta)^g := (\alpha^g, \beta^g), \quad \alpha, \beta \in \Omega, \quad g \in G.$$

Set $\mathcal{X} = (\Omega, S)$ where $S = \text{Orb}(G, \Omega \times \Omega)$.

Proposition
Schurian coherent configurations

A permutation group $G \leq \text{Sym}(\Omega)$ acts naturally on $\Omega \times \Omega$:

$$(\alpha, \beta)^g := (\alpha^g, \beta^g), \ \alpha, \beta \in \Omega, \ g \in G.$$

Set $\mathcal{X} = (\Omega, S)$ where $S = \text{Orb}(G, \Omega \times \Omega)$.

Proposition

1. \mathcal{X} is a coherent configuration,
A permutation group $G \leq \text{Sym}(\Omega)$ acts naturally on $\Omega \times \Omega$:

$$(\alpha, \beta)^g := (\alpha^g, \beta^g), \quad \alpha, \beta \in \Omega, \; g \in G.$$

Set $\mathcal{X} = (\Omega, S)$ where $S = \text{Orb}(G, \Omega \times \Omega)$.

Proposition

1. \mathcal{X} is a coherent configuration,
2. S^U is the set of all G-invariant binary relations,
A permutation group $G \leq \text{Sym}(\Omega)$ acts naturally on $\Omega \times \Omega$:

$$(\alpha, \beta)^g := (\alpha^g, \beta^g), \quad \alpha, \beta \in \Omega, \quad g \in G.$$

Set $\mathcal{X} = (\Omega, S)$ where $S = \text{Orb}(G, \Omega \times \Omega)$.

Proposition

1. \mathcal{X} is a coherent configuration,
2. S^\cup is the set of all G-invariant binary relations,
3. \mathcal{X} is a scheme iff G is transitive.
Schurian coherent configurations

A permutation group \(G \leq \text{Sym}(\Omega) \) acts naturally on \(\Omega \times \Omega \):

\[
(\alpha, \beta)^g := (\alpha^g, \beta^g), \quad \alpha, \beta \in \Omega, \quad g \in G.
\]

Set \(\mathcal{X} = (\Omega, S) \) where \(S = \text{Orb}(G, \Omega \times \Omega) \).

Proposition

1. \(\mathcal{X} \) is a coherent configuration,
2. \(S^\cup \) is the set of all \(G \)-invariant binary relations,
3. \(\mathcal{X} \) is a scheme iff \(G \) is transitive.

We say that \(\mathcal{X} \) is the coherent configuration of the group \(G \).
Schurian coherent configurations

A permutation group $G \leq \text{Sym}(\Omega)$ acts naturally on $\Omega \times \Omega$:

$$(\alpha, \beta)^g := (\alpha^g, \beta^g), \quad \alpha, \beta \in \Omega, \quad g \in G.$$

Set $\mathcal{X} = (\Omega, S)$ where $S = \text{Orb}(G, \Omega \times \Omega)$.

Proposition

1. \mathcal{X} is a coherent configuration,
2. S^{\cup} is the set of all G-invariant binary relations,
3. \mathcal{X} is a scheme iff G is transitive.

We say that \mathcal{X} is the **coherent configuration** of the group G.

Definition

A coherent configuration is called schurian if it is the coherent configuration of some permutation group.
The schurity problem

Problem: characterize all schurian coherent configurations belonging to a given class.

The smallest degree of a non-schurian scheme is 15 (the Hanaki-Miamoto list), and coherent configuration ≥ 8 (A.Leman, 1970).

1. A classification of schurian schemes of rank ≤ 3 is a consequence of the Classification of Finite Simple Groups;
2. The Tits theory on spherical buildings solves the schurity problem in a class of the Coxeter schemes (Z, 2005);
3. Schemes of prime degree p: there exist non-schurian schemes of rank 3 but any scheme of rank $\geq \frac{4p}{5}$ is schurian (M-P, 2009).
The schurity problem

Problem: characterize all schurian coherent configurations belonging to a given class.
Problem: characterize all schurian coherent configurations belonging to a given a class.

The smallest degree of a non-schurian scheme is 15 (the Hanaki-Miamoto list), and coherent configuration is ≥ 8 (A.Leman, 1970).

1. A classification of schurian schemes of rank ≤ 3 is a consequence of the Classification of Finite Simple Groups;
2. the Tits theory on spherical buildings solves the schurity problem in a class of the Coxeter schemes (Z, 2005);
3. schemes of prime degree p: there exist non-schurian schemes of rank 3 but any scheme of rank $\geq \left(\frac{4p}{5}\right)$ is schurian (M-P , 2009).
The schurity problem

Problem: characterize all schurian coherent configurations belonging to a given a class.

The smallest degree of a non-schurian scheme is 15 (the Hanaki-Miamoto list), and coherent configuration is ≥ 8 (A.Leman, 1970).

1. A classification of schurian schemes of rank ≤ 3 is a consequence of the Classification of Finite Simple Groups;
The schurity problem

Problem: characterize all schurian coherent configurations belonging to a given a class.

The smallest degree of a non-schurian scheme is 15 (the Hanaki-Miamoto list), and coherent configuration is ≥ 8 (A.Leman, 1970).

1. a classification of schurian schemes of rank ≤ 3 is a consequence of the Classification of Finite Simple Groups;
2. the Tits theory on spherical buildings solves the schurity problem in a class of the Coxeter schemes (Z, 2005);
The schurity problem

Problem: characterize all schurian coherent configurations belonging to a given class.

The smallest degree of a non-schurian scheme is 15 (the Hanaki-Miamoto list), and coherent configuration is ≥ 8 (A.Leman, 1970).

1. a classification of schurian schemes of rank ≤ 3 is a consequence of the Classification of Finite Simple Groups;

2. the Tits theory on spherical buildings solves the schurity problem in a class of the Coxeter schemes (Z, 2005);

3. schemes of prime degree p: there exist non-schurian schemes of rank 3 but any scheme of rank $\geq (4p)^{4/5}$ is schurian (M-P, 2009).
Let \(\mathcal{X} = (\Omega, S) \) be a scheme.
Let $\mathcal{X} = (\Omega, S)$ be a scheme. Then $1_\Omega \in S$.
Let $\mathcal{X} = (\Omega, S)$ be a scheme. Then $1_{\Omega} \in S$. Given $s \in S$ the number

$$n_s = c^1_{ss^*} = |\{\beta \in \Omega : (\alpha, \beta) \in s\}|$$

is the valency of s.

According to the Hanaki-Miamoto list there exist 1, 1 and 26 non-schurian quasi-thin schemes of degrees 16, 28 and 32 respectively.
Let $\mathcal{X} = (\Omega, S)$ be a scheme. Then $1_\Omega \in S$. Given $s \in S$ the number
\[n_s = c_{ss^*}^{1_\Omega} = |\{\beta \in \Omega : (\alpha, \beta) \in s\}| \]
is the valency of s.

Definition

The scheme \mathcal{X} is **thin** if $S = S_1$, and **quasi-thin** if $S = S_1 \cup S_2$ where S_i is the set of all $s \in S$ with $n_s = i$.

According to the Hanaki-Miamoto list there exist 1, 1 and 26 non-schurian quasi-thin schemes of degrees 16, 28 and 32 respectively.
Let $\mathcal{X} = (\Omega, S)$ be a scheme. Then $1_\Omega \in S$. Given $s \in S$ the number
\[n_s = c_{ss^*}^{1_\Omega} = |\{\beta \in \Omega : (\alpha, \beta) \in s\}| \]
is the valency of s.

Definition

The scheme \mathcal{X} is **thin** if $S = S_1$, and **quasi-thin** if $S = S_1 \cup S_2$ where S_i is the set of all $s \in S$ with $n_s = i$.

According to the Hanaki-Miamoto list there exist 1, 1 and 26 non-schurian quasi-thin schemes of degrees 16, 28 and 32 respectively.
In any scheme \((\Omega, S)\) the set \(S_1\) is a group with...
Partial results. Orthogonals

In any scheme (Ω, S) the set S_1 is a group with the identity 1_{Ω}.
Partial results. Orthogonals

In any scheme \((\Omega, S)\) the set \(S_1\) is a group with the identity \(1_\Omega\), the \(s\)-inverse \(s^*\)
Partial results. Orthogonals

In any scheme (Ω, S) the set S_1 is a group with the identity 1_{Ω}, the s-inverse s^* and st being the unique $r \in S_1$ with $c_{st}^r \neq 0$.

Theorem (B. Weisfeiler, 1975)

1. A thin scheme is Schurian ($G = S_1$),
2. A primitive quasi-thin scheme is Schurian ($G \in \{C_p, D_{2p}\}$).

In a quasi-thin scheme given $s \in S_2$ there is a unique $s^\perp \in S$ for which $c_{s^\perp s}^s \neq 0$; the relation s^\perp is the orthogonal of s; the set of all orthogonals is denoted by S^\perp.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is Schurian whenever $|S^\perp| = 1$ and $S^\perp \subset S_1$, or $S^\perp \subset S_2$.

Partial results. Orthogonals

In any scheme \((\Omega, S)\) the set \(S_1\) is a group with the identity \(1_\Omega\), the \(s\)-inverse \(s^*\) and \(st\) being the unique \(r \in S_1\) with \(c_{st}^r \neq 0\).

Theorem (B. Weisfeiler, 1975)

1. a thin scheme is schurian

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever \(|S_\perp| = 1\) and \(S_\perp \subset S_1\), or \(S_\perp \subset S_2\).
Partial results. Orthogonals

In any scheme \((\Omega, S)\) the set \(S_1\) is a group with the identity \(1_\Omega\), the \(s\)-inverse \(s^*\) and \(st\) being the unique \(r \in S_1\) with \(c_{st}^r \neq 0\).

Theorem (B. Weisfeiler, 1975)

1. A thin scheme is schurian \((G = S_1)\),

2. A primitive quasi-thin scheme is schurian \((G \in \{C_{2p}, D_{2p}\})\).
Partial results. Orthogonals

In any scheme \((\Omega, S)\) the set \(S_1\) is a group with the identity \(1_\Omega\), the \(s\)-inverse \(s^*\) and \(st\) being the unique \(r \in S_1\) with \(c_{st}^r \neq 0\).

Theorem (B. Weisfeiler, 1975)

1. A thin scheme is schurian \((G = S_1)\),
2. A primitive quasi-thin scheme is schurian.
In any scheme \((\Omega, S)\) the set \(S_1\) is a group with the identity \(1_\Omega\), the \(s\)-inverse \(s^*\) and \(st\) being the unique \(r \in S_1\) with \(c_{st}^r \neq 0\).

Theorem (B. Weisfeiler, 1975)

1. a thin scheme is schurian \((G = S_1)\),
2. a primitive quasi-thin scheme is schurian \((G \in \{C_p, D_{2p}\})\).
Partial results. Orthogonals

In any scheme (Ω, S) the set S_1 is a group with the identity 1_{Ω}, the s-inverse s^* and st being the unique $r \in S_1$ with $c_{st}^r \neq 0$.

Theorem (B. Weisfeiler, 1975)

1. a thin scheme is schurian $(G = S_1)$,
2. a primitive quasi-thin scheme is schurian $(G \in \{C_p, D_{2p}\})$.

In a quasi-thin scheme given $s \in S_2$ there is a unique $s^\perp \in S$ for which $c_{ss^*}^{s^\perp} \neq 0$;
Partial results. Orthogonals

In any scheme \((\Omega, S)\) the set \(S_1\) is a group with the identity \(1_\Omega\), the \(s\)-inverse \(s^*\) and \(st\) being the unique \(r \in S_1\) with \(c_r^{st} \neq 0\).

Theorem (B. Weisfeiler, 1975)

1. A thin scheme is Schurian \((G = S_1)\),
2. A primitive quasi-thin scheme is Schurian \((G \in \{C_p, D_{2p}\})\).

In a quasi-thin scheme given \(s \in S_2\) there is a unique \(s^\perp \in S\) for which \(c^{s^\perp}_{ss^*} \neq 0\); the relation \(s^\perp\) is the orthogonal of \(s\);
In any scheme \((\Omega, S)\) the set \(S_1\) is a group with the identity \(1_\Omega\), the \(s\)-inverse \(s^*\) and \(st\) being the unique \(r \in S_1\) with \(c^r_{st} \neq 0\).

Theorem (B. Weisfeiler, 1975)

1. a thin scheme is schurian \((G = S_1)\),
2. a primitive quasi-thin scheme is schurian \((G \in \{C_p, D_{2p}\})\).

In a quasi-thin scheme given \(s \in S_2\) there is a unique \(s^\perp \in S\) for which \(c^{s^\perp}_{ss^*} \neq 0\); the relation \(s^\perp\) is the **orthogonal** of \(s\); the set of all orthogonals is denoted by \(S^\perp\).
In any scheme \((\Omega, S)\) the set \(S_1\) is a group with the identity \(1_{\Omega}\), the \(s\)-inverse \(s^*\) and \(st\) being the unique \(r \in S_1\) with \(c_{st}^r \neq 0\).

Theorem (B. Weisfeiler, 1975)

1. A thin scheme is schurian \((G = S_1)\),
2. A primitive quasi-thin scheme is schurian \((G \in \{C_p, D_{2p}\})\).

In a quasi-thin scheme given \(s \in S_2\) there is a unique \(s^\perp \in S\) for which \(c_{ss^*}^s \neq 0\); the relation \(s^\perp\) is the orthogonal of \(s\); the set of all orthogonals is denoted by \(S^\perp\).

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever \(|S^\perp| = 1\) and \(S^\perp \subset S_1\).
Partial results. Orthogonals

In any scheme \((\Omega, S)\) the set \(S_1\) is a group with the identity \(1_\Omega\), the \(s\)-inverse \(s^*\) and \(st\) being the unique \(r \in S_1\) with \(c_{st}^r \neq 0\).

Theorem (B. Weisfeiler, 1975)

1. a thin scheme is schurian \((G = S_1)\),
2. a primitive quasi-thin scheme is schurian \((G \in \{C_p, D_{2p}\})\).

In a quasi-thin scheme given \(s \in S_2\) there is a unique \(s^\perp \in S\) for which \(c_{s^*s}^{s^\perp} \neq 0\); the relation \(s^\perp\) is the orthogonal of \(s\); the set of all orthogonals is denoted by \(S^\perp\).

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever \(|S^\perp| = 1\) and \(S^\perp \subset S_1\), or \(S^\perp \subset S_2\).
A quasi-thin scheme $X = (\Omega, S)$ is called a Klein scheme if the set $\{ 1 \cup S \} \perp S$ is a Klein subgroup of the group S (elementary abelian group of order 4); the number $|\Omega|/|S|$ is the index of X.

Any non-schurian quasi-thin scheme of degree $n \in \{16, 28, 32\}$ is a Klein scheme of index 4 (for $n = 16, 32$), or index 7.

Main Theorem

1. Any schurian quasi-thin scheme of degree n is a scheme of a permutation group of order n or $2n$;
2. Any non-schurian quasi-thin scheme is a Klein scheme of index 4 or 7;
3. Given $i \in \{4, 7\}$ there exist infinitely many non-schurian Klein schemes of index i.

Klein configurations
A quasi-thin scheme $\mathcal{X} = (\Omega, S)$ is called a **Klein scheme** if the set $\{1_\Omega\} \cup S^\perp$ is a Klein subgroup of the group S_1 (elementary abelian group of order 4);
A quasi-thin scheme $\mathcal{X} = (\Omega, S)$ is called a Klein scheme if the set $\{1_\Omega\} \cup S^\perp$ is a Klein subgroup of the group S_1 (elementary abelian group of order 4); the number $|\Omega|/|S_1|$ is the index of \mathcal{X}.

Main Theorem

1. Any schurian quasi-thin scheme of degree n is a scheme of a permutation group of order n or 2^n;
2. Any non-schurian quasi-thin scheme is a Klein scheme of index 4 or 7;
3. Given $i \in \{4, 7\}$ there exist infinitely many non-schurian Klein schemes of index i.

Klein configurations
A quasi-thin scheme $\mathcal{X} = (\Omega, S)$ is called a Klein scheme if the set $\{1_\Omega\} \cup S^\perp$ is a Klein subgroup of the group S_1 (elementary abelian group of order 4); the number $|\Omega|/|S_1|$ is the index of \mathcal{X}.

Any non-schurian quasi-thin scheme of degree $n \in \{16, 28, 32\}$ is a Klein scheme of index 4 (for $n = 16, 32$), or index 7.
A quasi-thin scheme $\mathcal{X} = (\Omega, S)$ is called a **Klein scheme** if the set $\{1_\Omega\} \cup S^\perp$ is a Klein subgroup of the group S_1 (elementary abelian group of order 4); the number $|\Omega|/|S_1|$ is the **index** of \mathcal{X}.

Any non-schurian quasi-thin scheme of degree $n \in \{16, 28, 32\}$ is a Klein scheme of index 4 (for $n = 16, 32$), or index 7.

Main Theorem

1. Any schurian quasi-thin scheme of degree n is a scheme of a permutation group of order n or 2^n;
2. Any non-schurian quasi-thin scheme is a Klein scheme of index 4 or 7;
3. Given $i \in \{4, 7\}$ there exist infinitely many non-schurian Klein schemes of index i.
Klein configurations

A quasi-thin scheme $\mathcal{X} = (\Omega, S)$ is called a Klein scheme if the set $\{1_\Omega\} \cup S^\perp$ is a Klein subgroup of the group S_1 (elementary abelian group of order 4); the number $|\Omega|/|S_1|$ is the index of \mathcal{X}.

Any non-schurian quasi-thin scheme of degree $n \in \{16, 28, 32\}$ is a Klein scheme of index 4 (for $n = 16, 32$), or index 7.

Main Theorem

1. any schurian quasi-thin scheme of degree n is a scheme of a permutation group of order n or $2n$;
A quasi-thin scheme $\mathcal{X} = (\Omega, S)$ is called a Klein scheme if the set $\{1_\Omega\} \cup S^\perp$ is a Klein subgroup of the group S_1 (elementary abelian group of order 4); the number $|\Omega|/|S_1|$ is the index of \mathcal{X}.

Any non-schurian quasi-thin scheme of degree $n \in \{16, 28, 32\}$ is a Klein scheme of index 4 (for $n = 16, 32$), or index 7.

Main Theorem

1. any schurian quasi-thin scheme of degree n is a scheme of a permutation group of order n or $2n$;
2. any non-schurian quasi-thin scheme is a Klein scheme of index 4 or 7;
Klein configurations

A quasi-thin scheme $\mathcal{X} = (\Omega, S)$ is called a **Klein scheme** if the set $\{1_\Omega\} \cup S^\perp$ is a Klein subgroup of the group S_1 (elementary abelian group of order 4); the number $|\Omega|/|S_1|$ is the **index** of \mathcal{X}.

Any non-schurian quasi-thin scheme of degree $n \in \{16, 28, 32\}$ is a Klein scheme of index 4 (for $n = 16, 32$), or index 7.

Main Theorem

1. any schurian quasi-thin scheme of degree n is a scheme of a permutation group of order n or $2n$;
2. any non-schurian quasi-thin scheme is a Klein scheme of index 4 or 7;
3. given $i \in \{4, 7\}$ there exist infinitely many non-schurian Klein schemes of index i.
Corollaries

A scheme is commutative if $ct = tcr$; commutative thin schemes are in $1-1$-correspondence with finite abelian groups.

Corollary
Any commutative quasi-thin scheme is schurian.

The proof of the Main Theorem is based on the technique developed in [M-P, 2009] to apply to the schurity problem for pseudocyclic schemes.

As a byproduct of the proof one can get the following result.

Theorem
Any non-Kleinian quasi-thin scheme is uniquely determined by its array of intersection numbers.
A scheme is **commutative** if $c^t_{rs} = c^t_{sr}$;
Corollaries

A scheme is **commutative** if $c_{rs}^t = c_{sr}^t$; commutative thin schemes are in 1–1-correspondence with finite abelian groups.

Corollary

Any commutative quasi-thin scheme is schurian.

The proof of the Main Theorem is based on the technique developed in [M-P, 2009] to apply to the schurity problem for pseudocyclic schemes.

As a byproduct of the proof one can get the following result.

Theorem

Any non-Kleinian quasi-thin scheme is uniquely determined by its array of intersection numbers.
Corollaries

A scheme is **commutative** if $c^t_{rs} = c^t_{sr}$; commutative thin schemes are in 1 − 1-correspondence with finite abelian groups.

Corollary

Any commutative quasi-thin scheme is schurian.
A scheme is **commutative** if $c^t_{rs} = c^t_{sr}$; commutative thin schemes are in 1–1-correspondence with finite abelian groups.

Corollary

Any commutative quasi-thin scheme is schurian.

The proof of the Main Theorem is based on the technique developed in [M-P, 2009] to apply to the schurity problem for pseudocyclic schemes.
Corollaries

A scheme is **commutative** if $c_{rs}^t = c_{sr}^t$; commutative thin schemes are in 1 – 1-correspondence with finite abelian groups.

Corollary

Any commutative quasi-thin scheme is schurian.

The proof of the Main Theorem is based on the technique developed in [M-P, 2009] to apply to the schurity problem for pseudocyclic schemes. As a byproduct of the proof one can get the following result.
A scheme is **commutative** if $c_{rs}^t = c_{sr}^t$; commutative thin schemes are in $1-1$-correspondence with finite abelian groups.

Corollary

Any commutative quasi-thin scheme is schurian.

The proof of the Main Theorem is based on the technique developed in [M-P, 2009] to apply to the schurity problem for pseudocyclic schemes. As a byproduct of the proof one can get the following result.

Theorem

Any non-Kleinian quasi-thin scheme is uniquely determined by its array of intersection numbers.