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Abstract

CHARACTERISATION OF GENERALIZED BENT FUNCTIONS AND SOME
OTHER TOPICS RELATED TO CRYPTOGRAPHY

This thesis considers three separate topics, all related to symmetric-key cryptog-
raphy from both the design and the security perspective.

The first topic is the study of generalized bent (gbent) functions. Bent functions,
or maximally nonlinear Boolean functions, have attracted intense research interest
since their introduction by O.S. Rothaus in 1976, however a complete character-
ization remains elusive. Generalized bent functions widen the codomain of these
functions from Z2 to Zq (q ≥ 2 any positive integer), and they are of interest be-
cause of their applications in the design of OFDM and MC-CDMA communication
systems. In this thesis, we deduce a complete characterisation of gbent functions
when q is a power of 2, which is the most interesting case due to applications. De-
pending on the parity of n, we show that a gbent function is a (k − 1)-dimensional
affine space of bent functions or semi-bent functions with certain interesting addi-
tional properties. In addition, we provide the first generic construction methods of
gbent functions for n even or odd, and for any even q.

The second topic we consider is the analysis of stream and block ciphers from the
design and cryptoanalysis point of view. As a typical representative of a hardware
oriented design in stream ciphers, a nonlinear filter generator consists of a single
linear feedback shift register (LFSR) and a nonlinear (vectorial) Boolean function
F which processes a fixed subset of n stages of the LFSR (usually called the taps).
Among various cryptanalytic approaches which utilize weaknesses of the filtering
function, the guess and determine cryptanalysis is a powerful cryptanalytic tool for
these schemes which does not depend on the filtering function, but rather on the
selection of size of LFSR, the primitive polynomial used and the tapping sequence
(tap positions used to provide F with the inputs). The important issue of finding
(sub)optimal solutions for selecting tap positions is comprehensively treated in the
dissertation. Two algorithms for the purpose of selecting taps (sub)optimally are
presented, where we show that the selections of tap positions in real-life stream
ciphers such as SOBER-t32, SFINKS and Grain-128 could have been (slightly) fur-
ther optimized with respect to guess and determine cryptanalysis. In connection to
nonlinear filter generators, the two well-known generic cryptanalytic methods which
utilize certain algebraic properties of the function F in order to break the cipher, are
known as Algebraic attacks (AA) and Fast algebraic attacks (FAA). However, the
computational complexity of estimating the resistance of F to this type of cryptanal-
ysis becomes large for n ≥ 30. Therefore, in the dissertation we propose an efficient
probabilistic algorithm (with high success rate) for determining the resistance of
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a random Boolean function against AA and FAA. The algorithm employs partial
linear relations, derived from the decomposition of an arbitrary nonlinear Boolean
function into many small partial linear subfunctions by using disjoint sets of input
variables.

As our final topic, we consider polynomials without linear structures. While
the resistance of block ciphers to differential cryptanalysis relies heavily on the dif-
ferential properties of vectorial Boolean functions (represented as polynomials), in
order to achieve a high security level it is necessary that these contain no linear
structures. In the dissertation we identify several new infinite classes of polynomials
which cannot possess linear structures. While the linear structures of monomials
and binomials are quite easy to handle, the existence of linear structures for arbi-
trary polynomials over finite fields is harder to analyze. Nevertheless, we provide a
few interesting results in this direction, including some particular cases when these
polynomials contain an arbitrary number of terms.

Math. Subj. Class (2010): 94A60, 11T71

Key words: Generalized bent functions, Zq-bent functions, Gray maps, (Relative)
Difference sets, (Generalized) Marioana-McFarland class, Stream ciphers, Filtering
generator, Guess and determine cryptanalysis, Tap positions, (Fast) Algebraic at-
tacks, Algebraic immunity, Derivatives, Linear structures, Planar mappings.





Izvleček

KARAKTERIZACIJA POSPLOŠNIH ZLOMLJENIH FUNKCIJ IN NEKATERE
DRUGE KRIPTOGRAFSKE TEME

Disertacija preučuje tri ločene teme, ki so povezane s kriptografijo simetričnih
ključev tako z vidika dizajna kot tudi z vidika zaščite.

Prva tema preučuje posplošene zlomljene funkcije. Zlomljene funkcije oz. maksi-
malno nelinearne Boolove funkcije so podvržene raziskovanju že od leta 1976, ko jih je
vpeljal O.S. Rothaus. Kljub temu se njihova popolna karakterizacija zdi nemogoča.
Posplošene zlomljene funkcije, ki imajo kodomeno Z2 zamenjano s kolobarjem Zq
(q ≥ 2 je celo število), so zanimive zaradi uporabe pri konstrukciji komunikacijskih
sistemov OFDM in MC-CDMA. Disertacija vsebuje popolno karakterizacijo pos-
plošenih zlomljenih funkcij, če je q potenca števila 2, kar predstavlja najzanimiveǰsi
primer z vidika uporabe. Pokazali bomo, da je, v odvisnosti od tega, ali je n sod oz.
lih, posplošena zlomljena funkcija enaka (k−1)-razsežnemu afinemu prostoru zloml-
jenih oz. semi-zlomljenih funkcij, ki imajo nekatere dodatne lastnosti. Predstavili
bomo tudi prvo generično konstrukcijsko metodo za posplošene zlomljene funkcije
za sode in lihe n in za poljuben sod q.

Druga tema preučuje analizo tokovnih in bločnih šifer z vidika konstrukcije
in kriptoanalize. Nelinearen filtrirni generator, ki je pomemben pri konstrukcijah
tokovnih šifer, je sestavljen iz linearnega pomičnega registra LFSR in nelinearne
(vektorske) Boolove funkcije F , ki obdeluje podmnožico n fiksnih celic registra
LSFR. Med številnimi kriptoanalitičnih pristopi je še posebej pomembna kriptoanal-
iza tipa ugani-in-določi. Slednja je namreč neodvisna od filtrirne funkcije in sloni
na izbiri velikosti registra LFSR, primitivnega polinoma in zaporedja fiksnih celic.
Zajeten del disertacije je namenjen (sub)optimalni izbiri fiksnih celic. Predstavljena
sta dva algoritma za izbiro teh celic, med drugim pa pokažemo tudi, da je mogoče iz-
bor fiksnih celic pri nekaterih tokovnih šifrah iz vsakdanjega življenja (SOBER-t32,
SFINKS, Grain-128) še nekoliko izbolǰsati z vidika kriptoanalize tipa ugani-in-določi.
V povezavi s filtrirnimi generatorji so med generičnimi kriptoanalitičnimi metodami,
ki izkorǐsčajo določene algebraične lastnosti funkcije F , znani predvsem algebraični
napadi (AA) in hitri algebraični napadi (FAA). Računska kompleksnost za oceno
zaščite funkcije F proti tovrstnim napadom je zelo velika za n ≥ 30. V disertaciji
predstavimo učinkovit verjetnostni algoritem za določanje zaščite slučajne Boolove
funkcije proti napadom AA in FAA. Algoritem bazira na delnih linearnih relacijah,
ki jih dobimo pri dekompoziciji poljubne nelinearne Boolove funkcije na več majhnih
delnih linearnih podfunkcij z uporabo disjunktnih množic vhodnih spremenljivk.

V zadnjem delu disertacije preučujemo polinome, ki nimajo linearnih struktur.
Zaščita bločnih šifer pri diferenčni kriptoanalizi sloni na diferenčnih lastnostih vek-
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torskih Boolovih funkcij, ki so v obliki polinomov. Za dobro zaščito je pomembno, da
le-ti nimajo linearnih struktur. V disertaciji je predstavljenih več novih neskončnih
razredov polinomov, ki nimajo linearnih struktur. Medtem ko je preučevanje lin-
earnih struktur pri monomih in binomih nad končnim obsegom relativno enostavno,
je slednje pri splošnih polinomih precej težje. Kljub temu je v disertaciji predstavl-
jenih tudi nekaj rezultatov iz tega področja.

Math. Subj. Class (2010): 94A60, 11T71

Key words: Posplošene zlomljene funkcije, Zq-zlomljene funkcije, Grayeve pres-
likave, (Relativne) diferenčne množice, (Posplošeni) Marioana-McFarlandov razred,
Tokovne šifre, Filtrirni generator, Ugani-in-določi kriptoanaliza, Pozicije fiksnih
celic, (Hitri) algebraični napadi, Algebraična imunost, Odvodi, Linearne strukture,
Ravninske preslikave.
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Chapter 1

Introduction

Since the beginning of written history there have been attempts to keep phys-
ically recorded information confidential. Society continues to demand methods for
securing sensitive information, however due to humankind’s relatively recent leap
into the information age the alphabet has been reduced to the 0s and 1s of elec-
tronic data, and thus the process of encoding has become ever more mathematical.
The techniques used to protect data belong to the field of cryptography; the science
of information and communication security.

The fundamental objective of cryptography is to enable two persons to commu-
nicate over an insecure channel in such a way that an adversary (a third party)
is unable to recover their message (called the plaintext) from what is sent in its
place over the channel (the ciphertext). More generally, it is about constructing
and analyzing systems (protocols) which prevent third parties from reading private
messages. On the other hand, cryptanalysis deals with breaking such systems. In
general, cryptology is the all-inclusive term for the study of communication over
insecure channels, and it encompasses the interrelated areas of cryptography and
cryptanalysis. Modern cryptography exists at the intersection of various disciplines
of mathematics, computer science, and electrical engineering.

Applications of cryptography are present in many aspects of our society, and they
include authentication and encryption (bank cards, wireless telephone, e-commerce),
access control (car lock systems, ski lifts) and payment (prepaid telephone cards,
e-cash). Behind the all previously mentioned applications, an underlying crypto-
graphic system has to satisfy a number of security goals. Some important aspects
in information security are data confidentiality, data integrity, authentication, and
non-repudiation, and some of these goals will be elaborated later in the framework
of Boolean functions.

A classic example of a cryptosystem is depicted in Figure 8.1. Such a cryptosys-
tem primitive is also called symmetric-key encryption algorithm, since the transmit-
ted message (plaintext) is encrypted (into ciphertext) and decrypted with the same
secret key which is shared between both sender and recipient. Symmetric-key cryp-
tography comprises two large families of cryptographic primitives, namely block and
stream ciphers (see Figure 8.2). Since both block and stream ciphers provide signifi-
cant performance improvement compared to public key encryption techniques, they
are commonly used as encryption schemes in practice. However, the design rules for
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Figure 1.1: Scheme of a classic cryptosystem

Figure 1.2: Symmetric-key encryption schemes

these two primitives are quite different.

The basic underlying idea in the design of block ciphers is to divide the plaintext
into blocks (the length is always a power of two, usually 64,128 or 256 bits), and
encode each block separately. The design of encryption algorithm that corresponds
to a block cipher (see Figure 8.2) uses certain cryptographic primitives known as
substitution boxes (S-boxes, or vectorial Boolean functions), which essentially can be
viewed as a collection of Boolean functions whose selection and cryptographic prop-
erties are application/design dependant. The encryption of each plaintext block
passes through multiple applications of the same S-box layer of the block cipher,
which stands for the concept of confusion (each bit of the ciphertext should de-
pend in a very complicated manner on plaintext and secret key bits). In addition
each encryption round employs a linear layer, where also the so-called round (se-
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cret) key is added, which then corresponds to the concept of diffusion (which can
be roughly considered as the property that the intermediate ciphertext bits, after
applying one encryption round, depend on many input bits). The concepts of con-
fusion and diffusion were introduced by Claude E. Shannon in his classified report
A Mathematical Theory of Cryptography [105] in 1945. Although good confusion
and diffusion properties are relatively easily achieved, due to iterative process of
processing the same plaintext block several times (typically 10-30 times), well de-
signed stream ciphers are commonly slightly faster than block ciphers. Some of the
well-know and prominent block ciphers today, based on the use of either Feistel or
SP (Substitution Permutation) networks, are Data Encryption Standard (DES), In-
ternational Data Encryption Algorithm (IDEA), Triple DES, Twofish, Serpent and
Advanced Encryption Standard (AES) (the current encryption standard).

On the other hand, stream ciphers commonly employ (non)linear shift registers
which roughly correspond to finite state machines capable of storing and manipu-
lating its state bits in (non)linear manner. Most commonly, a portion of these state
bits is further processed through some (non)linear mechanism (for instance Boolean
filtering function) and a single (several) bits of the keystream are produced at the
time which are then added modulo two to plaintext bits to finally generate the ci-
phertext. In comparison to block ciphers, the main design goal concerning stream
ciphers is either to provide a faster encryption algorithm (faster than block ciphers)
or alternatively to have a compact hardware implementation for hardware restricted
environments. Two well-known types of shift registers are linear and nonlinear feed-
back shift registers (shortly LFSR or NFSR). Certain stream cipher designs use
LFSRs in combination with a (vectorial) Boolean function whose main goal is to
filter the secret state bits and provide a proper confusion of the cipher. Some of the
main representative schemes among stream ciphers are SEAL [95, 96], SNOW (see
for instance [36]), ISAAC [97], Grain family [47], and many others.

In general, well-designed stream and block cipher only offer computational se-
curity, unlike the cryptographic systems which belong to public-key cryptography
where commonly the security is related to some well-known hard problem for which
no efficient solutions are known. In what follows we briefly describe the main differ-
ences between symmetric-key and public-key cryptography. Unlike symmetric key
cryptography, where the same secret key is shared between the sender and recipient,
the concept of public-key cryptography evolved from an attempt to solve the key
distribution by using a public key (known to everyone), and a private (secret) key
(known only to the recipient of the message). In a public-key encryption scheme,
any person can encrypt a message using the public key of the recipient, but such
a message can be decrypted only with the recipient’s private key. The security
of these systems mainly relies on cryptographic algorithms based on hard mathe-
matical problems that currently admit no efficient solution, such as prime integer
factorization, discrete logarithm problem etc.. Moreover, defining the same prob-
lem such as discrete logarithm problem on suitable mathematical structures such
as elliptic curves may impact positively the hardness of the underlying problem. In
addition, public-key encryption algorithms do not require a secure channel for the
initial exchange of secret keys between the parties. However, all known public-key
cryptosystems are much less efficient than symmetric-key cryptosystems, since they
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produce a much lower data throughput (due to the time requirement for encryption).
Due to their superior performance in terms of encryption speed in comparison to
public key cryptography, symmetric-key encryption schemes are used for encryption
of data whereas public key algorithms are mainly employed for key exchange.

With respect to the type of information the adversary has access to, there exist
four main classes of cryptanalysis:

• Ciphertext-only attack scenario assumes that the cryptanalyst (attacker) has
only passive capability to listen to the encrypted communication. By observing
only the ciphertext, the goal of the attacker is to recover the encryption key
(or a part of the key), or a portion of the plaintext;

• Known-plaintext attacks regard the scenario when the cryptanalyst tries to
recover the key or a part of the key while having some plaintext and the
corresponding ciphertext pairs at his disposal;

• Chosen-plaintext attacks presume that the attacker can obtain the ciphertexts
for arbitrary plaintexts. The goal of the attack is to recover (portion of) the
secret key;

• Chosen-ciphertext scenario assumes that the cryptanalyst has access to the
decryption equipment and can decrypt any ciphertext. From these pieces of
information the objective is to deduce the key, which can be securely embedded
in the equipment, from the ciphertext-plaintext pairs.

From now on we focus our attention on the design and cryptanalysis of stream
ciphers and in particular on a subfamily of these schemes that use LFSR/NFSR in
combination with filtering (vectorial) Boolean functions.

Among various cryptanalytic techniques applicable to stream ciphers algebraic
attacks (AA) and fast algebraic attacks (FAA) [25, 26] have received a lot of atten-
tion. These attacks being generic to LFSR-based stream ciphers have substantially
increased the design requests related to the choice of filtering (vectorial) Boolean
functions. The core idea behind the two attacks can be summarized as follows.
The first step is to set up a low degree algebraic system of multivariate equations
in the secret key/state bits, where the degree of these equations is closely related
to the algebraic properties of the of the filtering function F (see Figure 8.3). The
second step is to solve the system of equations and recover the secret key/state bits.
Whereas the second step is well understood, the first step of finding low degree mul-
tivariate equations for relatively large number of input variables n is still an open
problem due to complexity issues. During the past decade, an efficient evaluation
of the resistance of nonlinear Boolean functions against AA and FAA has been ad-
dressed in many works due to a great significance of these estimates from both the
design and cryptanalysis point of view. At EUROCRYPT 2003, the first algorithm
for determining the existence of annihilators of degree d for an arbitrary n-variable
Boolean function f (thus finding function g such that fg = 0) was proposed in
[25]. Its time complexity is about O(D3) operations, where D =

∑d
i=0

(
n
i

)
. There

have been many attempts to improve the computational efficiency of these estimates
[3, 8, 29, 30, 56], but none of the proposed algorithms can handle Boolean functions
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with relatively large number of variables, say n ≥ 30. One important contribution
of this thesis is an efficient proposal of probabilistic methods for determining the
algebraic properties of Boolean functions for large input spaces n.

Nonlinear filter generator is a typical representative of a hardware oriented de-
sign in stream ciphers (see Figure 8.3). It consists of a single linear feedback shift

Figure 1.3: Filtering generator with tap positions

register (LFSR) and a nonlinear function F : Fn2 → Fm2 (Fn2 is a vector space of all bi-
nary vectors of length n) that processes a fixed subset of n stages of the LFSR. This
fixed subset of the LFSR’s cells is usually called the taps. The resistance of nonlin-
ear filter generators against various cryptanalytic attacks, such as (fast) correlation
attacks [77, 106, 82], algebraic attacks [23, 24, 78], probabilistic algebraic attacks
[9, 87], and attacks that take advantage of the normality of Boolean functions [83],
mainly depends on the choice of the filtering function F , and the design rules for
ensuring good security margins against these attacks are more or less known today.
Nevertheless, guess and determine cryptanalysis is a powerful and generic cryptana-
lytic tool for these schemes which (mainly) does not depend on the filtering function
(the same applies to time-memory-data trade-off attacks [7], [48], [54]) but rather
to the selection of LFSR: its size, primitive polynomial used and tapping sequence
(tap positions used to provide F with the inputs). The main goal of the guess and
determine cryptanalysis, when applied to these schemes, is to recover (a part of) the
secret state bits contained in the LFSR by exploiting the structure of the cipher.
The term ”structure” here mainly refers to the tap positions of LFSR used for sup-
plying F with its inputs and the fixed positions of LFSR for implementing a linear
recursion through the primitive connection polynomial. It was explicitly stated for
the first time in [42] that the choice of tap sequence may play more significant role
than the optimization of F in the context of inversion attacks introduced in [42],
see also [41, 43]. This important issue of finding (sub)optimal solutions for selecting
tap positions, given their number n and the length L of the driving LFSR, appears
to be highly neglected in the literature. Although some heuristic approaches have
been used for taps selection, an efficient and generic method for this purpose has
not been proposed yet. This thesis also contributes in this direction by specifying
some algorithms for finding cryptographically (sub)optimal positions of these taps.

Another well known technique in the cryptanalysis of block ciphers is the differ-
ential cryptanalysis introduced by Eli Biham and Adi Shamir [5]. This technique is
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mainly applicable to iterated block ciphers, although it can also be mounted on cer-
tain stream ciphers. Basically, differential cryptanalysis is a chosen-plaintext attack
though it can be modified into a known-plaintext attack provided that sufficiently
many plaintexts are available. In brief, this method searches for plaintext-ciphertext
pairs whose difference is constant, and investigates the differential behavior of the
cryptosystem, i.e., it exploits the possibility of finding many plaintext pairs with
some fixed difference such that the corresponding ciphertext pairs differ by some
fixed value. In recent years, differential cryptanalysis has been generalized, resulting
in several new techniques such as truncated and higher-order differential cryptanal-
ysis [58, 63], impossible differential cryptanalysis [59], the Boomerang attack [118],
and others.

In order to ensure a high security level, functions used in block ciphers need
to satisfy various security goals. Among other cryptographic properties (which
we briefly describe later on), the concept of linear structures plays an important
role in cryptographic applications. Certainly, for functions over finite fields (whose
prime field is binary) the substitution boxes (S-boxes) identified as a polynomial
F (x) ∈ F2n [x], represented as F (x) =

∑q−1
i=0 bix

i, should not contain linear struc-
tures a so that F (x + a) + F (x) = b for some fixed b ∈ F2n and for all x ∈ F2n .
In this case a is called a b-linear structure. Thus, the main problem regarding the
linear structures is an identification (or construction) of mappings which do not
possess them. A detailed study of the cryptanalytic significance of linear struc-
tures was initiated by Evertse [37], where the cryptanalysis of DES-like ciphers was
discussed. Linear structures were also considered by Nyberg and Knudsen in the
context of provable security against differential attacks [85], and later in many works
e.g. [64, 34, 65, 114]. The connection between the existence of linear structures and
the differential profile of functions over finite fields is an important area of investiga-
tion in the context of the designs of S-boxes. The relevance of this area has increased
significantly due to the recent cryptographic need of development of S-boxes (vecto-
rial Boolean functions) suitable for use in lightweight ciphers, see for instance [55, 6].
To sum up the critical technological impact of this area of research we refer to the
foreword written by Bart Preneel in the recent book by Tokareva [117] which is
entirely devoted to bent functions. Preneel writes: “Perhaps the largest impact on
modern cryptography to date would be generated by the study of generalizations to
vector Boolean functions that offer strong resistance against differential and linear
attacks by Nyberg and others. This work resulted in the S-box used in the Advanced
Encryption Standard (AES) that is today used in billions of devices.” Incidentally
bent functions (on which we elaborate later) are Boolean functions having no linear
structures whose cryptographic applications include employment in the designs of
CAST, Grain and HAVAL, as well as “non-cryptographic” uses in the designs of
Hadamard matrices, strongly regular graphs, Kerdock codes and CDMA sequences.

Apart from linear structures, which have been mentioned in the framework of S-
boxes (vectorial Boolean functions), there exist many other indicators which describe
the cryptographic properties of a single Boolean function. An n-variable Boolean
function is a mapping from vector space Fn2 to binary field with two elements F2 =
{0, 1}. One of the fundamental research topics in cryptography is the construction
of cryptographically significant Boolean functions, that is a function which possesses
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some of the following properties. High nonlinearity is one of the most important
properties in the design of symmetric-key cryptosystems, since it directly affects the
resistance of the cipher to majority of cryptanalytic techniques. The nonlinearity
simply measures the Hamming distance to the set of all affine functions. Therefore,
a high nonlinearity implies a better resistance to affine approximation attacks [74,
75]. In order to avoid the statistical dependence between the input and output,
the concept of balancedness implies that a given Boolean function outputs equally
many zeros and ones over all possible input values. High algebraic degree aims to
increase the linear complexity in ciphers. Also, high algebraic immunity of order d
(that is the minimal degree of annihilator of a given function) plays an important
role in providing a high resistance to (Fast) Algebraic attacks on stream ciphers.
The resistance of a (block) cipher to differential-like attacks is quantified through
derivatives of its S-box, and high resistance to these techniques is achieved with
good differential properties.

However, the major problem in construction of cryptographically strong func-
tions is that the multiple criteria mentioned above have to be satisfied at the same
time, while there exist intrinsic trade-offs between them. Since the number of
Boolean functions in n variables is 22

n
, an exhaustive search of functions which

satisfy some of the properties above, is practically impossible (unless the input vari-
able space n is quite small). Thus, bringing new construction methods of these
functions is still a vivid research activity.

The term Bent function was introduced by Rothaus in 1976 [98], and it is a
type of function which has a maximal nonlinearity, i.e., it has a maximal Hamming
distance to the set of all affine functions. Since then, this special class of Boolean
functions has attracted a lot of attention due to its applications in various areas
of mathematics and computer science (for instance in communication systems, se-
quence design, cryptography, algebraic coding, difference set theory, etc.). There ex-
ist various equivalent definitions of bent functions, where the most common uses the
Hamming distance as mentioned above, which is actually related to the flat Walsh
spectrum (Sylvester-Hadamard transform) of the function (see relation (2.3)). Even
though a few generic classes of bent functions have been identified [14, 31, 33, 60] a
complete characterization of these functions seems to be elusive. The bent property
of vectorial-valued Boolean functions (S-boxes), say F : Fn2 → Fm2 , may be extended
by requesting that all nonzero linear combinations of the coordinate functions of F
are also bent. This means that representing F (x) = (f1(x), . . . , fm(x)) as a collec-
tion of m Boolean functions fi, then any nonzero linear combination of the form
a1f1(x) ⊕ . . . ⊕ amfm(x), where ai are binary, is again bent. The construction of
such vectorial bent functions has been initially considered by Nyberg in [84], where
it has been shown that vectorial bent functions can only exist for m ≤ n

2 , and can
be constructed using some known classes of bent functions (see for instance Maio-
ranaMcFarland class [31, 32] and the Dillons partial spread class [17, 31, 32, 98]).
In the case when F : Znp → Znp and p > 2 is a prime number, then instead of the
term a vectorial bent we are using the term a planar function.

A generalization of Boolean functions was introduced in [62] and considers a
much larger class of mappings from Znq to Zq. Nevertheless, due to a more natural
connection to cyclic codes over rings, functions from Zn2 to Zq, where q ≥ 2 is a
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positive integer, have drawn even more attention. In [101], K. U. Schmidt studied
the relations between generalized bent functions, constant amplitude codes and Z4-
linear codes (q = 4). The latter class of mappings is called generalized bent (gbent)
functions throughout the dissertation. For other generalizations of (bent) Boolean
functions we refer reader to [101, 103, 66, 60, 109, 111, 110]. A nice survey on differ-
ent generalizations of bent functions can be found in [117]. There are several reasons
for studying generalized bent (gbent) functions. In the first place, there is a close
connection of these objects to standard bent Boolean functions. For instance, the
bent conditions imposed on the component functions of gbent functions (using a suit-
able decomposition) with values in Zq has been studied for q = 4 [109], q = 8 [113],
and q = 16 [70]. Also, in many other recent works [107, 108, 111, 76] the authors
mainly consider the bentness of the component functions for a given prescribed form
of gbent functions. A more interesting research challenge in this context is to propose
some direct construction methods of functions from Zn2 to Zq for which a suitable
q may give a nontrivial decomposition into standard bent functions, possibly not
belonging to the known classes of bent functions. The second reason for the interest
in these objects is a close relationship between certain objects used in the design
of two different types of communication systems, Orthogonal Frequency-Division
Multiplexing (OFDM) [69, 94, 35] and Multi-Carrier Code Division Multiple Access
(MC-CDMA) [44, 45, 100]. OFDM is a method of transmitting data simultane-
ously over equally-spaced carrier frequencies. The method has been proposed for
many types of radio systems such as wireless local area networks, digital audio and
video broadcasting, Internet networks and 4G mobile communications. MC-CDMA
dominates amongst proposals for 3rd Generation cellular communication systems.
It is a multiple access scheme used in OFDM-based telecommunication systems, al-
lowing the system to support multiple users at the same time. Both modulation
techniques in certain cases suffer from relatively high peak-to-mean envelope power
ratio (PMEPR). To overcome these issues, the q-ary sequences lying in complemen-
tary pairs [40] (also called Golay sequences) having a low PMEPR can be easily
determined from the generalized Boolean function associated with such a sequence,
see [104] and the references therein. More precisely, a gbent function corresponds to
a q-ary sequence which can reduce the peak-to-average power ratio (PAPR) in such
systems to the lowest possible value (called a constant-amplitude code). As a result,
some efficient construction methods of gbent functions appear to be very useful in
communication systems.

The rest of the thesis is organized as follows. In Chapter 2 the essential back-
ground on (generalised) Boolean functions and some basics on guess and determine
cryptanalysis is given.

In Chapter 3, a complete characterisation of gbent functions f : Zn2 → Zq when
q is a power of 2 is deduced, together with some analysis of their dual functions and
Gray maps. It turns out that sufficient conditions in this characterisation provide
also gbent functions for any even q. Furthermore we discuss a subclass of gbent
functions corresponding to relative difference sets which we call Zq-bent functions,
and point out that they correspond to a class of vectorial bent functions. To conclude
the chapter, the first general construction methods of gbent functions are proposed.

An optimal selection of tap positions for certain LFSR-based encryption schemes
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is investigated from both the design and the cryptanalytic perspective in Chapter 4.
Two novel algorithms for an optimal selection of tap positions are given which can
be used to provide (sub)optimal resistance to the generic cryptanalytic techniques
applicable to these schemes. Two different modes using a variable sampling of
keystream blocks are presented, and it is shown that in many cases these modes may
outperform the standard GFSGA mode [119] (which is a particular form of guess
and determine cryptanalysis). We also demonstrate the possibility of employing
GFSGA-like attacks to other design strategies such as NFSR-based ciphers (Grain
family for instance [47]) and filter generators outputting a single bit each time the
cipher is clocked.

An efficient estimation of the resistance of Boolean functions with relatively large
number of inputs against (fast) algebraic attacks is presented in Chapter 5. Based on
partial linear relations, a decomposition of nonlinear functions is introduced. This
decomposes any given nonlinear Boolean function into linear (affine) subfunctions
using disjoint sets of input variables. A general probabilistic decomposition algo-
rithm for nonlinear Boolean functions is presented which gives a new framework
for estimating the resistance of Boolean function against (fast) algebraic attacks
for large values of n for which the computational complexity of known methods is
practically infeasible.

The dissertation is concluded with Chapter 6, where several infinite classes of
polynomials which cannot possess linear structures are identified.

The results of this PhD Thesis are published in the following articles:

• S. Hodžić, E. Pasalic. Generalized bent functions - some general construction
methods and related necessary and sufficient conditions. Cryptography and
communications, vol. 7, no. 4, pp. 469-483, 2015.

• S. Hodžić, E. Pasalic. Generalized bent functions - sufficient conditions and
related constructions. To appear in Advances in Mathematics of Communica-
tions. Available at: https://arxiv.org/abs/1601.08084

• S. Hodžić, W. Meidl, E. Pasalic. Full characterization of generalized bent func-
tions as (semi-)bent spaces, their dual and Gray image. Submitted manuscript.
Available at: https://arxiv.org/abs/1605.05713

• S. Hodžić, E. Pasalic. Construction methods for generalized bent functions.
Submitted manuscript. Available at: https://arxiv.org/abs/1604.02730

• E. Pasalic, S. Hodžić, S. Bajrić, Y. Wei. Optimizing the placement of tap
positions. International Conference on Cryptography and Information Security
in the Balkans, BalkanCryptSec 2014 Turkey, October 16-17, LNCS 9024, pp.
15–30, 2015.

• S. Hodžić, E. Pasalic, Y. Wei. Optimizing the placement of tap positions
and guess and determine cryptanalysis cryptanalysis with variable sampling.
Submitted manuscript. Available at: https://arxiv.org/abs/1609.08422

• Y. Wei, E. Pasalic, F. Zhang, S. Hodžić. Efficient probabilistic algorithm for
estimating the algebraic properties of Boolean functions for large n. Informa-
tion Sciences, vol. 402, pp. 91–104, 2017.
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• E. Pasalic, A. Muratović-Ribić, S. Hodžić, S. Gangopathyay. On derivatives
of polynomials over finite field through integration. Discrete Applied Mathe-
matics, vol. 217, no. 2, pp. 294–303, 2017.





Chapter 2

Boolean functions and filtering
generators

In this chapter we cover most of the definitions and concepts related to (gen-
eralised) Boolean functions and certain guess and determine attacks. Even though
there exist numerous indicators and notions related to (generalised) Boolean func-
tions, we consider only those which will be used in subsequent chapters. In that
context, one of the most important tools for analysis of various cryptographic crite-
ria, the so-called Walsh transform, is introduced. Since the formula for the Walsh
transform is defined in terms of linear functions, we also recall some known prop-
erties of the Sylvester-Hadamard matrix. The chapter is concluded by providing a
brief overview of the Filter State Guessing Attack (FSGA) and its generalization
(GFSGA), which actually both belong to the class of guess and determine attacks
on nonlinear filter generators.

2.1 Boolean functions

Let Fq denote the Galois field of order q = pn, and let the corresponding vector
space be denoted by Fnp . In the case when p = 2, let Fn2 denote the vector space of
binary n-tuples over the finite field with two elements F2 = {0, 1}. We take that the
ordering of the space Fn2 is given as

{(0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (1, 1, . . . , 1)},

and when the length of the vector is clear from the context we denote the all-zero
vector (0, 0, . . . , 0) by 0. By F2n we denote the finite Galois field GF (2n) consisting
of 2n elements. The cyclic group, denoted by F∗

2n , is a multiplicative group consisting
of 2n−1 elements which is generated by a primitive element α ∈ F2n . Once the basis
of the field is fixed, say {γ0, . . . , γn−1} so that α = α0γ0 + . . . + αn−1γn−1, where
γi ∈ F2n and αi ∈ F2, there is a natural isomorphism between F2n and Fn2 given by

α0γ0 + . . .+ αn−1γn−1 ∈ F2n → (α0, . . . , αn−1) ∈ Fn2 .

11
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We denote the set of integers, real numbers and complex numbers by Z, R and C,
respectively, and the ring of integers modulo r is denoted by Zr. In some cases,
instead of Fn2 we will write Zn2 . For x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn2 ,
the scalar (or inner) product is defined as x · y = x1y1 ⊕ . . . ⊕ xnyn. The addition
over Z, R and C is denoted by “+”, but also the addition modulo q and it should
be understood from the context when reduction modulo q is performed. The binary
addition over F2 is denoted by ⊕ in a few cases we use this addition. The cardinality
of the set S is denoted by |S|. If z = µ + νi ∈ C, then |z| =

√
µ2 + ν2 denotes the

absolute value of z, and z = µ − νi denotes the complex conjugate of z, where
i2 = −1, and µ, ν ∈ R. We also denote µ = Re(z) and ν = Im(z).

A Boolean function on n variables is any mapping from Fn2 or F2n to F2, and the
set of all such functions is denoted by Bn. Especially, the set of affine functions in
n variables we define as An = {a · x ⊕ b | a ∈ Zn2 , b ∈ {0, 1}}. A vectorial Boolean
function is a function from Fn2 to Fm2 (or from F2n to F2m).

Representations of Boolean functions

A Boolean function can be represented in several ways, where some of them are
addressed in what follows.

The truth table of a Boolean function f in n variables is defined as a binary
string of values of the function f , i.e.,

f = (f(0, 0, . . . , 0), f(1, 0, . . . , 0), . . . , f(1, 1, . . . , 1)).

The Hamming weight of a vector x = (x1, . . . , xn) ∈ Fn2 is defined as wt(x) =
#{i : xi = 1} =

∑n
i=1 xi, where #E denotes the cardinality of any set E. Thus,

the support of the function f we defined as supp(f) = #{x ∈ Fn2 : f(x) = 1}.
The Hamming distance between two functions f, g ∈ Bn is denoted by dH(f, g) and
defined by

dH(f, g) = #{x ∈ Fn2 : f(x) ̸= g(x)}.

Note that the definitions of weights and distance given above are still valid, if Fn2 is
replaced with F2n . The nonlinearity of f ∈ Bn, denoted by Nf , is defined to be the
Hamming distance from the set of all n variable affine functions as

Nf = min
g∈An

dH(f, g).

Among the classical representations of Boolean functions, a function f : Fn2 → F2

is commonly represented using its associated algebraic normal form (ANF) as

f(x1, . . . , xn) =
∑
u∈Fn

2

λu

n∏
i=1

xi
ui , (2.1)

where the variables xi ∈ F2 (i = 1, . . . , n), λu ∈ F2, u = (u1, . . . , un) ∈ Fn2 . The
algebraic degree, denoted by deg(f), is defined as max{wt(u) : λu ̸= 0, u ∈ Fn2}.
There is a one-to-one correspondence between the truth table and the ANF via
so-called inversion formulae.
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The univariate representation of Boolean functions f : F2n → F2 is given as

f(x) =

2n−1∑
i=0

aix
i, ai ∈ F2n , (2.2)

where the coefficients ai ∈ F2n satisfy the following (Boolean conditions): a0, a2n−1 ∈
F2 and a2i (mod 2n−1) = a2i for i = 1, . . . , 2n − 2, due to the condition f(x)2 ≡ f(x)

(mod x2
n − x). Consequently, using the univariate representation we formally do

not distinguish between F : F2n → F2n and a Boolean mapping f : F2n → F2. In
the case that F : Fn2 → Fm2 , then the function F can be viewed as a collection of m
Boolean functions, i.e., F = (f1(x), . . . , fm(x)), where fi : Fn2 → F2.

The polynomial degree of F (x) =
∑q−1

i=0 bix
i is the largest i for which bi ̸= 0. On

the other hand, the algebraic degree of F (x) =
∑q−1

i=0 bix
i ∈ Fq[x], where q = pn, is

defined as the maximum Hamming weight of the p-adic expansion of the exponent
i satisfying that bi ̸= 0.

The derivative of f ∈ Bn at vector a ∈ F2n , denoted by Daf , is a Boolean
function defined by

Daf(x) = f(x+ a) + f(x), for all x ∈ F2n .

Accordingly, an element a ∈ F∗
2n is called a linear structure of f if f(x+a)+ f(x) =

const. ∈ F2, for any x ∈ F2n .

Walsh Transform

The most significant properties of Boolean functions can be described through the
Walsh-Hadamard transform (WHT), which for a Boolean function f ∈ Bn is defined
as

Wf (ω) =
∑
x∈Fn

2

(−1)f(x)⊕ω·x, ω ∈ Fn2 . (2.3)

The Walsh spectrum of the function f is defined as {Wf (ω) : ω ∈ Fn2}. In the case
when f is defined on the field F2n , then in (2.3) the product ω · x is replaced with
Trn1 (ωx) (ω, x ∈ F2n), where Tr

n
m is a trace function defined as

Trnm(x) = x+ x2
m
+ x2

2m
+ . . .+ x2

(n/m−1)m
, x ∈ F2n .

In other words, it holds that ω · x = Trn1 (ωx).
The connection between the Walsh transform of a Boolean function f ∈ Bn and

an arbitrary affine function g(x) = ω · x⊕ b (ω ∈ Fn2 , b ∈ F2) is given by

dH(f, g) = 2n−1 − (−1)b
Wf (ω)

2
.

Consequently, the connection between the nonlinearity of the function f and its
Walsh transform is given by

Nf = 2n−1 − 1

2
max
ω∈Fn

2

|Wf (ω)|.
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Two Boolean functions f, g ∈ Bn are said to be a pair of disjoint spectra functions
[99] if

Wf (ω)Wg(ω) = 0, for all ω ∈ Zn2 .

(Semi-) Bent functions

The term bent function was introduced by Rothaus in 1976 [98], and it is a type of
function which has a maximal nonlinearity, i.e., it has a maximal Hamming distance
to the set of affine functions. Since this special class of Boolean functions will be used
more frequently in later chapters, some of its equivalent properties are summarized
as follows.

For a function f ∈ Bn, the following statements (among other characterizations)
are equivalent:

1) The function f is bent;

2) The absolute value of Wf (ω) is equal to 2
n
2 for all ω ∈ Fn2 ;

3) The derivative Daf(x) = f(x)⊕ f(x⊕ a) is balanced for any non-zero a ∈ Fn2 ;

4) The function f(x)⊕ a · x is a bent function for any a ∈ Fn2 ;

5) The matrix [(−1)f(x⊕y)]x,y∈Fn
2
is a Hadamard matrix;

6) The nonlinearity of f is Nf = 2n−1 − 2
n
2
−1.

Recall that a vectorial Boolean function F (x) = (f1(x), . . . , fm(x)) is bent if for any
nonzero linear combination a1f1(x) ⊕ . . . ⊕ amfm(x) (ai ∈ F2) is a bent Boolean
function. Note that the term ”vectorial bent function” is used in the binary case,
i.e., when p = 2. In the case when n = m and F : Fpn → Fpn , where p > 2 and p is
a prime, instead of the term ”vectorial bent”, the function F is said to be a planar
function (mapping).

Besides from having applications in cryptography, one motivation for consider-
ing (vectorial) bent functions is their relation to other combinatorial objects. For
instance, a vectorial bent function from Fn2 to Fm2 (m ≥ 1) gives rise to a relative
difference set of Fn2 × Fm2 . Let G be a group of order nm, let N be a subgroup
of G of order m and let R be a subset of G of cardinality r. Then R is called a
(n,m, r, λ)-relative difference set of G relative to N , if every element g ∈ G \N can
be represented in exactly λ ways as difference r1 − r2, r1, r2 ∈ R, and no nonzero
element of N has such a representation.

The characters of the group Fn2 × F2 are defined as χa,ω(x, y) = (−1)ay⊕ω·x,
a ∈ {0, 1}, ω ∈ Fn2 . Note that the Walsh coefficient Wf (ω) can be also written as
Wf (ω) = χ1,ω(D), where D = {(x, f(x)) : x ∈ Fn2} is a graph of f .

Relative difference sets can be described with characters as follows (see for in-
stance [115, Section 2.4]).

Let G be an (Abelian) group of order nm and let N be a subgroup of G of order
m. A subset R of G (with r elements) is an (n,m, r, λ)- relative difference set of G
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relative to N if and only if for every character χ of G

|χ(R)|2 =


r2, χ = χ0

r − λm, χ ̸= χ0, but χ(g) = 1, ∀g ∈ N
r, otherwise.

SinceWf (u) is an integer, for a bent function we haveWf (u) = 2n/2(−1)f∗(u) for
a Boolean function f∗ ∈ Bn, called the dual of f , which then is also bent. Obviously,
Boolean bent functions only exist when n is even.

When n is odd, a semi-bent function is defined as a function f ∈ Bn for which

Wf (u) ∈ {±2
n+1
2 , 0} for all u ∈ Fn2 . A function f ∈ Bn is called s-plateaued if its

Walsh spectrum only takes three values 0 and ±2
n+s
2 (0 ≤ s ≤ n). Note that n and

s must have the same parity.

Many more variants of bent functions, like bent functions in odd characteristic,
vectorial bent functions from Fnp to Fmp , negabent functions, bent4 functions, all
corresponding to relative difference sets in respective groups, have been investigated.
The reader is referred to, for instance, the articles [39, 61, 86, 92, 102, 128] and the
recent survey article [93]. For a very general viewpoint considering bent functions
over arbitrary Abelian groups, we refer to [91].

2.2 Generalized Boolean functions

We call a function f from Fn2 to Zq (q ≥ 2) a generalised Boolean function, and denote
the set of all such functions by GBqn. If q = 2, then f is Boolean and GBqn = Bn. I the
case of generalized Boolean functions from Fn2 to Zq, we prefer to write Zn2 instead of
Fn2 , since we would like to associate this notation with the corresponding codomain.

To any generalized function f : Zn2 → Zq, for q = 2k, we may associate a unique
sequence of Boolean functions ai ∈ Bn (i = 0, 1, . . . , k − 1) such that

f(x) = a0(x) + 2a1(x) + 22a2(x) + . . .+ 2k−1ak−1(x), ∀x ∈ Fn2 . (2.4)

In general, the representation (3.25) may be associated to any generalized function
with values in Zq, when 2k−1 < q < 2k. However, in this case, the representation is
not unique.

Having applications of functions from Zn2 to Z4 in code-division multiple access
systems in mind, in [101] Schmidt introduced a class of functions which further on
were called generalized bent (gbent). A function f ∈ GBqn for which the generalized
Walsh-Hadamard transform (GWHT) at a point ω ∈ Zn2 defined as the complex
valued function

H(q)
f (ω) =

∑
x∈Zn

2

ζf(x)q (−1)ω·x,

where ζq = e2πi/q (or any other complex qth-primitive root of unity), has absolute
value 2n/2 for all ω ∈ Zn2 , is called a generalized bent function. Note that when f is

Boolean, then H(2)
f (u) =Wf (u). We recall that in the case of q = 2k we always have

H(2k)
f (u) = 2n/2ζ

f∗(u)
2k

, (except for the case that n is odd and q = 4), for a function
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f∗ ∈ GB2kn , which we call the dual of f , see [70]. As pointed out in [71], f∗ is also a
gbent function.

Remark 2.2.1 Throughout the dissertation, at certain places we will also use nor-
malized Walsh transforms of Boolean functions and its generalization, that is in-

stead of Wf (ω) or H(q)
f (ω), the Walsh spectrum will contain values 2−

n
2Wf (ω) and

2−
n
2H(q)

f (ω). The main reason will be certain connections of these coefficients with
rows of the Sylvester-Hadamard matrix, in the case when the underlying functions
are bent or gbent, respectively.

We emphasize here that a gbent function conceptually does not correspond to a bent
function, since in the definition of GWHT not all characters of Fn2 ×Z2k are consid-
ered. Thus, in general, a gbent function does not give rise to a relative difference
set. For this reason we extend the definition and introduce the term of a Zq-bent
function. We call a function f ∈ GB2kn a Zq-bent function if

H(q)
f (α, ω) =

∑
x∈Zn

2

ζαf(x)q (−1)ω·x

has absolute value 2n/2 for all u ∈ Zn2 and all nonzero α ∈ Z2k .

2.3 Sylvester-Hadamard matrix

In this section we briefly recall the definition of the Sylvester-Hadamard matrix
and its certain well-known properties. One additional new property (related to its
arbitrary row), which will play an important role in analysis of gbent functions, is
provided in Section 3.3.1.

A (1,−1)-matrix H of order p is called a Hadamard matrix if HHT = pIp, where
HT is the transpose of H, and Ip is the p × p identity matrix. A special kind of
Hadamard matrix is the Sylvester-Hadamard or Walsh-Hadamard matrix, denoted
by H2k , which is constructed recursively using Kronecker product H2k = H2⊗H2k−1 ,
where

H1 = (1); H2 =

(
1 1
1 −1

)
; H2k =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
.

For technical reasons we start the row and column index of H2k with 0, and we

denote the r-th row of H2k by H
(r)

2k
, 0 ≤ r ≤ 2k − 1. To an integer j =

∑k−1
i=0 ji2

i,

0 ≤ j ≤ 2k− 1, we assign zj = (j0, j1, . . . , jk−1) ∈ Fk2, which also implies an ordering
of the elements of Fk2.

For a function f on Fn2 , the (1,−1)-sequence defined by

((−1)f(v0), (−1)f(v1), . . . , (−1)f(v2n−1))

is called the sequence of f , where vi = (vi,0, . . . , vi,n−1), i = 0, 1, . . . , 2n − 1, denotes
the vector in Fn2 whose integer representation is i, that is, i =

∑n−1
j=0 vi,j2

j . The
vector vi = (vi,0, . . . , vi,n−1) ∈ Fn2 is uniquely identified by i ∈ {0, 1, . . . , 2n − 1}.

Several well-known properties of the Sylvester-Hadamard matrices are summa-
rized as follows:
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1) Each row of H2k is uniquely determined by the signs of the entries at positions
2s, s = 0, 1, . . . , k − 1.

2) Let zj = (j0, j1, . . . , jk−1) ∈ Fk2, where j =
∑k−1

i=0 ji2
i, 0 ≤ j ≤ 2k − 1. Then

H
(r)

2k
= ((−1)z0·zr , (−1)z1·zr , . . . , (−1)z2k−1

·zr),

i.e., H
(r)

2k
is a sequence of a linear function defined on Fk2.

3) The matrixH2k is symmetric. Additionally, any two distinct rows are orthogonal,

i.e., if hi,j are entries of the i-th rowH
(i)

2k
(0 ≤ i, j ≤ 2k−1), then

∑2k−1
j=0 hi,jhp,j =

0 if i ̸= j, and
∑2k−1

j=0 hi,jhp,j = 2k if i = j.

2.4 Nonlinear filtering generator

A filtering generator consists of a single LFSR of length L whose n fixed positions
(taps) are used as the inputs to a filtering function F : GF (2)n → GF (2)m (also
represented as F (x) = (f1(x), ..., fm(x))), thus outputting m ≥ 1 keystream bits at
the time. A general description of a filter generator is as follows:

(zt1, . . . , z
t
m) = (f1(ℓn(s

t)), . . . , fm(ℓn(s
t))),

where st = (st0, . . . , s
t
L−1) is the secret state of the LFSR at time t, the notation ℓn(s

t)
means that a subset of n bits of st = (st0, . . . , s

t
L−1) (at fixed positions) is passed

as the input to Boolean functions f1, . . . , fm, and z
t
1, . . . , z

t
m are the corresponding

output keystream bits.
Due to linearity of its feedback connection polynomial, at any t > 0 we have

ℓn(s
t
0, . . . , s

t
L−1) = (ψt1(s), . . . , ψ

t
n(s)), where the linear functions ψ

t
i(s) =

∑L−1
j=0 a

t
i,jsj ,

(i = 1, . . . , n), are unique linear combinations of the initial secret state bits s0 =
(s0, . . . , sL−1), at time t = 0. The LFSR is updated by computing the update bit sL
(as a linear combination of s0, . . . , sL−1 determined by the connection polynomial)
and shifting its content to the left (while at the same time outputting the bit s0), so
that s1 = (s1, . . . , sL). The binary coefficients ati,j above can therefore be efficiently
computed from the connection polynomial of LFSR for all t ≥ 0.

2.4.1 Overview of FSGA and GFSGA

In what follows we briefly describe the main ideas behind FSGA (introduced in
[88]) and its extension GFSGA [119]. For both attacks there is no restriction on
F : GF (2)n → GF (2)m, thus F satisfies all the relevant criteria including a uniform
distribution of its preimages.

FSGA description

For every observation of the cipher output zt = (zt1, . . . , z
t
m) at time t, there are 2n−m

possible inputs xt ∈ Szt . Moreover, for every guessed preimage xt = (xt1, . . . , x
t
n) ∈

Szt , one obtains n linear equations in the secret state bits s0, . . . , sL−1 through xti =
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∑L−1
j=0 a

t
i,jsj , for 1 ≤ i ≤ n. The goal of the attacker is to recover the initial state bits

(s0, . . . , sL−1) after obtaining sufficiently many keystream blocks zt = (zt1, . . . , z
t
m).

If the attacker observes the outputs at the time instances t1, . . . , tc, so that nc > L,
then with high probability each system of nc linear equations is independent but
only one system will provide a consistent (correct) solution.

As there are 2(n−m)c possibilities of choosing c input tuples (xt11 , . . . , x
t1
n ), . . . ,

(xtc1 , . . . , x
tc
n ), and for each such c-tuple a system of nc linear equations in L variables

is obtained. The complexity of solving a single overdefined system of linear equations
with L variables is about L3 operations. Thus, the complexity of the FSGA is about
2(n−m)cL3 operations, where c ≈ ⌈Ln ⌉.

GFSGA description

The major difference to FSGA is that the GFSGA method efficiently utilizes the tap
positions of the underlying LFSR. Let the tap positions of the LFSR be specified
by the set I0 = {i1, i2, . . . , in}, 1 ≤ i1 ≤ i2 ≤ . . . ≤ in ≤ L. If at the time
instance t1, we assume that the content of the LFSR at these tap positions is given
by (st1i1 , . . . , s

t1
in
) = (a1, . . . , an), then at t = t1 + σ we have (st1+σi1+σ

, . . . , st1+σin+σ
) =

(a1, . . . , an), where cutting modulo L can be performed if necessary. Notice that the
state bits at positions i1 + σ, . . . , in + σ does not necessarily intersect with I0, thus
if the intersection is an empty set no information from the previous sampling can
be used at the sampling instance t1 + σ. However, we can always select σ so that
at least one bit of information is conveyed. More formally, the observed outputs at
t1, . . . , tc, where ti = t1 + (i− 1)σ and 1 ≤ σ ≤ (in − i1), may give rise to identical
linear equations since the equations xtui =

∑L−1
j=0 a

tu
i,jsj (where 1 ≤ i ≤ n) may be

shifted to xtvl =
∑L−1

j=0 a
tv
i,jsj , for some 1 ≤ i < l ≤ n, 1 ≤ u < v ≤ c.

It is of importance to determine how many identical linear equations will be
obtained for all the sampling instances t1, . . . , tc. By introducing k = ⌊ in−i1σ ⌋, and
for I0 = {i1, i2, . . . , in} defining recursively:

I1 = I0 ∩ {i1 + σ, i2 + σ, . . . , in + σ},
I2 = I1 ∪ {I0 ∩ {i1 + 2σ, i2 + 2σ, . . . , in + 2σ}},

... (2.5)

Ik = Ik−1 ∪ {I0 ∩ {i1 + kσ, i2 + kσ, . . . , in + kσ}}.

the analysis in [119] showed that the complexity of the GFSGA is closely related to
the parameter ri = #Ii, where i = 1, . . . , k.

Remark 2.4.1 For instance, the above notation means that for some i ∈ I1 (and
therefore i ∈ I0) the state bit st2i was used in the previous sampling since it was at
the position i− σ ∈ I0 at time t1, where t2 = t1 + σ. The idea is easily generalized
for #Ii = ri, where i = 2, . . . , k.

The number of identical equations obtained in [119] is given as follows. If c ≤ k,
then in total

∑c−1
i=1 ri identical linear equations are obtained, whereas for c > k this

number is
∑k

i=1 ri+(c− k− 1)rk. Note that in this case rk = rk+1 = · · · = rc−1 due
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to the definition of k, which simply guarantees that after k sampling instances the
maximum (and constant) number of repeated equations is attained. Consequently,
the time complexity of the attack for c ≤ k was estimated as,

T c≤kComp. = 2(n−m) × 2(n−m−r1) × . . .× 2(n−m−r(c−1)) × L3

= 2(n−m)c−
∑c−1

i=1 ri × L3, (2.6)

and similarly, if c > k, the time complexity for c > k was given by

T c>kComp. = 2(n−m) × 2(n−m−r1) × . . .×

× 2(n−m−rk) × 2(n−m−rk)×(c−k−1) × L3

= 2(n−m)c−(
∑k

i=1 ri+(c−k−1)rk) × L3. (2.7)

Remark 2.4.2 If n −m − ri ≤ 0, for some i ∈ {1, . . . , k}, then the knowledge of
these ri bits allows the attacker to uniquely identify the exact preimage value form the
set of 2n−m possible preimages, i.e., we assume 2(n−m−ri) = 1 when n−m− ri ≤ 0.





Chapter 3

Generalised bent (gbent)
functions

In this chapter, we address the important problem of specifying the conditions
that f : Zn2 → Zq is a generalized bent (gbent) function. Results of this chapter are
published in [50, 52, 51, 53].

When q = 4 and n is even, from [109] we have that a function f : Zn2 → Z4,
given in the form f(x) = a0(x) + 2a1(x), is gbent if and only if a1 and a1 ⊕ a0 are
bent Boolean functions. Several other results related to the case q = 4 and n even
are given in [101], where some of them involve the trace forms of Galois rings whose
employment is also discussed in [123]. For the octal case q = 8, both necessary
and sufficient conditions for the component functions of f : Zn2 → Z8, representing
uniquely f as f(x) = a0(x)+2a1(x)+22a2(x) where a0, a1, a2 are Boolean functions,
were given in [111]. Some recent results on gbent functions related to the case q = 8
can be found in [113, 76]. Similar conditions for q = 16 are obtained in [70]. In addi-
tion, the Walsh spectra of these functions must satisfy certain conditions related to
Hadamard matrices which makes the design methods rather involved. In difference
to the previous work [111, 113, 70], where the sufficient and necessary conditions
when q = 4, 8, 16 were derived, we consider the general case of q being a power of 2
and subsequently derive necessary and sufficient conditions for f to be gbent. Addi-
tionally, our sufficient conditions provide gbent functions for any even q ≥ 2. These
conditions are equivalent to those very recently published online in [116]. Notably
we then describe gbent functions as algebraic objects, a characterization which goes
far beyond the conventional descriptions in terms the Walsh transforms of linear
combinations of the coordinate functions, which in accordance with the terminology
for vectorial bent function we call the component functions of the gbent function.
We show that gbent functions correspond to affine spaces of bent functions when n
is even and semi-bent functions when n is odd, with certain interesting additional
properties, which we precisely describe. Employing conventional equivalence, we
show that gbent functions and affine spaces of bent (semi-bent) functions with these
properties are identical objects. These results essentially completely resolve the case
of gbent functions from Zn2 to Z2k , using the approach based on Hadamard matrices
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introduced in [52]. We emphasize the fact that the sufficient and necessary condi-
tions for q ∈ {4, 8} were derived in a nontrivial manner employing so-called Jacobi
sums and the same technique could not be applied for larger q of the form 2k.

The whole approach and the sufficient conditions derived here is based on an
alternative characterization and computation of the generalized Walsh-Hadamard
spectral values through using the standard Walsh spectra of the component Boolean
functions ai when f : Zn2 → Zq is (uniquely) represented by relation (3.25), i.e., as
f(x) = a0(x)+ 2a1(x)+ · · ·+2k−1ak−1(x) for q = 2k. We note that q being a power
of 2 is the most interesting case due to applications. However, it turns out that our
approach is not so efficient when considering even q in the range 2k−1 < q < 2k.
To give some sufficient conditions for the gbent property in this case we were forced
to consider a different form of f which necessarily contains the coefficient q/2 in its
representation. Thus, in this case (again to avoid some difficult character sums) the
function f is rather represented as f(x) = q

2a(x)+a0(x)+2a1(x)+ · · ·+2k−2ak−2(x)
which then simplifies the analysis of their properties. Using these representations we
derive a compact and simple formula to compute the generalized Walsh-Hadamard
spectra in terms of the spectra of the component functions of f . Based on this
formula some sufficient conditions for the gbent property are derived which in turn
gives us the possibility to specify certain generic classes of gbent functions.

Several more general classes of gbent functions were described in [111], such
as generalized Maiorana-McFarland class (GMMF) [111, Theorem 8], generalized
Dillon class (GD)[111, Theorem 9], partial spread class (PS) [71] and generalized
spread class (GS) [111, Theorem 10]. It has been shown that the GD and GMMF
classes are both contained in the GS class [111, Theorem 12]. The construction of
these gbent functions was also considered in [107], though from the cross-correlation
point of view. However, the main limitations related to the previously mentioned
general classes (with the exception of GMMF) is that they only provide sufficient
gbent conditions which are not easy to satisfy in an efficient manner. Although the
gbent functions from the GMMF class are easily constructed, they are defined only
on even number of variables.

Based on the necessary and sufficient conditions which we derive, in Section 3.4
we present the fist generic method for construction of gbent functions for any even
q when n is even and for q = 2r when n is odd. The method is based on the use
of the Maiorana-McFarland (MM) class of functions which contains both semi-bent
and bent functions. Nevertheless, the difficulty lies in the fact that the component
functions (more precisely certain linear combinations of them) apart from being
bent or semi-bent (depending on the parity of n) must satisfy additional constraints.
More precisely, when n is odd certain linear combinations of the component functions
must be disjoint spectra semi-bent functions and apart from that the signs of their
Walsh coefficients are supposed to satisfy certain Hadamard recursion. Therefore,
the selection of component functions turns out to be a rather nontrivial task. We
efficiently solve this problem by using suitable permutations for deriving disjoint
spectra semi-bent functions from the MM class that satisfy the gbent conditions.
The question of finding another generic methods for the same purpose is left as an
interesting open problem. We emphasize that the case n even which is also briefly
discussed is of minor importance (due to the generic method provided through the
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GMMF class) and the main contribution is a novel and efficient method of satisfying
rather demanding gbent conditions when n is odd. At the end, we analyze the
class of gbent functions of the form g(x) = q

2a(x) + kb(x), k ∈ { q4 ,
3q
4 }, q = 4s

(s ∈ N), where we show that certain constructions of gbent functions for q ∈ {4, 8}
[107, 113, 111] belong to this class of functions. We note that many gbent functions
constructed by the previously mentioned generic method (which uses MM class of
Boolean functions) do not have the form q

2a(x) + kb(x), since it clearly has many
equal or zero coordinate functions (in comparison to the full form given by (3.25)).

The rest of this chapter is organized as follows. In Section 3.1, a new convenient
formula for computing the generalized Walsh-Hadamard spectra of f : Zn2 → Zq
in terms of the spectral values of its component functions, is derived. Sufficient
conditions, given in terms of Hadamard matrices, for a function f : Zn2 → Zq with
any even q, to be gbent are given in Section 3.2. This section is further extended
in terms of necessary conditions by Section 3.3.2, where we provide a complete
characterization of gbent functions when q is a power of 2. Additionally, the notion
of Zq-bent functions is introduced and analyzed, as well as the dual (n even case) and
the Gray image of a gbent function. The first generic construction methods of gbent
functions (for any n, and even q) are given in Section 3.4, where in Section 3.4.6
we illustrate certain construction details for n odd case. The special class of gbent
functions of the form q

2a(x) + kb(x), k ∈ { q4 ,
3q
4 } is analyzed in Section 3.5, where

we show that most of the know construction for q ∈ {4, 8} belong to this class.

3.1 Motivation and Conjecture on GWHT

In this section, we recall some results related to quaternary and octal gbent
functions [109, 113] in terms of GWHT. The necessary and sufficient conditions for
gbent property derived in [109, 113] for q = 4 and q = 8 motivates us to conjecture
that similar sufficient conditions are valid for arbitrary even q, which is then proved
in Section 3.2.3. Notice that proving the necessity of these conditions turns out to
be hard, although there are certain indications that the sufficient conditions given
in Theorem 3.2.1 are also necessary.

Remark 3.1.1 In this section and Section 3.2 we use the normalized Walsh trans-
forms for Boolean and its generalization (Remark 2.2.1), since it will emphasize the
close connection between the conditions for gbent property and Sylvester-Hadamard
matrices.

If 2k−1 < q ≤ 2k, to any generalized function f : Zn2 → Zq, we may associate a
(unique) sequence of Boolean functions ai ∈ Bn (i = 0, 1, . . . , k − 1) such that

f(x) = a0(x) + 2a1(x) + 22a2(x) + . . .+ 2k−1ak−1(x), ∀x ∈ Zn2 . (3.1)

The functions ai(x), i = 0, 1, . . . , k − 1, are called the component functions of the
function f(x). When q = 4 it was shown that the function f(x) = a0(x) + 2a1(x),
a0, a1 ∈ Bn, is gbent if and only if a1(x) and a0(x)⊕a1(x) are bent Boolean functions
[109]. Note that the last condition implies that a0(x) is not necessarily bent (it can
be affine for instance), and consequently only a1(x) needs to be bent. In addition, the
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GWHT of the function f in this case is expressed in terms of the WHT transforms
of the functions a1(x) and a0(x)⊕ a1(x), i.e., we have

Hf (u) =
1

2
[(Wa1(u) +Wa0⊕a1(u)) + i(Wa1(u)−Wa0⊕a1(u))], ∀u ∈ Zn2 .

However, we may rewrite this equality so that we view Hf as a linear combination
of Wa1 and Wa0⊕a1 , where the coefficients are complex numbers, that is,

Hf (u) =
1

2
(1 + i)Wa1(u) +

1

2
(1− i)Wa0⊕a1(u). (3.2)

In the case when q = 8, for f ∈ GB8n given by

f(x) = a0(x) + 2a1(x) + 22a2(x), (3.3)

the GWHT of f is given by the following lemma.

Lemma 3.1.2 [111, 113] Let f ∈ GB8n as in (3.3). Then,

4Hf (u) = α0Wa2(u) + α1Wa0⊕a2(u) + α2Wa1⊕a2(u) + α3Wa0⊕a1⊕a2(u), (3.4)

where α0 = 1 + (1 +
√
2)i, α1 = 1 + (1−

√
2)i, α2 = 1 +

√
2− i, α3 = 1−

√
2− i.

Remark 3.1.3 A special case of selecting a0(x) = 0 appears to be interesting. In
the first place, the condition relating the Walsh coefficients becomes simpler, that is,

4Hf (u) = 2(1 + i)Wa2(u) + 2(1− i)Wa1⊕a2(u), ∀u ∈ Zn2 .

Then, assuming further that a1(x) = 0 would actually give 4Hf (u) = 4Wa2(u),
meaning that we only have one bent function and that the function f(x) = 4a2(x) is
gbent though its codomain only takes the values from the set {0, 4}. In general, any
function defined as f(x) = q

2a(x) is gbent if and only if a(x) is a bent function.

Remark 3.1.4 Apart form the trivial case discussed in Remark 3.1.3, we may also
consider other suitable choices for the component functions a0, a1 and a2. Fixing
a2 to be bent we may consider a0, a1 ∈ An to be suitably chosen affine functions so
that the above conditions are satisfied. Indeed, since a2 being bent implies that the
addition of any affine function to it does not affect the bent property we can assume
that ai ∈ An for i = 0, 1. It is well-known that for ai(x) = ai,0+ai,1x1+ . . .+ai,nxn,
if the Walsh transform of f(x) at point u is Wf (u) then the transform of f(x)+ai(x)
at point u is (−1)ai,0Wf (u+ a(i)), where a(i) ∈ Zn2 is given as a(i) = (ai,1, . . . , ai,n).
Hence, (3.4) can be rewritten as,

4Hf (u) = α0Wa2(u)+α1(−1)a0,0Wa2(u+a
(0))+α2Wa1⊕a2(u)+α3(−1)a0,0Wa1⊕a2(u+a

(0)).

Notice that Hf in (3.4) is again a linear combination of the WHTs of the functions
a2(x), a0(x)⊕ a2(x), a1(x)⊕ a2(x), a0(x)⊕ a1(x)⊕ a2(x). Moreover, the following
theorem imposes the conditions for the function f ∈ GB8n to be a gbent function.

Theorem 3.1.5 [111] Let f ∈ GB8n as in (3.3). Then:
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1) If n is even, then f is generalized bent if and only if a2, a0⊕a2, a1⊕a2, a0⊕a1⊕a2
are all bent, and

(∗)Wa0⊕a2(u)Wa1⊕a2(u) =Wa2(u)Wa0⊕a1⊕a2(u), for all u ∈ Zn2 ;

2) If n is odd, then f is generalized bent if and only if a2, a0⊕a2, a1⊕a2, a0⊕a1⊕a2
are semi-bent satisfying

(∗∗) :Wa0⊕a2(u) =Wa2(u) = 0 ∧ |Wa1⊕a2(u)| = |Wa0⊕a1⊕a2(u)| =
√
2; or

Wa1⊕a2(u) =Wa0⊕a1⊕a2(u) = 0 ∧ |Wa0⊕a2(u)| = |Wa2(u)| =
√
2,

for all u ∈ Zn2 .

In general, a formula which gives the GWHT of the function f given by (3.25) is
given by the following theorem.

Theorem 3.1.6 [111, 113] The Walsh-Hadamard transform of f : Zn2 → Zq, 2k−1 <

q ≤ 2k, where f(x) =
∑k−1

i=0 ai(x)2
i, ai ∈ Bn is given by

Hf (u) = 2−k
∑

I⊆{0,...,k−1}

ζ
∑

i∈I 2
i
∑

J⊆I,K⊆I

(−1)|J |W∑
t∈J∪K at(x)(u). (3.5)

This implicit expression does not reveal the fact that Hf of a function f represented
as in (3.25) can be given explicitly as a linear combination (with complex coefficients
that can be efficiently computed) of the WHTs of some linear combinations of its
component functions ai(x), i = 0, 1, . . . , k−1. Therefore, for an arbitrary generalized
Boolean function f given by (3.25), it is of great importance to develop a more useful
formula for its GWHT which will be given in the next section.

Before we state our conjecture regarding the GWHT and the conditions (∗)-(∗∗)
in general, we first formalize our observations. Let Θi(x) be the function defined as

Θi(x) = (−1)zi,0a0(x)⊕zi,1a1(x)⊕...⊕zi,k−1ak−1(x), (3.6)

where zi = (zi,0, zi,1, . . . , zi,k−1) ∈ Zk2 and i denotes its integer representation, i =
0, . . . , 2k − 1.

Remark 3.1.7 Note that the function Θi(x) actually gives (−1) powered to all pos-
sible linear combinations of the component functions a0(x), a1(x), . . . , ak−1(x). In
addition, we always have ζ

q
2
ak−1(x) = (−1)ak−1(x) for q = 2k.

For q = 8 = 23, thus k = 3, let us consider f : Zn2 → Z8 given by (3.3). Since
ζ4a2(x) = (−1)a2(x), the GWHT is given as:

Hf (u) =
∑
x∈Zn

2

ζf(x)(−1)u·x =
∑
x∈Zn

2

ζa0(x)+2a1(x)(−1)a2(x)⊕u·x. (3.7)

Hence, for q = 8 we have z = (z0, z1) ∈ Z2
2, Θz(x) = (−1)z0a0(x)⊕z1a1(x), where

Θ0(x) = Θ(0,0)(x) = 1,

Θ1(x) = Θ(1,0)(x) = (−1)a0(x),

Θ2(x) = Θ(0,1)(x) = (−1)a1(x), (3.8)

Θ3(x) = Θ(1,1)(x) = (−1)a0⊕a1(x),
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and

ζa0(x)+2a1(x) = 2−2(α0Θ0(x) + α1Θ1(x) + α2Θ2(x) + α3Θ3(x)),

where αi are given in Lemma 3.1.2.

From the above one can find that for q = 8 (similarly when q = 4) we have that
ζf(x) can be represented as a complex linear combination of the functions Θi(x)
with the possibility of computing the complex coefficients αi efficiently. Thus, it
may be conjectured that this representation is valid in general for arbitrary q which
is shown in Theorem 3.1.9 in the next subsection. This result is proved useful later
for deriving sufficient conditions of gbent property and for generalizing Theorem
3.1.5 though covering all values of q, when q is even.

3.1.1 New GWHT formula

In this section, we derive a new GWHT formula for any generalized function f ∈ GBqn
which computes Hf by using the Walsh spectral values of the component functions
and the coefficients αi.

Let f : Zn2 → Zq, 2k−1 < q ≤ 2k, where again f(x) = a0(x) + 2a1(x) + . . . +
2k−1ak−1(x), ai(x) ∈ Bn. For convenience, we introduce the coefficients ci = 2i, for
i = 0, . . . , k − 1, thus writing f(x) =

∑k−1
i=0 ciai(x). Notice that whatever formal

representation of f is used (see also Example 3.1.8), once the function f has been
specified in terms of its input and output values, the decomposition into the Boolean
component function ai(x) as given above is unique and any other representation can
be transformed into this form.

Assume now that ζf can be represented as a linear combination of the functions
Θi(x) as

ζf(x) = ζ
∑k−1

i=0 ciai(x) =
2k−1∑
i=0

αiΘi(x), (3.9)

for some complex numbers αi ∈ C and Θi(x) = (−1)zi,0a0(x)⊕···⊕zi,k−1ak−1(x), as given
by (3.6). The main task is to find the coefficients αi such that (3.9) holds for every
x ∈ Zn2 .

Consider an arbitrary but fixed x′ ∈ Zn2 such that (a0(x
′), . . . , ak−1(x

′)) = zj ∈
Zk2, where j is the integer representation of a binary vector zj . To relate the functions
Θi to the rows (columns) of the Hadamard matrix we need the following useful
identification. It is well-known that the rows of the Hadamard matrix H2k of size
2k × 2k are the evaluations of all linear functions in Bk, that is, the j-th row of

H2k (alternatively the j-th column since H2k = HT
2k
) can be expressed as H

(j)

2k
=

{(−1)zj ·y | y ∈ Zk2}, where zj is fixed. Therefore,

(Θ0(x
′),Θ1(x

′), . . . ,Θ2k−1(x
′)) = H

(j)

2k
.
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Indeed, for a fixed x′ ∈ Zn2 the value of a binary vector (a0(x
′), . . . , ak−1(x

′)) = zj is
also fixed and it is easy to verify that,

(Θ0(x
′),Θ1(x

′), . . . ,Θ2k−1(x
′)) = ((−1)zj ·z0 , (−1)zj ·z1 , . . . , (−1)zj ·z2k−1) = H

(j)

2k
,

where z0, z1, . . . , z2k−1 are elements of the set Zn2 . Furthermore, for this particular
(but arbitrary) value x′ the fact that (a0(x

′), . . . , ak−1(x
′)) = zj implies that

ζf(x
′) = ζ

∑k−1
i=0 ciai(x

′) = ζzj⊙(c0,...,ck−1). (3.10)

Now, if we define the column matrix Λ = [αi]
2k−1
i=0 to be a matrix of the coefficients

αi, the previous discussion together with (3.9) implies that

H
(j)

2k


α0

α1
...

α2k−1


2k×1

= H
(j)

2k
Λ = ζzj⊙(c0,...,ck−1).

Notice that when zj goes through Zk2 the value zj ⊙ (c0, . . . , ck−1) goes through Zq,
since the operation ⊙ means cutting by modulo q. Therefore, it is convenient to
define a column matrix B as a matrix of all corresponding powers of ζ, that is,

B = [ζzi⊙(c0,...,ck−1)]2
k−1
i=0 or given in the matrix form as,

B =


ζ0

ζc0

...

ζc0+···+c
2k−1

 . (3.11)

And obviously assuming (3.9) is valid the following system of equations must be
satisfied

H2kΛ = B. (3.12)

As mentioned previously, the function f ∈ GBqn may be given in different forms,
for instance f(x) =

∑d
i=0 cibi(x), where bi ∈ Bn but ci ∈ Zq and in general ci ̸= 2i.

Nevertheless, one can easily transform such a function into the form discussed above.
Note that the solution Λ of the system (3.12) implies that the equality (3.9) holds
for any x ∈ Zn2 . The main reason for this is the fact that the Hadamard matrix
covers all possible values of the vector (Θ0(x),Θ1(x), . . . ,Θ2k−1(x)). Therefore, for
any x ∈ Zn2 the evaluation of the component functions (a0(x), . . . , ak−1(x)) implies
that the corresponding Hadamard row multiplied with Λ will always be equal to the
corresponding power of ζ.

Since the determinant of the Sylvester-Hadamard matrix is given as det(H2k) =

±2k2k−1
, using the fact that H−1

2k
= 2−kHT

2k
(H2k is symmetric), we have that the

unknown column matrix Λ = [αi]
2k−1
i=0 is (uniquely) given by

Λ = H−1
2k
B = 2−kHT

2kB = 2−kH2kB. (3.13)

In the following example, we illustrate a complete procedure of finding αi with
respect to both discussed representations of the function f(x).
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Example 3.1.8 Let us consider generalized function f(x) = 2a0(x) + 3a1(x), for
q = 6. Since we have only two component functions a0, a1 ∈ Bn, it means that we
may consider the system of equations given (in the matrix form) as H22Λ = B,
where the matrix B (defined by (3.11)) is given as

B =


1
ζ2

ζ3

ζ5

 =


1

−1
2 + i

√
3

2
−1

1
2 −

i
√
3

2

 .

Consequently, the matrix of coefficients Λ = [αi]
3
i=0 is given by Λ = 2−2H22B, i.e.,

Λ =


α0

α1

α2

α3

 = 2−2


0
0

1 + i
√
3

3− i
√
3

 .

In addition, for all vectors zi = (zi,0, zi,1) ∈ Z2
2, functions Θi(x) = (−1)zi,0a0(x)⊕zi,1a1(x)

are given by

Θ0(x) = 1, Θ1(x) = (−1)a0(x), Θ2(x) = (−1)a1(x), Θ3(x) = (−1)a0(x)⊕a1(x).

Hence, the term ζf(x) can be decomposed as:

ζf(x) =

22−1∑
i=0

αiΘi(x) = 2−2(0 ·Θ0(x) + 0 ·Θ1(x) + (1 + i
√
3)Θ2(x) + (3− i

√
3)Θ3(x))

= 2−2((1 + i
√
3)(−1)a1(x) + (3− i

√
3)(−1)a0(x)⊕a1(x)) =


1, (a0(x), a1(x)) = (0, 0)
ζ2, (a0(x), a1(x)) = (1, 0)
ζ3, (a0(x), a1(x)) = (0, 1)
ζ5 (a0(x), a1(x)) = (1, 1)

.

In the above computation f(x) = 2a0(x)+3a1(x) was not written in the form (3.25).
We can rewrite f in the form (3.25) as f(x) = b0(x) + 2b1(x) + 4b2(x) for some
component functions b0, b1, b2 ∈ Bn, since we have 22 < q ≤ 23 (q = 6). In that case,

we would consider the system H23Λ
′ = B′, where Λ′ = [α′

i]
23−1
i=0 and B′ = [ζi]2

3−1
i=0 (B′

contains all powers of ζ). One may notice that the only difference in considering the
function f as 2a0 + 3a1 and b0 + 2b1 + 4b2 is in the size of corresponding systems
and definition of the matrices B and B′.

Hence, from (3.13) we have αi = 2−kH
(i)

2k
B, for i = 0, . . . , 2k − 1, and together with

(3.9) we have that the GWHT is given as

Hf (u) =
∑
x∈Zn

2

ζf(x)(−1)u·x =
∑
x∈Zn

2

(
(−1)u·x

2k−1∑
i=0

αiΘi(x)
)
=

2k−1∑
i=0

αiWi(u), (3.14)

for all u ∈ Zn2 , where

Wi(u) =
∑
x∈Zn

2

Θi(x)(−1)u·x =
∑
x∈Zn

2

(−1)zi,0a0(x)⊕···⊕zi,k−1ak−1(x)⊕u·x, (3.15)
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i.e.,Wi(u) is the WHT of the function zi,0a0(x)⊕· · ·⊕zi,k−1ak−1(x) at point u ∈ Zn2 ,
where zi = (zi,0, . . . , zi,k−1) ∈ Zk2, i = 0, . . . , 2k − 1. Now we state the main result of
this section.

Theorem 3.1.9 Let f : Zn2 → Zq, 2k−1 < q ≤ 2k, where f(x) is given by (3.25).
Let the function Θi(x) be defined by (3.6), and let Wi(u) denote the WHT of the
Boolean function zi,0a0(x) ⊕ · · · ⊕ zi,k−1ak−1(x) at point u ∈ Zn2 as in (3.15), for
i = 0, . . . , 2k − 1. Then:

1. ζf(x) can be represented as a linear combination of the functions Θi(x),

ζf(x) = ζ
∑k−1

i=0 ciai(x) =

2k−1∑
i=0

αiΘi(x),

where αi are given by

αi = 2−kH
(i)

2k
B,

and the matrix B is given by (3.11).

2. Consequently, Hf (u) can be represented as a linear combination of Wi(u), i.e.,

Hf (u) =
2k−1∑
i=0

αiWi(u), ∀u ∈ Zn2 . (3.16)

For instance, Lemma 3.1.2 is an easy corollary of the above result as illustrated in
the following example.

Example 3.1.10 Let q = 8 = 2k, thus k = 3, and consider an arbitrary function
f ∈ GBqn given by f(x) = a0(x) + 2a1(x) + 4a2(x), f : Zn2 → Z2. Then, the GWHT
of f at some arbitrary point u ∈ Zn2 is given by

Hf (u) =
∑
x∈Zn

2

(−1)ak−1(x)⊕u·xζ
∑k−2

i=0 ai(x)2
i
=
∑
x∈Zn

2

(−1)a2(x)⊕u·xζa0(x)+2a1(x).

Now we would like to represent ζa0(x)+2a1(x) as a linear combination of functions
Θ0(x) = 1, Θ1(x) = (−1)a0(x), Θ2(x) = (−1)a1(x) and Θ3(x) = (−1)a0(x)+a1(x), i.e.,

ζa0(x)+2a1(x) = α0Θ0(x) + α1Θ1(x) + α2Θ2(x) + α3Θ3(x),

where the coefficients αi ∈ C, i = 0, 1, 2, 3. For such coefficients, all of the following
equalities must be true:

ζa0(x)+2a1(x) =


1 = α0 + α1 + α2 + α3, if (a0(x

′), a1(x
′)) = (0, 0)

ζ1 = α0 − α1 + α2 + α3, if (a0(x
′), a1(x

′)) = (1, 0)
ζ2 = α0 + α1 − α2 + α3, if (a0(x

′), a1(x
′)) = (0, 1)

ζ3 = α0 − α1 − α2 + α3, if (a0(x
′), a1(x

′)) = (1, 1)

,
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for any input x′ ∈ Zn2 . By Theorem 3.1.9, we have Λ = 2−2H22B is given by

Λ =


α0

α1

α2

α3

 = 2−2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1√
2
2 + i

√
2
2

i
− 1√

2
+ i 1√

2

 = 2−2


1 + (1 +

√
2)i

1 + (1−
√
2)i

1 +
√
2− i

1−
√
2− i

 .

Using Λ we obtain Lemma 3.1.2, since for every u ∈ Zn2 we have

Hf (u) = 2−
n
2

∑
x∈Zn

2

(−1)a2(x)⊕u·xζa0(x)+2a1(x) = α02
−n

2

∑
x∈Zn

2

(−1)a2(x)⊕u·x +

+ α12
−n

2

∑
x∈Zn

2

(−1)a0(x)⊕a2(x)⊕u·x + α22
−n

2

∑
x∈Zn

2

(−1)a1(x)⊕a2(x)⊕u·x

+ α32
−n

2

∑
x∈Zn

2

(−1)a0(x)+a1(x)+a2(x)⊕u·x

= α0Wa2(u) + α1Wa0+a2(u) + α2Wa1+a2(u) + α3Wa0+a1+a2(u).

Note that in Lemma 3.1.2, the common factor 2−2 of the coefficients αi is moved to
the left-hand side by considering 4Hf (u) instead of Hf (u). Thus, the coefficients αi
above are identical to those in Lemma 3.1.2.

3.2 Sufficient conditions for gbent property (q even)

In this section, we analyze the conditions under which a generalized function f ∈ GBqn
is gbent, where n may be either even and odd. For even q, we provide sufficient
conditions for gbent property in terms of the component functions of f . In other
words, for this case we give an efficient method for construction of gbent functions
using Boolean functions.

Let f : Zn2 → Zq be given in the form (3.25), i.e., f(x) =
∑k−1

i=0 ai(x)2
i, and q

be even (2k−1 < q ≤ 2k). For the reasons explained below, we rewrite the function
f(x) as

f(x) =
q

2
a(x) + a0(x) + 2a1(x) + . . .+ 2p−1ap−1(x), (3.17)

for some p ≤ k−1, where a, ai ∈ Bn. We first notice that for q = 2k, by simply taking
p = k − 1, the above form is identical to (3.25) after identifying a(x) = ak−1(x).

The importance of the term q
2a(x) is due to the fact that q

2 is the only coefficient

from Zq for which it holds that ζ
q
2
a(x) = (−1)a(x). This coefficient, which naturally

appears when q = 2k as the coefficient of ak−1(x) in (3.25), actually made it pos-
sible to express the spectral values of the GWHT of f in terms of certain linear
combinations of Wi as given by (3.16). This was essentially achieved through an
efficient manipulation of the double summation as it was done when deriving (3.14).
However, we still can not prove that f must contain the term q

2a(x) in this explicit
form but assuming this form the derivation of the sufficient conditions when q ̸= 2k

becomes much easier.
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Hence, using ζ
q
2
a(x) = (−1)a(x) and applying Theorem 3.1.9-(2) on

ζa0(x)+2a1(x)+...+2p−1ap−1(x), the GWHT at point u ∈ Zn2 is given as:

Hf (u) =
∑
x∈Zn

2

(−1)a(x)⊕u·x
2p−1∑
i=0

αiΘi(x) =

2p−1∑
i=0

αiWi(u),

using the same approach as when deriving (3.14). Here Wi(u) is WHT at point
u ∈ Zn2 of functions a(x)⊕ zi,0a0(x)⊕· · ·⊕ zi,p−1ap−1(x), zi = (zi,0, . . . , zi,p−1) ∈ Zp2,
i = 0, . . . , 2p − 1.

Let us denote the elements of the i-th Hadamard rowH
(i)
2p by hi,j , 0 ≤ j, i ≤ 2p−1.

Since the form (3.17) will impose the system H2pΛ = B, where B = [bt]
2p−1
t=0 and

bt = ζt, a further calculation of GWHT at point u ∈ Zn2 gives:

Hf (u) =

2p−1∑
i=0

αiWi(u) =

2p−1∑
i=0

2−p
2p−1∑
j=0

hi,jbj

Wi(u)

= 2−p
2p−1∑
j=0

(
2p−1∑
i=0

hi,jWi(u)

)
bj = 2−p

2p−1∑
j=0

Sj cos
2πj

q
+ i

2p−1∑
j=0

Sj sin
2πj

q

 ,

where

Sj =

2p−1∑
i=0

hi,jWi(u), j = 0, . . . , 2p − 1, u ∈ Zn2 . (3.18)

Defining the column matrices W = [Wi]
2p−1
i=0 and S = [Sj ]

2p−1
j=0 we have S = H2pW

which in the matrix form is given as,

W =


W0(u)
W1(u)

...
W2p−1(u)


2p×1

, S =


S0
S1
...

S2p−1


2p×1

=


H

(0)
2p W

H
(1)
2p W
...

H
(2p−1)
2p W

 . (3.19)

Consequently, we may write Hf (u) = 2−p(STB), where B = [ζt]2
p−1
t=0 and ST is the

transpose of S. Note that both the matrix S as well as W depend on the input u,

and for every j = 0, . . . , 2p − 1, we have Sj = H
(j)
2p W, since H2p is symmetric. A

well-known property of a Hadamard matrix of the size 2p is that any two distinct
rows are orthogonal, thus

∑
t hithjt = 0 for i ̸= j, and if i = j then

∑
t hithjt = 2p.

The absolute value of Hf (u) is given as:

22p|Hf (u)|2 =

2p−1∑
j=0

Sj cos
2πj

q

2

+

2p−1∑
j=0

Sj sin
2πj

q

2

. (3.20)

It is not difficult to see that (3.20) can be written as

22p|Hf (u)|2 =
2p−1∑
j=0

S2
j + 2

2p−1∑
j=1

cos
2πj

q

2p−1−j∑
i=0

SiSi+j . (3.21)



32 3.2 Sufficient conditions for gbent property (q even)

Theorem 3.2.1 Let f : Zn2 → Zq, where f(x) is given in the form (3.17) and
B = [ζj ]2

p−1
j=0 . Let W = [Wi(u)]

2p−1
i=0 be a column matrix (3.27), where Wi(u) denotes

the WHT at point u ∈ Zn2 of the Boolean function a(x)⊕zi,0a0(x)⊕· · ·⊕zi,p−1ap−1(x),
zi = (zi,0, . . . , zi,p−1) ∈ Zp2, i = 0, . . . , 2p − 1. Then:

a) Let n be even and 2k−1 < q ≤ 2k be even. If all functions a(x)⊕ zi,0a0(x)⊕ . . .⊕
zi,p−1ap−1(x) are bent Boolean functions, for every zi ∈ Zp2, i = 0, . . . , 2p−1, and
there exists r ∈ {0, 1, . . . , 2p − 1} so that the transpose of a matrix W defined by

(3.27) is equal to H
(r)
2p , i.e., W T = ±H(r)

2p (△), then f(x) is gbent.

b) Let n be odd and q = 2p+1 = 2k. If all functions a(x) ⊕ zi,0a0(x) ⊕ . . . ⊕
zi,p−1ap−1(x) are semi-bent Boolean functions, for every zi ∈ Zp2, i = 0, 1, . . . , 2p−
1, and there exists r ∈ {0, 1, . . . , 2p − 1} so that W T = (±

√
2H

(r)
2p−1 ,02p−1) or

W T = (02p−1 ,±
√
2H

(r)
2p−1) (�) (02p−1 is the all-zero vector of length 2p−1), then

f(x) is gbent.

Proof: a) Let n be even, and let us assume that all functions a(x) ⊕ zi,0a0(x) ⊕
. . . ⊕ zi,p−1ap−1(x) are bent Boolean functions, for every zi ∈ Zp2, i = 0, . . . , 2p − 1.
In addition, let us assume that there exists an integer r ∈ {0, 1, . . . , 2p − 1} so

that W T = ±H(r)
2p . Then the properties of Hadamard matrices in (3.27) imply the

following:

S =



H
(0)
2p ·W T

...

H
(r)
2p ·W T

...

H
(2p−1)
2p ·W T


=



0
...

H
(r)
2p · (±H

(r)
2p )

...
0

 =


0
...
±2p
...
0

 ,

and for every i and j (i ̸= j), it holds that SiSj = 0. Here we regard H
(r)
2p and

W T as vectors, and using the dot product we may write Sr = H
(r)
2p ·W T . In other

words, we use this notation to avoid less precise notation Sr = H
(r)
2p W. Since in the

second sum in (3.21) it is not possible that Si = Si+j , for any j = 1, . . . , 2p − 1 and
i = 0, . . . , 2p − 1− j, we get that (3.21) is given as

22p|Hf (u)|2 = S2
r = 22p,

which means that |Hf (u)|2 = 1, i.e., the function f(x) is gbent.
b) Let n be odd and q = 2p+1. The condition that all functions a(x)⊕zi,0a0(x)⊕. . .⊕
zi,p−1ap−1(x) are semi-bent Boolean functions, for every zi ∈ Zp2, i = 0, 1, . . . , 2p−1,
means that Wi(u) ∈ {0,±

√
2}. First, note that the definition of the Hadamard

matrix implies that there are exactly two rows in H2p whose first half of its entries
are equal to each other (and second halves contain opposite signs). More precisely,
for any r ∈ {0, 1, . . . , 2p−1 − 1} and for rows given as

H
(r)
2p = (H

(r)
2p−1 ,H

(r)
2p−1) ∧ H

(r+2p−1)
2p = (H

(r+2p−1)
2p−1 ,−H(r+2p−1)

2p−1 )
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it holds that H
(r)
2p−1 = H

(r+2p−1)
2p−1 . Therefore, the condition W T = (±

√
2H

(r)
2p−1 ,02p−1)

or W T = (02p−1 ,±
√
2H

(r)
2p−1) implies Sr = ±2p−1

√
2 and Sr+2p−1 = ±2p−1

√
2, which

gives:

S =



H
(0)
2p ·W T

...

H
(r)
2p ·W T

...

H
(r+2p−1)
2p ·W T

...

H
(2p−1)
2p ·W T


=



0
...

±2p−1
√
2

...

±2p−1
√
2

...
0


.

Hence, for every i ∈ {0, . . . , 2p − 1} \ {r, r + 2p−1} we have that Si = 0. It is not
difficult to see that all

∑2p−1−j
i=0 SiSi+j = 0 except for the case when j = 2p−1, for

which we have
∑2p−1−2p−1

i=0 SiSi+2p−1 = SrSr+2p−1 = 22p−1. However, using q = 2p+1

in the second sum in (3.21), for j = 2p−1 we have the coefficient cos 2πj
q = cos π2p

2p+1 =
cos π2 = 0, which means that the whole second sum in (3.21) is equal to zero. Note
that j = 2p−1 does not depend on the integer r in (�), and it is not difficult to see
that the only value of q for which cos 2πj

q = 0 is q = 2p+1 (due to a fact that q is an
integer). Consequently, in (3.21) we have

22p|Hf (u)|2 = S2
r + S2

r+2p−1 = 22p−1 + 22p−1 = 22p,

i.e., f(x) is gbent.

Remark 3.2.2 Since 2k−1 < q ≤ 2k, it is clear that p ≤ h− 1 in (3.17). Moreover,
the condition q = 2p+1 in the second statement in Theorem 3.2.1 actually means that
q = 2k, since it is the only power of 2 for which it holds 2k−1 < q ≤ 2k. In the case
when n and q are even, the gbent functions always exist (consider f(x) = q

2a(x),
a(x) any bent Boolean function). The case when n is odd is much more difficult to
handle which is also evident through the nonexistence for certain odd n and certain
q, see e.g. [68].

In what follows we discuss some of the following facts:

• The converse of Theorem 3.2.1 holds for q = 4 where the condition (△) trivially
holds, and the function f(x) is given in the form f(x) = 2a(x) + a0(x) [109],
where n is even.

• When q = 8 we have Theorem 3.1.5, where the conditions (∗) and (∗∗) are
actually equivalent to conditions (△) and (�), respectively (see Section 3.2.1).

3.2.1 Equivalent forms of conditions (△) and (�)

In this section we present two equivalent forms of the condition (△) which are
actually imposed by the Hadamard recursion (the same applies on the condition
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(�)). Let us discuss the form of the condition (△) in Theorem 3.2.1, where we
consider the function f(x) in the form (3.17). Recall that the condition (△) regards

W T and H
(r)
2p as vectors (as mentioned in the proof of Theorem 3.2.1). Hence, for

the WHT coefficients Wi(u) at point u ∈ Zn2 defined in Theorem 3.2.1 we consider
the equality of two vectors given by

W T = (W0(u),W1(u), . . . ,W2p−1(u)) = H
(r)
2p .

LetH
(r)
2p (k ≥ 1) be an arbitrary row of the Hadamard matrix, i.e.,H

(r)
2p = (H

(r)
2p−1 ,±H

(r)
2p−1),

where r ∈ {0, 1, . . . , 2p − 1}. This implies that for every t = 1, 2, . . . , p and i =
0, 1, . . . , 2t−1 − 1, it holds hr,i = ±hr,i+2t−1 . This further means that the condition

W T = ±H(r)
2p is equivalent to a set of equalities

Wi(u) = ±Wi+2t−1(u), t = 1, 2, . . . , p, i = 0, 1, . . . 2t−1 − 1, (3.22)

where u ∈ Zn2 . For convenience, to see that indices t and i actually represent the
Hadamard recursion, let as consider an example when p = 3:

1. For t = 1 we have that i takes only the value 0 and consequently we haveWi(u) =
W0 = ±Wi+2t−1(u) = ±W1(u). Clearly, for any value of W0(u) = ±1, we have
that the vector (row) (W0(u),W1(u)) = (W0(u),±W0(u)) is always equal to some
row of the Sylvester-Hadamard matrix ±H2.

2. For t = 2 we have that i takes values 0 and 1. For i = 0 we have W0(u) =
±W2(u) and W1(u) = ±W3(u). Note that the signs for both equalities are the
same. By the previous step and any value W0(u) = ±1, we have that the vec-
tor (W0(u),W1(u),W2(u),W3(u)) is always equal to some row of the Sylvester-
Hadamard matrix ±H22 . The same calculation further applies for t = 3 = p,
where i = 0, 1, 2, and we get that (W0(u), . . . ,W7(u)) is always equal to some row
of the Sylvester-Hadamard matrix ±H23 .

It is important to note here that the signs ”±” in every step always depend on the
current value of t. For instance, when we previously had t = 1, the sign in front of
W1(u) is fixed for all upcoming values of t > 1. For t = 2, the signs in front ofW2(u)
and W3(u) are also fixed in the same way, etc.

Equivalently, the relation (3.22) suggests that the condition W T = ±H(r)
2p can

be written in an equivalent way,

2t−1−1∏
i=0

Wi(u) =

2t−1−1∏
i=0

(±Wi+2t−1(u)), ∀t = 1, 2, . . . , p. (3.23)

It is not difficult to see that the condition (∗) W0(u)W3(u) =W1(u)W2(u) in Theo-
rem 3.1.5 is equivalent to equality (3.23) (where p = 3).

In the case when n is even, the discussion above provides some equivalent
forms of the condition (△). However, in the case when n is odd we have one
additional property on Walsh-Hadamard coefficients Wi(u) in the condition (�).

First note that condition W T = (±
√
2H

(r)
2p ,02p) or W T = (02p ,±

√
2H

(r)
2p ), for
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some r ∈ {0, 1, . . . , 2p − 1}, means that we can apply the discussion above on

half part of W T , i.e., on ±
√
2H

(r)
2p . Here we mean that signs of half coordinates

of W T must satisfy the Sylvester-Hadamard recurrence formula. However, for
i = 0, 1, . . . 2p−1 − 1 we have Wi(u)W2p−i−1(u) = 0 (t = p here), since half coordi-
nates ofW T are zeroes. The equalityWi(u)W2p−i−1(u) = 0, for i = 0, 1, . . . 2p−1−1,
u ∈ Zn2 , means that the functions a(x) ⊕ zi,0a0(x) ⊕ zi,1a1(x) ⊕ . . . ⊕ zi,p−1ap−1(x)
and a(x) ⊕ z2t−i−1,0a0(x) ⊕ z2t−i−1,1a1(x) ⊕ . . . ⊕ z2t−i−1,p−1ap−1(x) are disjoint
spectra functions [99]. More precisely, in condition (�) we see that for any i ∈
{0, . . . , 2p−1 − 1} and j ∈ {2p−1, . . . , 2p − 1} we have that Wi(u)Wj(u) = 0, for any
u ∈ Zn2 .

3.2.2 Necessary and sufficient conditions for the GMMF class

For any arbitrary positive even integer q, an arbitrary gbent function f : Z2n
2 → Zq

that belongs to the GMMF class (for instance see [111]) is defined as

f(x, y) =
q

2
x · σ(y) + g(y),

where σ is a permutation on Zn2 and g : Zn2 → Zq an arbitrary generalized function
from GBqn. We see that here f(x, y) contains the term q

2a(x), where a(x, y) = x·σ(y),
and therefore only g(y) remains to be described in terms of the component Boolean
functions by means of Theorem 3.2.1 (due to its connection with Wi(u)).

With the following proposition, we prove that all functions from the GMMF
class trivially satisfy both conditions in Theorem 3.2.1.

Proposition 3.2.3 Every gbent function from GMMF class satisfies the converse
of Theorem 3.2.1.

Proof: Let the GMMF function f : Z2n
2 → Zq, for even 2k−1 < q ≤ 2k, be written

in the form

f(x, y) =
q

2
x · σ(y) + g(y) =

q

2
a(x, y) + a0(y) + 2a1(y) + . . .+ 2p−1ap−1(y),

where p ≤ k− 1, ai ∈ B2n, a(x, y) = x ·σ(y), and g(y) is uniquely expressed through
ai as g(y) = a0(y) + 2a1(y) + . . .+ 2p−1ap−1(y). Since f(x, y) is written in the form
(3.17), according to Theorem 3.2.1 we have that Wi(u) is the WHT of the function

a(x, y)⊕ zi,0a0(y)⊕ . . .⊕ zi,p−1ap−1(y),

where zi = (zi,0, . . . , zi,p−1) ∈ Zp2, i = 0, . . . , 2p − 1, u ∈ Z2n
2 . Clearly, for all i =

0, 1, . . . , 2p−1, it holds that Wi(u) = ±1, for every u ∈ Zn2 , since all functions above
belong to well known Maiorana-McFarland class of bent Boolean functions. This
actually proves the first part of converse of Theorem 3.2.1. It only remains to prove
that condition (△) holds. By relation (3.22), the condition (△) is equivalent to the
fact that Wi(u)Wi+2t−1(u) takes values ±1 (Section 3.2.1) for all t = 1, 2, . . . , p and
i = 0, 1, . . . , 2p−1 − 1. Let us denote

z(i)(y) = zi,0a0(y)⊕ . . .⊕ zi,p−1ap−1(y),
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for i = 0, 1, . . . , 2p − 1. Now, for every t = 1, 2, . . . , p, i = 0, 1, . . . , 2t−1 − 1, and
u = (u1, u2) ∈ Zn2 × Zn2 , we have the following calculation:

22nWi(u)Wi+2t−1(u) =
∑

x,y∈Zn
2

(−1)a(x,y)⊕z(i)(y)+u·(x,y)
∑

x,y∈Zn
2

(−1)a(x,y)⊕z(i+2t−1)(y)+u·(x,y)

=

∑
y∈Zn

2

(−1)z(i)(y)⊕u2·y
∑
x∈Zn

2

(−1)a(x,y)⊕u1·x
 ·

·

∑
y∈Zn

2

(−1)z(i+2t−1)(y)⊕u2·y
∑
x∈Zn

2

(−1)a(x,y)⊕u1·x
 .

Since
∑

x∈Zn
2
(−1)a(x,y)⊕u1·x =

∑
x∈Zn

2
(−1)x·σ(y)⊕u1·x = 0, unless σ(y) = u1 which

happens exactly when y = σ−1(u1). In the case σ(y) = u1, then
∑

x∈Zn
2
(−1)x·σ(y)⊕u1·x =

2n. It is not difficult to see that for any t, i and y ∈ Zn2 , it holds that z(i+2t−1)(y) =
z(i)(y)⊕ z(2t−1)(y). Therefore, we have:

22nWi(u)Wi+2t−1(u) = (2n(−1)z(i)(y)⊕u2·y) · (2n(−1)z(i+2t−1)(y)⊕u2·y)

= 22n(−1)z(i)(y)⊕z(i+2t−1)(y) = 22n(−1)z(2
t−1)(y).

where y = σ−1(u1) is fixed, since u = (u1, u2) is fixed. Hence, for every t = 1, 2, . . . , p
and i = 0, 1, . . . , 2t−1 − 1, we have that Wi(u)Wi+2t−1(u) is constant (with value 1
of −1) which corresponds to selected value of t, i.e., the condition (△) is satisfied
for every u ∈ Z2n

2 and arbitrary Boolean functions ai ∈ B2n, according to Section
3.2.1 and relation (3.22). Recall that for every (but fixed) value of t we have that
the sign of Wi+2t−1(u) = ±Wi(u) is fixed for all i = 0, 1, . . . , 2t−1 − 1.

3.2.3 Fulfilling the necessary conditions for gbent property

In this section we discuss methods for satisfying the condition (△) (or (�)) from

Theorem 3.2.1, where we consider W T = ±H(r)
2p for some integer p ≥ 1 and

r ∈ {0, 1, . . . , 2p − 1}. We discuss certain rather trivial approaches to satisfy these
conditions, based on the discussion provided in Section 3.2.1.

In essence, for an arbitrary function g ∈ Bn, using the equalityWg(u) = −Wg⊕1(u)
we are able to choose the component functions in Theorem 3.2.1 so that the condi-
tion (△) is satisfied. This actually represents a trivial way to satisfy (△), since in

that case the equality W T = ±H(r)

2k
does not depend on u ∈ Zn2 . Another possible

method employs a linear translate of a function, which gives a simple relationship
between the Walsh spectra of the given function and its translate. Indeed, if for
some fixed α ∈ Zn2 and g1, g2 ∈ Bn we have g1(x) = g2(x ⊕ α), for all x ∈ Zn2 , then
their Walsh spectra are related through Wg1(u) = (−1)u·αWg2(u), for all u ∈ Zn2 .
This equality implies that the condition W T = ±H(r)

2p actually depends on u ∈ Zn2 ,
which means that the integer r may change for different u ∈ Zn2 .



Example 3.2.4 In this example we present a trivial method of satisfying the con-
dition (△) using the equality Wg(u) = −Wg⊕1(u), for any g ∈ Bn. Let q = 16 = 24

and f(x) = a0(x) + 2a1(x) + 22a2(x) + 23a3(x). In this case, we have the matrix

W = [Wi(u)]
23−1
i=0 , where Wi(u) is WHT at point u ∈ Zn2 of the function

a3(x)⊕ zi,0a0(x)⊕ zi,1a1(x)⊕ zi,2a2(x),

zi = (zi,0, zi,1, zi,2) ∈ Z3
2. Hence, the component functions are chosen in the following

way:

1. Let W0(u) = Wa3(u) and W1(u) = Wa3⊕a0(u) be WHTs of two arbitrary bent
functions a3(x) and a3(x) ⊕ a0(x), i.e., W0(u),W1(u) = ±1, for any u ∈ Zn2 .
Assuming that a3(x) is bent, we may for instance take a0 ∈ An. Alternatively,
we can select a3(x) and a0(x) to be component functions of some vectorial bent
function.

2. Now we must select a1(x) so that a3(x) ⊕ a1(x) and a3(x) ⊕ a0(x) ⊕ a1(x) are
bent, satisfying additionally

{W0(u),W1(u)} = ±{W2(u),W3(u)},

where W2(u) = Wa3⊕a1(u) and W3(u) = Wa3⊕a0⊕a1(u). For instance, if we want
to have {W0(u),W1(u)} = −{W2(u),W3(u)}, then we need to choose the function
a1(x) which satisfies

a3(x)⊕ a1(x) = a3(x)⊕ 1 ∧ a3(x)⊕ a0(x)⊕ a1(x) = a3(x)⊕ a0(x)⊕ 1.

Hence, it must the a case that the function a1(x) is a constant function equal to
1, i.e., a1(x) = 1 for every x ∈ Zn2 . On the other side, selecting a1(x) = 0, for
every x ∈ Zn2 , implies {W0(u),W1(u)} = {W2(u),W3(u)}.

3. Now, the rest of functions are chosen with respect to equality

{W0(u),W1(u),W2(u),W3(u)} = ±{W4(u),W5(u),W6(u),W7(u)},

where W4(u) = Wa3⊕a2 , W5(u) = Wa3⊕a0⊕a2, W6(u) = Wa3⊕a1⊕a2 and W7(u) =
Wa3⊕a0⊕a1⊕a2 . It is not difficult to see that the sign ”+” imposes a2(x) = 0, and
the sign ”− ” imposes a2(x) = 1, for every x ∈ Zn2 .

Since we started with two arbitrary functions a3(x) and a0(x), with first choice ”−”
and second ”+”, it is not difficult to see that all possible values of Wa3(u) and
Wa3⊕a0(u), due to a previous choice of the component functions, imply that W T ∈
{±H(2)

23
,±H(3)

23
}.

The question whether there exists more non-trivial methods to satisfy the con-

dition W T = H
(r)
2p remains open.

Remark 3.2.5 In the case when n is odd, satisfying the condition (�) is more com-
plicated, since W T involves Sylvester-Hadamard signs and disjoint spectra functions.
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3.3 Full characterization of generalized bent functions

In Section 3.2 we have provided sufficient conditions under which a function
f : Zn2 → Zq is gbent (given in form (3.17)), where q is an arbitrary even number. In
this section, we further prove the necessity of the conditions from Theorem 3.2.1 for
the particular case when q is a power of 2, which is actually the most important case
from application point of view. We firstly set some preparatory results regarding
the Sylvester-Hadamard matrix.

3.3.1 On the Sylvester-Hadamard matrix

In the following lemma we summarize some properties of the Sylvester-Hadamard
matrix (say H2k), where the first two properties below are recalled from Chapter 2
for self-completeness. The first one follows from the recursive definition of H2k , the
second is the well-known property that each row of H2k is the evaluation (sequence)
of some linear function. The third one may be less well known, hence we provide
the proof of this property.

Lemma 3.3.1 (i) Each row of H2k is uniquely determined by the signs of the
entries at positions 2s, s = 0, 1, . . . , k − 1.

(ii) Let zj = (j0, j1, . . . , jk−1) ∈ Fk2, where j =
∑k−1

i=0 ji2
i, 0 ≤ j ≤ 2k − 1. Then

H
(r)

2k
= ((−1)z0·zr , (−1)z1·zr , . . . , (−1)z2k−1

·zr).

(iii) Let W = (w0, w1, . . . , w2k−1), where wi = ±1, 0 ≤ i ≤ 2k − 1. Then W =

±H(r)

2k
for some r ∈ {0, . . . , 2k− 1} if and only if for any four distinct integers

j, c, l, v ∈ {0, . . . , 2k − 1} such that zj ⊕ zc ⊕ zl ⊕ zv = 0 (zj , zc, zl, zv ∈ Fk2) we
have

wjwc = wlwv. (3.24)

Proof: (iii) LetW = (w0, w1, . . . , w2k−1) = ±H
(r)

2k
for some (fixed) r ∈ {0, . . . , 2k−

1}, and let j, c, l, v ∈ {0, . . . , 2k−1} be arbitrary distinct integers such that zj⊕zc⊕
zl ⊕ zv = 0. By (ii),

H
(r)

2k
= ((−1)zr·z0 , (−1)zr·z1 , . . . , (−1)zr · z2k−1).

Hence relation (3.24) can be written as

(−1)zr·zj (−1)zr·zc = (−1)zr·zl(−1)zr·zv ,

or equivalently
(−1)zr·(zj⊕zc⊕zl⊕zv) = 1,

which is satisfied for zj , zc, zl, zv with zj ⊕ zc ⊕ zl ⊕ zv = 0.
Suppose conversely that (3.24) holds for all j, c, l, z, v with zj ⊕ zc ⊕ zl ⊕ zv = 0.
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Then, to show that W = ±H(r)

2k
for some r, 0 ≤ r ≤ 2k−1, we proceed by induction

on k. Trivially it holds for k = 1, since ±H(r)
2 , r = 0, 1, covers all possible com-

binations for (w0, w1). For k = 2, we first notice that all solutions of the equality
w0w1 = w2w3 with wi = ±1, i = 0, 1, 2, 3, are the quadruples (w0, w1, w2, w3) con-
taining an even number of −1s. As it is easy to see, all such quadruples W are of

the form W = (w0, w1,±(w0, w1)), hence equal to ±H(r)
4 for some r ∈ {0, 1, 2, 3}.

Before we continue with the induction proof, we also add the argument for k = 3.
With the above argument applied to the quadruples (4, 5, 6, 7) and (0, 1, 4, 5), we get
(w6, w7) = ±(w4, w5) and (w4, w5) = ±(w0, w1). Consequently,

(w0, . . . , w7) = (w0, w1,±(w0, w1),±(w0, w1,±(w0, w1)))

= ±(H(d)
22
,±H(d)

22
) = ±H(r)

23
,

for some 0 ≤ r ≤ 7.
Now suppose that the following holds for a tuple W = (w0, w1, . . . , w2k−1−1) of
length 2k−1 with entries in {−1, 1}: If for all 0 ≤ j < c < l < v ≤ 2k−1 − 1

with zj ⊕ zc ⊕ zl ⊕ zv = 0 we have wjwc = wlwv, then W = ±H(r)

2k−1 for some

r ∈ {0, 1, . . . , 2k−1 − 1}.
Let now W = (w0, w1, . . . , w2k−1), wi = ±1, i = 0, 1, . . . , 2k − 1, such that

wjwc = wlwv for all 0 ≤ j < c < l < v ≤ 2k − 1 with zj ⊕ zc ⊕ zl ⊕ zv =

0. By induction hypothesis, we then have (w0, w1, . . . , w2k−1−1) = ±H(r)

2k−1 and

(w2k−1 , w2k−1+1, . . . , w2k−1) = ±H(r̄)

2k−1 for some r, r̄ ∈ {0, 1, . . . , 2k−1 − 1}. We

have to show that r̄ = r, or equivalently w2k−1+j = wj , j = 0, 1, . . . , 2k−1 − 1,

or w2k−1+j = −wj , j = 0, 1, . . . , 2k−1 − 1. By (i), it is sufficient to show that
w2k−1+2s = w2s , s = 0, 1, . . . , k − 2, or w2k−1+2s = −w2s , s = 0, 1, . . . , k − 2.
We consider the quadruples (j, c, l, v) = (0, 2s, 2k−1, 2k−1 + 2s), s = 0, 1, . . . , k − 2,
for which zj ⊕ zc ⊕ zl ⊕ zv = 0 always holds. Since they satisfy (3.24), either
w0, w2s , w2k−1 , w2k−1+2s have all the same sign, or exactly two of them are negative.
Consequently, if w0 = w2k−1 , then we must have w2s = w2k−1+2s , s = 0, 1, . . . , k− 2,
and if w0 = −w2k−1 , then w2s = −w2k−1+2s , s = 0, 1, . . . , k − 2.

In what follows we derive and recall some basic results on gbent functions, which
are proved useful in the sequel.

Lemma 3.3.2 Let k ≥ 3. Then
√
2ζj

2k
is uniquely represented in Q(ζ2k) as

√
2ζj

2k
= ±ζJ1

2k
± ζJ2

2k
∈ Q(ζ2k).

for some 0 ≤ J1 < J2 ≤ 2k−1 − 1 with J2 − J1 = 2k−2.

Proof: W.l.o.g. let ζ23 = ζ2
k−3

2k
= (1 + i)/

√
2, and hence

√
2ζj

2k
= (ζj

2k
+ iζj

2k
)/ζ2

k−3

2k = ζj−2k−3

2k
+ ζ2

k−2

2k ζj−2k−3

2k
= ζj−2k−3

2k
+ ζj+2k−3

2k
.

As ζj
2k

= −ζj−2k−1

2k
we can assume that 0 ≤ j ≤ 2k−1 − 1. Again using that
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ζ2
k−1

2k
= −1, we can then write

√
2ζj

2k
as

√
2ζj

2k
=


−ζj−2k−3+2k−1

2k
+ ζj+2k−3

2k
if j − 2k−3 < 0,

ζj−2k−3

2k
+ ζj+2k−3

2k
if 0 ≤ j − 2k−3 < j + 2k−3 < 2k−1,

ζj−2k−3

2k
− ζj+2k−3−2k−1

2k
if j + 2k−3 ≥ 2k−1.

In either case
√
2ζj is of the form ±ζJ1

2k
± ζJ2

2k
for some 0 ≤ J1 < J2 ≤ 2k−1 − 1 with

J2 − J1 = 2k−2. Since {1, ζ2k , . . . , ζ2
k−1−1

2k
} is a basis of Q(ζ2k), this representation

is unique.

Recall that to any generalized Boolean function f : Fn2 → Z2k , we may associate
the sequence of Boolean functions aj ∈ Bn, j = 0, 1, . . . , k − 1, for which

f(x) = a0(x) + 2a1(x) + 22a2(x) + · · ·+ 2k−1ak−1(x), ∀x ∈ Fn2 . (3.25)

For an integer i, 0 ≤ i ≤ 2k−1 − 1, with i =
∑2k−1

j=0 ij2
j , ij ∈ {0, 1}, we define the

i-th component function gi ∈ Bn of f as

gi(x) = ak−1(x)⊕ i0a0(x)⊕ · · · ⊕ ik−2ak−2(x). (3.26)

For an element u ∈ Fn2 , let W(u) = (Wg0(u), Wg1(u), . . . ,Wg
2k−1−1

(u)) and let

S(u) = (S0, S1, . . . , S2k−1−1) be the vector defined by

S(u) =


S0
S1
...

S2k−1−1

 := H2k−1


Wg0(u)
Wg1(u)

...
Wg

2k−1−1
(u)

 . (3.27)

In Section 3.2 it has been shown that 2k−1Hf (u) can be written in terms of
integers Si and powers of ζi. This fact is formalized with the following proposition.

Proposition 3.3.3 Let f ∈ GB2kn and u ∈ Fn2 . Then

2k−1Hf (u) = (1, ζ2k , . . . , ζ
2k−1−1
2k

)S(u) = S0 + S1ζ2k + · · ·+ S2k−1−1ζ
2k−1−1
2k

.

3.3.2 Necessary and sufficient conditions (q = 2k)

In this section we present necessary and sufficient conditions for the gbentness of
functions f ∈ GB2kn given as in (3.25). We provide an equivalent form of these
conditions in terms of certain spectral properties of the component functions of f .
In the next section, we will use these conditions to completely characterize gbent
functions as algebraic objects, which are shown to possess a lot of structure and to
have some interesting properties.

Theorem 3.3.4 Let f(x) = a0(x) + · · · + 2k−2ak−2(x) + 2k−1ak−1(x) ∈ GB2
k

n , and
let gi(x) = ak−1(x)⊕ i0a0(x)⊕ i1a1(x)⊕ · · · ⊕ ik−2ak−2(x), 0 ≤ i ≤ 2k−1 − 1, where
i =

∑k−2
j=0 ij2

j and ij ∈ {0, 1}.
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(i) If n is even, then f is gbent if and only if gi is bent for all 0 ≤ i ≤ 2k−1 − 1,
such that for all u ∈ Vn,

W(u) = (Wg0(u),Wg1(u), . . . ,Wg
2k−1−1

(u)) = ±2
n
2H

(r)

2k−1 (3.28)

for some r, 0 ≤ r ≤ 2k−1 − 1, depending on u.

(ii) If n is odd, then f is gbent if and only if gi is semi-bent for all 0 ≤ i ≤ 2k−1−1,
such that for all u ∈ Vn,

W(u) = (±2
n+1
2 H

(r)

2k−2 ,02k−2) or W(u) = (02k−2 ,±2
n+1
2 H

(r)

2k−2) (3.29)

for some r, 0 ≤ r ≤ 2k−2 − 1, depending on u (02k−2 is the all-zero vector of
length 2k−2).

Proof: First we consider the case (i) when n is even. The sufficiency of (3.28) has
been shown in Section 3.2, though in a more general context for f ∈ GBqn, where
q is an arbitrary even integer. For the sake of completeness we include the proof
arguments here. Suppose that (3.28) holds, which also implies that all gi are bent.
By the definition of St, 0 ≤ t ≤ 2k−1 − 1, we then have St = 0 if t ̸= r, and
Sr = ±2n/22k−1. Proposition 3.3.3 then yields 2k−1Hh(u) = ±2n/22k−1ζr

2k
, hence f

is gbent.
Now, conversely, suppose that f is gbent. By Proposition 3.3.3, we then have

S0 + S1ζ2k + · · ·+ S2k−1−1ζ
2k−1−1
2k

= 2k−1Hf (u) = ±2k−12
n
2 ζr2k

for some r, 0 ≤ r ≤ 2k−1 − 1. Since {1, ζ2k , . . . , ζ2
k−1−1

2k
} is a basis of Q(ζ2k),

this implies that St = 0, 0 ≤ t ≤ 2k−1 − 1, t ̸= r, and Sr = ±2k−12
n
2 . By the

invertibility of H2k−1 , the only solution for W(u) in the resulting linear system is

W(u) = ±2
n
2H

(r)

2k−1 . Hence (3.28) holds, also implying that all gi are bent.
For the case (ii), when n is odd, the sufficiency of (3.29) has also been shown in

Section 3.2. Again, for the sake of completeness, we include the proof arguments.

If (3.29) holds, then by (3.27), for j ∈ {r, r + 2k−2} we have Sj = ±2k−22
n+1
2 , and

Sj = 0 if j ̸= r, r + 2k−2. Hence, from Proposition 3.3.3, we get

Hf (u) = ±2
n+1
2 ζr2k ± 2

n+1
2 ζr+2k−2

2k
= 2

n+1
2 ζr2k(±1± i) = 2

n
2 ζr2kζ

j
8 ,

for some j ∈ {1, 3, 5, 7}. Therefore, f is gbent.
If conversely f is gbent, then by Proposition 3.3.3 we have

S0 + S1ζ2k + · · ·+ S2k−1−1ζ
2k−1−1
2k

= 2k−1Hf (u) = 2k−12
n−1
2

√
2ζj

2k
,

for some 0 ≤ j ≤ 2k−1 − 1. By Lemma 3.3.2, there exists (a unique) r, 0 ≤ r ≤
2k−2 − 1, such that √

2ζj
2k

= ±ζr2k ± ζ
r+2k−2

2k
.

Combining the two above relations, we have

S0 + S1ζ2k + · · ·+ S2k−1−1ζ
2k−1−1
2k

= 2k−12
n−1
2 (±ζr2k ± ζ

r+2k−2

2k
).
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Therefore, Sr = ±2k−22
n+1
2 , Sr+2k−2 = ±2k−22

n+1
2 , and St = 0 for t ̸= r, r + 2k−2,

i.e.,

S(u) =



S0
...
Sr
...

Sr+2k−2

...
S2k−1−1


= 2k−22

n+1
2



0
...

(−1)e1
...

(−1)e2
...
0


, e1, e2 ∈ {0, 1}.

By the invertibility of H2k−1 , the linear system (3.27) has a unique solution for all

four possibilities of S(u). As now easily observed, these solutions are (2
n+1
2 H

(r)

2k−2 ,02k−2),

(−2
n+1
2 H

(r)

2k−2 ,02k−2), (02k−2 , 2
n+1
2 H

(r)

2k−2), and (02k−2 ,−2
n+1
2 H

(r)

2k−2) for (e1, e2) =
(1, 1), (−1, 1), (1,−1), and (−1,−1), respectively.

Combining Theorem 3.3.4 and Lemma 3.3.1-(iii) gives a characterization of the
gbent property in terms of the Walsh spectral values of the component functions.
More precisely, the quadruples (four vectors) of a suitable vector space Fk−1

2 which
build a 2-dimensional flat specify the component functions whose spectra satisfy
certain conditions as described below. In other words, the characterization in The-
orem 3.3.4, which relates the spectral values of component functions to the rows of
Hadamard matrices, turns out to be equivalent to a particular relation of the Walsh
spectral values for the above defined quadruples.

Proposition 3.3.5 (i) Let n be even, k ≥ 3, and represent i =
∑k−2

j=0 ij2
j for

0 ≤ i ≤ 2k−1 − 1, with ij ∈ {0, 1}. Assume gi(x) = ak−1(x) ⊕ i0a0(x) ⊕ i1a1(x) ⊕
· · ·⊕ ik−2ak−2(x) are bent functions, for 0 ≤ i ≤ 2k−1−1. For u ∈ Fn2 , the condition
in Theorem 3.3.4

W(u) = (Wg0(u),Wg1(u), . . . ,Wg
2k−1−1

(u)) = ±2
n
2H

(r)

2k−1 (3.30)

holds for some r ∈ {0, . . . , 2k−1 − 1}, if and only if for any four distinct inte-
gers j, c, l, v ∈ {0, . . . , 2k−1 − 1} such that zj ⊕ zc ⊕ zl ⊕ zv = 0, the integers
Wgj (u),Wgc(u),Wgl(u),Wgv(u) ∈ {−2

n
2 , 2

n
2 } satisfy the equality

Wgj (u)Wgc(u) =Wgl(u)Wgv(u). (3.31)

(ii) Similarly, when n be odd, let us assume that gi(x) = ak−1(x)⊕i0a0(x)⊕i1a1(x)⊕
· · · ⊕ ik−2ak−2(x) are semi-bent functions, for any 0 ≤ i ≤ 2k−1 − 1. Then,

W(u) = (±2
n+1
2 H

(r)

2k−2 ,02k−2)

for some 0 ≤ r ≤ 2k−2 − 1, if and only if Wgj (u) = 0 for all 2k−2 ≤ j ≤
2k−1 − 1 and Wgj (u) ̸= 0 for all 0 ≤ j ≤ 2k−2 − 1 such that for any four dis-
tinct integers j, c, l, v ∈ {0, . . . , 2k−2 − 1} with zj ⊕ zc ⊕ zl ⊕ zv = 0, the integers

Wgj (u),Wgc(u),Wgl(u),Wgv(u) ∈ {−2
n+1
2 , 2

n+1
2 } satisfy the equality

Wgj (u)Wgc(u) =Wgl(u)Wgv(u). (3.32)
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A similar statement is valid for W(u) = (02k−2 ,±2
n+1
2 H

(r)

2k−2).

Proof: The proposition follows from Theorem 3.3.4 and Lemma 3.3.1(iii).

3.3.3 Gbent conditions in terms of affine (semi-)bent spaces

In the previous section we have provided two different characterizations of gbent
property, though both are closely related to certain properties of the component
functions. The derived conditions essentially also capture the inherent properties
of the affine spaces of (semi-)bent functions that correspond to gbent functions. In
this section we specify these affine spaces of (semi-)bent functions and also address
the affine equivalence of gbent functions in a rigorous manner.

We first develop equivalent gbent conditions in terms of affine bent spaces for
even n. In this case, by the definition of the dual g∗ of a bent function g, the relation
(3.32) in Proposition 3.3.5 is equivalent to

(−1)g
∗
j (u)(−1)g∗c (u) = (−1)g∗l (u)(−1)g∗v(u),

for all u ∈ Fn2 . Hence g∗j ⊕ g∗c ⊕ g∗l ⊕ g∗v = 0, if j, c, l, v satisfy zj ⊕ zc ⊕ zl ⊕ zv = 0.
Observing that gj ⊕ gc ⊕ gl ⊕ gv = 0 if and only if zj ⊕ zc ⊕ zl ⊕ zv = 0, we obtain
the following corollary from Theorem 3.3.4 and Proposition 3.3.5.

Corollary 3.3.6 A function f : Fn2 → Z2k , n even, given as f(x) = a0(x)+2a1(x)+
· · ·+ 2k−1ak−1(x) is gbent if and only if

A = ak−1 ⊕ ⟨a0, a1, . . . , ak−2⟩

is an affine vector space of bent functions such that for any h0, h1, h2, h3 ∈ A with
h0⊕h1⊕h2⊕h3 = 0 we have h∗0⊕h∗1⊕h∗2⊕h∗3 = 0. Equivalently, if h3 = h0⊕h1⊕h2,
then h∗3 = h∗0 ⊕ h∗1 ⊕ h∗2.

Corollary 3.3.6 generalizes an observation in [76], where the relations between octal
gbent functions and a secondary construction of bent functions proposed by Car-
let [16] were investigated. We state the version of this construction [16] given by
Mesnager in [80].

Proposition 3.3.7 [80, Th. 4] Let g0, g1, g2, g3 be bent functions from Fn2 to F2

such that g0 ⊕ g1 ⊕ g2 ⊕ g3 = 0. Then the function

g0g1 ⊕ g0g2 ⊕ g1g2

is bent if and only if g∗0 ⊕ g∗1 ⊕ g∗2 ⊕ g∗3 = 0, and its dual is g∗0g
∗
1 ⊕ g∗0g∗2 ⊕ g∗1g∗2.

Combining Corollary 3.3.6 and Proposition 3.3.7 we get interesting alternative con-
ditions for gbent functions in GB2kn when n is even.

Corollary 3.3.8 Let n be even. A function f(x) = a0(x)+2a1(x)+· · ·+2k−1ak−1(x) ∈
GB2kn is a gbent function if and only if A = ak−1⊕⟨a0, a1, . . . , ak−2⟩ is an affine vec-
tor space of bent functions such that for every (pairwise distinct) gi, gj , gl ∈ A the
function gigj ⊕ gigl ⊕ gjgl is bent.
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Remark 3.3.9 Note that if the bent functions gi, gj , gl are not pairwise distinct,
then gigj ⊕ gigl ⊕ gjgl is trivially bent.

To address the case when n is odd, we show the following analog of Proposition
3.3.7 for semi-bent functions.

Proposition 3.3.10 Let g0, g1, g2, g3 be semi-bent functions from Fn2 to F2 such that
g0 ⊕ g1 ⊕ g2 ⊕ g3 = 0. Then, the function

g0g1 ⊕ g0g2 ⊕ g1g2

is semibent if and only if for all u ∈ Fn2 , Wgi(u) = 0 for an even number of i ∈
{0, 1, 2, 3}, and if Wgi(u) ̸= 0 for all i ∈ {0, 1, 2, 3}, then

Wg0(u)Wg1(u) =Wg2(u)Wg3(u), (3.33)

or

|{i : Wgi(u) = 2(n+1)/2}| = 1, 3, but not Wg0(u) =Wg1(u) =Wg2(u). (3.34)

Proof. By [16, Lemma 1] (see also Proposition 2 in [80]), for (pairwise distinct)
Boolean functions g0, g1, g2, g3 such that g0⊕ g1⊕ g2⊕ g3 = 0, the Walsh-Hadamard
transform of g = g0g1 ⊕ g0g2 ⊕ g1g2 satisfies

Wg(u) =
1

2
(Wg0(u) +Wg1(u) +Wg2(u)−Wg3(u))

for all u ∈ Fn2 . The correctness of the proposition follows then easily by checking all
possible combinations of Wgi(u), i ∈ {0, 1, 2, 3}. Note that (3.33) is equivalent to
Wgi(u) = −2(n+1)/2 for an even number of i ∈ {0, 1, 2, 3}. �
Remark 3.3.11 If for any u ∈ Fn2 for which Wgi(u) ̸= 0, i = 0, 1, 2, 3, the condition
(3.33) always applies, then g = gigj ⊕ gigl ⊕ gjgl is semi-bent for any {i, j, l} ⊂
{0, 1, 2, 3}. If for some of u ∈ Fn2 we have (3.34), then this is not true.

Corollary 3.3.12 Let n be odd. If f(x) = a0(x)+2a1(x)+· · ·+2k−1ak−1(x) ∈ GB2
k

n

is a gbent function, then A = ak−1⊕⟨a0, a1, . . . , ak−2⟩ = ak−1⊕L is an affine vector
space of semi-bent functions such that for every (pairwise distinct) gi, gj , gl ∈ A the
function G = gigj ⊕ gigl ⊕ gjgl is semi-bent. Moreover, for every u ∈ Fn2 we have

Wg(u) = 0 if and only if g ∈ ak−1 ⊕ ⟨a0, a1, . . . , ak−3⟩, or
Wg(u) ̸= 0 if and only if g ∈ ak−1 ⊕ ⟨a0, a1, . . . , ak−3⟩. (3.35)

Conversely, if A = ak−1 ⊕ L is an affine vector space of semi-bent functions such
that for every (pairwise distinct) gi, gj , gl ∈ A the function G = gigj ⊕ gigl ⊕ gjgl is
semi-bent, and A = ak−1 ⊕ ⟨ak−2,L1⟩ for some subspace L1 of L and ak−2 ̸∈ L1,
with the property that for all u ∈ Fn2 we have

Wg(u) = 0 if and only if g ∈ ak−1 ⊕ L1, or
Wg(u) ̸= 0 if and only if g ∈ ak−1 ⊕ L1, (3.36)

then f(x) = a0(x)+2a1(x)+· · ·+2k−3ak−3(x)+2k−2ak−2(x)+2k−1ak−1(x), ai ∈ L1,
0 ≤ i ≤ k − 3, is gbent.
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Proof: Let f(x) = a0(x) + 2a1(x) + · · · + 2k−1ak−1(x) be a gbent function from
Fn2 to Z2k , n odd, and for 0 ≤ i ≤ 2k−1 − 1 let gi(x) = i0a0(x) ⊕ i1a1(x) ⊕ · · · ⊕
ik−2ak−2(x)⊕ ak−1(x), where (i0, i1, . . . , ik−2) = zi is the binary representation of i.
By Theorem 3.3.4(ii), gi is semi-bent for all 0 ≤ i ≤ 2k−1 − 1 and

W(u) = (±2
n+1
2 H

(r)

2k−2 ,02k−2) or W(u) = (02k−2 ,±2
n+1
2 H

(r)

2k−2) (3.37)

for some 0 ≤ r ≤ 2k−2 − 1.

Let 0 ≤ i < j < l < v ≤ 2k−1 − 1 be such that zi ⊕ zj ⊕ zl ⊕ zv = 0, where
zi = (i0, i1, . . . , ik−2) ∈ Fk−1

2 is the binary representation of i. Since ik−2 ⊕ jk−2 ⊕
lk−2 ⊕ vk−2 = 0, the following situations can then occur:

(i) 0 ≤ i, j, l, v ≤ 2k−2−1: In this case, eitherWh(u) = 0 for all h ∈ {gi, gj , gl, gv},
or Wh(u) ̸= 0 for all h ∈ {gi, gj , gl, gv}. In the latter case, by Proposition
3.3.5, Wgi(u)Wgj (u) = Wgl(u)Wgv(u). In both cases, by Proposition 3.3.10
the function G is semi-bent.

(ii) 2k−2 ≤ i, j, l, v ≤ 2k−1 − 1: The same argument as for (i) applies to this case.

(iii) 0 ≤ i, j ≤ 2k−2− 1, 2k−2 ≤ l, v ≤ 2k−1− 1: In this case, exactly two of Wgi(u),
Wgj (u), Wgl(u) Wgv(u) are zero, hence by Proposition 3.3.10 the function G
is semi-bent.

Finally, (3.35) follows directly from (3.37).
To show the converse, we first note that (3.36) implies that exactly 2k−2 entries

of W (u) are zero, all of them being located either at the first or at the second half of
W (u). Since we suppose that gigj⊕gigl⊕gjgl is semi-bent for all (pairwise distinct)
gi, gj , gl ∈ A, by Proposition 3.3.10 and Remark 3.3.11, the nonzero half of W (u)

equals to ±2
n+1
2 H

(r)

2k−2 for some 0 ≤ r ≤ 2k−2 − 1. As a consequence, f is gbent by
Theorem 3.3.4(ii).

3.3.4 Equivalence of gbent functions

We now give the complete characterization of gbent functions, both for even and
odd n, as an algebraic object. Similarly to the case of standard bent functions we
discuss the concept of affine equivalence of gbent functions.

As already demonstrated, a gbent function f(x) = a0(x) + 2a1(x) + · · · +
2k−2ak−2(x)+2k−1ak−1(x) gives rise to A = ak−1⊕⟨a0, . . . , ak−2⟩ which is an affine
space of bent functions (semi-bent functions) with certain properties. Thus, it is nat-
ural to investigate its correspondence to apparently similar class of functions, namely
to vectorial bent functions. Recall that a vectorial bent function F : Fn2 → Fk2, n
even, k ≤ n/2, is a function

F (x) = (a0(x), a1(x), . . . , ak−1(x)), ai ∈ Bn, 0 ≤ i ≤ k − 1, (3.38)

for which every (nontrivial) component function i0a0 ⊕ i1a1 ⊕ · · · ⊕ ik−1ak−1, ij ∈
{0, 1}, 0 ≤ j ≤ k−1, is bent. Equivalently, F is a k-dimensional vector space of bent
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functions with a basis {a0, a1, . . . , ak−1}. Changing the basis, that is, performing a
coordinate transformation on Fk2 does not change the vector space. It is rather the
representation in the form (3.38) that changes. In spite of a different appearance,
the functions are considered to be the same. Furthermore, it is well known that
a coordinate transformation on Fn2 also results in a vectorial bent function, which
is said to be equivalent and is not seen as a different object. For these reasons a
discussion about the equivalence of gbent functions seems to be in place.

Let f(x) = a0(x) + 2a1(x) + · · ·+2k−2ak−2(x) + 2k−1ak−1(x) ∈ GB2
k

n be a gbent
function, b ∈ ⟨a0, a1, . . . , ak−2⟩, and let B be an invertible (k−1)×(k−1)-matrix over
F2. Set a = (a0(x), a1(x), . . . , ak−2(x)) and let BaT = (b0(x), b1(x), . . . , bk−2(x)).
Then,

ak−1 ⊕ ⟨a0, a1, . . . , ak−2⟩ and (ak−1 ⊕ b)⊕ ⟨b0, b1, . . . , bk−2⟩

define the same affine space of bent functions respectively semi-bent functions. In
particular, when n is even, the function

f1(x) = b0(x) + 2b1(x) + · · ·+ 2k−2bk−2(x) + 2k−1(ak−1(x)⊕ b(x))

is also a gbent function, describing the same object as f does. One has to be little
bit more careful when n is odd, since then the vector space L = ⟨a0, a1, . . . , ak−2⟩
contains a subspace L1 as described in Corollary 3.3.12. Thus, for our standard
representation, when f is of the form (3.25), ak−2 has to be chosen from L \ L1.
As for (vectorial) bent functions one can obtain seemingly new gbent functions from
a given one by applying a coordinate transformation on Fn2 . Let f : Fn2 → Z2k and
let A be an invertible n× n-matrix over F2. Then for u ∈ Fn2 ,

Hf(Ax)(u) =
∑
x∈Fn

2

ζ
f(Ax)

2k
(−1)u·x =

∑
x∈Fn

2

ζ
f(x)

2k
(−1)u·A−1x

=
∑
x∈Fn

2

ζ
f(x)

2k
(−1)(A−1)Tu·x = Hf ((A−1)Tu).

Hence f(Ax) is gbent if and only if f is gbent. Consequently, gbentness is invariant
under linear coordinate transformations on Fn2 . From the above discussion, when n
is even, we may say that f(x) = a0(x) + 2a1(x) + · · ·+ 2k−2ak−2(x) + 2k−1ak−1(x)
and f1(x) are equivalent if there exist A ∈ GL(n,F2), B ∈ GL(k − 1,F2) and
b ∈ ⟨a0, a1, . . . , ak−2⟩, such that

f1(x) = b0(Ax) + 2b1(Ax) + · · ·+ 2k−2bk−2(Ax) + 2k−1bk−1(Ax)

with (b0(x), b1(x), . . . , bk−2(x)) = BaT and bk−1 = ak−1 ⊕ b. When n is odd, we
require that the coordinate transformation induced by B leaves the subspace L1
invariant.

We notice that the gbent property does not require that a0, a1, . . . , ak−2 are
linearly independent. Hence, the vector space L = ⟨a0, a1, . . . , ak−2⟩ may not have
“full” dimension k − 1. When n is even, in the extreme case dim(L) = 0, and
f(x) = 2k−1ak−1(x) is a gbent function if ak−1 is a bent function. Then the image
set of f is two-valued taking the values in {0, 2k−1}, but certainly one will not



Generalised bent (gbent) functions 47

consider ak−1 and 2k−1ak−1 as different objects. In general, it is easily verified that
if

f(x) = a0(x) + 2a1(x) + · · ·+ 2k−2ak−2(x) + 2k−1ak−1(x)

is a gbent function in GB2kn , then

f̃(x) = a0(x) + 2a1(x) + · · ·+ 2k−2ak−2(x) + 2r−1ar−1(x)

is a gbent function in GB2rn for any r ≥ k. However, this quite artificial lifted version

of f with a quite restricted image set, is essentially identified with f ∈ GB2kn .
When n is odd, if

f(x) = a0(x) + 2a1(x) + · · ·+ 2k−2ak−2(x) + 2k−1ak−1(x)

is a gbent function in GB2kn , then

f̃(x) = a0(x) + 2a1(x) + · · ·+ 2k−3ak−3(x) + 2r−2ar−2(x) + 2r−1ar−1(x)

is also a gbent function in GB2rn , for any r ≥ k. Again, we identify this lifted version
f̃ with f .

Let n be even and suppose that the vector space ⟨a0, a1, . . . , ar−2⟩ has dimen-
sion k − 1 for some k ≤ r. Then there exists a matrix B ∈ GL(r − 1,F2) such
that B(a0, a1, . . . , ar−2)

T = (b0, b1, . . . , bk−2, 0 . . . , 0) for some linearly independent
b0, b1, . . . , bk−2. Hence

f̃1(x) = a0(x) + 2a1(x) + · · ·+ 2r−1ar−1(x)

is equivalent to

f̃ = b0(x) + 2b1(x) + · · ·+ 2k−2bk−2(x) + 2r−1ar−1(x),

which is the lifted version of

f = b0(x) + 2b1(x) + · · ·+ 2k−2bk−2(x) + 2k−1ar−1(x) ∈ GB2
k

n .

As a consequence of the above discussion, we can restrict ourselves to gbent func-
tions f(x) = a0(x)+2a1(x)+· · ·+2k−2ak−2(x)+2k−1ak−1(x) for which a0, a1, . . . , ak−2

are linearly independent. The same argument also applies to the n odd case. The
following summary of our discussion is fundamental for the characterization and
possibly a classification of gbent functions.

• For a gbent function f(x) = a0(x)+2a1(x)+· · ·+2k−2ak−2(x)+2k−1ak−1(x) ∈
GB2kn , the set {a0, a1, . . . , ak−2} is always linearly independent (otherwise it

reduces to a gbent function in GB2k
′

n for some k′ < k).

• A gbent function is independent from its representation of the form (3.25) via
a basis of L = ⟨a0, a1, . . . , ak−2⟩, and the choice of the coset leader ak−1 (for
odd n the existence of the distinguished subspace L1 of L has to be respected
in the representation).
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We can now state the main theorems, the characterization of gbent functions in
terms of affine (semi-)bent spaces.

Theorem 3.3.13 Let n be even. A gbent function in GB2kn is a (k−1)-dimensional
affine vector space A of bent functions such that for every gi, gj , gl ∈ A the function
gigj ⊕ gigl ⊕ gjgl is bent.

Theorem 3.3.14 Let n be odd. A gbent function in GB2kn is a (k − 1)-dimensional
affine vector space A = ak−1 ⊕L of semi-bent functions for which gigj ⊕ gigl ⊕ gjgl
is semi-bent for every gi, gj , gl ∈ A, and for all u ∈ Fn2 we have

Wg(u) = 0 if and only if g ∈ ak−1 ⊕ L1, or
Wg(u) ̸= 0 if and only if g ∈ ak−1 ⊕ L1,

for some (k − 2)-dimensional subspace L1 of L.

3.3.5 Zq-bent functions and relative difference sets

In this section, n is always even, q = 2k. We recall that a Zq-bent function is a
function from an n-dimensional vector space Fn2 over F2 to Zq, for which

Hf (α, u) =
∑
x∈Fn

2

ζαf(x)q (−1)u·x

has absolute value 2n/2 for every u ∈ Fn2 and nonzero α ∈ Zq = Z2k . Equivalently, a
Zq-bent function given by its graph D = {(x, f(x)) : x ∈ Fn2} is a (2n, 2k, 2n, 2n−k)-
relative difference set in Fn2 × Z2k . Clearly, a Zq-bent function is always gbent. In
[71] more general vectorial Zq-bent functions are considered. We focus on the most
interesting case where the co-domain is the cyclic group Zq.

Proposition 3.3.15 A function f(x) = a0(x)+2a1(x)+ · · ·+2k−1ak−1(x) ∈ GB2
k

n ,
n even, is Zq-bent if and only if 2tf(x) = 2ta0(x)+2t+1a1(x)+ · · ·+2k−1ak−t−1(x) ∼
a0(x) + 2a1(x) + · · ·+ 2k−t−1ak−t−1(x) is a gbent function with dimension k− 1− t
for every t = 0, 1, . . . , k − 1.

Proof: If f is Zq-bent then |H(2k)
f (2t, u)| = 2n/2 for every u ∈ Fn2 and t =

0, 1, . . . , k − 1 by definition. Conversely, as Q(ζ1) and Q(ζ2) are isomorphic for two

primitive roots of unity ζ1, ζ2 of the same order, we solely require that |H(2k)
f (2t, u)| =

2n/2 for every u ∈ Fn2 and t = 0, 1, . . . , k−1. Identifying 2tf(x) with a0(x)+2a1(x)+
· · ·+ 2k−t−1ak−t−1(x), the proposition follows.

Remark 3.3.16 As for a Zq-bent function in GB2kn we require that both f = a0(x)+

2a1(x)+ · · ·+2k−1ak−1(x) ∈ GB2
k

n and f1(x) = a0(x)+2a1(x)+ · · ·+2k−2ak−2(x) ∈
GB2k−1

n are gbent, thus ⟨a0, a1, . . . , ak−1⟩ is a vector space of bent functions, i.e., a
vectorial bent function.
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We continue with two examples of Zq-bent functions. For the first example, we
employ the fact that h(x, y) = Trm(xπ(y)) is a (Maiorana-McFarland) bent function
from F2m × F2m to F2 if and only if π is a permutation of F2m .

Example 3.3.17 This example is based on the result in [76, Corollary 3]. Let m be
an integer divisible by 4 but not by 5, let b, c ∈ F∗

2m with b4+b+1 = 0, and let d be the
multiplicative inverse of 11 modulo 2m − 1. Then the function f : F2m × F2m → Z23

f(x, y) = Trm(c(1 + b)ydx) + 2Trm(c(1 + b−1)ydx) + 4Trm(cy
dx)

is gbent [76]. Now observe that Trm(c(1+b
−1)ydx) and Trm(c(1+b)y

dx)⊕Trm(c(1+
b−1)ydx) are both Maiorana-McFarland bent functions. Hence the function f1(x, y) =
Trm(c(1+b)y

dx)+2Trm(c(1+b
−1)ydx) is gbent in GB42m by [109, Theorem 32]. The

function f2(x, y) = Trm(c(1 + b)ydx) is bent, thus formally in GB22m = B2m. There-
fore, by Proposition 3.3.15, f(x, y) is Z8-bent.

As our second example, we analyse the Zq-bent function given in Theorem 12 in
[71] for t = 1. The function is defined via spreads and it is not given in the form
(3.25). We start by recalling that a spread of F2n , n = 2m, is a family S of 2m + 1
subspaces U0, U1, . . . , U2m of F2n , whose pairwise intersection is trivial. The classical
example is the regular spread, which for F2n = F2m × F2m is represented by the
family S =

∪
s∈F2m

{(x, sx) : x ∈ F2m} ∪ {(0, y) : y ∈ F2m}. For the regular
spread in F2n we can take the family S = {αiF2m : i = 1, . . . , 2m + 1}, where
{αi : i = 1, . . . , 2m+1} is a set of representatives of the cosets of the subgroup F∗

2m

of the multiplicative group F∗
2n (one may take the set of the (2m + 1)-th roots of

unity).

Example 3.3.18 Let U0, U1, . . . , U2m be the elements of a spread of F2n, n = 2m.
We first construct a vectorial bent function F , and thereafter a Zq-bent function f .
We notice that F and f are connected as discussed in Remark 3.3.16.

Let ϕ : {1, 2, . . . , 2n/2} → Fk2 be a balanced map, thus any y ∈ Fk2 has exactly
2n/2−k preimages in the set {1, 2, . . . , 2n/2}. Then the function F : F2n → Fk2 given
by

F (x) =

{
ϕ(s) : x ∈ Us, 1 ≤ s ≤ 2m, and x ̸= 0,
0 : x ∈ U0,

is a vectorial bent function, see e.g. Theorem 4 in [18]. If ai ∈ Bn, 0 ≤ i ≤ k − 1,
are the coordinate functions of F , i.e. if F (x) = (a0(x), a1(x), . . . , ak−1(x)), then F
is the vector space of bent functions given as ⟨a0, a1, . . . , ak−1⟩.

We now proceed with the construction of the Zq-bent function given as in [71].
From the balanced map ϕ, we obtain in a natural way a balanced map ϕ̄ from
{1, 2, . . . , 2n/2} to Z2k defined as ϕ̄(s) = y0+2y1+· · ·+2k−1yk−1 if ϕ(s) = (y0, y1, . . . , yk−1).
By Theorem 12 in [71], the function

f(x) =

{
ϕ̄(s) : x ∈ Us, 1 ≤ s ≤ 2m, and x ̸= 0,
0 : x ∈ U0,

from F2n to Z2k is Zq-bent. Then, written in the form (3.25), f is represented as
f(x) = a0(x) + 2a1(x) + · · · + 2k−1ak−1(x), with the Boolean functions ai, 0 ≤ i ≤
k − 1, given as above.
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We can change the representation of the vectorial bent function F by changing
the basis from {a0, a1, . . . , ak−1} to {a′0, a′1, . . . , a′k−1}. The same vectorial bent func-
tion has then the representation F (x) = {a′0(x), a′1(x), . . . , a′k−1(x)}. This change of
the basis implies a modification of ϕ and ϕ̄, and results also in an alternative formal
expression for the Zq-bent function.

We emphasize that the property of being Zq-bent is much stronger than the
property of being vectorial bent. Zq-bent functions are very interesting vectorial
bent functions since they correspond to two relative difference sets with parameters
(2n, 2k, 2n, 2n−k): First of all, being vectorial bent, they correspond to the relative
difference setD = {(x, a0(x), a1(x), . . . , ak−1(x)) : x ∈ Fn2} in Fn2×Fk2, and secondly,
to the relative difference set R = {(x, a0(x) + 2a1(x) + · · · + ak−1(x)) : x ∈ Fn2}
in Fn2 × Z2k . Moreover, further relative difference sets are enclosed in such a vector
space of bent functions, the relative difference sets of the bent functions of the
form gigj ⊕ gigl ⊕ gjgl for some component functions gi, gj , gl. These bent functions
are in general not component functions of the vectorial bent function, hence their
relative difference sets are not projections of D. Here we have provided a first
systematic description of this class of vectorial bent functions. There are many
questions on analysis and construction of such functions which one can investigate.
We are convinced that these functions are an interesting target for future research.

3.3.6 The dual and Gray map of gbent functions

In this section we firstly describe the dual f∗ of an arbitrary gbent function f ∈ GB2kn .
Furthermore, the Gray map of gbent functions is considered.

3.3.7 The dual of a gbent function

For even n we will describe the dual f∗ of a gbent function f ∈ GB2kn via the duals
of the component functions of f .

Theorem 3.3.19 Let n be even and f ∈ GB2kn be a gbent function given as

f(x) = a0(x) + 2a1(x) + · · ·+ 2k−2ak−2(x) + 2k−1ak−1(x),

for some ai ∈ Bn (i = 0, . . . , k − 1), with component functions gj, 0 ≤ j ≤ 2k−1 − 1.

Then the dual f∗ ∈ GB2kn of the function f is given as follows:

f∗(x) = b0(x) + 2b1(x) + . . .+ 2k−2bk−2(x) + 2k−1bk−1(x), x ∈ Fn2 , (3.39)

where bk−1(x) = a∗k−1(x), bj(x) = a∗k−1(x)⊕ (ak−1 ⊕ a2j )∗(x), j = 0, . . . , k − 2.

Proof: (i) From Theorem 3.1.9 and the regularity of a gbent function f , we have

Hf (u) =
2k−1−1∑
i=0

αiWgi(u) = 2
n
2

2k−1−1∑
i=0

αi(−1)g
∗
i (u) = 2

n
2 ζ

f∗(u)
2k

.

Suppose that f∗(x) = b0(x) + 2b1(x) + · · ·+2k−1bk−1(x) and denote the component
functions of f∗ by hi = bk−1 ⊕ i0b0 ⊕ . . . ik−2bk−2, 0 ≤ i ≤ 2k−1 − 1 (i =

∑k−2
j=0 ij2

j).
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By Theorem 3.1.9,

ζ
f∗(x)
2k

=

2k−1−1∑
i=0

αi(−1)hi(x).

Combining we get

2k−1−1∑
i=0

αi(−1)hi(u) =
2k−1−1∑
i=0

αi(−1)g
∗
i (u).

Observing that α0, α1, . . . , α2k−1−1 are linearly independent Q(ζ) (invertible matrix
times (ζ0, ζ1, . . . , ζ2k−1−1)), we obtain hi(x) = g∗i (x), i = 0, 1, . . . , 2k−1 − 1 (and all
x ∈ Fn2 ). Finally, bk−1 = g∗0 = a∗k−1, and with g∗

2j
= bk−1 ⊕ bj and g2j = ak−1 ⊕ aj ,

j = 1, . . . , k − 2, we get

bj = a∗k−1 ⊕ (ak−1 ⊕ aj)∗, j = 1, . . . , k − 2.

Theorem 3.3.19 generalizes the results in [76] where a similar conclusion was stated
for k = 2, 3 only. If n is odd, then the component functions of f are semi-bent,
hence the description of the dual of f for n even cannot transfer to n odd in a
straightforward manner.

3.3.8 The Gray map of gbent functions

In this section we specify the Gray image of any gbent function by showing that
its Gray map is a (k − 1)-plateaued function if n is even, and a (k − 2)-plateaued
function if n is odd. This again generalizes the existing results given in [70, 109] for
k = 2, 3 and 4.

Let f : Fn2 → Z2k be a generalized Boolean function given by (3.25), i.e., by

f(x) = a0(x) + 2a1(x) + 22a2(x) + · · ·+ 2k−1ak−1(x), ∀x ∈ Fn2 .

The generalized Gray map ψ(f) : GB2kn → Bn+k−1 of f is defined by, cf. [15],

ψ(f)(x, y0, . . . , yk−2) =

k−2⊕
i=0

ai(x)yi ⊕ ak−1(x). (3.40)

We start with the following result.

Lemma 3.3.20 [70, Lemma 15] Let n, k − 1 ≥ 2 be positive integers and F : Fn2 ×
Fk−1
2 → F2 be defined by

F (x, y0, . . . , yk−2) = ak−1(x)⊕
k−2⊕
i=0

yiai(x), x ∈ Fn2 ,

where ai ∈ Bn, 0 ≤ i ≤ k − 1. Denote by A(x) the vectorial Boolean function
A = (a0(x), . . . , ak−2(x)) and let u ∈ Fn2 and zr ∈ Fk−1

2 . The Walsh-Hadamard
transform of F at point (u, zr) ∈ Fn2 × Fk−1

2 is then

WF (u, zr) =
∑

zj∈Fk−1
2

(−1)zj ·zrWak−1⊕zj ·A(u) = H
(r)

2k−1W
T (u),
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where W(u) is the row vector defined by (3.27), i.e., W(u) = (W0(u), . . . ,W2k−1−1(u))
and Wj(u) =Wak−1⊕zj ·A(u), j = 0, . . . , 2k−1 − 1.

We now can show that the Gray map of a gbent function in GB2kn is a certain
plateaued function, thus generalizing the results on Gray maps in [111] and [70]
which were only given for q = 4, 8, 16.

Proposition 3.3.21 Let f ∈ GB2kn be a gbent function, n even. Then ψ(f) is a
(k − 1)-plateaued function in Bn+k−1, thus Wψ(f) ∈ {0,±2n/2+k−1}.

Proof: By Theorem 3.3.4, for any u ∈ Fn2 we have W(u) = ±2
n
2H

(r)

2k−1 (f is

gbent), for some r ∈ {0, . . . , 2k−1−1}. Then for arbitrary (u, zj) ∈ Fn2 ×Fk−1
2 , where

zj ∈ Fk−1
2 , from Lemma 3.3.20 we have F = ψ(f) and thus

Wψ(f)(u, zj) = H
(j)

2k−1W
T (u) = H

(j)

2k−1(±2
n
2H

(r)

2k−1)
T = ±2

n
2H

(j)

2k−1(H
(r)

2k−1)
T

=

{
±2

n
2
+k−1, r = j
0 r ̸= j

,

since H
(j)

2k−1(H
(r)

2k−1)
T =

{
2k−1, r = j
0, r ̸= j

, where H
(j)

2k−1 ,H
(r)

2k−1 are considered as row

vectors. Clearly, for k ≥ 1 we have Wψ(f)(u, zj) ∈ {0,±2
n
2
+k−1}, which means that

ψ(f) is a (k − 1)-plateaued function in Bn+k−1.

Proposition 3.3.22 Let f ∈ GB2kn be a gbent function, n odd. Then ψ(f) is a

(k − 2)-plateaued function in Bn+k−1, thus Wψ(f) ∈ {0,±2
n+1
2

+k−2}.

Proof: Recall that for any u ∈ Fn2 we have

W(u) = (±2
n+1
2 H

(r)

2k−2 ,02k−2) or W(u) = (02k−2 ,±2
n+1
2 H

(r)

2k−2),

for some r ∈ {0, . . . , 2k−2 − 1}. Consequently, for any (u, zj) ∈ Fn2 × Fk−1
2 ,

Wψ(f)(u, zj) = H
(j)

2k−1W
T (u) =

{
±2

n+1
2

+k−2, r ∈ {j, j + 2k−2}
0 r ̸∈ {j, j + 2k−2}

,

what completes the proof.

Remark 3.3.23 Note that Proposition 3.3.21 and Proposition 3.3.22 hold for any
even q if f is constructed by [52, Theorem 4.1].
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3.4 Construction methods for generalized bent func-
tions

Apart from the general classes of gbent functions mentioned earlier in this chap-
ter, no general construction method for gbent functions has been proposed until now.
In this section, based on the use of the well-known Maiorana-McFarland (MM) class
of Boolean functions, we give an explicit construction method of gbent functions,
for any even q > 2 when n is even and for any q of the form q = 2r (for r > 1)
when n is odd (Section 3.4.2). Recall that the GMMF class of functions is defined
for an even number of variables. Although, in the case when n is even, our construc-
tion method provides functions which belong to the GMMF class, a long-term open
problem of providing a generic construction of gbent functions for odd n is solved.
The method for odd n employs a large class of disjoint spectra semi-bent functions
with certain additional properties which may be useful in other cryptographic ap-
plications. Additionally, in Section 3.5 we analyze the class of gbent functions of
the form q

2a(x) + kb(x), k ∈ { q4 ,
3q
4 }, where we show that almost all constructions of

gbent functions for q ∈ {4, 8} (see [108, 107, 111, 113]) belong to this class.

3.4.1 Problem description

An intensive study of gbent functions has recently resulted in their complete charac-
terization when q is a power of 2 (some partial results are also given in [116, 72, 70]).
Since the analysis of gbent functions provided in previous section is far more exten-
sive than those given in [116, 72, 70], in this section we will mainly refer to the
results given there. Using the approach based on Hadamard matrices, recall that in
Section 3.3.3 (or Section 3.3.4) it has been shown that gbent functions from Zn2 to
Z2k in algebraic sense correspond to affine spaces of bent or semi-bent functions with
certain properties, when n is even or odd, respectively. The problem of providing
generic construction methods of gbent functions is therefore closely related to fulfill-
ing these conditions efficiently. For self-completeness we recall the characterization
of gbent functions given in Section 3.3.2 (which can also be found in [116]).

Theorem 3.4.1 Let f ∈ GB2pn be given as

f(x) = a0(x) + · · ·+ 2p−2ap−2(x) + 2p−1ap−1(x), (3.41)

and let hi(x) = ap−1(x)⊕zi ·(a0(x), . . . , ap−2(x)), i ∈ [0, 2p−1−1] = {0, 1, . . . , 2p−1−
1}, where zi = (i0, . . . , ip−2) ∈ Zp−1

2 .

(i) If n is even, then f is gbent if and only if hi is bent for all 0 ≤ i ≤ 2p−1 − 1,
such that for all u ∈ Zn2 ,

W(u) = (Wh0(u),Wh1(u), . . . ,Wh2p−1−1
(u)) = ±2

n
2H

(r)
2p−1 (3.42)

for some r, 0 ≤ r ≤ 2p−1 − 1, depending on u.
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(ii) If n is odd, then f is gbent if and only if hi is semi-bent for all 0 ≤ i ≤ 2p−1−1,
such that for all u ∈ Zn2 ,

W(u) = (±2
n+1
2 H

(r)
2p−2 ,02p−2) or W(u) = (02p−2 ,±2

n+1
2 H

(r)
2p−2) (3.43)

for some r, 0 ≤ r ≤ 2p−2 − 1, depending on u (02p−2 is the all-zero vector of
length 2p−2).

Remark 3.4.2 In Theorem 3.4.1 the condition (3.42) (n is even) means that any

vector W (u) = (Wh0(u), . . . ,Wh2p−1−1
(u)) must be equal to some row (vector) H

(r)
2p−1

of the Hadamard matrix H2p−1 multiplied with ±2
n
2 , for all u ∈ Zn2 . For odd n, the

condition (3.43) implies that the first (alternatively the second) half of the vector

W (u) is equal to some row of the Hadamard matrix H2p−2 multiplied by ±2
n+1
2 ,

whereas the second (alternatively the first) half equals to all-zero vector 02p−2.

The above result implies that the problem of constructing gbent functions is equiva-
lent to finding an affine space of the coordinate functions Λ = ap−1(x)⊕⟨a0(x), . . . , ap−2(x)⟩
(corresponding to hi(x)) which are all bent (or semi-bent if n is odd) functions and
in addition satisfying the relation (3.42) (alternatively (3.43) if n is odd). The anal-
ysis given in Sections 3.3.3 and 3.3.4 indicates that these properties are not easy
to satisfy and a trivial approach is to select most of the coordinate functions to be
constant or affinely related to each other. In the extreme case, one may, for even n,
specify a0(x) = . . . = ap−2(x) = 0 so that Λ = ap−1(x), thus reducing the dimension
of Λ to be zero.

According to Corollary 3.3.8 the relation (3.42), for even n, can be equivalently
stated as follows: for any three distinct integers i, j, k ∈ {0, . . . , 2p−1 − 1}, it must
hold that hihj ⊕ hihk ⊕ hjhk is a bent function 1, where hi, hj , hk ∈ Λ and the
functions hl are defined as in Theorem 3.4.1. Then, the fact that hihj ⊕hihk⊕hjhk
is bent if and only if h∗i ⊕h∗j ⊕h∗k = (hi⊕hj ⊕hk)∗ [80, Theorem 4] clearly indicates
the hardness of the imposed conditions. Indeed, the dual of a sum of bent functions
is in general not equal to the sum of duals of these functions, except in the cases
when these functions are affinely related to each other (thus hi = hj⊕g, where g is an
affine function) [12, Proposition 3]. A trivial method for satisfying these conditions,
as indicated in Example 3.2.4, is to select certain functions to be constant which
then significantly limits the number of choices and consequently the cardinality of
GBnq is quite small.

The case n being odd appears to be even harder since apart from finding an
affine space Λ of semi-bent functions, the condition (3.43) also implicitly involves
the disjoint spectra property. More precisely, for any two integers i ∈ [0, 2p−2 − 1]
and j ∈ [2p−2, 2p−1 − 1] it must hold that Whi(u)Whj (u) = 0, for any u ∈ Zn2 ,
that is, hi = ap−1 ⊕ zi · (a0, . . . , ap−2) and hj = ap−1 ⊕ zj · (a0, . . . , ap−2) are dis-
joint spectra semi-bent functions. Moreover, as observed in Example 3.2.4, a trivial
selection of coordinate semi-bent functions is not possible in this case since speci-
fying some of these coordinate functions to be constant would violate the equality

1For shortness of notation we usually drop the variables, thus writing hi instead of hi(x)
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Whi(u)Whj (u) = 0, which needs to be satisfied for any two integers i ∈ [0, 2p−2 − 1]
and j ∈ [2p−2, 2p−1 − 1].

The above discussion demonstrates the hardness of the underlying problem and
also motivates the need for some efficient and generic construction methods of gbent
functions, which is the main objective of this article. Since the n odd case appears
to be more difficult then the n even case, we focus on the construction of semi-bent
functions hi = ap−1 ⊕ zi · (a0, . . . , ap−2), i ∈ [0, 2p−1 − 1], satisfying the condition
(3.43) along with the mentioned disjoint spectra property. Even though our proposed
construction method for odd n can be easily adopted to cover the n even case, the
latter case is just briefly mentioned because the GMMF class provides an efficient
and generic construction method.

3.4.2 Construction of gbent functions using MM class

In this section, we describe an efficient method (based on a subtle employment of the
MM class) for specifying disjoint spectra semi-bent functions satisfying the gbent
conditions given by (3.43).

3.4.3 Disjoint spectra semi-bent functions in the MM class

Since our method utilizes the well-known MM-class of functions, we start with the
definition of this class. For x ∈ Zs2 and y ∈ Zv2, let g : Zs+v2 → Z2 be defined as

g(x, y) = ϕ(x) · y ⊕ d(x),

where ϕ : Zs2 → Zv2 and d ∈ Bv is an arbitrary function. Then, the function g belongs
to the MM-class which can also be represented as a concatenation of affine functions
(g is an affine function for any fixed x). It is well-known that if ϕ : Zs2 → Zv2 is
injective then the Walsh spectra of g is three-valued and Wg(u) ∈ {0,±2v}, for any
u ∈ Zv+s2 . In particular, when n = 2k + 1 is odd then for v = k and s = k + 1 the
function g is a semi-bent function.

For our purpose, we are interested in finding a set of semi-bent functions such
that certain linear combinations of these have the property of being disjoint spectra
semi-bent functions. Therefore, we introduce a useful classification of these functions
in terms of disjoint image sets of the mapping ϕ. Let n = 2k + 1 be an odd
positive integer and π : Zk2 → Zk2 be an arbitrary mapping. We can define ϕ :
Zk2 → Zk+1

2 so that one coordinate is fixed, where without loss of generality (and
to avoid complicated notation) we assume that the first coordinate is fixed so that
ϕj : Zk2 → Zk+1

2 , for j = 0, 1, is defined as:

x
ϕ07→ (0, π(x)), x

ϕ17→ (1, π(x)), (3.44)

where π : Zk2 → Zk2. Then, if π is a permutation the function

g(j)π (x, y) = ϕj(x) · y ⊕ d(x), x ∈ Zk2, y ∈ Zk+1
2 , (3.45)

is a semi-bent function (since ϕj is injective), for j = 0, 1. Having defined ϕj ,
j ∈ {0, 1}, through the mapping π we now introduce two sets that distinguish the
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semi-bent property with respect to π,

P (j)
n = {g(j)π : Zk2 × Zk+1

2 → Z2 | d(x) = 0 and π is a permutation on Zk2},(3.46)

and

R(j)
n = {g(j)π : Zk2 × Zk+1

2 → Z2 | d(x) = 0 and π is not a permutation on Zk2}.(3.47)

In the sets P
(j)
n and R

(j)
n the functions g

(j)
π are defined by (3.45), where (for simplicity

of notation used later) we assign d(x) = 0 so that g
(j)
π = ϕj(x) · y, for j ∈ {0, 1}. For

more clarity, we illustrate this method in the following example.

Example 3.4.3 Let us for n = 2k + 1 = 5 (k = 2) construct a semi-bent function

in P
(1)
5 . We define the mapping ϕ1(x) = (1, π(x)) for x ∈ Z2

2 as

ϕ1(00) = (1, 0, 1), ϕ1(10) = (1, 0, 0), ϕ1(01) = (1, 1, 0), ϕ1(11) = (1, 1, 1),

where π is obviously a permutation on Z2
2. Taking d(x) = 0 in (3.45), the four

subfunctions (obtained by fixing x ∈ Z2
2) are then:

g(1)π (0, 0, y) = y0⊕y2; g(1)π (1, 0, y) = y0; g(1)π (0, 1, y) = y0⊕y1; g(1)π (1, 1, y) = y0⊕y1⊕y2.

Thus, the function g
(1)
π (x, y) = ϕ1(x) · y belongs to the set P

(1)
5 .

However, the signs of Walsh coefficients in linear combinations of the coordinate
functions are also of great importance due to the fact that, for any u ∈ Zn2 , in
relation (3.43) for either the first half of the vector W (u) it holds that

(Wh0(u), . . . ,Wh2p−2−1
(u)) = ±2

n+1
2 H

(r)
2p−2 , r ∈ [0, 2p−2 − 1], (3.48)

or alternatively for the second half we have

(Wh2p−2 (u), . . . ,Wh2p−1−1
(u)) = ±2

n+1
2 H

(r)
2p−2 , r ∈ [0, 2p−2 − 1]. (3.49)

The following result is proved useful in determining the signs of non-zero Walsh

coefficients for semi-bent functions in P
(j)
n .

Proposition 3.4.4 Let g
(j)
π = ϕj(x) · y, be an arbitrary semi-bent function in P

(j)
n ,

where j ∈ {0, 1}, n = 2k + 1, and ϕj is given by (3.44). Then, denoting ω2 ∈ Zk+1
2

by (t, ω′
2) ∈ Z2 × Zk2, for t ∈ {0, 1}, we have

W
g
(j)
π
(ω1, ω2) =

{
(−1)ω1·π−1(ω′

2) 2
n+1
2 , t = j

0, t ̸= j
, ∀(ω1, ω2) ∈ Zk2 × Zk+1

2 . (3.50)

Proof: For any (ω1, ω2) ∈ Zk2 × Zk+1
2 , the coefficient W

g
(j)
π
(ω1, ω2) can be written

as

W
g
(j)
π
(ω1, ω2) =

∑
(x,y)∈Zk

2×Zk+1
2

(−1)g
(j)
π (x,y)⊕(x,y)·(ω1,ω2) =

∑
x∈Zk

2

(−1)x·ω1
∑

y∈Zk+1
2

(−1)g
(j)
π (x,y)⊕y·ω2

=
∑
x∈Zk

2

(−1)x·ω1
∑

y∈Zk+1
2

(−1)(j,π(x))·y⊕y·ω2 =
∑
x∈Zk

2

(−1)x·ω1
∑

y∈Zk+1
2

(−1)((j,π(x))⊕ω2)·y.
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The last sum equals zero for any x ∈ Zk2, unless (j, π(x)) ⊕ ω2 = 0 in which case

the sum equals 2k+1 = 2
n+1
2 . Using the fact that π is a permutation, the condition

(j, π(x))⊕ ω2 = (j ⊕ t, π(x)⊕ ω′
2) = 0 is satisfied for t = j and a unique x given by

x = π−1(ω′
2).

Remark 3.4.5 Notice that taking two functions g
(j)
π , g

(j)
σ ∈ R(j)

n so that π, σ are not
permutations, we may still have the property that π ⊕ σ is a permutation in which

case g
(j)
π ⊕ g(j)σ is a semi-bent function.

Apart from Proposition 3.4.4, one can easily construct disjoint spectra semi-bent
functions as follows.

Proposition 3.4.6 Let fπ ∈ P
(j)
n , j ∈ {0, 1}, and gσ belong either to P

(1)
n or to

R
(1)
n . If π ⊕ σ is a permutation on Zk2, then fπ ⊕ gσ is a semi-bent function and the

functions fπ and fπ ⊕ gσ are disjoint spectra semi-bent functions.

Proof: If π ⊕ σ is a permutation on Zk2, then clearly functions fπ and fπ ⊕ gσ are

semi-bent functions, since fπ ∈ P (j)
n and fπ ⊕ gσ is given as

fσ(x, y)⊕ gπ(x, y) = ((i, σ(x))⊕ (j, π(x))) · y = ((i⊕ j, σ(x)⊕ π(x)) · y,

for i, j ∈ {0, 1}. Furthermore, if fπ ∈ P (j)
n , j ∈ {0, 1}, and gσ ∈ P (1)

n or gσ ∈ R(1)
n ,

then fπ ⊕ gσ ∈ P (1⊕j)
n . The disjoint spectra property follows trivially from Proposi-

tion 3.4.4.

The primary condition in Theorem 3.4.1-(ii) is that the component functions
a0, . . . , ap−2, ap−1 ∈ Bn are selected so that hi = ap−1 ⊕ zi · (a0, . . . , ap−2) is a semi-
bent function, for any i ∈ [0, 2p−1− 1]. Especially, when i = 0 this implies that ap−1

has to be a semi-bent function, hence it can be chosen from the set P
(j)
n . Recall that

the vector W (u) at point u ∈ Zn2 is given as

W (u) = (Wh0(u), . . . ,Wh2p−2−1
(u),Wh2p−2 (u), . . . ,Wh2p−1−1

(u)),

and accordingly the WHTs of hi, for i ∈ [0, 2p−1 − 1], constitute the first half of
W (u), more precisely (Wh0(u), . . . ,Wh2p−2−1

(u)) which does not involve the function

ap−2. Nevertheless, this function cannot be arbitrary chosen (for instance cannot
be constant) since its presence in hj when j ∈ [2p−2, 2p−1 − 1] directly affects the
disjoint spectra property through Whi(u)Whj (u) = 0.

3.4.4 Non-trivial selection of component functions, n odd

We now discuss a suitable selection of the coordinate functions ap−1, a0, . . . , ap−2

from the sets P
(j)
n and/or R

(j)
n . These sets being closely related to mappings

over Zk2, to every coordinate function ap−1, a0, . . . , ap−2 we associate the mappings
σ, τ0, . . . , τk−2 : Zk2 → Zk2 as follows:

ap−1(x, y) = (jp−1, σ(x)) · y, al(x, y) = (jl, τl(x)) · y, (x, y) ∈ Zk2 × Zk+1
2 , (3.51)
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where jl ∈ {0, 1} and l ∈ [0, p− 2]. Furthermore, let

πi = σ ⊕ zi · (τ0, . . . , τp−2), (3.52)

denote linear combinations of σ, τ0, . . . , τp−2, for i ∈ [0, 2p−1−1], where πi : Zk2 → Zk2.
Henceforth, instead of using the notation hi, we will use a more precise notation

h
(j)
πi which specifies the function ap−1 ⊕ zi · (a0, . . . , ap−2) with respect to relation

(3.51), i.e., the functions h
(j)
πi = ap−1 ⊕ zi · (a0, . . . , ap−2) are given as

h(j)πi (x, y) = (jp−1⊕zi ·(j0, . . . , jp−2), σ(x)⊕zi ·(τ0(x), . . . , τp−2(x))) ·y = (j, πi(x)) ·y,

where (x, y) ∈ Zk2 × Zk+1
2 and j = jp−1 ⊕ zi · (j0, . . . , jp−2) ∈ {0, 1} (zi ∈ Zp−1

2 ).
In order to fulfill the primary condition of Theorem 3.4.1-(ii), i.e., to have an

affine space of semi-bent functions Λ = ap−1⊕zi · (a0, . . . , ap−2), we will assume that

h
(j)
πi belongs to P

(j)
n for all i ∈ [0, 2p−1 − 1] (j ∈ {0, 1}).

Remark 3.4.7 For arbitrary (fixed) integers j0, . . . , jp−1 ∈ {0, 1}, notice that for

two different vectors zi and zi′ from Zp−1
2 , we may have that ap−1⊕zi·(a0, . . . , ap−2) ∈

P
(j)
n and ap−1 ⊕ zi′ · (a0, . . . , ap−2) ∈ P (j′)

n with j ̸= j′, since vectors zi and zi′ are
directly employed in j = jp−1 ⊕ zi · (j0, . . . , jp−2) and j

′ = jp−1 ⊕ zi′ · (j0, . . . , jp−2).

Recall that in relation (3.43) for any input vector u ∈ Zn2 we have that half of the
vector W (u) is a non-zero vector, and the remaining half is equal to the zero vector
02p−2 . Therefore, to satisfy further the relation (3.43), Proposition 3.4.4 implies

that the integer j in function h
(j)
πi must be fixed for all i ∈ [0, 2p−2 − 1] or for all

i ∈ [2p−2, 2p−1−1] (unlike the case mentioned in Remark 3.4.7), depending on vector
u ∈ Zn2 . More precisely, let us assume that j = jp−1 ⊕ zi · (j0, . . . , jp−2) ∈ {0, 1}
is fixed (the same) in functions h

(j)
πi ∈ P

(j)
n for all i ∈ [0, 2p−2 − 1] (with some

j0, . . . , jp−1 ∈ {0, 1}). For an arbitrary vector u = (ω1, ω2) ∈ Zk2 × Zk+1
2 , where

ω2 = (t, ω′
2) ∈ Zk+1

2 , t ∈ {0, 1}, Proposition 3.4.4 implies that the first half of the
vector W (u) (in relation (3.43)) is given as

(W
h
(j)
π0

(u), . . . ,W
h
(j)
π
2p−2−1

(u)) =

=

{
±2

n+1
2 ((−1)ω1·π−1

0 (ω′
2), . . . , (−1)ω1·π−1

2p−2−1
(ω′

2)), t = j
02p−2 t ̸= j

. (3.53)

On the other hand, fixing j′ = jp−1⊕ zi · (j0, . . . , jp−2) ∈ {0, 1} for all the remaining
indices i ∈ [2p−2, 2p−1 − 1], the second half of the vector W (u) is given as

(W
h
(j′)
π
2p−2

(u), . . . ,W
h
(j′)
π
2p−1−1

(u)) =

=

{
±2

n+1
2 ((−1)ω1·π−1

2p−2 (ω
′
2), . . . , (−1)ω1·π−1

2p−1−1
(ω′

2)), t = j′

02p−2 t ̸= j′
. (3.54)

The disjoint spectra property in relation (3.43) is described through equality
W
h
(j)
πi

(u)W
h
(j′)
πl

(u) = 0, for any two integers i ∈ [0, 2p−2 − 1] and l ∈ [2p−2, 2p−1 − 1].
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Obviously, this property is satisfied in relations (3.53) and (3.54) if and only if it
holds that j′ = j⊕1, due to Proposition 3.4.6. However, notice that j′ depends on j

and the function ap−2, due to the fact that ap−2 is present in all functions h
(j′)
πl , for

l ∈ [2p−2, 2p−1 − 1]. In particular, writing the index l as l = i+ 2p−2 it holds that

h(j
′)

πl
= h(j

′)
πi+2p−2

= h(j)πi ⊕ ap−2, ∀i ∈ [0, 2p−2 − 1],

due to the lexicographic ordering of Zp−1
2 . Hence, the disjoint spectra property is

fulfilled if and only if h
(j)
πi ∈ P

(j)
n for all i ∈ [0, 2p−2 − 1], when j is fixed, and in

addition it is necessary to select ap−2 ∈ P (j⊕1)
n or ap−2 ∈ R(j⊕1)

n so that h
(j′)
πi+2p−2 =

h
(j)
πi ⊕ ap−2 belongs to P

(j⊕1)
n (j′ = j ⊕ 1), for all i ∈ [0, 2p−2 − 1].

Assuming that the disjoint spectra property is satisfied (through a proper selec-
tions of σ, τ0, . . . , τk−2), the condition (3.43) will be fully satisfied if permutations
π0, . . . , π2p−1−1 (defined by (3.52)) satisfy the relations (3.48) and (3.59). In other
words, we need to provide a method of construction of these permutations for which
in relations (3.53) and (3.54) it holds that

((−1)ω1·π−1

0+z·2p−2 (ω
′
2), . . . , (−1)ω1·π−1

2p−2−1+z·2p−2 (ω
′
2)) = ±H(rz)

2p−2 , (3.55)

for both z = 0, 1 and some 0 ≤ rz ≤ 2p−2 − 1. Firstly, with the following result we
constrain the choice of permutations πi satisfying the relations (3.53) and (3.54).

Lemma 3.4.8 Let δi : Zk2 → Z2, for i = 0, . . . , 2m − 1. If for a fixed x ∈ Zk2 the
equality

((−1)δ0(x), . . . , (−1)δ2m−1(x)) = ±H(r)
2m ,

holds for some r ∈ {0, . . . , 2m − 1}, then there exist a, b ∈ Zm2 so that

(δ0(x), . . . , δ2m−1(x)) = (a · (z0 ⊕ b), . . . , a · (z2m−1 ⊕ b)). (3.56)

Proof: The proof follows from the fact that any row of H2m corresponds to a linear
function la ∈ Bm, say la(z) = a · z, and the minus sign ”−” is valid for any b such
that a · b = 1.

The result below gives a general method for constructing permutations πi defined
by (3.52) for which (3.55) holds for both z = 0, 1.

Proposition 3.4.9 Let the mappings σ, τ0, . . . , τp−2 : Zk2 → Zk2 used in (3.51) and
(3.52) be defined as

σ(x) = xS ⊕ d, τc(x) = v(c), c ∈ [0, p− 2], ∀x ∈ Zk2,

where S ∈ GL(Zk2) is an arbitrary matrix in the group of all invertible k × k binary
matrices and d, v(c) ∈ Zk2 are arbitrary (fixed) vectors. Then, the relation (3.55)
holds for both z = 0, 1.
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Proof: Let d, v(c) ∈ Zk2 be arbitrary (fixed) vectors and S ∈ GL(Zk2) be any
invertible matrix. Let also u = (ω1, ω2) ∈ Zk2 × Zk+1

2 be an arbitrary vector, where
ω2 = (t, ω′

2) (t ∈ {0, 1}). W.l.o.g. we only consider the case z = 0 in (3.55) (which
corresponds to (3.48)), since the same arguments apply to the case z = 1 (which
corresponds to (3.59)). Equivalently, z = 0 means that we are considering the case
when t = j (the first equation in (3.53)).

Being linear permutations on Zk2, the inverse of πi(x) = xS⊕d⊕zi·(v(0), v(1), . . . , v(p−2))
is given as

π−1
i (x) = (x⊕ d⊕ zi · (v(0), v(1), . . . , v(p−2)))S−1, ∀i ∈ [0, 2p−1 − 1], ∀x ∈ Zk2.(3.57)

Hence, using (3.57) and denoting by a = (ω1 · v(0)S−1, . . . , ω1 · v(p−2)S−1) ∈ Zk2 and
b = ω1 · (ω′

2 ⊕ d)S−1 ∈ {0, 1}, it is not difficult to see that for any i ∈ [0, 2p−1 − 1]
the term ω1 · π−1

i (ω′
2), which occurs in (3.53) and (3.54), for any ω′

2 ∈ Zk2 can be
written as

ω1 · π−1
i (ω′

2) = a · zi ⊕ b,
Consequently, Lemma 3.4.8 implies that

((−1)ω1·π−1
0 (ω′

2), . . . , (−1)ω1·π−1

2p−2−1
(ω′

2)) = (−1)b((−1)a·z0 , . . . , (−1)a·z2p−2−1) = ±H(r)
2p−2 ,

for some 0 ≤ r ≤ 2p−2 − 1, which means that relation (3.55) holds for z = 0. Using
the same arguments, the relation (3.55) also holds for z = 1, which completes the
proof.

Remark 3.4.10 One may notice that in Proposition 3.4.9, if p− 1 > 2k then some
mappings τi = v(i) ∈ Zk2 will be the same (assuming p is fixed in (3.41)). However,
if p− 1 ≤ 2k then all mappings τi can be defined to be pairwise different. Moreover,
for p− 1 ≤ k the affine space Λ = ap−1⊕⟨a0, . . . , ap−2⟩ may have the full dimension
p− 1 if the vectors v(0), . . . , v(p−2) ∈ Zk2 constitute a basis of Zk2.

The results/discussions from this subsection allow us to formalize the generic con-
struction method for gbent functions, which is given with the following steps.

Construction 1: Let f : Zn2 → Z2p be defined by (3.25), where n = 2k+1 (k ∈ N)
and p ≥ 2, and let the coordinate functions a0, . . . , ap−1 be defined by (3.51). The
function f is gbent if its coordinate functions are selected as follows:

(1) Select the corresponding permutations σ, τ0, . . . , τp−2 as defined in Proposition
3.4.9.

(2) With respect to the previous step, set ap−1 ∈ P (j)
n for any j ∈ {0, 1}, a0, . . . , ap−3 ∈

R
(0)
n and ap−2 ∈ R(1)

n .

Remark 3.4.11 Note that the first construction step above ensures that Λ = ap−1⊕
⟨a0, . . . , ap−2⟩ is an affine space of semi-bent functions, for which (3.48) and (3.59)
are satisfied. The second step ensures the disjoint spectra property in relation (3.43),

thus all functions ap−1 ⊕ zi · (a0, . . . , ap−2) ∈ P
(j)
n for all i ∈ [0, 2p−2 − 1] and

ap−1 ⊕ zl · (a0, . . . , ap−2) ∈ P (j⊕1)
n for all l ∈ [2p−2, 2p−1 − 1].
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3.4.5 The construction when n is even

In general, our method of constructing gbent functions for n odd, summarized in
Construction 1, heavily relies on Propositions 3.4.6 and 3.4.9. Nevertheless, as-
suming that the coordinate functions a0, . . . , ap−1 (and thus the function f given
by (3.41)) are defined on Zk2 × Zk2 implies that the n even case can be treated quite
similarly. Indeed, considering Proposition 3.4.9 as a method of selecting the coor-
dinate functions a0, . . . , ap−1, then all functions hi = ap−1 ⊕ zi · (a0, . . . , ap−2) (now
defined on Zk2 × Zk2) will belong to the MM-class of bent Boolean functions, since
ap−1(x, y) = σ(x) · y is a bent function, and ac(x, y) = τc(x) · y = v(c) · y, where
v(c) ∈ Zk2 and c ∈ [0, p − 2], are linear functions. The resulting gbent function f ,
given as

f(x, y) = v(0) · y+2v(1) · y+ . . .+2p−2v(p−2) · y+2p−1σ(x) · y = g(y) + 2p−1σ(x) · y,

will belong to the GMMF-class of gbent functions. Note that in Section 3.2.2 it has
been shown that all functions within the GMMF-class satisfy the condition (3.42).

3.4.6 Illustrating the construction details - an example

In what follows, we illustrate the use of construction steps in Construction 1 for
providing an example of a gbent function, for odd n. Hence, let us consider a
generalized function f : Z5

2 → Z32 (n = 5 = 2k + 1, q = 32) given as

f(x) = a0(x) + 2a1(x) + 4a2(x) + 8a3(x) + 16a4(x).

Recall that the function f is gbent (for n odd) if and only if the set Λ = a4 ⊕
⟨a0, . . . , a3⟩ is an affine space of semi-bent functions satisfying (3.43) (see Theorem
3.4.1). Since k = 2, let σ, τ0, . . . , τ3 : Z2

2 → Z2
2 correspond to the component functions

a4, a0, . . . , a3 ∈ B5, respectively. Using Proposition 3.4.9, we define these component
functions via σ, τi so that f is a gbent function, as follows:

σ(x) = x⊕ (0, 1), τ0(x) = v(0) = (1, 0), τ1(x) = v(1) = (0, 1),

τ2(x) = v(2) = (0, 0), τ3(x) = v(3) = (1, 1),

for every x ∈ Z2
2. Note that the permutation σ(x) = xS ⊕ d uses the identity

matrix S. Thus we complete the first step of Construction 1. Consequently, the
coordinate functions are defined as

a4(x, y) = (1, σ(x)) · y, ai(x, y) = (0, τi(x)) · y, i = 0, 1, 2,

a3(x, y) = (1, τ3(x)) · y, (x, y) ∈ Z2
2 × Z3

2.

Clearly, we have that a4⊕zi ·(a0, . . . , a3) ∈ P (1)
5 for i ∈ [0, 7] and a4⊕zi ·(a0, . . . , a3) ∈

P
(0)
5 for i ∈ [8, 15], zi ∈ Z4

2, thus satisfying the disjoint spectra property (the choice
of ai is in accordance to the second step in Construction 1). Denoting Whπi

(u) =

Wa4⊕zi·(a0,...,a3)(u), for u ∈ Z5
2, the vectors W (u) = (Whπ0

(u), . . . ,Whπ15
(u)) are

given in Table 3.1. Consequently, the output values of the gbent function f are
given by

{0, 0, 0, 0, 24, 24, 24, 24, 9, 25, 9, 25, 17, 1, 17, 1, 26, 26, 10, 10, 2, 2, 18, 18, 19, 3, 3, 19, 11, 27, 27, 11}.
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Table 3.1: Vectors W (u) for all u ∈ Z5
2.

u ∈ Z5
2 W (u) = (Whπ0

(u), . . . ,Whπ15
(u)) W (u) = {023 ,±8H

(r)

23
} or WT = {±8H

(r)

23
,023}

u0 {0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8} {023 , 8H
(0)

23
}

u1 {0, 0, 0, 0, 0, 0, 0, 0,−8, 8,−8, 8,−8, 8,−8, 8} {023 , −8H
(1)

23
}

u2 {0, 0, 0, 0, 0, 0, 0, 0, 8, 8,−8,−8, 8, 8,−8,−8} {023 , 8H
(2)

23
}

u3 {0, 0, 0, 0, 0, 0, 0, 0,−8, 8, 8,−8,−8, 8, 8,−8} {023 , −8H
(3)

23
}

u4 {8, 8, 8, 8, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0} {8H(0)

23
, 023}

u5 {8,−8, 8,−8, 8,−8, 8,−8, 0, 0, 0, 0, 0, 0, 0, 0} {8H(1)

23
, 023}

u6 {−8,−8, 8, 8,−8,−8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0} {−8H
(2)

23
, 023}

u7 {−8, 8, 8,−8,−8, 8, 8,−8, 0, 0, 0, 0, 0, 0, 0, 0} {−8H
(3)

23
, 023}

u8 {0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8} {023 , 8H
(0)

23
}

u9 {0, 0, 0, 0, 0, 0, 0, 0, 8,−8, 8,−8, 8,−8, 8,−8} {023 , 8H
(1)

23
}

u10 {0, 0, 0, 0, 0, 0, 0, 0, 8, 8,−8,−8, 8, 8,−8,−8} {023 , 8H
(2)

23
}

u11 {0, 0, 0, 0, 0, 0, 0, 0, 8,−8,−8, 8, 8,−8,−8, 8} {023 , 8H
(3)

23
}

u12 {8, 8, 8, 8, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0} {8H(0)

23
, 023}

u13 {−8, 8,−8, 8,−8, 8,−8, 8, 0, 0, 0, 0, 0, 0, 0, 0} {−8H
(1)

23
, 023}

u14 {−8,−8, 8, 8,−8,−8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0} {−8H
(2)

23
, 023}

u15 {8,−8,−8, 8, 8,−8,−8, 8, 0, 0, 0, 0, 0, 0, 0, 0} {8H(3)

23
, 023}

u16 {0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8} {023 , 8H
(0)

23
}

u17 {0, 0, 0, 0, 0, 0, 0, 0,−8, 8,−8, 8,−8, 8,−8, 8} {023 , −8H
(1)

23
}

u18 {0, 0, 0, 0, 0, 0, 0, 0,−8,−8, 8, 8,−8,−8, 8, 8} {023 , −8H
(2)

23
}

u19 {0, 0, 0, 0, 0, 0, 0, 0, 8,−8,−8, 8, 8,−8,−8, 8} {023 , 8H
(3)

23
}

u20 {8, 8, 8, 8, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0} {8H(0)

23
, 023}

u21 {8,−8, 8,−8, 8,−8, 8,−8, 0, 0, 0, 0, 0, 0, 0, 0} {8H(1)

23
, 023}

u22 {8, 8,−8,−8, 8, 8,−8,−8, 0, 0, 0, 0, 0, 0, 0, 0} {8H(2)

23
, 023}

u23 {8,−8,−8, 8, 8,−8,−8, 8, 0, 0, 0, 0, 0, 0, 0, 0} {8H(3)

23
, 023}

u24 {0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8} {023 , 8H
(0)

23
}

u25 {0, 0, 0, 0, 0, 0, 0, 0, 8,−8, 8,−8, 8,−8, 8,−8} {023 , 8H
(1)

23
}

u26 {0, 0, 0, 0, 0, 0, 0, 0,−8,−8, 8, 8,−8,−8, 8, 8} {023 , −8H
(2)

23
}

u27 {0, 0, 0, 0, 0, 0, 0, 0,−8, 8, 8,−8,−8, 8, 8,−8} {023 , −8H
(3)

23
}

u28 {8, 8, 8, 8, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0} {8H(0)

23
, 023}

u29 {−8, 8,−8, 8,−8, 8,−8, 8, 0, 0, 0, 0, 0, 0, 0, 0} {−8H
(1)

23
, 023}

u30 {8, 8,−8,−8, 8, 8,−8,−8, 0, 0, 0, 0, 0, 0, 0, 0} {8H(2)

23
, 023}

u31 {−8, 8, 8,−8,−8, 8, 8,−8, 0, 0, 0, 0, 0, 0, 0, 0} {−8H
(3)

23
, 023}

3.5 Generalized bent functions constructed out of two
(generalised) Boolean functions

In this section, we give some necessary and sufficient conditions for generalized bent
functions when represented as a linear combination of functions: from GBmq (m
even and odd), functions from Bn, and from both GBmq or Bn, thus varying the
variable, domain and codomain space. In addition, we consider gbent functions
whose restrictions are equal to some linear combination of functions from Bn and
GBnq , see Sections 3.5.5 and 3.5.6.

Let f : Zn2 → Zq, q ≥ 2 and n even. In what follows, we discuss generalized
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Boolean functions of the form

f(x) = c1a(x) + c2b(x),

where a, b ∈ Bn, and c1, c2 ∈ Zq. We want to investigate, under which conditions
on the functions a, b and constants ci, i = 1, 2, f is possibly a gbent function. Let
u ∈ Zn2 be an arbitrary element. We start with computing the GWHT:

2
n
2Hf (u) =

∑
x∈Zn

2

ζc1a(x)+c2b(x)(−1)u·x =
∑
x∈Zn

2

ζc1a(x)ζc2b(x)(−1)u·x. (3.58)

Since ζ = e
2πi
q , denoting Xi = cos 2πci

q and Yi = sin 2πci
q , i = 1, 2, we have

ζc1a(x) = e
2πi
q
c1a(x) =

(
cos

2πc1
q

+ i sin
2πc1
q

)a(x)
= (X1 + iY1)

a(x) ,

ζc2b(x) = e
2πi
q
c2b(x) =

(
cos

2πc2
q

+ i sin
2πc2
q

)b(x)
= (X2 + iY2)

b(x) .

Regarding the possible values of Xi and Yi, i = 1, 2, we consider the following cases.

Case I: Let Xi = 0 and Yi = ±1, i = 1, 2. The condition Xi = 0 is equivalent
to cos 2πci

q = 0, i.e. 2πci
q = π

2 + kiπ = π
2 (1 + 2ki), ki ∈ Z, i = 1, 2. Thus, we have

ci =
q
4(1 + 2ki), ki ∈ Z, i = 1, 2, and since ci, i = 1, 2, are integers (both from Zq),

it must be the case that q = 4s, s ∈ Z+. We have

ζc1a(x)ζc2b(x) =


(−1)b(x)ia(x)+b(x), (Y1, Y2) = (1,−1)
(−1)a(x)ia(x)+b(x), (Y1, Y2) = (−1, 1)

(−1)a(x)+b(x)ia(x)+b(x), (Y1, Y2) = (−1,−1)
ia(x)+b(x), (Y1, Y2) = (1, 1)

In order to handle (3.58) effectively, we need a suitable decomposition of the power

of imaginary unit. In this section, we use it = 1+(−1)t

2 + 1−(−1)t

2 i, which holds if and
only if t takes values 4l1 or 1+4l2, li ∈ Z, i = 1, 2. Since a(x)+b(x) is evaluated mod-
ulo q = 4s, and thus a(x) + b(x) ∈ {0, 1, 2}, we can not use this decomposition for
further calculation of (3.58). The decomposition of it is of a great importance, since
we want to expressHf (u) in terms of WHT coefficients of the functions a, b and a+b.

Case II: Let Xi = ±1 and Yi = 0, i = 1, 2. Then 2πci
q = kiπ, i.e. ci = q

2ki,
ki ∈ Z, i = 1, 2. Since ci are integers, q must be even and the function f is given by

f(x) =


q
2a(x), (X1, X2) = (−1, 1)
q
2b(x), (X1, X2) = (1,−1)

q
2(a(x) + b(x)), (X1, X2) = (−1,−1)

0, (X1, X2) = (1, 1)

In the first three cases, it is not difficult to see that f is gbent if and only if a, b and
a+ b are bent Boolean functions, respectively. The last case implies ci = 0, i = 1, 2,
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and f can not be a gbent function.

The following case appears to be the most interesting one, and the necessary condi-
tions under which f is a gbent function are summarized in Proposition 3.5.1.

Case III: Let X1 = Y2 = 0 and Y1 = X2 = ±1. Then X1 = Y2 = 0 implies
c1 = q

4(1 + 2k1) and c2 = q
2k2, ki ∈ Z, i = 1, 2. Consequently, it must be the case

that q = 4s, s ∈ Z+, with the following subcases:

(a) If (Y1, X2) = (1,−1) or (Y1, X2) = (−1,−1), then f is gbent iff b and a+ b are
bent Boolean functions, where c2 = q

2 (in both cases) and c1 = q
4 or c1 = 3q

4 ,
respectively (Proposition 3.5.1).

(b) If (Y1, X2) = (−1, 1) or (Y1, X2) = (1, 1), then using
∑

x∈Zn
2
(−1)u·x =

{
2n, u = 0
0 u ̸= 0,

it is not difficult to see that f can not be a gbent function.

Similarly, if X1 = Y2 = ±1 and Y1 = X2 = 0, we conclude that q = 4s, s ∈ Z+, with
the following subcases:

(1) If (X1, Y2) = (1,−1) or (X1, Y2) = (1, 1), the scenario from the Case III-(b) is
repeated.

(2) If (X1, Y2) = (−1, 1) or (X1, Y2) = (−1,−1), then f is gbent iff a and a+ b are
bent Boolean functions, where c1 = q

2 (in both cases) and c2 = q
4 or c2 = 3q

4 ,
respectively (Proposition 3.5.1).

The question whether there exist gbent functions when ζc1a(x)+c2b(x) ̸∈ {±1,±i}
remains unanswered. Note that, the function f in the Case II takes only two values
(namely 0 and q/2), and still is a gbent function from Zn2 to Zq, where q is even.

3.5.1 Generalized bent functions from two bent Boolean functions

The following proposition deals with a gbent function represented as a linear combi-
nation of two Boolean functions in the form f(x) = q

2a(x)+kb(x), where k ∈ {
q
4 ,

3q
4 }.

In addition, we have seen that in this case q must be equal to 4s, s ∈ Z+.

Proposition 3.5.1 Let f ∈ GBnq , n even, q = 4s, s ∈ Z+, and f(x) = q
2a(x)+kb(x),

where k ∈ { q4 ,
3q
4 }, a, b ∈ Bn. Then, f is gbent if and only if a and a + b are bent

Boolean functions.

Proof: Let f(x) = q
2a(x) + kb(x), where k ∈ { q4 ,

3q
4 }, a, b : Zn2 → Z2. Firstly, we

consider the relation between the GWHT of f and the Walsh coefficients of a and
a+ b. This relation is derived in the same way as in [109, Lemma 31]. Since we are
going to use some equalities later, for self-completeness we provide the details of the
proof:

Hf (ω) = 2−
n
2

∑
x∈Zn

2

ζf(x)(−1)ω·x = 2−
n
2

∑
x∈Zn

2

ζ
q
2
a(x)ζkb(x)(−1)ω·x. (3.59)
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Further manipulation of the terms ζ
q
2
a(x) and ζkb(x) gives the following,

ζ
q
2
a(x) = e

2πi
q

· q
2
a(x)

=
(
eπi
)a(x)

= (cosπ + i sinπ)a(x) = (−1)a(x),

ζkb(x) =

{
ib(x), k = q

4

(−i)b(x), k = 3q
4 .

In addition, since b(x) ∈ {0, 1}, for every x ∈ Zn2 , we have ib(x) = 1+(−1)b(x)

2 +
1−(−1)b(x)

2 · i. We consider the calculation of (3.59) only for k = q
4 , since due to the

symmetry the same approach applies to the case k = 3q
4 :

Hf (ω) = 2−
n
2

∑
x∈Zn

2

(−1)a(x)ib(x)(−1)ω·x =

= 2−
n
2

∑
x∈Zn

2

(
1 + (−1)b(x)

2
+

1− (−1)b(x)

2
· i

)
(−1)a(x)+ω·x =

= 2−
n
2 · 1

2

[(
2

n
2Wa(ω) + 2

n
2Wa+b(ω)

)
+ i
(
2

n
2Wa(ω)− 2

n
2Wa+b(ω)

)]
=

=
1

2
[(Wa(ω) +Wa+b(ω)) + i (Wa(ω)−Wa+b(ω))] . (3.60)

From (3.60), it follows that the relation between the Walsh-Hadamard transforms
of functions f , a and a+ b, which holds for every ω ∈ Zn2 , satisfies the following,

|Hf (ω)|2 =
1

2
(W 2

a (ω) +W 2
a+b(ω)). (3.61)

If we assume that a and a+b are bent Boolean functions, i.e., |Wa(ω)| = |Wa+b(ω)| =
1, then we have

|Hf (ω)|2 =
1

2
(W 2

a (ω) +W 2
a+b(ω)) =

1

2
(1 + 1) = 1.

This implies |Hf (ω)| = 1, thus f is a gbent function.

On contrary, let us assume that f is generalized bent, i.e., |Hf (ω)| = 1. Since the
Walsh coefficients of an arbitrary Boolean function are integers andW 2

a (ω),W
2
a+b(ω) ≥

0, the equation (3.61) has a unique solution W 2
a (ω) = W 2

a+b(ω) = 1. It implies
Wa(ω) = ±1 and Wa+b(ω) = ±1 for all ω ∈ Zn2 , i.e., a and a + b are bent Boolean
functions.

Note that, if we have a gbent function, say g : Zn2 → Z4, g(x) = b(x) + 2a(x),
then we can obtain a gbent function f = 2g, f : Zn2 → Z8, i.e. f(x) = 2b(x)+4a(x).
Since g is a gbent function, by Proposition 3.5.1, it is equivalent to the fact that
a and a + b are bent Boolean functions. Furthermore, it means that f is a gbent
function, since f(x) = q

2a(x) +
q
4b(x), for q = 8. Hence, with a function g we can

obtain a gbent function f : Zn2 → Zq, q = 4s, s ∈ Z+, just multiplying with the
number s, i.e. f(x) = sg(x).
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3.5.2 Generalized bent functions using direct sum of gbent func-
tions

We now consider a gbent function as a linear combination of gbent functions, with
arbitrary coefficients. This generalizes the result derived in [108, Theorem 2] for two
gbent functions, with a similar proof.

Proposition 3.5.2 Suppose f : Zn2 → Zq, q ≥ 2, Zn2 = Zn1
2 × Zn2

2 × · · · × Znr
2 and

the function f is given by

f(x) = c1f1(x
(1)) + c2f2(x

(2)) + · · ·+ crf2(x
(r)),

where x = (x(1), x(2), . . . , x(r)) ∈ Zn2 , x(i) ∈ Zni
2 , fi : Z

ni
2 → Zp, 2 ≤ p ≤ q, ci ∈ Zq,

i = 1, 2, . . . , r. Then, f is a gbent function if any only if fi are gbent functions, for
every i = 1, 2, . . . , r.

Proof: Let u ∈ Zn2 = Zn1
2 × Zn2

2 × · · · × Znr
2 , u = (u1, u2, . . . , ur), ui ∈ Zni

2 ,
i = 1, 2, . . . , r, be arbitrary. For any u ∈ Zn2 , the Walsh-Hadamard coefficient at u
is given by

2nHf (u) =
∑
x∈Zn

2

ζf(x)(−1)u·x =
∑

x(1)∈Zn1
2

ζc1f1(x
(1))(−1)u1·x(1) · · ·

∑
x(r)∈Znr

2

ζcrfr(x
(r))(−1)ur·x(r)

=
(
2

n1
2 ζc1Hf1(u1)

)(
2

n2
2 ζc2Hf2(u2)

)
· · ·
(
2

nr
2 ζcrHfr(ur)

)
.

Suppose that fi are gbent functions, i = 1, 2, . . . , r. Since 2n = 2n1+n2+···+nr ,
|ζc1+c2+···+cr | = 1 and the codomain of fi does not affect the value |Hfi(ui)| (fi
are gbent), i.e., |Hfi(ui)| = 1 for every i = 1, 2, . . . , r. Thus,

|Hf (u)| = |ζc1+c2+···+cr |
r∏
i=1

|Hfi(ui)| = 1, (3.62)

for every u ∈ Zn2 , regardless of whether |Hfi(u)| ∈ C or |Hfi(u)| ∈ R (using the
properties of complex numbers). It implies that f is a gbent function.

Conversely, let f be a gbent function. We need to prove that for every i =
1, 2, . . . , r, fi is a gbent function. From (3.62), we have

1 = |Hf (u)| =
r∏
i=1

|Hfi(ui)|.

Let us assume that there exists a function fi0 , 1 ≤ i0 ≤ r, which is not a gbent
function. It means that there exists an element ui0 ∈ Zni0

2 such that |Hfi0 (ui0)| =
t ̸= 1 (t ̸= 0). Then, if we for instance consider Hf1(u1), we have |Hf1(u1)| = 1

kt ,
where k ≥ 1, and k is equal to the product of |Hfi(ui)|, for i = 1, 2, . . . , r and
i ̸∈ {1, i0}. Regardless the number k, we have∑

u1∈Z
n1
2

|Hf1(u1)|2 =
2n1

(kt)2
̸= 2n1 ,

which is a contradiction, by the generalized Parseval’s identity. It follows that fi are
gbent functions, for every i = 1, 2, . . . , r.
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3.5.3 Generalized bent functions from one bent and one gbent func-
tion

Finally, we consider the third case when a gbent function f : Zn2 → Zq, n even,
q = 4 · s, s ∈ Z+, is represented as a linear combination of one generalized a ∈ GBnq
and one bent function b ∈ Bn of the form f = q

2a+ kb, k ∈ { q4 ,
3q
4 }.

Proposition 3.5.3 Suppose that f(x) = q
2a(x) + kb(x), a ∈ GBnq , b ∈ Bn, k ∈

{ q4 ,
3q
4 } and let h1, h2 ∈ Bn be two arbitrary bent functions. If (−1)a(x) = (−1)h1(x)

and (−1)a(x)+b(x) = (−1)h2(x), for every x ∈ Zn2 , then f is a gbent function.

Proof: Note that the function a + b can be considered as a generalized function,
since a(x) + b(x) ∈ Zq. The conditions (−1)a(x) = (−1)h1(x) and (−1)a(x)+b(x) =
(−1)h2(x), for every x ∈ Zn2 , mean that the even values of the function a and a + b
correspond to zero values of the functions h1 and h2 (odd values correspond to ones)
over Zn2 . Using the proof of Proposition 3.5.1, (−1)a(x) = (−1)h1(x), (−1)a(x)+b(x) =
(−1)h2(x), for any k ∈ { q4 ,

3q
4 } we have

|Hf (u) |2 =
1

2

∑
x∈Zn

2

(−1)a(x)+u·x
2

+

∑
x∈Zn

2

(−1)a(x)+b(x)+u·x
2 (3.63)

=
1

2
(H2

h1(u) +H2
h2(u)) = 1,

which implies that f is a gbent function.

Proposition 3.5.4 Suppose that f(x) = q
2a(x) +

q
4b(x), a ∈ Bn, b ∈ GB

n
q , q = 4s,

s ∈ Z+. If b(x) takes values 4l1 or 1 + 4l2 when x ∈ Zn2 , li ∈ Z, i = 1, 2, and

(−1)a(x)+b(x) = (−1)h(x) for all x ∈ Zn2 ,

for an arbitrary bent function h ∈ Bn, then f is a gbent function in GBnq .

Proof: Since ζ
q
2
a(x) = (−1)a(x) and ζ

q
4
b(x) = ib(x), the equation ib(x) = 1+(−1)b(x)

2 +
1−(−1)b(x)

2 · i, is possible iff b(x) takes values 4l1 or 1 + 4l2 over Zn2 , for some li ∈ Z
which may depend on x. Consequently, the equation (3.63) holds and therefore
|Hf (u)|2 = 1

2(H
2
a(u) +H2

h(u)) = 1, for every u ∈ Zn2 .

Remark 3.5.5 Notice that for k = 3q
4 , we would not be able to make a condition on

the values of b, such that we can decompose ib(x) as above. In addition, notice that
the values 4l1 of the function b(x), evaluated modulo q = 4s, are not always equal to
zero, since we may have l1 < s implying that 4l1 may take other values than 0.
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3.5.4 Concatenation of generalized bent Boolean functions

In what follows, we give some theoretical results regarding some secondary con-
structions of generalized bent functions. Using a concatenation of generalized bent
functions, on even and odd numbers of variables, we give a more generalized ap-
proach of construction which essentially relies on Proposition 3.5.1. On contrary to
recently proposed constructions [108, 111, 113] that specify the conditions on the
WHT coefficients of constituent functions (also called restrictions) used in the con-
catenation for particular cases, we show that the constituent functions belong to a
more general form, the one mentioned in the Proposition 3.5.1. For the purpose of
providing some practical construction methods and easier overview of WHT condi-
tions, we use only the Walsh-Hadamard formula, even though the same conditions
may be turned into equivalent conditions expressed by means of cross-correlation.

3.5.5 Generalized bent functions defined on Zn2 , n odd

In this section we assume that f : Zn+1
2 → Zq, q = 4s, s ∈ Z+ and n even. The

space Zn+1
2 is identified with Zn2 × Z2. We start with a general result regarding the

properties of the restrictions of gbent functions.

Proposition 3.5.6 Let the restrictions of f on Zn2 be given by,

f(x, y) =

{
f1(x) + C1, y = 0
f2(x) + C2, y = 1

where f1, f2 ∈ GBnq , q = 4s, s ∈ Z+, n even. If C1 −C2 = s(1 + 2t), for some t ∈ Z,
then f is gbent if and only if f1 and f2 are gbent functions.

Proof: The GWHT of f is given by

2
n+1
2 |Hf (u, v)|2 = 2

n
2 ζC1Hf1(u) + (−1)v2

n
2 ζC2Hf2(u),

for every u ∈ Zn2 , v ∈ Z2. The absolute value of Hf (u, v) is given by

2|Hf (u, v)|2 = H2
f1(u) +H2

f2(u) + 2(−1)vHf1(u)Hf2(u) cos(φ− ψ),

where φ = πC1
2s and ψ = πC2

2s . Since C1−C2 = s(1+2t), i.e. φ−ψ = π
2 + tπ, t ∈ Z. It

means that cos(φ−ψ) = 0, and then 2|Hf (u, v)|2 = H2
f1
(u)+H2

f2
(u). This equation

implies that f is gbent if and only if f1 and f2 are gbent, since Hfi(u) ∈ Z, for every
u ∈ Zn2 .

Remark 3.5.7 Proposition 3.5.6 can be easily generalized for f ∈ GBn+mq , where
generalized constituent functions are taken from GBnq , q = 4s, s ∈ Z, n even. Re-
garding the condition on constants Ci, we may state the proposition for q ≥ 2, q
even, but the conditions would then change.

A generalized Boolean function f ∈ GBn+2
q is symmetric with respect to two variables

y and z if and only if there exist g, h, s ∈ GBnq such that

f(x, y, z) = g(x) + (y ⊕ z)h(x) + yzs(x), (3.64)
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where x ∈ Zn2 , y, z ∈ Z2, and Zn+2
2 = Zn2 ×Z2×Z2. The binary case was investigated

in [122] and a generalization of their main result was later addressed in [111, 112].
On the other hand, Proposition 3.5.6 and Remark 3.5.7 generalize such constructions
on GBn+mq , n even, where q depends on the choice of the constants.

In what follows, we show that if the restriction of f to Zn2 , with respect to the
values y ∈ Z2, are of the form

q
2A(x)+kB(x)+C, for some Boolean functions A,B ∈

Bn, C ∈ Zq, then we may obtain a gbent function by setting certain conditions on
the GWHT coefficients of the constituent functions A and B, or/and on the constant
C. Since there are two possible values for the parameter y ∈ Z2, and therefore two
possible restrictions for the function f, we denote a1 = WA1(u), b1 = WA1+B1(u),
a2 = WA2(u), b2 = WA2+B2(u), for u ∈ Zn2 , and φ = πC1

2s , ψ = πC2
2s . Since most of

the calculations are straightforward computation of the WHT, we only provide the
full proof of Theorem 3.5.9.

Remark 3.5.8 In the following two theorems, we assume that a2i (u) = b2i (u) = 1,
for all u ∈ Zn2 , i.e., the functions Ai, Bi and Ai +Bi are bent in Bn, i = 1, 2.

Theorem 3.5.9 Let the restrictions of f on Zn2 be given by

f(x, y) =

{ q
2A1(x) + kB1(x) + C1, y = 0,
q
2A2(x) + kB2(x) + C2, y = 1,

(3.65)

where k = q
4 or 3q

4 , and assume the equality

(a1a2 + b1b2) cos(φ− ψ) + (−1)
4k
q (a2b1 − a1b2) sin(φ− ψ) = 0, (3.66)

holds. Then f is a gbent function.

Proof: Using (3.60) from Proposition 3.5.1 and choosing k = q
4 , we compute the

Walsh-Hadamard coefficients at (u, v) ∈ Zn2 × Z2:

2
n+1
2 Hf (u, v) =

∑
(x,y)∈Zn+1

2

ζf(x,y)(−1)u·x⊕vy =
∑
x∈Zn

2

∑
y∈Z2

ζf(x,y)(−1)u·x⊕vy

=
∑
x∈Zn

2

(
ζf(x,0)(−1)u·x + ζf(x,1)(−1)u·x⊕v

)
=

∑
x∈Zn

2

ζf(x,0)(−1)u·x +
∑
x∈Zn

2

ζf(x,1)(−1)u·x⊕v

=
1

2
2

n
2 ζC1 [(WA1(u) +WA1+B1(u)) + i(WA1(u)−WA1+B1(u))]

+ (−1)v 1
2
2

n
2 ζC2 [(WA2(u) +WA2+B2(u)) + i(WA2(u)−WA2+B2(u))] .

Using a1 =WA1(u), b1 =WA1+B1(u), a2 =WA2(u) and b2 =WA2+B2(u), we get

2
√
2Hf (u, v) = ζC1 [(a1 + b1) + i(a1 − b1)] + (−1)vζC2 [(a2 + b2) + i(a2 − b2)] .

(3.67)
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Then, for k = 3q
4 we have

2
√
2Hf (u, v) = ζC1 [(b1 + a1) + i(b1 − a1)] + (−1)vζC2 [(b2 + a2) + i(b2 − a2)] .

(3.68)

Since ζC1 = e
2πi
4s
C1 = cos πC1

2s + i sin πC1
2s = cosφ + i sinφ, where φ = πC1

2s and

ζC2 = e
2πi
4s
C2 = cos πC2

2s + i sin πC2
2s = cosψ + i sinψ, where ψ = πC2

2s , the equation
(3.67) is equivalent to

2
√
2Hf (u, v) = [((a1 + b1) cosφ− (a1 − b1) sinφ) + (−1)v((a2 + b2) cosψ − (a2 − b2) sinψ)]
+ i [((a1 − b1) cosφ+ (a1 + b1) sinφ) + (−1)v((a2 − b2) cosψ + (a2 + b2) sinψ)] .

(3.69)

From (3.69), we know Re(Hf (u, v)) and Im(Hf (u, v)). Now, using (3.69) we have

2
√
2|Hf (u, v)| =

√
(Re(Hf (u, v)))2 + (Im(Hf (u, v)))2, i.e.

4|Hf (u, v)|2 = (a21 + a22 + b21 + b22) + 2(−1)v [(a1a2 + b1b2) cos(φ− ψ)
+(a2b1 − a1b2) sin(φ− ψ)] . (3.70)

For k = 3q
4 , we have

4|Hf (u, v)|2 = (a21 + a22 + b21 + b22) + 2(−1)v [(a1a2 + b1b2) cos(φ− ψ)
−(a2b1 − a1b2) sin(φ− ψ)] . (3.71)

Since Ai, Bi, Ai + Bi are bent Boolean functions (Remark 3.5.8), i = 1, 2, we have
a21 = a22 = b21 = b22 = 1. Moreover (3.66) holds, and by (3.70) and (3.71) we have
4|Hf (u, v)|2 = a21 + a22 + b21 + b22 = 4, i.e., |Hf (u, v)|2 = 1 which implies that f is a
gbent function.

Remark 3.5.10 Regarding the equation (3.66) in Theorem 3.5.9, we consider the
following cases:

Case 1: If a2b1 ̸= a1b2 for every u ∈ Zn2 , φ and ψ is such that cos(φ − ψ) ̸= 0,
and a2i = b2i = 1, i = 1, 2, then the possible values for ai and bi which satisfy
a2b1 ̸= a1b2 imply that φ− ψ = tπ, where t ∈ Z. Note that φ− ψ = tπ satisfies the
condition cos(φ−ψ) ̸= 0. Since φ = πC1

2s and ψ = πC2
2s , we have C1−C2 = 2st, t ∈ Z.

Case 2: If a2b1 = a1b2 holds, then the equation (3.66) is equivalent to (a1a2 +
b1b2) cos(φ − ψ) = 0. This equation holds if a1a2 = −b1b2 or cos(φ − ψ) = 0.
The first condition is related to the Walsh-Hadamard coefficients of the functions
Ai, Bi and Ai + Bi, i = 1, 2. The second condition implies φ − ψ = π

2 + tπ, i.e.
C1 − C2 = s(1 + 2t), t ∈ Z.

Hence, regarding the restrictions of the function f given by (3.65) and Remark 3.5.10,
we have a set of conditions which can be imposed on the constituent functions and
constants so that f is a gbent function.
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Theorem 3.5.11 Let the restrictions of f on Zn2 be given as

f(x, y) =

{ q
2A1(x) + kB1(x) + C1, y = 0

q
2A2(x) + C2, y = 1,

where k = q
4 or 3q

4 , and assume that the equality

(a1 + b1) cos(φ− ψ) + (−1)
4k
q
−1

(a1 − b1) sin(φ− ψ) = 0 (3.72)

holds for any u ∈ Zn2 . Then, the function f is a gbent function.

Remark 3.5.12 If the restrictions of f on Zn2 are given as

f(x, y) =

{ q
2A1(x) + C1, y = 0

q
2A2(x) + kB2(x) + C2, y = 1,

then the equation (3.72) is replaced with

(a2 + b2) cos(φ− ψ) + (−1)
4k
q (a2 − b2) sin(φ− ψ) = 0, ∀u ∈ Zn2 . (3.73)

Theorem 3.5.13 Let the restrictions of f on Zn2 be given by,

f(x, y) =

{ q
2A1(x) + C1, y = 0
q
2A2(x) + C2, y = 1,

and for some t ∈ Z let C1 −C2 = s(1 + 2t). Then, f is a gbent function if and only
if A1 and A2 are bent Boolean functions.

3.5.6 Generalized bent functions defined on Zn2 , n even

We now consider a function f : Zn+2
2 → Zq, q = 4s, s ∈ Z+, n even. Since the

space Zn+2
2 is identified with Zn2 ×Z2 ×Z2, there will be two parameters, say y and

z, i.e., f = f(x, y, z), x ∈ Zn2 , (y, z) ∈ Z2
2. Since there are two possible forms for

the restrictions of f , namely q
2A(x) + kB(x) +C and q

2A(x) +C, and four different
restrictions of the function f depending on the choice of (y, z) ∈ Z2

2, thus in total we
will have at least 24 ways to obtain a gbent function, by setting certain conditions
on the Walsh-Hadamard coefficients of the restrictions.

Hence, to obtain a gbent function with certain conditions, we need to derive
the GWHT relation between the function f and its constituent functions. In the
previous section, we have seen that these relations may give more solutions, involving
the WHT equalities of the constituent functions and their constants. In this context,
imposing only the conditions on constants implies the following.

Theorem 3.5.14 Let the restrictions of f on Zn2 be given by q
2Ai(x) + Ci, with

respect to (y, z) ∈ Z2
2, i = 1, . . . , 4, and all equations Ci − Cj = s(1 + 2tr) hold, for

every 1 ≤ i < j ≤ 4, where tr ∈ Z, r = 1, . . . , 4. Then, f is a gbent function if and
only if Ai ∈ Bn are bent, i = 1, . . . , 4.
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Proof: The GWHT of f is given by

2
n+2
2 Hf (u, v, w) =

∑
(x,y,z)∈Zn+2

2

ζf(x,y,z)(−1)u·x⊕vy⊕wz =
∑
x∈Zn

2

∑
(y,z)∈Z2

2

ζf(x,y,z)(−1)u·x⊕vy⊕wz =

= 2
n
2
[
ζC1WA1(u) + (−1)wζC2WA2(u) + (−1)vζC3WA3(u) + (−1)v⊕wζC4WA4(u)

]
.

Denoting by ai = WAi(u), φi =
πCi
2s , i = 1, 2, 3, 4, where ζCi = cos πCi

2s + i sin πCi
2s ,

we have

4|Hf (u, v, w)|2 =(a21 + a22 + a23 + a24) + 2(−1)w [a1a2 cos(φ1 − φ2) + a3a4 cos(φ3 − φ4)]+

2(−1)v [a1a3 cos(φ1 − φ3) + a2a4 cos(φ2 − φ4)] +

2(−1)v⊕w [a2a3 cos(φ2 − φ3) + a1a4 cos(φ1 − φ4)] .

Since the equations Ci − Cj = s(1 + 2tr) hold, we have cos(φi − φj) = 0, for every
1 ≤ i < j ≤ 4, and tr ∈ Z, r = 1, . . . , 4. Therefore, the equation

2(−1)w [a1a2 cos(φ1 − φ2) + a3a4 cos(φ3 − φ4)] + 2(−1)v [a1a3 cos(φ1 − φ3)+

a2a4 cos(φ2 − φ4)] + 2(−1)v⊕w [a2a3 cos(φ2 − φ3) + a1a4 cos(φ1 − φ4)] = 0

holds. It implies 4|Hf (u, v, w)|2 = a21 + a22 + a23 + a24, and since ai ∈ Z, we see that
f is gbent iff Ai ∈ Bn are bent.

Remark 3.5.15 Theorem 3.5.13 and Theorem 3.5.14 can be easily generalized for
f ∈ GBn+mq , defined on the space Zn+m2 , n even. In such a situation, the system of
equations concerning the constants Ci, i = 1, 2, . . . ,m, will consist of

(
m
2

)
equations

in variables Ci ∈ Zq.

3.5.7 Construction methods for generalized bent functions in GB4s
n

In this section we describe two constructions using theorems given in Section 3.5.
In addition, we show that some constructions proposed in [108, 107, 111, 113] are
just special cases of the results given in the previous section, with some particular
conditions on its component functions or constants.

The next theorem is given in [111], and it deals with functions from Zn+1
2 to Z8.

Theorem 3.5.16 [111] Let f : Zn+1
2 → Z8 (n is even) be given by

f(x, y) = 4c(x) + (4a(x) + 4c(x) + 2ϵ)y,

where ϵ ∈ {−1, 1}. Then, f is gbent in GBn+1
8 if and only if a, c are bent in Bn.

Moreover, if g is given by

g(x, y) = 4c(x) + (4a(x) + 2c(x) + 2ϵ)y,

where ϵ ∈ {−1, 1}, a, c ∈ Bn such that a, c, a + c are all bent, then g is gbent in
GBn+1

8 . Further, let h be given by

h(x, y) = 4c(x) + (4a(x) + 2ϵ)y,

where ϵ ∈ {−1, 1}. Then, h is gbent in GBn+1
8 if and only if c, a+ c are bent in Bn.
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It is not difficult to see that the functions f and h above are related to Theorem
3.5.13, whereas g relates to the decomposition in Remark 3.5.12. For instance, let
us consider the function f, whose restrictions are given by

f(x, y) =

{
4c(x) = q

2c(x), y = 0
4a(x) + 2ϵ = q

2a(x) + 2ϵ, y = 1,

implying that A1(x) = c(x), A2(x) = a(x), C1 = 0, C2 = 2ϵ, ϵ ∈ {−1, 1}, in
Theorem 3.5.11. If ϵ = −1, then for t = 0 we have that C1 − C2 = −2ϵ = s(1 + 2t)
holds, since from q = 8 = 4s we have s = 2. For ϵ = 1 and t = −1, C1 − C2 =
2ϵ = s(1 + 2t) holds, and therefore we have that f is gbent iff A1(x) = c(x) and
A2(x) = a(x) are bent Boolean functions.

When the function h is of concern, we have that A1(x) = c(x) and A2(x) =
a(x)+ c(x), and the statements of Theorem 3.5.16 hold for the same values of t ∈ Z.

The restrictions of the function g are given by,

g(x, y) =

{
4c(x) = q

2c(x), y = 0
4(a(x) + c(x)) + 2c(x) + 2ϵ = q

2(a(x) + c(x)) + q
4c(x) + 2ϵ, y = 1,

so that A1(x) = B2(x) = c(x), A2(x) = a(x) + c(x), C1 = 0, C2 = 2ϵ, in
Remark 3.5.12 and the condition (3.73) is used. Since s = 2, we have φ = πC1

2s = 0

and ψ = πC2
2s = ±π

2 , where the choice of ”±” depends on the value of the parameter
ϵ. Then, the equation (3.73) is equivalent to a2 − b2 = 0, since the GWHT of the
function g is given by

4|Hg(u, v)|2 = (2a21 + a22 + b22)− 2ϵ(−1)va1(a2 − b2).

We have that g is gbent iff a21 = a22 = b22 = 1 and a2 = b2, i.e. c, a+2c = a and a+ c
are bent Boolean functions and Wa+c(u) =Wa(u) holds, for every u ∈ Zn2 .

Remark 3.5.17 Regarding the condition Wa+c(u) = Wa(u) above, it seems to be
omitted for the function g in [111, 113, Theorem 26].

Providing that the conditions in theorems given in Section 3.5 are satisfied, we are
able to obtain many gbent functions, with particular conditions on its constituent
functions. For instance, we can give the following construction, which uses Theorem
3.5.9.

Example 3.5.18 Let f : Zn+1
2 → Zq, q = 4s and n even. Let restrictions of the

function f be

f(x, y) =

{ q
2(a(x) + b(x)) + q

4c(x) + C1, y = 0
q
2b(x) +

q
4(b(x) + c(x)) + C2, y = 1

(3.74)

where A1(x) = a(x) + b(x), A2(x) = b(x), B1(x) = c(x), B2(x) = b(x) + c(x),
C1 − C2 = 2st, t ∈ Z arbitrary. If we assume that b, c, a+ b, b+ c are bent Boolean
functions and Wb(u)Wa+b(u) +Wa+b+c(u)Wc(u) = 0, for every u ∈ Zn+1

2 , then f is
a gbent function.
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To derive the explicit form, we assume that the function f is given in the form

f(x, y) = α(y)a(x) + β(y)b(x) + γ(y)c(x) + δ(y),

where we need to determine α, β, γ and δ from (3.74). Since the functions α, β, γ
and δ in (3.74) are linear functions in y, their forms are easy to obtain. We get
α(y) = − q

2y +
q
2 , β(y) =

q
4y +

q
2 , γ(y) =

q
4 and δ(y) = (C2 − C1)y + C1, t ∈ Z. The

function f is given by

f(x, y) = (−q
2
y +

q

2
)a(x) + (

q

4
y +

q

2
)b(x) +

q

4
c(x) + (C2 − C1)y + C1,

where q = 4s, s ∈ Z+, C1 − C2 = 2st, t ∈ Z.

The following example provides a construction of gbent functions defined on Zn+2
2 , n

even. Notice that there are many other gbent functions that can be derived similarly
using different coefficients and constants that satisfy gbent conditions mentioned
earlier.

Example 3.5.19 Let f : Zn+2
2 → Zq, q = 4s and n even. Let the restrictions of the

function f be given by

f(x, y, z) =


q
2a(x) + C1, (y, z) = (0, 0)

q
2b(x) +

q
4(a(x) + b(x)) + C2, (y, z) = (0, 1)

q
2a(x) +

3q
4 c(x) + C3, (y, z) = (1, 0)

q
2c(x) + C4, (y, z) = (1, 1),

(3.75)

where A1(x) = A3(x) = a(x), A2(x) = b(x), B2(x) = a(x) + b(x), B3(x) = A4(x) =
c(x). Also, Ci − Cj = s(1 + 2tr), 1 ≤ i < j ≤ 4 and tr ∈ Z, r = 1, . . . , 5. Under
these conditions on Ci, the GWHT is given by

8|Hf (u, v, w)|2 =(2a21 + a22 + a23 + 2a24 + b22 + b23) + 2(−1)w sin(φ1 − φ2)(a1a2 − a1b2)+
2(−1)v sin(φ1 − φ3)(a1a3 − a1b3) + 2(−1)v⊕w sin(φ2 − φ3)(a3b2 − a2b3)+
2(−1)v sin(φ2 − φ4)(a4b2 − a2a4) + 2(−1)w sin(φ3 − φ4)(a4b3 − a3a4) =

=(2a21 + a22 + a23 + 2a24 + b22 + b23) +X.

where ai = WAi(u), i = 1, . . . , 4, bj = WAj+Bj (u), j = 2, 3, u ∈ Zn2 . If the equality
X = 0 holds and a2i = b2j = 1, then f is a gbent function. Note that X = 0 induces
a condition on the Walsh-Hadamard coefficients of the constituent functions.

To fully specify f , we assume that f is given by

f(x, y, z) = αa(x) + βb(x) + γc(x) + δ,

and we need to determine α, β, γ and δ from (3.75). Since α, β, γ and δ depend on
the variables (y, z) ∈ Z2

2 we may consider Ay+Bz+Cyz+D as their general form.
Then, the system of equations

D = e00

B +D = e01

A+D = e10

A+B + C +D = e11,
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in variables A,B,C and D, uniquely determines all four functions. The values
{e00, e01, e10, e11} correspond to the values of the functions, for instance, e00 =
α(0, 0), e01 = α(0, 1), e10 = α(1, 0) and e11 = α(1, 1) (the similar systems apply
to functions β, γ and δ). Hence, we obtain

α(y, z) = −q
4
z +

q

4
yz +

q

2
, β(y, z) =

3q

4
z − 3q

4
yz, γ(y, z) =

3q

4
y − 3q

4
yz,

δ(y, z) = (C3 − C1)y + (C2 − C1)z + (C1 − C2 − C3)yz + C1.

Note that α, β, γ and δ are evaluated modulo q, q = 4s, s ∈ Z+.

It is not difficult to see that Theorem 22 and Theorem 24 in [111] are just special
cases with some particular conditions, as discussed in Section 3.5. Also, Theorem 5
in [107, 108] is a special case of Proposition 3.5.6, Remark 3.5.7.





Chapter 4

Optimizing the placement of tap
positions

There are many cryptanalytic approaches that have been applied to nonlinear
filter generators during the last two decades. These methods mainly use the crypto-
graphic weaknesses of the filtering function giving rise to Berlekamp-Massey linear
complexity attacks [73], linear distinguishing and inversion attacks of Golić [41],
[42], [43], algebraic attacks [24], probabilistic algebraic attacks [9], [87], and so on.
The basic idea behind the attacks similar to inversion attacks is to exploit the shift
of the secret state bits that are used as the input to the filtering function. The
designers, well aware of the fact that a proper tap selection plays an important role
in the design, mainly use some standard (heuristic) design rationales such as taking
the differences between the positions to be prime numbers (if possible), the taps are
distributed over the whole LFSR etc.. Intuitively, selecting the taps at some consec-
utive positions of the LFSR should be avoided (see also [2]), and similarly placing
these taps at the positions used for the realization of the feedback connection poly-
nomial is not a good idea either. Even though a full positive difference set is a useful
design criterion which ensures that there are no repetitions of several input bits, it
is quite insufficient criterion which does not prevent from the attacks such as GF-
SGA (Generalized Filter State Guessing Attack) introduced in [119]. For instance,
assume for simplicity that the inputs to the filtering function are taken at tap posi-
tions I = {3, 6, 12, 24} of the employed LFSR, thus our filtering function takes four
inputs, i.e., n = 4. It is easily verified that all the differences are distinct and the set
of (all possible) differences is DI = {ij− ik : ij , ik ∈ I, ij > ik} = {3, 6, 9, 12, 18, 21}.
Nevertheless, all these numbers being multiple of 3 would enable an efficient appli-
cation of GFSGA-like cryptanalysis since the information about the previous states
would be maximized. Another criterion considered in the literature, aims at en-
suring that a multiset of differences of the tap positions is mutually coprime. This
means, that for a given set of tap positions I = {i1, i2, . . . , in} of an LFSR of
length L (thus 1 ≤ i1 < i2 < . . . < in ≤ L) all the elements in the difference set
DI = {ij − ik : ij , il ∈ I, ij > ik} are mutually coprime. This condition, which
would imply an optimal resistance to GFSGA-like methods, is easily verified to be
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impossible to satisfy (taking any two odd numbers their difference being even would
prevent from taking even numbers etc.). Therefore, only the condition that the
consecutive distances are coprime appears to be reasonable, that is, the elements
of D = {ij+1 − ij : ij ∈ I} are mutually coprime. An exhaustive search is clearly
infeasible, since in real-life applications to select (say) n = 20 tap positions for a
driving LFSR of length 256 would give

(
256
20

)
= 298 possibilities to test for optimality.

In this chapter, we firstly demonstrate some potentially misleading design ra-
tionales from the security point of view and discuss the complexity issues related
to optimality (Section 4.1). Indeed, for a standard size of an LFSR used in these
schemes, say L = 256, and a recommended number of inputs n ≥ 16, any exhaustive
search over the set of

(
L
n

)
elements is clearly infeasible. Therefore, we propose a

suboptimal algorithms for this purpose (Section 4.2), which at least when applied to
LFSRs of relatively short length performs optimally (giving the best choice over all
possibilities). We show that the selection of tap positions in real-life stream ciphers
such as SOBER-t32 [46], SFINKS [10] and Grain-128 [1] could have been (slightly)
improved to ensure a better resistance of these ciphers to GFSGA-like cryptanalysis
(Section 4.2). In particular, the selection of tap positions for Grain-128 cipher is
far from being optimized allowing for a significant improvement of its resistance to
GFSGA-like attacks as shown in Section 4.5.3. Thus, these algorithms appear to be
the only known efficient and generic method for the purpose of selecting tap positions
(sub)optimally. In addition, the construction of algorithms is also analyzed in terms
of criteria for tap selection proposed in [42] (Section 4.4). It is shown that these
criteria are embedded in our algorithms but they are not sufficient for protecting
the considered encryption schemes against GFSGA-like methods adequately.

In Section 4.3, we further extend the GFSGA framework by considering a vari-
able mode of sampling which was not addressed in FSGA [88] or GFSGA [119].
The complexity analysis of all modes in terms of the number of repeated state bit
equations is addressed here as well. In Section 4.4, the performance of different
attack modes and the algorithms for determining a (sub)optimal selection of tap
positions are presented. We notice that the main difficulty, when comparing the
performance of these modes theoretically, lies in the fact that there are intrinsic
trad-offs between the main parameters involved in the complexity computation, cf.
Remark 4.3.1. The main reason is that each of these modes attempt to reduce the
preimage space based on the knowledge of some secret state bits that reappear as the
inputs, but at the same time these linear equations (describing the known/guessed
secret state bits) have already been used for setting up a system of linear equations
to be solved once the system becomes overdefined. Thus, increasing the number of
repeated bits makes a reduction of the preimage space more significant (less bits
needs to be guessed) but at the same time more sampling is required since the re-
peated bits do not increase the rank of the system of linear equations. This is the
trade-off that makes the complexity analysis hard and consequently no theoretical
results regarding the performance of the attack modes can be given.

Finally, well aware of the main limitation of GFSGA-like attacks, which are ef-
ficiently applicable to LFSR-based ciphers with filtering function F : GF (2)n →
GF (2)m where m > 1, in Section 4.5 we briefly discuss their application to single
output filtering functions (thus m = 1) and to ciphers employing nonlinear feedback
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shift registers (NFSRs). In both cases we indicate that GFSGA attacks may be ad-
justed to work satisfactory in these scenarios as well. Most notably, there might be a
great potential in applying GFSGA attacks in combination with other cryptanalytic
techniques such as algebraic attacks. This possibility arises naturally due to the fact
that GFSGA-like attacks reduce the preimage space of possible inputs to a filtering
function using the knowledge of previous inputs, thus giving rise to the existence of
low degree annihilators defined on a restriction of the filtering function (obtained by
keeping fixed a subset of known input variables). In another direction, when consid-
ering NFSR-based ciphers we propose a novel approach of mounting internal state
recovery attacks on these schemes which employs the GFSGA sampling procedure
but without solving the deduced systems of equations at all. More precisely, this new
type of internal state recovery attack collects the outputs within a certain sampling
window which then enables an efficient recovery of a certain portion of internal state
bits. This is done by filtering out the wrong candidates based on the knowledge of
reduced preimage spaces that correspond to the observed outputs. Note that all
results of this chapter are published in [90, 49].

4.1 Complexity versus the number of repeated equa-
tions

The complexity of GFSGA, which is a generic attack for this particular encryption
scheme, strongly depends on the choice of tap positions, see also [119]. Therefore, our
goal is to maximize this complexity which is certainly related to the minimization of
the parameters ri = #Ii, but not completely equivalent. Notice that by optimizing
the resistance of these schemes to GFSGA does not necessarily imply the optimality
of tap selections, though for the targeted filtering generator we cannot see other
reasonable approaches in the context of the guess and determine cryptanalysis. Using
the formulas for complexity computation of the GFSGA attack, given by relations
(3.3)-(3.4), in this section we analyze the question whether the sampling step which
provides the maximal number of repeated sate bit (equations) imply the minimal
attack complexity.

Let R denotes the number of repeated equations regardless of this number being∑c−1
i=1 ri for c ≤ k, or

∑k
i=1 ri+(c−k−1)rk for c > k. From [119], it somehow appears

that an (sub)optimal choice of tap positions is the one that minimizes the number
of repeated equations R, which is a bit misleading as illustrated by the following
example.

Example 4.1.1 Let the tap positions be given by I0 = {1, 5, 13, 25, 41, 65, 77}, for
L = 80, n = 7, and m = 3. Computing the complexity TComp. for all sampling
differences σ = 1, 2, 3, . . . , 76, one can verify that the best choice of σ for the attacker
is σ = 12, with the minimal complexity TComp. ≈ 223.97 and having R = 177 as the
number of repeated equations. However, the computation below shows that for σ = 4,
R = 353 is maximum possible, but in that case TComp. ≈ 227.97.
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To see why σ = 4 is not optimal for the attacker, we first compute ri = #Ii,

I1 = {5}, I2 = {5, 13}, I3 = {5, 13, 25, 77}, I4 = {5, 13, 25, 41, 77},
I5 = {5, 13, 25, 41, 77}, I6 = {5, 13, 25, 41, 65, 77},
Ij = {5, 13, 25, 41, 65, 77}, for j = 7, 8, . . . , 61.

The number of sampling points c, for k = ⌊77−1
4 ⌋ = 19, is determined from the

condition nc−(
∑k

i=1 ri+(c−k−1)rk) > L, i.e., c = 62 is the smallest positive integer
satisfying the condition. The terms 2(n−m−ri) ̸= 1 in (3.4), for which ri < n−m so
that the number of preimages is greater than one, only appear for r1 = 1 and r2 = 2,
i.e.,

TComp. = 2(n−m) × 2(n−m−r1) × 2(n−m−r2) × L3 ≈ 227.97.

For j = 3, . . . , 61, we have 2(n−m−rj) = 1, in accordance to Remark 2.4.2.
Similarly, for σ = 12, which implies that k = 6, we obtain c = 37 (where c

is derived from nc − (
∑k

i=1 ri + (c − k − 1)rk) > L) and “only” R = 177 repeated
equations. The intersection sets in this case are given as,

I1 = {13, 25, 77}, I2 = {13, 25, 65, 77}, I3 = {13, 25, 41, 65, 77},
Ij = {13, 25, 41, 65, 77}, for j = 4, 5, . . . , 36.

The complexity computation in this case involves only r1 = 3, i.e.,

TComp. = 2(n−m) × 2(n−m−r1) × L3 ≈ 223.97.

Notice that for j = 2, . . . , 36, we have 2(n−m−rj) = 1.

Remark 4.1.2 A lower complexity in the above example (for a larger number of
repeated equations) is entirely due to a low difference between n and m so that many
of the repeated equations could not be efficiently used since the preimages could be
identified uniquely even without using these equations.

More formally, if σ′ gives the maximal possible value of R though the attack complex-
ity is not minimal, and σ′′ gives the minimal attack complexity without maximizing
R, then it holds

∑
rj∈Hσ′′

(n−m− rj) <
∑

ri∈Hσ′

(n−m− ri) (4.1)

where Hσ′ = {ri < n−m : ri obtained by σ′, i = 1, 2, . . . , c− 1} and Hσ′′ = {rj <
n − m : rj obtained by σ′′, j = 1, 2, . . . , c − 1}. In the above example, we have
Hσ′ = {r1, r2} = {1, 2} with σ′ = 4, and Hσ′′ = {r1} = {3} with σ′′ = 12, for which
(4.1) holds.

Another problem related to the approach of finding the intersection sets given by
(2.5) is that the information contained in R and the cardinalities ri alone does not
fully specifies the properties of the repeated equations. The equations corresponding
to the numbers in the sets Ii may be repeated and found in other sets Ij , where i ̸= j,
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and even though they efficiently reduce the preimage space they do not contribute
to the rank of the systems of linear equations that need to be solved. An alternative
method of tracking the repeated equations, illustrated in the example bellow, turns
out to give a deeper insight to the problem of selecting the tap positions optimally.

Example 4.1.3 Let the tap positions be given by I0 = {l1, l2, l3, l4, l5} = {1, 4, 8, 9, 11},
L = 15, and the sampling distance σ = 2. Let sti = (s0+(i−1)σ, s1+(i−1)σ, . . . , s14+(i−1)σ),
denote the LFSR state over c = 10 sampling instances ti = (i − 1)σ, for i =
1, 2, . . . , 10. Moreover, at these different sampling instances, we represent the output
bits of LFSR s0, s1, . . . via their indices in N, i.e., sk → (k+1) ∈ N. For instance, in
Table 2 the number 27 corresponds to the bit s26 which becomes a part of the LFSR
state st9 at position l5. The LFSR state bits at tap positions I0 = {l1, l2, l3, l4, l5}
are illustrated in Table 4.1. Our goal is to determine when some equation (state bit)

Table 4.1: The LFSR state bits at given tap positions for σ = 2.

States l1 l2 l3 l4 l5

st1 s0 → 1 s3 → 4 s7 → 8 s8 → 9 s10 → 11

st2 s2 → 3 s5 → 6 s9 → 10 s10 → 11 s12 → 13

st3 s4 → 5 s7 → 8 s11 → 12 s12 → 13 s14 → 15

st4 s6 → 7 s9 → 10 s13 → 14 s14 → 15 s16 → 17

st5 s8 → 9 s11 → 12 s15 → 16 s16 → 17 s18 → 19

st6 s10 → 11 s13 → 14 s17 → 18 s18 → 19 s20 → 21

st7 s12 → 13 s15 → 16 s19 → 20 s20 → 21 s22 → 23

st8 s14 → 15 s17 → 18 s21 → 22 s22 → 23 s24 → 25

st9 s16 → 17 s19 → 20 s23 → 24 s24 → 25 s26 → 27

st10 s18 → 19 s21 → 22 s25 → 26 s26 → 27 s28 → 29

is repeated on the tap positions l1, . . . , l4 at the sampling instances ti. Hence, we
observe the repetition of all consecutive tap positions lj+1 − lj, then the differences
lj+2− lj, etc. Let D be a set of all differences between consecutive tap positions, i.e.,

D = { dj | dj = lj+1 − lj , j = 1, 2, 3, 4} = {3, 4, 1, 2}.

To consider all possible repetitions of the equations on all tap positions, we design a
scheme of all possible differences: In Table 4.2, Column 1 specifies the repetition of

Table 4.2: The scheme of all possible differences for the set D.

Row\Columns Col. 1 Col. 2 Col. 3 Col. 4

Row 1 d1 d2 d3 d4

Row 2 d1 + d2 d2 + d3 d3 + d4

Row 3 d1 + d2 + d3 d2 + d3 + d4

Row 4 d1 + d2 + d3 + d4

some equations at the tap position l1, Column 2 gives the repetition of equations on
l2, etc. Similarly, Row 1 takes into account the consecutive repetitions from li+1 to
li, Row 2 regards the repetition from li+2 to li, etc. In our example, by Table 4.2, we
have Assuming the attacker starts the sampling with some step σ, the total number
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Table 4.3: The scheme of all differences for D = {3, 4, 1, 2}.
Row\Columns Col. 1 Col. 2 Col. 3 Col. 4

Row 1 3 4 1 2
Row 2 7 5 3
Row 3 8 7
Row 4 10

of repeated equations R is the sum of all equations which repeat on each of the tap
positions lj, where j = 1, 2, 3, 4.
Since Table 4.2 can be designed for an arbitrary set D, #D = n−1, the repetition of
the same equations can be tracked as follows. We are looking for the first number in
each column such that it is divisible by σ, which implies that we have the repetition
of equations, otherwise there are no repetitions. Notice that in Table 4.3, in Column
1, σ - 3, which implies that there is no repetition of equations from l2 at l1. Also,
since 2 - 7, there is no repetition from l3 at l1. However, 2 | 8, which implies that the
equation(s) from l4 will appear on l1 after 8

2 = 4 sampling instances (cf. Table 4.1
where 9 appears at l1 when the content of the LFSR is st5). Thereafter, one equation
from l4 appears at l1 for every state sti, for i ≥ 5.
Further, the fact that 2 | 8 and 2 | 10 implies that 2 | d4 = 2, which means that
we have a repetition from l5 to l1 at every LFSR state sti, i ≥ 2. Since Column 1
already contains this number 8 which is divisible by 2, all the repeated equations from
l5 to l1 are already taken into account, and we do not use number 10 (Table 4.3,
Row 4) when calculating the number of repeated equations. So, d4

2 is related to the
repetitions of equations from l5 to l4.
Hence, the number of repeated equations R, for c = 10, is calculated as follows.

1. On l1, there are (c− d1+d2+d3
σ ) = 10− 8

2 = 6 repeated equations.

2. On l2, there are (c− d2
σ ) = 10− 2 = 8 repeated equations.

3. On l3, there are NO repeated equations, since we do not have the differences
divisible by σ = 2.

4. On l4, there are (c− d4
σ ) = 9 repeated equations.

In total, we have R = 6 + 8 + 0 + 9 = 23 repeated equations.

The analysis performed in the above example leads to the following result concerning
the number of repeated equations.

Proposition 4.1.4 Let I0 = {l1, l2, . . . , ln} be a set of tap positions, and let

D = {li+1 − li | i = 1, 2, . . . , n− 1} = {d1, d2, . . . , dn−1}.

The number of repeated equations is calculated as

R =

n−1∑
i=1

(c− 1

σ

m∑
k=i

dk), (4.2)

where σ |
∑m

k=i dk for some m ∈ N, i ≤ m ≤ n−1 and 1
σ

∑m
k=i dk ≤ c−1. Moreover,

if 1
σ

∑m
k=i dk ≥ c, for some 1 ≤ i ≤ n−1, then (c− 1

σ

∑m
k=i dk) = 0. This means that

the repetition of the same equations (bits) starts to appear after the LFSR state stc.
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Remark 4.1.5 The importance of the above proposition lies in a fact that the count-
ing method of repeated equations does not depend on the relation between the number
of sampling points c and k (where k = ⌊ in−i1σ ⌋), i.e., it holds for both c ≤ k and
c > k.

Notice that, in order to minimize the number of repeated equations, the terms
(c− 1

σ

∑m
k=i dk), i ≤ m ≤ n− 1, should be minimized. Hence, we want to avoid the

divisibility by σ in the scheme of differences as much as possible. Moreover, for a
given length L of LFSR, the differences between di ∈ D should be maximized under
the constraint

∑n−1
i=1 di ≤ L − 1, which is also conditioned by 1 ≤ l1 < l2 < . . . <

ln ≤ L. In other words, the goal is to distribute the tap positions over entire LFSR
while at the same time keeping the divisibility by σ as low as possible. Clearly, if∑n−1

i=1 di = L− 1, then l1 = 1 and ln = L.

4.2 Two algorithms towards an optimal selection of taps

It turns out that the problem of optimizing the choice of I0 is closely related to
the divisibility of the elements in the corresponding (multi)set of differences D by
an arbitrary σ. Thus, instead of searching the set I0 directly, we focus on the set
of differences D. The construction of the set D is however out of reach to be done
exhaustively for moderately large L and n, and consequently we use some heuristic
techniques to specify D (sub)optimally.

In what follows, we present a method of constructing the set D which gives a
low number of repeated equations (confirmed by computer simulations) for every σ.
The set D is specified using some heuristic design rationales (see below) and at the
same time the differences di are maximized.

Step A: Find the elements of the set D. To do this and avoid the divisibility
by σ, the following pattern is applied.

1. Prime numbers are the most favourable to join the set D. Since higher values
of n dictate the repetitions of some elements in D, the repetition should be
kept on minimum with a general tendency to choose co-prime differences. If
some even numbers are taken, then the set D should contain just few of them,
because they can result in many common (high) factors in the rows of Table
4.2.

2. Maximize the differences di under the constraint
∑

di∈D di ≤ L− 1.

Step B: Find the best ordering of the chosen differences, which basically means
that ordering of D is also important. This can be done using the following algorithm
with the complexity O(n! ·K), where K corresponds to the complexity of calculation
TComp. for all possible σ.

INPUT: The set D and the numbers L, n = #D + 1 and m.
OUTPUT: The best ordering of the chosen differences, that is, an ordered set D
that maximizes the complexity of the attack.

STEP 1: Generate a list of all permutations of the elements in D;
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STEP 2: For every permutation, find the minimal complexity for all steps σ
from 1 to L;

STEP 3: Generate a list of all minimal complexities from Step 2;
STEP 4: Find the maximal value in the list of all minimal complexities;
STEP 5: Return the corresponding permutation of the maximal value.

Open Problem 1 Find an efficient algorithm, which returns the best ordering of
the set D without searching all permutations.

Remark 4.2.1 To measure the quality of a chosen set of differences D with respect
to the maximization of TComp. over all σ, the computer simulations indicate that an
optimal ordering of the set D implies a small value of an optimal sampling distance
σ. This is also a criterion that a set D is most likely chosen well (a sub-optimal
choice). The term ”most likely” concerns the difficulties of capturing the whole
process of choosing the tap positions explicitly, due to a very complicated relation
between σ, R, D and TComp. through the scheme of differences. When choosing an
output permutation (cf. Step 5 below), we always consider both σ and TComp. though
σ turns out to be a more stable indicator of the quality of a chosen set D.

Note that, the above algorithm performs an exhaustive search over all permutations
of the input set. For practical values of L, usually taken to be L = 256, the time
complexity of the above algorithm becomes practically infeasible already for n > 10.
To reduce its factorial time complexity, we modify the above algorithm to process
the subsets of the multiset D separately within the feasibility constraints imposed
on the cardinalities of these subsets.

STEP 1: Choose a set X by Step A, where #X < #D for which Step B is
feasible;

STEP 2: Find the best ordering of X using the algorithm in Step B for
LX = 1 +

∑
xi∈X xi < L and mX = ⌊#X · m

n−1⌋;
STEP 3: Choose a set Y by Step A, where #Y < #D for which Step B is

feasible;
STEP 4: “Generate” a list of all permutations of the elements in Y ;
STEP 5: Find a permutation (Yp) from the above list such that for a fixed set

X, the new set YpX obtained by joining X to Yp, denoted by YpX
(with the parameters LYpX = 1 +

∑
xi∈X xi +

∑
yi∈Yp yi ≤ L and

mYpX = ⌊#YpX · m
n−1⌋), allows a small optimal step σ, in the sense

of Remark 4.2.1;
STEP 6: If such a permutation, resulting in a small value of σ, does not exist

in Step 5, then back to Step 3 and choose another set Y ;
STEP 7: Update the set X ← YpX, and repeat the steps 3 - 5 by adjoining

new sets Yp until #YpX = n− 1;
STEP 8: Return the set D = YpX.

Remark 4.2.2 The parameters LX and mX are derived by computer simulations,
where LX essentially constrains the set X and mX keeps the proportionality between
the numbers m,#X and #D = n− 1.
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An illustration of our modified version of the above algorithm is given in the
following example. Namely, for a rather practical choice of the parameters L, n
and m, the whole procedure of defining the set of differences that eventually yields
the tap positions is discussed. Some suboptimal choices of tap positions for varying
input parameters L, n,m along with the time complexity of the GFSGA and the
time complexity of applying our algorithms are given in Appendix (cf. Table 4.4
and Table 4.5).

Example 4.2.3 Let n = 17, m = 6, and F (x) : GF (2)17 −→ GF (2)6. Let L = 160
bits, the length of the secret key is K = 80 bits.

Let X = {5, 13, 7, 26, 11, 17} be obtained using the algorithm in Step B for LX =
80, mX = 2. Let Y = {1, 2, 9, 15, 23}. Then, a permutation Yp = {9, 1, 2, 23, 15},
i.e., the set

YpX = {9, 1, 2, 23, 15, 5, 13, 7, 26, 11, 17},

where LYpX = 130 and mYpX = 4, gives that σ = 1 is an optimal sampling distance
for the attacker. Since LYpX ≤ 160, then we choose the set Z = {3, 4, 5, 7, 11}. Then,
a permutation Zp = {5, 11, 4, 3, 7}, i.e., the set ZpYpX = {5, 11, 4, 3, 7, 9, 1, 2, 23, 15, 5, 13,
7, 26, 11, 17}, where LZpYpX = L = 160 and mLZpYpX

= m = 6 gives the optimal step
σ = 1 for the attacker. Then we have

D = {5, 11, 4, 3, 7, 9, 1, 2, 23, 15, 5, 13, 7, 26, 11, 17},

and thus

I0 = {1, 6, 17, 21, 24, 31, 40, 41, 43, 66, 81, 86, 99, 106, 132, 143, 160}.

Hence, σ = 1 is optimal, with the minimal complexity TComp. = 286.97, which is
essentially an extremely good choice of tap positions (non-exhaustively confirmed to
be an optimal choice).

In Table 4.4 we give several instances for determining suboptimal tap positions of
LFSRs of different length. The following parameters are used:

• L is the length of LFSR;

• n and m are parameters related to vectorial Boolean function F : GF (2)n →
GF (2)m;

• D is a set of differences between tap positions;

• c is the minimal number of observed outputs needed for an overdefined system

• R is the number of repeated equations for given c outputs;

• σ is an optimal step of the GFSGA attack;

• TComp. is the time complexity of GFSGA.

Remark 4.2.4 From the difference sets D in Table 4.4 we easily obtain the tap
positions.
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Table 4.4: Specifications of difference sets for LFSRs of different lengths.

L (n,m) D R c σ TComp.

80 (7,2) {5, 13, 7, 26, 11, 17} 24 15 1 269.97

120 (13,3) {5, 7, 3, 13, 6, 11, 5, 11, 7, 13, 21, 17} 61 14 3 299.7

160 (17,6) {5,11,4,3,7,9,1,2,23,15,5, 13, 7, 26, 11, 17} 128 17 1 286.97

200 (21,7) {3, 7, 9, 13, 18, 7, 9, 1, 2, 9, 1, 2, 23, 15, 5, 13, 7, 26, 11, 17} 175 18 1 2108.9

256 (27,9) {5, 9, 13, 4, 7, 19, 3, 7, 9, 13, 18, 7, 9, 1, 2, 9, 1, 2, 23, 15, 5, 13, 7, 26, 11, 17} 227 18 1 2135

Table 4.5: Time complexities for finding tap positions in Table 5.

L (n,m) Cardinality of parts Complexity Times in sec

80 (7,2) no parts O(K · 6!) 135

120 (13,3) (6,6) 2 ·O(K · 6!) 125+162=287

160 (17,6) (6,6,4) 2 ·O(K · 6!) +O(K · 4!) 137+198+8.5=343.5

200 (21,7) (6,6,4,4) 2 ·O(K · 6!) + 2 ·O(K · 4!) 137+96+7.7+9.5=250

256 (27,9) (6,6,4,4,6) 3 ·O(K · 6!) + 2 ·O(K · 4!) 250+369.3=619.3

Remark 4.2.5 Note that the time required to create some particular set of differ-
ences depends on the cardinality of parts. It means that the smaller cardinalities
implies the lower time complexity, though such an approach may provide the solu-
tions that are “far” from optimal. Table 4.5 presents the following:

• Cardinality of parts refers to the modified algorithm on Page 10, bottom. For
instance, (6, 6, 4) means that we take #X = 6 elements and finding its optimal
permutation requires 137 sec with our permutation algorithm. Then, we take
another #Yp = 6 elements and determine its best order which fits to the set X,
which requires 198 seconds (modified algorithm). Finally, the same procedure
is applied to the set YpX by adding Zp = 4 elements using again our modified
algorithm (requiring 8.5 sec). The resulting set of differences is given as D =
ZpYpX.

• Complexity refers to the complexity of the permutation algorithms Step B and
its modification used to construct the set D.

• The constant K regards the procedure described in the permutation algorithm
(Step B): creating the list, searching, etc.

In what follows, we apply the above algorithms to two well-known stream cipher
SOBER-t32 [46], [119] and SFINX [10].

SOBER-t32: An application of the GFSGA attack on unstuttered SOBER-t32
was considered in [119]. The tap positions of SOBER-t32 are given by I0 =
{1, 4, 11, 16, 17} (corresponding to the reverse order of the taps 1 ← s16, 4 ← s13,
etc.) and the sampling distance used in [119] was σ = 3. Due to the reverse or-
der of the bits si, we consider the set D in reverse order , i.e. D = {1, 5, 7, 3}
instead of {3, 7, 5, 1}, since this ordering corresponds to our consideration of the
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LFSR states presented in Table 4.1. Regarding the set D, the set of all ri = #I0 is
{1, 1, 2, 2, 3, 3, 4, 4, 4, 4, . . .}, i.e. r1 = r2 = 1, r2 = r3 = 2, r4 = r5 = 3 and rk = 4,
k ≥ 7. At each sampling point we derive 40 − 8 × ri linear equations (cf. [119]).
Therefore, the number of repeated equations is given by

40 + 32 + 32 + 24 + 24 + 16 + 16 + 8× (c− 7) + c, (4.3)

which for c = 47 gives R = 550 linear equations (4.3). Thus the complexity of the
attack can be estimated as

TD = (17× 32)3 × 235 × 22×27 × 22×19 × 22×11 × 239×3 = (17× 32)3 × 2266.

Since #D = 4, we can easily apply Step A and Step B, to come up with the
new set D∗ = {5, 2, 7, 2}, and get the set {0, 2, 2, 2, 3, 3, 4, 4, 4, 4, . . .} of all ri = #I0.
The inequality

40 + 40 + 32 + 32 + 32 + 24 + 24 + 8× (c− 7) + c ≥ 544

implies c = 42, and R = 546 equations. The complexity is estimated as

TD∗ = (17× 32)3 × 22×35 × 23×27 × 22×19 × 234×3 = (17× 32)3 × 2291.

This means that our algorithm gives the tap selection with much better resistance
against GFSGA.

SFINX: The design details of SFINX can be found in [10]. The set of the tap
positions of SFINX is given as

I0 = {1, 2, 7, 10, 20, 22, 45, 59, 75, 99, 106, 135, 162, 194, 228, 245, 256},

and D = {1, 5, 3, 10, 2, 23, 14, 16, 24, 7, 29, 27, 32, 34, 17, 11}. An optimal step of the
GFSGA attack on this set of tap positions, is σ = 2 which requires c = 27 sampling
points, resulting in R = 200 sampled equations for obtaining an overdefined system.
The corresponding complexity in this case is TComp. = 2256. Note that

∑16
i=1 di =

255 with optimal step σ = 2, which indicates that the set of tap positions I0 of
SFINX is chosen well. However, we can use the elements of the given set D and our
algorithm to create the set of differences ”by parts”, in order to decrease the number
of repeated equations R and increase the complexity (slightly). Starting with the
set X = {29, 32, 17, 34, 27, 11}, and permuting the set Yp = {2, 23, 14, 16, 24, 7} for
LYpX = 237, we get the set YpX = {2, 23, 14, 7, 16, 24, 29, 32, 17, 34, 27, 11} with an
optimal step σ = 8 for the attack. Then, taking the set Zp = {1, 5, 3, 10}, we get
the set D∗ = ZpYpX given as

D∗ = {1, 5, 3, 10, 2, 23, 14, 7, 16, 24, 29, 32, 17, 34, 27, 11},

with the optimal steps σ ∈ {1, 2} for the attack. The estimated complexity for both
optimal steps is TComp. = 2257 with R = 167 repeated equations, thus only a minor
improvement has been achieved.

It would be of interest to consider the problem of optimizing the placement of
tap positions in case the GFSGA attack with a variable sampling step (σ is not
fixed) is used, which is left for the extended version of this article.
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4.3 GFSGA with a variable sampling step

In this section, we describe the GFSGA method with a variable sampling step σ,
which we denote as GFSGA∗. The whole approach is quite similar to GFSGA,
the main difference is that we consider outputs at any sampling distances, i.e., the
observed outputs zti−1 and zti (i = 1, . . . , c) do not necessarily differ by a fixed
constant value and consequently the sampling distances σ1, . . . , σc are not necessar-
ily the same. It turns out that this approach may give a significant reduction in
complexity compared to the standard version of the attack, see Section 4.4.

We first adopt some notation to distinguish between the two modes. The number
of observed outputs for which an overdefined system is obtained is denoted by c∗,
the corresponding number of repeated bits by R∗ and the attack complexity by
T ∗
Comp.. The outputs taken at time instances ti are denoted by wti , where we use

the variable sampling steps σi so that ti+1 = ti + σi, for i = 1, 2, . . . , c∗ − 1. These
values σi (distances between the sampled outputs), are referred to as the variable
steps (distances). Throughout this article, for easier identification of repeated bits
over observed LFSR states, the state bits s0, s1, . . . are represented via their indices
in N, i.e., si → (i + 1) ∈ N (i ≥ 0). In other words, the LFSR state bits si =
(s0+i, s1+i, . . . , sL−1+i) are treated as a set of integers given by

(s0+i, s1+i, . . . , sL−1+i)↔ {1 + i, 2 + i, . . . , L+ i}. (4.4)

The purpose of this notation is to simplify the formal definition of LFSR state bits
at tap positions introduced in the previous section. In addition, it allows us to easier
track these bits and to count the number of repeated bits using the standard con-
cepts of union or intersection between the sets. Henceforth, the LFSR states si we
symbolically write as si = {1+i, 2+i, . . . , L+i} (i ≥ 0), and this notation applies to
state bits at tap positions sti . Since finding the preimage spaces Swti of the observed
outputs wti is the most important part, we give for clarity the description of a few
initial steps:

Step 1: Let wt1 denotes the first observed output so that the corresponding LFSR

state at the tap positions is exactly the set I0={l1, l2, . . . , ln}, so that st1=(st1l1 , . . . , s
t1
ln
)
(4.4)
=

{l1, . . . , ln}, i.e., st1=I0. Notice that the first observed output wt1 does not neces-
sarily need to correspond to the set I0, though (for simplicity) we assume this is the
case. A preimage space which corresponds to the first observed output wt1 always
has the size 2n−m, i.e., |Swt1 | = 2n−m.

Step 2: Taking the second output wt2 at distance σ1 from wt1 (thus t2 = t1 + σ1),
we are able to identify and calculate the number of repeated bits (equations) at the
time instance t2. Using the notation above, the set I∗1 of these bits is given by the
intersection:

I∗1 = st1 ∩ st2 = st1 ∩ {st1 + σ1} = I0 ∩ {l1 + σ1, . . . , ln + σ1},

where st2 = {st1 + σ1}
def
= (st1+σ1l1+σ1

, st2+σ1l2+σ1
, . . . , stn+σ1ln+σ1

)
(4.4)
= {l1 + σ1, . . . , ln + σ}, i.e.,

st2 = {l1 + σ1, . . . , ln + σ} is the LFSR state at tap positions at time instance t2.



Optimizing the placement of tap positions 89

Denoting the cardinality of I∗1 = st1 ∩ st2 by q1, i.e., q1 = #I∗1 , the cardinality of
the preimage space corresponding to the output wt2 is given as |Swt2 | = 2n−m−q1 .

This process is then continued using the sampling distances σ2, . . . , σc∗ until the
condition nc∗−R∗ > L is satisfied, where the total number of repeated equations over
c∗ observed outputs is R∗ =

∑c∗−1
k=1 qk. Note that the number of repeated equations

corresponding to the first output is 0, since the corresponding LFSR state st1 is the
starting one. Therefore the sum goes to c∗ − 1.

It is not difficult to see that the equalities (2.5), used in GFSGA to determine
the parameters ri = #Ii, are special case of the equalities given as:

I∗1 = I0 ∩ {l1 + σ1, l2 + σ1, . . . , ln + σ1} = st1 ∩ st2 ,
I∗2 = {st1 ∪ st2} ∩ {l1 + (σ1 + σ2), . . . , ln + (σ1 + σ2)} = {st1 ∪ st2} ∩ st3 ,

...

I∗j = {st1 ∪ . . . ∪ stj} ∩ {l1 +
j∑
i=1

σi, . . . , ln +

j∑
i=1

σi} =
j∪
i=1

sti ∩ stj+1 ,

...

I∗c∗−1 =
c∗−1∪
i=1

sti ∩ stc∗ , (4.5)

where st1 , . . . , stc∗ represents the LFSR state bits at tap positions at time instances
t1, . . . , tc∗ .

In general, the number of repeated equations which corresponds to the outputs
wt1 , . . . , wtc∗ at variable distances σi (i.e., w

ti+1 = wti+σi), can be calculated as

qj = #I∗j = #

{
j∪
i=1

sti ∩ {st1 +
j∑
i=1

σi}

}
, (4.6)

where all steps σi are fixed for i = 1, . . . , j and j = 1, . . . , c∗ − 1. Note that the sets

I∗j−1 (j ≥ 1) correspond to outputs wtj (where I∗0 = I0
(4.4)
= st1). The sampling

instances are given as tj = t1+
∑j−1

i=1 σi, or tj = tj−1+σj−1, where tj−1 = t1+
∑j−2

i=1 σi
is fixed. Similarly to the GFSGA with a constant sampling distance, the attack
complexity is estimated as

T ∗
Comp. = 2n−m × 2n−m−q1 × . . .× 2n−m−qc∗−1 × L3. (4.7)

Remark 2.4.2 also applies here, thus if n−m− qj ≤ 0 for some j ∈ {1, . . . , c∗ − 1},
then the knowledge of these qj bits allows the attacker to uniquely identify the
exact preimage value of the observed output, i.e., we have 2(n−m−qj) = 1 when
n − m − qj ≤ 0. Notice that if the sampling steps σi are equal, i.e., they have a
constant value σ = σi, for i = 1, 2, . . . , c∗ − 1, we get qi = ri, c

∗ = c, R∗ = R and
T ∗
Comp. = TComp..

Remark 4.3.1 It was already mentioned that the analysis of complexity T ∗
Comp.

appears to be very difficult, mainly due to the following reasons. For fixed m,n and
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L, it is clear that there exists a trade-off between the parameters qj (j = 1, . . . , c∗−1)
and c∗. More precisely, for larger values c∗ we have that 2n−m−qj > 1 which implies
the increase of T ∗

Comp., unless n−m− qj ≤ 0. For this reason, the optimal step(s) of
the GFSGA attack (whether we consider a constant or variable mode of the attack) is
the one which minimizes c∗ satisfying at the same time the inequality nc∗−R∗ > L.
Furthermore, in the case of the constant GFSGA mode, the parameter c for which
nc − R > L holds is not known prior to the completion of the sampling process.
This also holds for the variable GFSGA mode, if we fix a sequence of sampling
steps in advance. This, in combination with [90, Remark 3], give more insight how
complicated the relation between parameters m,n,L, qj , c

∗ and T ∗
Comp. is.

4.3.1 The number of repeated equations for GFSGA∗

The relation between the number of repeated equations and complexity in the case
of GFSGA has been analyzed in Section 4.1, where an alternative method for calcu-
lating the number of repeated equations has been derived. Similarly, in this section
we derive an alternative method for calculating the number of repeated equations
for GFSGA∗ (Proposition 4.3.3).

For a given set of tap positions I0 = {l1, l2, . . . , ln}, let us consider the set of
differences between the consecutive tap positions, i.e.,

D = { dj | dj = lj+1 − lj , j = 1, 2, . . . , n− 1}.

Based on this set the so-called scheme of all possible differences was defined in
Section 4.1 as DI0 = {lj − lk : lj , lk ∈ I0, lj > lk} and used to calculate the number
of repeated equations for GFSGA. For self-completeness we recall Proposition from
Section 4.1.

Proposition 4.3.2 Let I0 = {l1, l2, . . . , ln} be a set of tap positions, and let

D = {lj+1 − lj | j = 1, 2, . . . , n− 1} = {d1, d2, . . . , dn−1}.

The number of repeated equations is calculated as

R =

n−1∑
i=1

(c− 1

σ

m∑
k=i

dk), (4.8)

where σ |
∑m

k=i dk for some m ∈ N, i ≤ m ≤ n−1 and 1
σ

∑m
k=i dk ≤ c−1. Moreover,

if 1
σ

∑m
k=i dk ≥ c, for some 1 ≤ i ≤ n−1, then (c− 1

σ

∑m
k=i dk) = 0. This means that

the repetition of the same equations (bits) starts to appear after the LFSR state stc.

In the case of GFSGA∗, the scheme of differences can also be used to calculate the
number of repeated equations R∗. However, in this case the calculation is slightly
more complicated compared to GFSGA, due to the fact that we have a variable step
of sampling.

To illustrate the difference, let us consider the set of tap positions given by
I0 = {3, 5, 10, 14, 16} (L = 20 and n,m not specified). The corresponding set of
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consecutive differences is given as D = {2, 5, 4, 2}. The scheme of all differences
related to DI0 is given as:

Table 4.6: The scheme of all differences for D = {2, 5, 4, 2}.
Col. 1 Col. 2 Col. 3 Col. 4

lj+1 − lj 2 5 4 2

lj+2 − lj 7 9 6

lj+3 − lj 11 11

lj+4 − lj 13

In addition, let us assume that the first two steps of sampling (distances between
observed outputs) are given as: σ1 = 5, σ2 = 2. To find the number of repeated
bits (equations), we use the recursion of the sets I∗k given by relation (4.5). Even
though c∗ is the number of outputs for which an overdefined system can be set up,
our purpose is to demonstrate the procedure of finding repeated bits for σ1, σ2. The
computation of the number of repeated bits is as follows:
1) The state bits at tap positions at time t1 correspond to I0 = {l1, l2, l3, l4, l5} =

{3, 5, 10, 14, 16}, thus st1 = (s2, s4, s9, s13, s15)
(4.4)
= I0. Since the first sampling

distance σ1 = 5, we consider the LFSR state st2 = {I0 + σ1} which is given as

st2 = {I0 + 5} = (s7, s9, s14, s18, s20)
(4.4)
= {8, 10, 15, 19, 21}.

We obtain that I∗1 = st1∩st2 = I0∩(I0+5) = {10}, which means that 1 = #I∗1 = q1
bit is repeated and found in st2 from the first state st1 = I0.

In terms of the scheme of differences, this repetition corresponds to d2 = l3−l2 =
σ1 = 5, found as the first entry in Col. 2. In addition, note that d2 = 5 is the only
entry in the scheme of differences DI0 which is equal to σ1. The main difference
compared to GFSGA is that in this case we do NOT consider the divisibility by σ1
in the scheme of differences due to variable sampling steps.

2) For σ2 = 2, the observed outputs wt2 and wt3 satisfy wt3 = wt2+σ2 =
wt1+σ1+σ2 . The LFSR state st3 , which corresponds to the output wt3 , is given as
st3 = {st2 + σ2} = {st1 + (σ1 + σ2)}, and therefore

st3 = {st2 + 2} = (s9, s11, s16, s20, s22) = {10, 12, 17, 21, 23}.

At this position we check whether there are repeated bits from the LFSR state st2 ,
but also from the state st1 . To find all bits which have been repeated from the state
st2 , we consider the intersection st3 ∩ st2 = {10, 21}. In addition, the bits which are
repeated from the state st1 are given by the intersection st3 ∩ st1 = {10}. Hence, we
have the case that the same bit, indexed by 10, has been shifted from the state st1

(since σ1 + σ2 = 7 so that 3 + 7=10) and from st2 (since σ2 = 2) to st3 . On the
other hand, the intersection corresponding to 21 gives us an equation that has not
been used previously. Thus, the number of known state bits used in the reduction
of the preimage space is 2, and therefore |Swt3 | = 2n−m−2. In terms of the scheme
of differences, one may notice that we have d1 = l2 − l1 = 2 = σ2 (which refers to
repetition from st2 to st3) and which gives d1 = 2 in Col. 1 and Col. 4. On the other
hand, for d1 + d2 = l3 − l1 = 7 = σ1 + σ2 (which refers to repetition from st1 to st3)
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the repeated bit is found in the same column, namely Col. 1, and therefore it is not
counted. In general, we conclude here that if we have a matching of σ(2) = d2 and
σ(1) = d1+d2 with some numbers (entries) in the scheme of differences which are in
the same column (as we have here d1 = σ(2) and d1 + d2 = σ(1)), we calculate only
one repeated bit in total from this column. If there were more than 2 matchings,
the same reasoning applies and thus we would calculate only one repeated bit.

The procedure above may continue for any number of observed outputs at any sam-
pling distances. For instance, if we consider some sampling step σj (j ≥ 1), then we

also need to consider all sums of the steps σ(j−i) =
∑j

h=j−i σh, for all i = 0, . . . , j−1
(j ≥ 1) and their matchings with some entries in the scheme of differences. In
general, every repeated bit means that some sum(s) of steps σ(j−i) =

∑j
h=j−i σh,

i = 0, . . . , j − 1 is equal to some difference
∑m

p=r dp, for some m ∈ N, over different
columns, where r = 1, . . . , n− 1 relate to the columns in the scheme of differences.
A total number of repeated bits R∗ is the sum of all repeated bits over observed
outputs at distances σj (j ≥ 1). Note that the method for calculation of the number
of repeated bits described above actually generalizes Proposition 4.3.2, since the use
of constant sampling distance is just a special case of variable sampling.

Proposition 4.3.3 Let I0 = {l1, l2, . . . , ln} be a set of tap positions, and let

D = {li+1 − li | i = 1, 2, . . . , n− 1} = {d1, d2, . . . , dn−1}.

Denoting σ(j−i) =
∑j

h=j−i σh, i = 0, . . . , j − 1, the number of repeated equations is
calculated as

R∗ =
c∗−1∑
j=1

qj =
c∗−1∑
j=1

(
j−1∑
i=0

1

σ(j−i)

m∑
p=r

dp

)
, (4.9)

where the term 1
σ(j−i)

∑m
p=r dp = 1 if and only if σ(j−i) =

∑m
p=r dp for some m, r ∈ N,

1 ≤ r ≤ m ≤ n − 1, otherwise it equals 0. If for a fixed r and different numbers
m we have more matchings σ(j−i) =

∑m
p=r dp, then only one bit will be taken in

calculation.

Clearly, the numbers m and r depend on the values σ(j−i), i = 0, . . . , j − 1 (j ≥ 1)
since we only consider those numbers m, r ∈ N such that

∑m
p=r dp is equal to σ

(j−i).

4.3.2 Two specific modes of GFSGA∗

In this section we present two modes of GFSGA∗, which in comparison to GFSGA
depend less on the choice of tap positions. First we start with a general discussion
regarding the attack complexity.

In order to obtain a minimal complexity of the GFSGA∗ attack, it turns out
that the main problem is actually a selection of the cipher outputs. This problem is
clearly equivalent to the problem of selecting the steps σi which gives the minimal
complexity T ∗

Comp.. The number of repeated bits (equations) at time instance ti
(for some i > 1) always depends on all previous sampling points at t1, . . . , ti−1.
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This property directly follows from (4.5), i.e., from the fact that we always check
the repeated bits which come from the tap positions of LFSR at time instances
t1, . . . , ti−1. This means that the number of repeated bits qi at time instances ti,
given by (4.6), always depends on the previously chosen steps σ1, . . . , σi−1. This also
implies that we cannot immediately calculate the number of required keystream
blocks c∗ for which the inequality nc∗−R∗ > L is satisfied. This inequality can only
be verified subsequently, once the sampling distances and the number of outputs c∗

have been specified. Therefore we pose the following problem.

Open Problem 2 For a given set of tap positions I0 = {l1, . . . , ln}, without the
knowledge of c∗, determine an optimal sequence of sampling distances σi for which
the minimal complexity T ∗

Comp. is achieved.

In what follows we provide two modes of the GFSGA∗ whose performance will be
discussed in Section 4.4.

4.3.3 GFSGA∗
(1) mode of attack

In order to minimize the complexity T ∗
Comp., one possibility is to maximize the values

qj , given by (4.6), by choosing suitable σi. However, this approach implies a trade-off
between the values qj and c

∗, since c∗ is not necessarily minimized. More precisely:
1) For the first step 1 ≤ σ1 ≤ L we take a value for which q1 is maximized, i.e., for
which the cardinality

q1 = #{st1 ∩ (st1 + σ1)} = #{st1 ∩ st2}

is maximized. Without loss of generality, we can take the minimal σ1 for which this
holds.
2) In the same way, in the second step we take a value 1 ≤ σ2 ≤ L for which

q2 = #{(st1 ∪ st2) ∩ st3} = #{(st1 ∪ st2) ∩ ((st1 + σ1) + σ2)}

is maximized. As we know, the step σ1 here is fixed by the previous step. We
continue this procedure until an overdefined system is obtained.

In other words, the values qj are determined by the maximum function over σi,
for 1 ≤ σi ≤ L, i.e., we choose the steps σi for which we have:

qj = max
1≤σj≤L

#

{
j∪
i=1

sti ∩ {(st1 +
j−1∑
i=1

σi) + σj}

}
, (4.10)

where
∑j−1

i=1 σi is fixed and j = 1, . . . , c∗ − 1. Hence, the function max1≤σj≤L used
in (4.10) means that we are choosing σi so that the maximal intersection of stj+1

with all previous LFSR states st1 , . . . , stj (in terms of cardinality) is achieved. This
mode of GFSGA∗ we denote by GFSGA∗

(1).
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4.3.4 GFSGA∗
(2) mode of attack

Another mode of GFSGA∗, based on the use of sampling distances that correspond
to the differences between consecutive tap positions, is discussed in this section. The
selection of steps σi and the calculation of repeated bits is performed as follows..

For a given set of tap positions I0 = {l1, . . . , ln}, let D = {d1, . . . , dn−1} be the
corresponding set of differences between the consecutive tap positions. The sequence
of sampling distances σi between the observed outputs wti and wti+1 is defined as:

σ1+p(n−1) = d1,

σ2+p(n−1) = d2,
...

σn−1+p(n−1) = dn−1,

(4.11)

for p = 0, 1, 2, . . . . That is, the first n−1 sampling distances are taking values exactly
from the set D so that σ1 = d1, σ2 = d2, . . . , σn−1 = dn−1. Then, the next n − 1
sampling distances are again σn = d1, σn+1 = d2, . . . , σ2n−2 = dn−1, and so on. This
mode of the GFSGA∗ we denote as GFSGA∗

(2). For this mode, using Proposition
4.3.3, we are able to calculate a lower bound on the number of repeated equations
for every sampling step. Recall that at some sampling instance tj there are some

repeated bit(s) if and only if σ(j−i) =
∑j

h=j−i σh, i = 0, 1, . . . , j − 1, is equal to
some

∑m
p=r dp = lm − lr, for some 1 ≤ r ≤ m ≤ n − 1. In addition, if in the same

column in the scheme of differences (which is equivalent to considering a fixed r and
all the values m ≥ r) we have more matchings σ(j−i) =

∑m
p=r dp, then only one bit

is counted.
Hence, taking the first n − 1 sampling steps to be σ1 = d1, σ2 = d2, . . . , σn−1 =

dn−1, the scheme of differences (constructed for our set D = {d1, . . . , dn−1}) and
Proposition 4.3.3 imply that q1 ≥ 1, since at least σ1 = d1 is in Col. 1. Then q2 ≥ 2,
since we have σ(2−0) = σ(2) = σ2 is equal to d2 in Col. 2., and σ(2−1) = σ(1) = σ1+σ2
is equal to d1 + d2 in Col. 1. Continuing this process we obtain q3 ≥ 3, . . . , qn−1 ≥
n− 1, which in total gives at least

1 + 2 + . . .+ (n− 1) =
n(n− 1)

2

repeated equations for the first n − 1 observed outputs. In the same way, at least
n(n−1)

2 of bits are always repeated if further sampling at n − 1 time instances is
performed in accordance to (4.11). For instance, when p = 1 in (4.11) we have
σn = d1. In general, for 1 ≤ i ≤ n − 1 and p ≥ 0 we have qi+p(n−1) ≥ i, where the
sampling steps are defined by (4.11). We conclude this section with the following
remarks.

Remark 4.3.4 Both GFSGA∗
(1) and GFSGA∗

(2) depend less on the placement of
the tap positions in comparison to GFSGA. Indeed, for both modes the sampling
distances σi are selected with respect to a given placement of tap positions but re-
gardless of what this placement in general might be. These modes are therefore more
useful for cryptanalytic purposes rather than to be used in the design of an optimal
allocation of tap positions (given the length of LFSR and the number of taps).



Optimizing the placement of tap positions 95

Remark 4.3.5 In the case of GFSGA where we have equal distances between the
observed outputs, one may notice that the sequence of numbers ri = #Ii is always
an increasing sequence. On the other hand, the sequence of numbers qi = #I∗i for
GFSGA∗ may not be increasing at all. In connection to Open problem 2, neither
GFSGA∗

(1) nor GFSGA∗
(2) automatically provides an optimal sequence of steps σi

(which would imply the minimization of T ∗
Comp.). This means that there exist cases

in which any of the modes GFSGA, GFSGA∗
(1) and GFSGA∗

(2) may outperform

the other two (cf. Table 4.8 and Table 4.9, Section 4.4.2).

4.4 Comparision between GFSGA, GFSGA∗(1) and GFSGA∗(2)

In this section we compare the performance of the three GFSGA modes when the tap
positions are selected (sub)optimally by using the algorithms proposed in Section
4.2. Moreover, the case when the set of differences D forms a full positive difference
set is also considered and compared to the algorithmic approach.

4.4.1 Overview of the algorithms for tap selection

As briefly mentioned in the introduction the concept of a full difference set, which
ensures that all the entries in the set of all pairwise differences are different, is not
a very useful criterion for tap selection. This is especially true when GFSGA-like
cryptanalysis is considered as shown in Section 4.4.2. The same applies to the set
of consecutive differences which may be taken to have mutually coprime entries
which still does not ensure a sufficient cryptographic strength. Thus, there is a
need for a more sophisticated algorithmic approach for designing (sub)optimally the
placement of n tap positions for a given length L of the LFSR. The main idea behind
the algorithms proposed in Section 4.2 is the use of the standard GFSGA mode with
a constant sampling rate for the purpose of finding (sub)optimal placement of tap
positions.

The proposed algorithms for the selection of tap positions use the design ratio-
nales that maximize the resistance of the cipher to the standard mode of GFSGA.
Instead of specifying the set I0, both methods aim at constructing the set D of con-
secutive differences which gives a low number of repeated equations (confirmed by
computer simulations) for any constant sampling distance σ, which implies a good
resistance to GFSGA-like methods. In both algorithms a quality measure for the
choice of tap positions is the request that the optimal step of the GFSGA attack is
as small as possible. The selection of tap positions itself is governed by the general
rule, which is achieving co-prime differences between the tap positions (Step A) to-
gether with distributing taps all over the register (thus maximizing

∑n−1
i=1 di ≤ L−1,

where di = li+1 − li, I0 = {l1, . . . , ln} being a set of tap positions).

The first algorithm is designed to deal with situations when the size D is not
large (say #D ≤ 10). In this case the algorithm performs an exhaustive search of
all permutations of the set D (Step B) and gives as an output a permutation which
ensures a maximal resistance to GFSGA. The complexity of this search is estimated
as O(n! · K), where K corresponds to the complexity of calculation TComp. for all
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possible σ.

The main question which arises here is whether the performance of the men-
tioned algorithms can be improved by using some of the new presented modes in
the previous sections. Unfortunately, the main reasons why GFSGA can not be
replaced by GFSGA∗

(1) or GFSGA
∗
(2) are the following:

1. Apart from Remark 4.3.4, due to their low dependency on the choice of tap
positions, neither GFSGA∗

(1) norGFSGA
∗
(2) mode (through Proposition 4.3.3)

simply do not provide enough information that can be used to construct the
tap positions with high resistance to GFSGA attacks in general. It is clear
that the presented algorithms above only give a (sub)optimal placement of
tap positions due to impossibility to test exhaustively all permutations of D
and additionally to perform testing of all difference sets D is infeasible as well.
An optimal placement of tap positions providing the maximum resistance to
GFSGA attacks leads us back to Open problem 2.

2. One may notice that the main role of the constant step σ used in the design
of the algorithm in Section 4.2 is to reduce the repetition of bits in general,
since σ may take any value from 1 to L. This reduction of the repeated bits
is significantly larger when using the constant step than any variable step of
sampling in GFSGA∗

(1) or GFSGA∗
(2), due to their specific definitions given

by (4.10) and (4.11).

Notice that some criteria for tap selection regarding the resistance to the inversion
attacks were proposed in [42]. The difference between the first and last tap position
should be near or equal to L − 1, which turns out to be an equivalent criterion
of maximization of the sum

∑n−1
i=1 di ≤ L − 1, as mentioned above. Generalized

inversion attacks [43] performed on filter generators, with the difference between the
first and last tap position equal toM (= ln− l1), have the complexity approximately
2M [43]. Hence, taking that

∑n−1
i=1 di = L−1, where di = li+1−li (with tap positions

I0 = {l1, . . . , ln}), one of the criteria which thwarts (generalized) inversion attacks
is easily satisfied.

In addition, one may also use a λth-order full positive difference set [42] for tap
selection, that is, the set of tap positions I0 = {l1, . . . , ln} with as small as possible
parameter λ = max1≤σ≤M |I0∩(I0+σ)|. If λ = 1, then I0 is a standard full positive
difference set. As illustrated in Table 4.9, to provide a high resistance to GFSGA-
like attacks, the set of tap positions may be a λth-order full positive difference set
with higher values of λ. Note that in the case of inversion attacks, smaller λ is
required. In other words, (λth-order) full positive difference sets do not provide the
same resistance to inversion attacks and GFSGA-like attacks, when the selection of
tap positions is considered.

4.4.2 Full positive difference sets versus algorithmic choice

In this section, we compare the performance of the three GFSGA modes by applying
these attacks to a cipher whose tap positions are chosen using the algorithms given
in Section 4.2 and in the case the tap positions form suitably chosen full positive
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difference sets, respectively. We analyze the resistance to GFSGA attacks (using
these two methods for tap selection) and conclude that full positive difference sets
do not give an optimal placement of tap positions, i.e., they do not provide a maximal
resistance to GFSGA-like cryptanalysis.

It is not difficult to see that the set of rules valid for our algorithms essentially
require that we choose a set of tap positions I0 so that the corresponding set of
consecutive differences D, apart from having different elements (possibly all), is also
characterized by the property that these differences are coprime and in a specific
order. The situation when taps are not chosen optimally, implying a high divisibility
of the elements in D, is illustrated in Table 4.7. Denoting by TComp., T

∗
Comp.(1)

and T ∗
Comp.(2)

the running time of the GFSGA, GFSGA∗
(1) and GFSGA∗

(2) mode,

respectively, it is obvious that GFSGA is superior to other modes in most of the
cases, as indicated in Table 4.7. In Table 4.8, we compare the performance of the

Table 4.7: Complexity comparision of all three GFSGA modes for ”bad” tap choices.

L (n,m) D TComp. T ∗
Comp.(1)

T ∗
Comp.(2)

80 (9,2) {12, 3, 6, 12, 6, 4, 24, 12} 243.97 267.97 262.97

120 (11,3) {5, 10, 15, 4, 5, 10, 5, 15, 20, 25} 237.7 263 269.7

160 (15,6) {14, 7, 3, 14, 7, 7, 14, 7, 14, 28, 7, 14, 14, 7} 232.97 232.97 250.97

three modes, if the tap positions (sets of differences D) are chosen suboptimally
according to rules and algorithms given in Section 4.2. Thus, if the tap positions

Table 4.8: Complexity comparison of GFSGA modes - algorithmic selection of taps.

L (n,m) D TComp. T ∗
Comp.(1)

T ∗
Comp.(2)

80 (7,2) {5, 13, 7, 26, 11, 17} 269.97 263.97 259.97

120 (13,3) {5, 7, 3, 13, 6, 11, 5, 11, 7, 13, 21, 17} 299.7 2104 278.7

160 (17,6) {5,11,4,3,7,9,1,2,23,15,5, 13, 7, 26, 11, 17} 286.97 279.97 241.97

200 (21,7) {3, 7, 9, 13, 18, 7, 9, 1, 2, 9, 1, 2, 23, 15, 5, 13, 7, 26, 11, 17} 2108.9 296.93 268.93

are chosen according to the rules and algorithms given in Section 4.2, it turns out
that GFSGA∗

(1) and GFSGA
∗
(2) modes are more efficient than GFSGA.

In Table 4.9, we compare the resistance of a nonlinear filter generator (specified
by L, n and m) to different GFSGA modes regarding the design rationales behind
the choice of tap positions. Namely, for the same cipher (in terms of the parameters
above), the attack complexities are evaluated for tap positions that form (suitable)
full positive differences sets and, respectively, for the choices of tap positions given
in Table 4.8 (with a slight modification adopted for different parameters L, n and
m). In general, the algorithmic approach gives a higher resistance to GFSGA-like
cryptanalysis.

Remark 4.4.1 Table 4.9 also indicates that an algorithmic choice of tap positions
may provide significantly better resistance against GFSGA-like attacks compared to
full positive difference sets (for various parameters n,m and L).
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Table 4.9: Complexity comparision - full positive difference sets versus algorithmic
choice.

L (n,m) Tap positions - Full positive difference sets TComp. T ∗
Comp.(1)

T ∗
Comp.(2)

80 (7,2) {1, 3, 8, 14, 22, 23, 26} 235.97 237.97 257.97

120 (13,3) {1, 3, 6, 26, 38, 44, 60, 71, 86, 90, 99, 100, 107} 286.72 290.72 295.72

160 (15,4) {1, 5, 21, 31, 58, 60, 63, 77, 101, 112, 124, 137, 145, 146, 152} 296.97 2105.97 2116.97

200 (17,5) {1, 6, 8, 18, 53, 57, 68, 81, 82, 101, 123, 139, 160, 166, 169, 192, 200} 2113.93 2123.93 2132.93

L (n,m) Set of consecutive differences D -algorithmic choice λ TComp. T ∗
Comp.(1)

T ∗
Comp.(2)

80 (7,2) {5, 13, 7, 26, 11, 17} 1 269.97 263.97 259.97

120 (13,3) {5, 7, 3, 13, 6, 11, 5, 11, 7, 13, 21, 17} 3 299.7 2104 278.7

160 (15,4) {5, 3, 7, 1, 9, 17, 15, 23, 5, 13, 7, 26, 11, 17} 3 2114.97 2124.97 2101.97

200 (17,5) {7, 13, 10, 13, 7, 1, 9, 17, 15, 23, 5, 13, 7, 26, 11, 17} 3 2120.93 2120.93 2113.93

4.4.3 Further examples and comparisons

In this section we provide a few examples which illustrate the sampling procedure
and specification of repeated bits for the GFSGA∗

(1) and GFSGA
∗
(2) modes. In both

cases we consider the set of consecutive differences D = {5, 13, 7, 26, 11, 17} (most of
the differences being prime numbers) which corresponds to the set of tap positions
I0 = {1, 6, 19, 26, 52, 63, 80}. We first consider the GFSGA∗

(1) mode.

Example 4.4.2 Let the set of tap positions be given by I0 = st1 = {1, 6, 19, 26, 52, 63, 80},
where L = 80 and F : GF (2)7 → GF (2)2 (n = 7, m = 2). The set I0 is chosen
according to the algorithms in Section 4.2 and it is most likely an optimal choice of
tap positions for the given parameters L, n and m. Recall that the variable sampling
steps σi for GFSGA

∗
(1) are determined by the maximum function used in relation

(4.10). In Table 4.10, using the relation (4.10) we identify the repeated state bits un-
til the inequality nc∗ > L+R∗ is satisfied for some c∗. The total number of repeated
equations over all observed outputs is R∗ =

∑c∗−1
k=1 qk = 67, where the number of

outputs is c∗ = 22. Note that the first observed output wt1 has the preimage space of
full size, and thus there are no repeated bits. Since we chose st1 = I0, the positions
of repeated bits at the corresponding tap positions can be found and calculated as
follows:

• The step σ1 = 5 gives the maximal intersection between st1 and st2 = {st1 +
5} = {6, 11, 24, 31, 57, 68, 85}, i.e., we have

max
1≤σ1≤80

#{st1 ∩ (st1 + σ1)} = max
1≤σ1≤80

#{st1 ∩ st2} = {6},

which yields q1 = 1. The size of the preimage space is |Swt2 | = 2n−m−q1 = 24.

• Assuming the knowledge of xt2 ∈ Swt2 and xt1 ∈ Swt1 , we search for an optimal
shift σ2 of st2 so that q2 = #{{st1 ∪ st2}∩ {st2 +σ2}} is maximized. Note that
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Table 4.10: Repeated bits attained by sampling steps σi defined by (4.10).

i Sets I∗
i (where (k + 1) ↔ sk) qi σi

1 {6} 1 5
2 {19,24} 2 13
3 {26, 31, 44} 3 7
4 {52, 57, 70, 77} 4 26
5 {63, 68, 81, 88, 114} 5 11
6 {80, 85, 98, 105, 131, 142} 6 17
7 {85, 103} 2 5
8 {114, 147} 2 11
9 {131, 164, 175} 3 17
10 {118, 136} 2 5
11 {125, 138} 2 2
12 {131, 136, 182} 3 11
13 {138, 143, 156} 3 7
14 {164, 169, 182, 189} 4 26
15 {175, 180, 193, 200, 226} 5 11
16 {192, 197, 210, 217, 243, 254} 6 17
17 {197, 215} 2 5
18 {199, 217} 2 2
19 {210, 215, 261} 3 11
20 {217, 222, 235} 3 7
21 {243, 248, 261, 268} 4 26

at this point, {st1 + σ1} = st2 is fixed. This gives σ2 = 13 and q2 = 2. The set
of repeated bits is

max
1≤σ2≤80

#{{st1 ∪ st2} ∩ {st2 + σ2}} = {19, 24},

since st3 = {st2 + σ2} = {19, 24, 37, 44, 70, 81, 98}. The preimage space has the
cardinality |Swt3 | = 2n−m−q2 = 23.

In this way, we can completely determine the preimage spaces and the positions
of the repeated bits. Since for i ∈ {5, 6, 15, 16} we have qi ≥ n − m = 5, then
2n−m−qi = 1 (by convention). Once the other values qj have been computed, for
j ∈ {1, 2, . . . , 21}\{5, 6, 15, 16}, the attack complexity can be estimated as

T ∗
Comp.(1)

= 2n−m × 2n−m−q1 × . . .× 2n−m−q21 × L3 ≈ 263.97.

In the case of GFSGA, an optimal choice of the sampling distance is any σ ∈
{1, 13, 37}. Each of these sampling steps requires c = 16 observed outputs and gives
R = 24 repeated equations, where the set of all repeated bits is given by

{r1, r2, . . . , r15} = {0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4}.

The values ri = 0, i = 1, 2, 3, 4, mean that the corresponding sets Ii are empty. The
attack complexity of GFSGA is then estimated as TComp. ≈ 269.97.

Example 4.4.3 Now, for the same function F and the set of tap positions I0 = st1

(or the set of differences D = {5, 13, 7, 26, 11, 17}), we illustrate the GFSGA∗
(2)

mode. In Table 4.11, we show all repeated bits for the sampling steps σi of the
GFSGA∗

(2) mode, which are defined by relation (4.11). Recall that the steps σi in
this case are defined so that every n − 1 = 6 outputs are at distances di ∈ D. By



100 4.5 Employing GFSGA in other settings

Table 4.11: Repeated bits attained by sampling steps σi defined by (4.11).

i Sets I∗
i (where (k + 1) ↔ sk) qi σi

1 {6} 1 5
2 {19,24} 2 13
3 {26, 31, 44} 3 7
4 {52, 57, 70, 77} 4 26
5 {63, 68, 81, 88, 114} 5 11
6 {80, 85, 98, 105, 131, 142} 6 17
7 {85, 103} 2 5
8 {98, 103} 2 13
9 {105, 110, 123} 3 7
10 {131, 136, 149, 156} 4 26
11 {142, 147, 160, 167, 193} 5 11
12 {159, 164, 177, 184, 210, 221} 6 17
13 {164, 182} 2 5
14 {177, 182} 2 13
15 {184, 189, 202} 3 7
16 {210, 215, 228, 235} 4 26
17 {221, 226, 239, 246, 272} 5 11
18 {238, 243, 256, 263, 289, 300} 6 17
19 {243, 261} 2 5
20 {256, 261} 2 13
21 {263, 268, 281} 3 7

formula (4.7), the complexity of GFSGA∗
(2) is estimated as T ∗

Comp.(2)
≈ 259.97, and

thus this mode outperforms both GFSGA and GFSGA∗
(1). The total number of

repeated equations in this case is given by R∗ = 72, for c∗ = 22 observed outputs.
Notice that both modes GFSGA∗

(1) and GFSGA∗
(2) required in total 22 outputs to

construct an overdefined system of linear equations (nc∗ > L+R∗).

4.5 Employing GFSGA in other settings

The main limitation of GFSGA-like attacks is their large complexity when applied
to standard filtering generators that only output a single bit each time the cipher
is clocked. In addition, this generic method cannot be applied in a straightforward
manner in the cryptanalysis of ciphers that use NFSRs. In this section, we discuss
the possibility of improving the efficiency and/or applicability of GFSGA with vari-
able sampling step for the above mentioned scenarios. It will be demonstrated that
GFSGA with variable sampling step may be employed in combination with other
cryptanalytic methods to handle these situations as well.

4.5.1 GFSGA applied to single-output nonlinear filter generators

The time complexity of GFSGA with variable sampling step is given by (4.7), i.e.,

T ∗
Comp. = 2n−m × 2n−m−q1 × . . .× 2n−m−qc∗−1 × L3,

and clearly when m = 1 the complexity becomes quickly larger than the time com-
plexity of exhaustive search (for some common choices of the design parameters
n and L). Based on annihilators in fewer variables of a nonlinear filtering function
f(x1, . . . , xn), Jiao et al. proposed another variant of FSGA in [57]. The core idea of
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this attack is to reduce the size of the preimage space via annihilators in fewer vari-
ables g1(xj1 , . . . , xjd) and g2(xj1 , . . . , xjd) such that f(x1, . . . , xn)g1(xj1 , . . . , xjd) = 0
and (f(x1, . . . , xn) ⊕ 1)g2(xj1 , . . . , xjd) = 0, where {j1, . . . , jd} ⊂ {1, . . . , n}. It was
shown that the time complexity of this attack is given by

T∆
Comp. = ||Sg1=0||c1 × ||Sg2=0||c2 × Lω,

where ||Sgi=0||, for i = 1, 2, is the size of preimage space of the annihilator gi
(restricted to the variables {j1, . . . , jd}), c∗ = ⌈Ld ⌉ is the number of sampling steps,
c∗ = c1+ c2 and ω = log2 7 ≈ 2.807 is the exponent of Gaussian elimination. In [57],
it was also shown that this variant of FSGA could be applied to single-output filter
generators. For instance, letting L = 87 and using a nonlinear Boolean functions
f(x1, . . . , x6) as in “Example 2” in [57], it was demonstrated that the time complexity
of this attack is only about 280 operations, whereas the time complexity of FSGA is
about 287 operations in [57].

In a similar manner, the same approach leads to a reduction of time complexity
when GFSGA with variable sampling step is considered. For instance, let the set
of tap positions be given by I0 = st1 = {1, 6, 19, 26, 52, 63} corresponding to the
inputs {x1, x2, x3, x4, x5, x6}, respectively. Using the filtering function f : F6

2 → F2

of “Example 2” in [57], one can deduce that ||Sg1(x2,x4,x6)=0|| = ||Sg2(x2,x4,x6)=0|| =
5. Actually, we can only consider the tap positions {6, 26, 63} with full positive
difference set {20, 37}. Moreover, let us use the variable sampling steps σi = 20 and
σi+1 = 37, alternately. In such a case, the preimage space of annihilator can be
further reduced to ||S∗

g1(x2,x4,x6)=0|| = ||S
∗
g2(x2,x4,x6)=0|| ≈ 2.5 by using the repeated

bits. The time complexity of GFSGA with variable sampling steps is about 5 ×
2.542 × 872.807 ≈ 276.32 < 280 operations. In particular, the number of variable
sampling points is 43 since at the first sampling point 3 linear relations are obtained
and the remaining 42 sampling points give 2× 42 = 84 linear relations, thus in total
3 + 84 = 87 = L linear equations are derived. It directly means that our GFSGA
with variable sampling step outperforms the variant of FSGA in [57].

Due to the small sized parameters L and n the above example does not illustrate
a full potential of using GFSGA in cryptanalysis of single-output filtering genera-
tors. Its purpose is rather to show that GFSGA and its variants can be efficiently
combined with other cryptanalytic methods. The most promising approach seems
to be an interaction of GFSGA with algebraic attacks using small degree annihila-
tors of restrictions of the filtering function f . Indeed, the use of repeated bits not
only reduces the preimage space it essentially also fixes a subset of input variables
and therefore these restrictions of f may have annihilators of very low degree. This
implies the existence of additional low degree equations in state bits which may
be either used for checking the consistency of the linear system and after all (for
sufficiently large number of fixed variables) these equations become linear. It is
beyond the scope of this paper to investigate further the performance of this com-
bined method but we believe that this kind of attack may become efficient against
single-output filter generators with standard choice of the parameters L and n.
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4.5.2 Applying GFSGA to NFSR-based ciphers

A current tendency in the design of stream ciphers, motivated by efficient hardware
implementation, is the use of NFSRs in combination with (rather simple) nonlinear
filtering function. For instance, this idea was employed in the design of the famous
stream ciphers Trivium [11] and Grain family [1]. Apparently, none of the GFSGA
variants can be applied for recovering the initial state of these ciphers but rather
for deducing certain internal state of the cipher. In this scenario, the complexity of
GFSGA is directly related to the complexity of solving an overdefined system of low
degree equations rather than a system of linear equations. More precisely, assuming
that the length of NFSR is L bits, the algebraic degree of its update function is
r, and the filtering function F : GF (2)n → GF (2)m, then the time complexity of
GFSGA is given by

T ∗∗
Comp. = 2n−m × 2n−m−q1 × . . .× 2n−m−qc∗−1 ×Dω, (4.12)

where D =
∑e×r

i=0

(
L
i

)
, ω = 2.807 is the coefficient of Gaussian elimination, c∗ is

the number of sampling steps, and e is closely related to the parameters n,m,L, c∗

and specified tap positions. The complexity being much larger than for LFSR-based
ciphers, due to the term Dω, makes GFSGA methods practically inefficient.

However, one may mount another mode of internal state recovery attack which
employs the GFSGA sampling procedure, but without solving systems of equations
at all. More precisely, this new type of internal state recovery attack also employs
the sampling of outputs within a certain sampling window which then allows us to
efficiently recover a certain portion of internal state bits from the reduced preimage
spaces corresponding to the observed outputs. To describe the attack in due detail,
let us denote by p the distance between the last entry of NFSR (where NFSR is
updated) and the tap position closest to this registry cell. We assume that this
distance satisfies the inequality (p − 1) × n > L, where n is the number of inputs
(tap positions) of a filtering function F : Fn2 → Fm. Note that this condition implies
that either p or n are relatively large. In such a case, let us choose the constant
sampling steps σi = 1, for i = 1, . . . , p − 1, and assume the adversary can directly
recover, say Rp internal state bits (in total), at these p − 1 sampling instances.
The remaining L − Rp internal state bits are still unknown and the adversary can
exhaustively guess these bits to recover the whole internal state. The process of
identifying the correct internal state is as follows. For each possible internal state
candidate, a portion of L keystream bits Zt = (z1, . . . , zL) at time instance t is
determined using a given encryption algorithm. Then, comparing L keystream bits
Z∗t = (z∗1 , . . . , z

∗
L) at time instance t generated by the cipher (with unknown secret

internal state), we can distinguish the correct and wrong internal states by directly
checking if Zt = Z∗t. In particular, if Zt = Z∗t, then the guessed internal state
would be the correct one, otherwise another internal state candidate is considered.
Consequently, the time complexity of this internal state recovery attack, assuming
that remaining L−Rp bits are guessed, is given by

T ∗∗
Comp. = 2n−m × 2n−m−q1 × . . .× 2n−m−qp−2 × 2L−Rp . (4.13)

The memory complexity of this attack is only (p− 1)×n× 2n−1 +L bits, which are
used to save all the element of preimage spaces and L keystream bits.
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The following example illustrates an application of this approach to an NFSR-
based cipher that largely resembles the NFSR used in the Grain-128 cipher. In
particular, the process of recovering Rp internal state bits is described more thor-
oughly.

Example 4.5.1 Let L = 128, n = 8,m = 1. The update function of NFSR is
defined below (a slightly modified variant of the NFSR used in Grain-128 [1] without
cubic and quartic terms):

bt+128 = 1⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84.

The set of tap positions which we consider is given by I0 = st1 = {l1, . . . , l8} =
{1, 7, 21, 26, 52, 67, 89, 105}, and it corresponds to a full positive difference set {6, 14, 5,
26, 15, 22, 16}. The distance between the last tap position and the NFSR update po-
sition is p = 128 − 105 = 23. This means that if we consider an updated internal
state bit (the first nonlinear bit) and constant sampling rate σi = 1, this bit will
appear at the tap position after 23 sampling instances. At the same time, employing
the fact that many of these bits appear at some tap positions (thus using the idea of
GFSGA), the adversary directly obtains many bits corresponding to 128-bit internal
state as follows:

1. By relation (4.5) and sampling steps described in Section 4.3, collecting all re-
peated bits over p−1 observed outputs (which are on consecutive distances σi = 1),
we determine all preimage spaces Swti (i = 1, . . . , p− 1) and their sizes.

2. Our approach implies that at the sampling instance i we recover (essentially guess)
n − qi internal state bits which must match to one of the 2n−qi−1 preimages.
It is important to note that the bits which come from preimage spaces are the
only candidates to be an internal state of the registry, since they are precisely
determined by consecutive repetitions over p− 1 observed outputs.

Table 4.12 specifies the number of recovered internal state bits, and the sizes of
corresponding preimage spaces. Denoting by Rp the total number of recovered bits,
we can see (from Table 4.12) that Rp = 8+8×4+7+6×8+5+4+3×6 = 122 < 128,
where these bits are calculated using (4.5), for σi = 1, (i = 1, · · · , 22).

The adversary can further guess the remaining L−Rp = 128− 122 = 6 internal
state bits, and thus the time complexity, using (4.13), of this attack is about

T ∗∗
Comp. = 27+7×4+6+5×8+4+3+2×6 × 26 = 2106 < 2128.

The data complexity of this attack is only about 22 + 128 = 150 keystream bits.
The memory complexity is upper bounded by 22 × 8 × 27 + 128 < 215 bits, which
corresponds to storing at most 27 elements from preimage spaces and 128 keystream
bits. The success rate is close to one since there are 27+7×4+6+5×8+4+3+2×6+6 =
2106 internal state candidates in total and therefore only a small portion of about
2106 × 2−128 = 2−22 < 1 wrong internal state candidates can pass the test.
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Table 4.12: Recovered bits obtained by sampling step σi = 1

i Recovered bits of internal state qi The size of preimage space
1 8 0 27

2 8 0 27

3 8 0 27

4 8 0 27

5 7 1 26

6 6 2 25

7 6 2 25

8 6 2 25

9 6 2 25

10 6 2 25

11 6 2 25

12 6 2 25

13 6 2 25

14 5 3 24

15 4 4 23

16 3 5 22

17 3 5 22

18 3 5 22

19 3 5 22

20 3 5 22

21 3 5 22

Example 4.5.1 demonstrates that GFSGA-like attacks can be applied to NFSR-
based stream ciphers without employing any structural properties of the filtering
function. The following example illustrates an application of GFSGA to a hybrid
NFSR/LFSR-based cipher whose design is very similar to Grain-128 cipher. The
major difference is the key length, since our variant assumes that the key length is
L = 256 bits rather than 128-bit key used in Grain-128 [1].

Example 4.5.2 Let L = 256, n = 17,m = 1. The internal state of our variant of
Grain-128 consists of one 128-bit LFSR and one 128-bit NFSR, whose state bits are
denoted by (s0, · · · , s127) and (b0, · · · , b127), respectively. Their update functions are
defined respectively as follows (see also [1]):

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96 (4.14)

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84

For this variant of Grain-128 cipher we consider the same set of tap positions
that are used in the standard Grain-128 cipher, i.e., the tap position are A =
{2, 12, 15, 36, 45, 64, 73, 89, 95} for the NFSR and B = {8, 13, 20, 42, 60, 79, 93, 95}
for the LFSR. Note that the largest tap index in A is 95, and the NFSR is updated
at position 128, i.e., their distance is p = 128 − 95 = 33. Similarly as in Example
4.5.1, sampling at the constant rate σi = 1, Table 4.13 specifies the number of re-
covered (repeated) bits of internal state, and the size of preimage spaces. Thus, the
adversary can directly obtain 17 + 227 = 244 < 256 internal state bits. The remain-
ing L−Rp = 256−244 = 12 internal state bits can then be guessed, which then leads
to a recovery of the whole 256-bit internal state. Therefore, the time complexity of
this attack is about

T ∗∗
Comp. = 216+196 × 212 = 2224 < 2256.
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Table 4.13: Repeated bits attained by sampling step σi = 1

i Recovered bits of internal state qi The size of preimage space
1 17 0 216

2 16 1 215

3 15 2 214

4 15 2 214

5 14 3 213

6 13 4 212

7 12 5 211

8 12 5 211

9 10 7 29

10 9 8 28

11 9 8 28

12 9 8 28

13 9 8 28

14 8 9 27

15 8 9 27

16 7 10 26

17 7 10 26

18 6 11 25

19 4 13 23

20 4 13 23

21 3 14 22

22 2 15 2
23 2 15 2
24 2 15 2
25 2 15 2
26 2 15 2
27 2 15 2
28 2 15 2
29 2 15 2
30 2 15 2
31 2 15 2∑

= 227
∏

= 2196

The above example demonstrates that GFSGA-like cryptanalysis is also applicable to
hybrid NFSR/LFSR-based ciphers. In particular, it is shown that the tap positions
have a very important impact on the security of NFSR/LFSR-based ciphers.

Remark 4.5.3 In difference to the time-memory-data trade-off attacks or algebraic
attacks, this attack has more favorable data and memory complexity. For instance,
in Example 4.5.2, the data complexity of this attack is only about 32+229 = 261 ≈ 28

keystream bits. Namely, in the first step we use 32 sampling instances to determine
all specified preimage spaces and their sizes under constant sampling rate σi = 1,
and in the second step we need to use about 229 fresh keystream bits to determine
the correct state. Notice that the memory complexity of this attack is only about
32 × 17 × 216 + 256 ≈ 225 bits. On the other hand, if the filtering function is
f : GF (2)17 → GF (2)m,m > 4, then the time complexity of this attack is less than
2128 operations. It implies that this attack would outperform the time-memory-data
trade-off attack for m > 4.

4.5.3 Grain-128 tap selection

We have already remarked that the tap selection for both SOBER-t32 and SFINKS
was not optimal with respect to their resistance to GFSGA cryptanalysis (Section
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4.2). We show that the same is true when Grain-128 is considered, thus there exist
better selections that ensure greater resistance to GFSGA-like cryptanalysis.

We assume that either LFSR or NFSR, whose tap positions are given in Ex-
ample 4.5.2, of Grain-128 are used as state registers in a filter generator and we
apply different modes of GFSGA to these schemes. In the case when the LFSR of
Grain-128 is employed in such a scenario then the complexities of the three different
modes of GFSGA are given as,

Table 4.14: Time complexity of different modes of GFSGA on LFSR of Grain-128

TComp. T ∗
Comp.(1)

T ∗
Comp.(2)

2108 2125 2118

Using our algorithm for finding a (sub)optimal placement of tap positions, in-
stead of using the set A = {2, 12, 15, 36, 45, 64, 73, 89, 95}, we find another set of tap
positions given as {1, 16, 27, 54, 71, 95, 108, 127} which gives the following complexi-
ties,

TComp. = 2129, T ∗
Comp.(1)

= 2132, T ∗
Comp.(2)

= 2123.

A similar improvement can also be achieved when the tap positions of NFSR in
Grain-128 are considered. In this case the original placement of tap positions (the
set B in Example 4.5.2) gives the following complexities,

Table 4.15: Time complexity of different modes of GFSGA on NFSR of Grain-128

TComp. T ∗
Comp.(1)

T ∗
Comp.(2)

2114 2125 2122

On the other hand, our algorithm suggest somewhat better allocation of these
taps given by {3, 10, 29, 42, 59, 67, 88, 103, 126}, which then induces the following
complexities of the three GFSGA modes,

TComp. = 2130, T ∗
Comp.(1)

= 2139, T ∗
Comp.(2)

= 2125.





Chapter 5

Estimating the algebraic
properties of Boolean functions
for large n

The security of these LFSR-based stream ciphers heavily relies on the algebraic
properties of the used Boolean function. Over the last decades, Boolean functions
satisfying some particular cryptographic properties (such as high nonlinearity, high
algebraic immunity (AI) etc.) have been studied [13, 38, 127, 124]. The concept
of algebraic immunity for an arbitrary Boolean function f was introduced in [79]
and it reflects the resistance of a Boolean function f against AA. More precisely,
this criterion measures the minimum algebraic degree of its annihilators, i.e., AIf =
mindeg(g){A(f), A(f ⊕ 1)}, where A(f) = {g : fg = 0, g ̸= 0} and A(f ⊕ 1) = {g :
(f ⊕ 1)g = 0, g ̸= 0}. It was shown that an optimal resistance of a Boolean function
f against AA is achieved if AIf = ⌈n/2⌉. On the other hand, a Boolean function
with an optimal AI still cannot adequately ensure a good resistance against FAA
that use the existence of the function pairs (g, h) (with algebraic degree deg(g) and
deg(h) respectively) such that fg = h and deg(g)+deg(f) is not large [27, 81]. The
value of deg(g)+deg(h) measures the resistance of a Boolean function against FAA.
An optimal resistance of Boolean functions (used in LFSR-based stream ciphers)
against FAA implies that the minimum values of deg(g) + deg(h) is always equal to
n for any function pairs (g, h) such that fg = h, though such functions are very rare.
In addition, it was shown that for balanced Boolean functions deg(g) + deg(h) ≥ n
if and only if either n = 2k or n = 2k + 1 for some positive integer k [67].

As mentioned in Chapter 1, the first algorithm for determining the existence of
annihilators of degree d of a Boolean function with n variables, with time complexity
about O(D3) (D =

∑d
i=0

(
n
i

)
), was proposed in [25]. At FSE 2006, an algorithm

for checking the existence of annihilators or multiples of degree less than or equal
to d was introduced in [30] with time complexity of about O(nd) operations for
an n-variable Boolean function. At EUROCRYPT 2006, based on the multivariate
polynomial interpolation, Armknecht et al. [3] proposed an algorithm for computing
AI = d of a Boolean function with n variables [3] requiring O(D2) operations, where

107
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D =
∑d

i=0

(
n
i

)
. Moreover, an algorithm for determining the immunity against FAA

was also presented running in time complexity of about O(D2E) operations for an n-
variable Boolean function, where E =

∑e
i=0

(
n
i

)
and d is generally much smaller than

e, (deg(g), deg(h)) = (d, e). At ACISP 2006, an algorithm to evaluate the resistance
of Boolean functions against FAA was developed in [8], whose time complexity is
about O(DE2+D2) operations for an n-variable Boolean function. At INDOCRYPT
2006, based on the Wiedemann’s algorithm, Didier proposed a new algorithms to
evaluate the resistance of an n-variable Boolean functions against AA and FAA in
[29] with time complexity of about O(n2nD) operations and a memory complexity
of about O(n2n). Finally, Jiao et al. [56] revised the algorithm of [3] to compute the
resistance against AA and FAA, reducing the complexity to O(D2±ε) operations,
where ε ≈ 0.5 and D is the same as above.

The purpose of this chapter is to present an efficient probabilistic algorithm for
determining the resistance of a random Boolean function against AA and FAA. A
suitable choice of input parameters gives a high success rate of the algorithm so that
the estimates are correct with probability very close to one. The algorithm employs
partial linear relations, derived form the decomposition of an arbitrary nonlinear
Boolean function into many small partial linear subfunctions by using the disjoint
sets of input variables. A general probabilistic decomposition algorithm for nonlinear
Boolean functions is given along with the sufficient conditions regarding the existence
of low degree annihilators (or multipliers). This probabilistic algorithm provides a
new framework for estimating the resistance of Boolean function against AA and
FAA requiring only about O(n22n) operations (for an n-variable Boolean function),
thus offering much less complexity at the price of being probabilistic. The lower and
upper bound on AI and FAA that we derive appears to be very tight for randomly
selected Boolean functions thus giving a close estimate of the algebraic properties for
large n where due to computational complexity the deterministic algorithms cannot
be applied. Several examples are provided justifying the tightness of our bounds
when compared to the actual algebraic properties of a given function for relatively
small values of n for which the deterministic algorithms could be applied.

Results of this chapter are published in [120] and it is organized as follows. In
Section 5.1, a new concept of partial linear relations decomposition is introduced,
and then a general dissection algorithm for nonlinear Boolean functions is proposed.
An efficient algorithm for determining the resistance of Boolean functions (with
relatively large input variables n) against AA and FAA is descried in Section 5.2.

5.1 A probabilistic decomposition algorithm for nonlin-
ear Boolean functions

In this section, a probabilistic decomposition algorithm for nonlinear Boolean func-
tions which decomposes any Boolean functions into a set of partial linear relations
is discussed. This decomposition is generic, deterministic and valid for arbitrary
Boolean functions (fully specifying a given function) but it is not unique. The conse-
quence is that different choices of such a decomposition may yield different estimates
of algebraic properties, though since the number of these decompositions is not large
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the algorithm may exhaustively check for the best decomposition. For brevity, in
the result below we use the notation introduced by the following definition.

Definition 5.1.1 Let f ∈ Bn be a nonlinear Boolean function, and X = (x1, . . . , xn) ∈
GF (2)n, X ′

i = (xj1 , . . . , xji) ∈ GF (2)i, X ′′
n−i = (xji+1 , . . . , xjn) ∈ GF (2)n−i, where

{j1, . . . , ji} ⊂ {1, . . . , n}, {ji+1, . . . , jn} ⊂ {1, . . . , n} and {j1, . . . , ji}∩{ji+1, . . . , jn} =
∅. If by fixing X ′

i = a, the function f(a,X ′′
n−i) = fX′

i=a
(X ′′

n−i) is an (n− i)-variable
linear subfunction or a constant function, then fX′

i=a
(X ′′

n−i) is called a partial linear

relation with respect to a ∈ GF (2)i. The set of all partial linear relations with n− i
variables is denoted by Ln−i.

Theorem 5.1.2 Let X = (x1, . . . , xn) ∈ GF (2)n, and Di ⊆ {L(X ′′
n−i) | L(X ′′

n−i) =
c ·X ′′

n−i ⊕ b, c ∈ GF (2)n−i, b ∈ GF (2)}. Then given any nonlinear Boolean function

f ∈ Bn, there exist Bi ⊆ GF (2)i and B′
i = Bi × GF (2)n−i such that

∪n−1
i=1 B

′
i =

GF (2)n and B′
i1
∩ B′

i2
= ∅, (1 ≤ i ≤ n − 1, 1 ≤ i1 < i2 ≤ n − 1) so that f can be

decomposed and represented as below:

f(X) = f(X ′
i, X

′′
n−i) =

n−1∑
i=1

∑
σ(i)=(σ

(i)
j1
,...σ

(i)
ji

)∈Bi

 ji∏
s=j1

(xs ⊕ σ(i)s ⊕ 1)

 · f(σ(i), X ′′
n−i),(5.1)

where for any σ(i) ∈ Bi we have f(σ(i), X ′′
n−i) ∈ Di.

Proof: For any nonlinear Boolean function f ∈ Bn, for a given X ′
i = (xj1 , . . . xji) =

σ(i) ∈ GF (2)i, the restriction f(σ(i), X ′′
n−i) = fX′

i=σ
(i)(X ′′

n−i) is either a partial

linear relation or a nonlinear function. Let Bi = {X ′
i = σ(i) | f(σ(i), X ′′

n−i) ∈
Di, σ

(i) ∈ GF (2)i} be a collection of those σ(i) ∈ GF (2)i for which f(σ(i), X ′′
n−i)

is linear (affine) function in X ′′
n−i variables, where Bi may be empty. Moreover, if

some fixed X ′
i ∈ GF (2)i \ Bi, let X ′

i+1 = (X ′
i, xji+1), then either X ′

i+1 ∈ Bi+1 or
not. If X ′

i+1 ∈ GF (2)i+1 \ Bi+1, then we can increase the size of X ′
i+1 to X ′

i+2.
Iteratively, we reach the case i = n − 1 for which X ′

n−1 ∈ Bn−1 always holds.
Consequently, we can obtain a collection Bi ⊆ GF (2)i and B′

i = Bi × GF (2)n−i
such that

∪n−1
i=1 B

′
i = GF (2)n and B′

i1
∩ B′

i2
= ∅, 1 ≤ i1 < i2 ≤ n − 1, where

1 ≤ i ≤ n− 1 and for any σ(i) ∈ Bi we have f(σ(i), X ′′
n−i) ∈ Di.

The following corollary is an easy consequence of the above result.

Corollary 5.1.3 Using the notation of Theorem 5.1.2 the sets Bi, (i = 1, . . . , n−1)
satisfies the relations below.

1.
∑n−1

i=1 ||Bi|| × 2n−i = 2n, ||Bi|| ≤ 2i.

2. ||Bi|| ≤ ||Bj || for non-empty sets Bi and Bj employed in decomposition (5.1),
(i < j).

3. If f(x1, . . . , xn) is an affine function, then ||B1|| = 2 and ||Bi|| = 0, (i =
2, . . . , n− 1).
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4. If f(x1, . . . , xn) = x1 ·x2 . . . xn, then ||Bn−1|| = 2 and ||Bi|| = 1, (i = 1, . . . , n−
2).

5. If f(x1, . . . , xn) is a full term function, then ||Bn−1|| = 2n−1 and ||Bi|| =
0, (i = 1, . . . , n− 2).

Example 5.1.4 Let f(x1, . . . , x4) = x1⊕x4⊕x1x2⊕x1x2x3. To write the function
f in the form (5.1), we need to fix particular coordinates, so that the restrictions of
the function f are linear or constant. For instance, by fixing x1 = 0, or x2 = 0, or
x2 = 1 and x3 = 0, or x2 = 1 and x3 = 1, f(x1, . . . , x4) will be decomposed into
linear functions. More precisely (neglecting the other cases):

1. If x2 = 0, then f(x1, 0, x3, x4) = x1 ⊕ x4. The corresponding set of fixed coor-

dinates (a single coordinate in this case) is B
(x2)
1 = {0}, and the corresponding

set of linear functions is D1 = {x1 ⊕ x4}.

2. If (x2, x3) = (1, 0), then f(x1, 1, 0, x4) = x4, and if (x2, x3) = (1, 1) then
f(x1, 1, 1, x4) = x1 ⊕ x4. The corresponding set of fixed coordinates (2-tuples)

is B
(x2,x3)
2 = {(1, 0), (1, 1)}. The corresponding set of linear relations is D2 =

{x4, x1 ⊕ x4}.

We have that B3 = ∅. Clearly,

||B1|| × 23 + ||B2|| × 22 + ||B3|| × 0 = 1× 23 + 2× 22 + 0 = 24,

which means that the union of subsets (subspaces) of GF (2)4 with fixed coordinates
x2 = 0, (x2, x3) = (1, 0) and (x2, x3) = (1, 1) actually gives the whole space GF (2)4,
i.e.,

{(x1, 0, x3, x4) | xi ∈ GF (2), i = 1, 3, 4.} ∪ {(x1, 1, 0, x4) | xi ∈ GF (2), i = 1, 4.}

∪{(x1, 1, 1, x4) | x1, x4 ∈ GF (2)} = GF (2)4.

Then the function f can be written as:

f(x1, x2, x3, x4) =
∑

σ=(x2)∈B1

(
2∏
s=2

(xs ⊕ σs ⊕ 1)

)
· fx2=σ(1)(x1, x3, x4)

⊕
∑

σ=(x2,x3)∈B2

(
3∏
s=2

(xs ⊕ σs ⊕ 1)

)
· f(x2,x3)=σ(2)(x1, x4)

= (x2 ⊕ 1)(x1 ⊕ x4)⊕ x2(x3 ⊕ 1)x4 ⊕ x2x3(x1 ⊕ x4).

The above result immediately leads to the following algorithm which decomposes
an arbitrary Boolean function into a set of partial linear relations. We notice that
the output of the algorithm heavily depends on the given choice (order) of variables
which are to be fixed during its execution, see also Remark 5.1.5. In other words,
the decomposition into linear subfunctions with respect to the cardinalities of Bi is
quite likely not optimal and therefore a more refined search for the best decomposi-
tion (out of n! possible ones) is later proposed, namely Algorithm 2.
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Algorithm 1 (Partial Linear Relations Decomposition)

Step 1 For a given n-variable Boolean function f ∈ Bn, let k = ⌈log2 n⌉. Set
counters TBi = 0, (i = 1, . . . , n− 1). Without loss of generality, we assume the fixed
decomposition order of (n− 1) variables to be (x1 → x2 → . . .→ xn−1).

Step 2 For each x1 = a1 ∈ GF (2), randomly choose different 2k pairs (αjn−1, β
j
n−1),

αjn−1, β
j
n−1 ∈ GF (2)n−1, for j = 1, . . . , 2k. Let g1(x2, . . . , xn) = fx1=a1(x2, . . . , xn).

For each pair (αjn−1, β
j
n−1), perform the linear relation test below :

g1(α
j
n−1 ⊕ β

j
n−1) = g1(α

j
n−1)⊕ g1(β

j
n−1)⊕ g1(0, . . . , 0).

(2.1) If all 2k pairs (αjn−1, β
j
n−1) pass this linear test (thus satisfy the above

equality), then let TB1 = TB1 + 1.
(2.2) Otherwise, for each (x1, x2) = a2 ∈ GF (2)2, randomly choose different 2k

pairs (αjn−2, β
j
n−2), α

j
n−2, β

j
n−2 ∈ GF (2)n−2, for j = 1, . . . , 2k. Let g2(x3, . . . , xn) =

f(x1,x2)=a2(x3, . . . , xn) and again for each pair (αjn−2, β
j
n−2) perform 2k linear relation

tests:

g2(α
j
n−2 ⊕ β

j
n−2) = g2(α

i
n−2)⊕ g2(βin−2)⊕ g2(0, . . . , 0), j = 1, . . . , 2k.

(2.2.1) If all 2k pairs (αjn−2, β
j
n−2) pass the linear relation test, then let TB2 =

TB2 + 1.
Otherwise, repeat the above steps by increasing the size of input variables, thus

increase i → i + 1 and use (x1, . . . , xi+1) = ai+1 ∈ GF (2)i+1, for i ≤ n − k. For
any such ai+1 perform 2k linear tests for randomly chosen pairs (αjn−i−1, β

j
n−i−1) ∈

GF (2)n−i−1 ×GF (2)n−i−1, and update the values TBi+1 .

For i = n− k+1, . . . , n− 2, randomly choose different 2n−i pairs (αjn−i, β
j
n−i) ∈

GF (2)n−i×GF (2)n−i, for j = 1, . . . , 2n−i, and check whether all 2n−i pairs can pass
the linear relation test or not using gi = f(x1,...,xi)=ai(xi+1, . . . , xn).

Step 3 Return the values of ||Bi|| = TBi , for i = 1, . . . , n− 1.

To estimate the success rate of this algorithm, we notice that each gi = f(x1,...,xi)=ai(

xi+1, . . . , xn) (for different ai ∈ GF (2)i) can pass all 2k linear relation tests only with
a probability 1

22
k using 2k random pairs, for i = 1, . . . , n − k. However, there are∑n−k

i=1 ||Bi|| subfunctions which need to be checked. This implies that there are
about

n−k∑
i=1

||Bi|| × 2−2k ≤ 2n−1 × 2−n =
1

2
< 1

nonlinear subfunctions gi that could pass the linear relation tests.
Moreover, when i ∈ [n− k + 1, n− 2], then each gi = f(x1,...,xi)=ai(xi+1, . . . , xn)

only has 2n−i input values in total. In this case, if gi is a nonlinear function, the
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probability of passing the linear relation tests is only 1

22n−i , using 2n−i random pairs.

For instance, if n− i = 3, the probability is about 1
28
≈ 0.0039. But for n− i = 2, to

further improve the accuracy of the linear relation tests in practice, we can slightly
increase the numbers of testing pairs to 6. In fact, if n − i = 2, there are 22 = 4
different input values for each gn−2 in total, which gives

(
4
2

)
= 6 different pairs,

i.e., {(11, 00), (11, 01), (11, 10), (00, 01), (00, 10), (01, 10)}. Obviously the probability
of passing the six linear relation tests is 0, for any 2-variable nonlinear Boolean
function gn−2. Therefore, the success rate of this algorithm is about p = 1.

On the other hand, the time complexity of this algorithm is dominated by Step
2, i.e.,

Tcomplexity =

n−k∑
i=1

2i × 2k +

n−2∑
j=n−k+1

2j × 2n−j .

Moreover, we have

Tcomplexity = 2k
n−k∑
i=1

2i +

n−2∑
j=n−k+1

2j × 2n−j

= 2n+1 − 2k+1 + 2n × (n− 2− (n− k + 1) + 1)

= k × 2n − 2k+1

< k × 2n.

where k = log2 n. Therefore, the time complexity of this algorithm is about (log2 n)×
2n operations. The memory complexity is only about O(2n) n-bit, which is mainly
used to save the parameters TBi and the vectors in Bi that define the decomposition
of GF (2)n.

Remark 5.1.5 In Step 1, for different orders of (n − 1)-variable, this algorithm
will return different values of ||Bi||, for i = 1, . . . , n − 1. It is clear that there are(
n
n−1

)
× (n − 1)! = n! ordered choices for a given n-variable function f . Therefore,

there are n! different values for ||Bi||. However, it is computationally infeasible to
calculate all these values if n is relatively large. We also notice that the approach
taken in [30], which employs small subfunctions of f , allows that these subfunctions
are also nonlinear. Our algorithm, due to strict linear decomposition, does not allow
the use of nonlinear subfunctions.

Algorithm 1 essentially provides an upper bound (for a fixed decomposition or-
der) on the algebraic degree of annihilators of f due to the following result.

Theorem 5.1.6 With the same notation used in Theorem 5.1.2, if Boolean function
f ∈ Bn can be decomposed (with Bi, i = (1, . . . , n − 1)) by using Algorithm 1, then
there is at least an annihilator g ∈ Bn with deg(g) ≤ λ+1 such that f · g = 0, where
λ = min{i | ||Bi|| ̸= 0, i = 1, . . . , n− 1}.

Proof: Let D∗
λ ⊆ {L(X ′′

n−λ)⊕1, L(X ′′
n−λ) ∈ Dλ}, and D∗

i = {0}, (i ̸= λ). Moreover,
let
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g(X) = g(X ′
i, X

′′
n−i) =

n−1∑
i=1

∑
σ(i)=(σ

(i)
j1
,...σ

(i)
ji

)∈Bi

 ji∏
s=j1

(xs ⊕ σ(i)s ⊕ 1)

 · g(σ(i), X ′′
n−i),(5.2)

where g(σ(i), X ′′
n−i) ∈ D∗

i , and ||Bi|| ̸= 0. Note that f(σ(i), X ′′
n−i) · g(σ(i), X ′′

n−i) = 0
for all (X ′

i, X
′′
n−i) ∈ GF (2)n. It is easily verified that f · g = 0 and deg(g) ≤ λ+ 1,

where λ = min{i | ||Bi|| ̸= 0, i = 1, . . . , n− 1}.

Example 5.1.7 Consider an n = 8 variable Boolean function f(x) whose truth table
is given below. Using the existing algorithm in [3], we can easily calculate the exact
AI value of this function, getting AI = 2. On the other hand, using our algorithm
we find a decomposition for this function, where ||B2|| = 1, ||B4|| = 4, ||B6|| =
32, ||Bi|| = 0, i ̸= (2, 4, 6). Using Theorem 5.1.6, to estimate the theoretical upper
bound on AI value, we found AI ≤ 3, (λ+1 = 2+ 1 = 3), which is consistent to the
exact value AI = 2.

0001000100010001000100010100010000010001000100010001000101000100000
1000100010001000100010100010000100010001000100010001001110111000100
0100010100000100010100000100010001000101000001000101000001000100010
0010100000100010100000100100010001001110010001001110010

Note that the number of elements in the set of affine subfunctions on (n − i)-
variable is ||Bi|| × 2n−i (for those ai for which gi passes the linearity test) over
GF (2)n , for i = 1, . . . , n− 1. It is clear that ||Bi|| × 2n−i will be relatively large if i
is relatively small and ||Bi|| ̸= 0. To estimate the maximal size of ||Bi|| ̸= 0 for small
i, we propose an optimized algorithm below. In difference to Algorithm 1, where
a fixed decomposition of n − 1 variables gives unique (fixed) sets Bi, Algorithm 2
selects the best decomposition in terms of maximal cardinality of Bi. It implies that
in each step we select a decomposition which for a fixed choice of the positions of
input variables gives maximal number of affine subfunctions.

Algorithm 2 (Optimized Partial Linear Decomposition)

Step 1 For a given n-variable Boolean function f ∈ Bn, let k = ⌈log2 n⌉. Set
counters T jBi

= 0, and tables Cjt for storing ai ∈ Bi, where i = 1, . . . , n − 1 and
j = 1, . . . , n.
Step 2 For each xj = a1 ∈ GF (2), j = 1, . . . , n, randomly choose different 2k

pairs (αℓn−1, β
ℓ
n−1), where αℓn−1, β

ℓ
n−1 ∈ GF (2)n−1. Let g = fxj=a1(x1, . . . , xj−1,

xj+1, . . . , xn) and for each pair (αℓn−1, β
ℓ
n−1), ℓ = 1, . . . , 2k, perform the linear rela-

tion test below:

g1(α
ℓ
n−1 ⊕ βℓn−1) = g1(α

ℓ
n−1)⊕ g1(βℓn−1)⊕ g1(0, . . . , 0).

(1) If all 2k pairs (αℓn−1, β
ℓ
n−1) can pass through the linear test, then let T jB1

=

T jB1
+ 1. Otherwise, save the corresponding a1 to table Cj1 .
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(2) Let I1 = {j | maxnj=1 T
j
B1
}.

Step 3 Randomly choose j∗1 ∈ I1, for each j ∈ {1, . . . , n}, (j∗1 ̸= j) and for each

(a1, xj) = a2 ∈ GF (2)2, a1 ∈ C
j∗1
1 , randomly choose 2k pairs (αℓn−2, β

ℓ
n−2), where

αℓn−2, β
ℓ
n−2 ∈ GF (2)n−2. Let g2 = f(xj∗1 ,xj)=a2

and for each pair (αℓn−2, β
ℓ
n−2), ℓ =

1, . . . , 2k, perform the linear relation test below:

g2(α
ℓ
n−2 ⊕ βℓn−2) = g2(α

ℓ
n−2)⊕ g2(βℓn−2)⊕ g1(0, . . . , 0).

(1) If all 2k pairs (αℓn−2, β
ℓ
n−2) pass the linear test, then let T jB2

= T jB2
+ 1.

Otherwise, save the corresponding a2 to table Cj2 .

(2) Let I2 = {j | maxnj=1,j ̸=j∗ T
j
B2
}.

Step 4 Similarly, repeat the Step 3 above, by increasing the size of input variables,
i.e., (ai−1, xj) = ai ∈ GF (2)i, and (i = 3, . . . , n − k), j ∈ {1, . . . , n}, j ̸= j∗t , j

∗
t ∈

It, t = (1, . . . , i − 1). In general, for i = (n − k + 1, . . . , n − 2), randomly choose
different 2n−i pairs (αℓn−i, β

ℓ
n−i), where αℓn−i, β

ℓ
n−i ∈ GF (2)n−i, ℓ = 1, . . . , 2n−i,

and check whether all 2n−i pairs can pass the linear relation test or not, where
gi = f(xj∗

i−1
,xj)=ai .

Step 5 Return the values of ||Bi|| = T
B

j∗t
i

, for i, t = 1, . . . , n− 1.

Similarly to the analysis of Algorithm 1, the success rate of this algorithm is
also about p = 1. Step 2 requires about 2 × 2k ×

(
n
1

)
operations, whereas Step 3

needs about 22 × 2k ×
(
n−1
1

)
operations. The time complexity of this algorithm is

dominated by Step 2-4, i.e.,

Tcomplexity =

n−k∑
i=1

2i × 2k ×
(
n+ 1− i

1

)
+

n−2∑
j=n−k+1

2j × 2n−j ×
(
n+ 1− j

1

)
.

Moreover, we have

Tcomplexity = 2k
n−k∑
i=1

2i × (n+ 1− i) +
n−1∑

j=n−k+1

2j × 2n−j × (n+ 1− j)

< (2n − 2k + 2n × (n− 1− (n− k + 1) + 1))× n
< (k × 2n)× n,

where k = log2 n. Therefore, the time complexity of this algorithm is about O(n2n×
log2 n) operations. The memory complexity is only about O(n2n−1) bits, which is
mainly used to save the tables Cjt , for t = 1, . . . , n−1, j = 1, . . . , n. Notice also that
Theorem 5.1.2 is valid for Algorithm 2, thus an upper bound on AI can be derived
using either Algorithm 1 or Algorithm 2.

Remark 5.1.8 One may notice that both Algorithms 1 and 2 start with fixing one
coordinate. In the case of highly nonlinear functions we do not expect to get affine
subfunctions by fixing some small number of variables. Therefore, one may run these
algorithms backwards, i.e., to start with a selection of n−2 or n−3 fixed coordinates.
By fixing, say n−2 coordinates, it is quite likely that we get many affine subfunctions.
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However, further selection of fixed coordinates for sets Bi (i < n−2) is highly affected
by certain complicated properties of these sets which are not mentioned in Corollary
5.1.3. Thus, finding an explicit non-probabilistic algorithm which provides a complete
description of sets Bi, which result in a decomposition (5.1) of an arbitrary input
function f , is left as an open problem. Note that the existence of decomposition (5.1)
of an arbitrary function f is guaranteed by Theorem 5.1.2.

5.2 Estimating the resistance against AA and FAA

In this section, the resistance of Boolean functions against (fast) algebraic attack
is discussed. The fact that our algorithms provide an upper bound on AI is not
sufficient for efficient estimation of the entire algebraic properties of a given function.
Indeed, in the first place an estimate of a lower bound on AI is of even greater
importance but also a tight lower and upper bound concerning the algebraic degree of
deg(g)+deg(h) in the relation fg = h are necessary. These bounds are derived in this
section (through the set of conditions relating the main decomposition parameters)
which then along with the use of Algorithm 2 gives us an efficient algorithm for
estimating the algebraic properties of a given function.

5.2.1 Resistance to AA

Without loss of generality, we assumeX = (x1, . . . , xn) ∈ GF (2)n,X ′
i = (x1, . . . , xi) ∈

GF (2)i, X ′′
n−i = (xi+1, . . . , xn) ∈ GF (2)n−i, and then the equality (5.1) has the form

below:

f(X ′
i, X

′′
n−i) =

n−1∑
i=1

∑
σ(i)=(σ

(i)
1 ,...,σ

(i)
i )∈Bi

i∏
l=1

(xl ⊕ σ
(i)
l ⊕ 1) · f(σ(i), X ′′

n−i), (5.3)

where f(σ(i), X ′′
n−i) ∈ Di, X

′
i ∈ Bi, and ||Bi|| ̸= 0. Here, again Di ⊆ {L(X ′′

n−i) |
L(X ′′

n−i) = c ·X ′′
n−i ⊕ b, c ∈ GF (2)n−i, b ∈ GF (2)}.

Note that any annihilator of f can be represented as

g∗(X ′
i, X

′′
n−i) =

n−1∑
i=1

∑
σ(i)=(σ

(i)
1 ,...,σ

(i)
i )∈Bi

i∏
l=1

(xl ⊕ σ
(i)
l ⊕ 1) · u[σ(i)](X

′′
n−i), (5.4)

where u[σ(i)](X
′′
n−i) is any annihilator of f(σ

(i), X ′′
n−i), i.e., u[σ(i)](X

′′
n−i)·f(σ(i), X ′′

n−i) =

0, σ(i) ∈ Bi.
Let us restrict the degree of g∗ to a fixed value r + d ≤ n/2. If we need to

cancel the terms in the ANF of g∗ containing xj1 · · ·xjq for any q in the range
d− 1 < q ≤ i < n, where d is a fixed integer and {j1, · · · , jq} ⊂ {1, · · · , i}, then the
sufficient condition is that,

n−1∑
i=1

∑
σ∈Bi

u[σ(i)](X
′′
n−i) =

n−1∑
i=1

∑
σ∈Bi

(f(σ(i), X ′′
n−i)⊕ 1)× u′i,[σ](X

′′
n−i) = 0, (5.5)
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where each u′
[σ(i)]

(X ′′
n−i), for any σ

(i) ∈ Bi, is at most of degree ri given by,

u′
[σ(i)]

(X ′′
n−i) = aσ

(i)

0 ⊕ aσ(i)

1 xi+1 ⊕ · · · ⊕ aσ
(i)

n−ixn ⊕ · · ·

⊕ aσ
(i)

1,...,rixi+1 · · ·xi+ri ⊕ · · · ⊕ aσ
(i)

n−ri+1,...,nxn−ri+1 · · ·xn. (5.6)

Note that deg(f(σ(i), X ′′
n−i)) ≤ 1, for any σ(i) ∈ Bi .

Then we try to select the coefficients aσι ∈ GF (2) in (5.6) in such a way that the
terms in the ANF of g∗ containing xj1 · · ·xjq are all cancelled for any q in the range
d− 1 < q ≤ i < n, where d is a fixed integer and {j1, · · · , jq} ⊂ {1, · · · , i}. This also
implies that the degree of

∑
σ(i)=(σ

(i)
1 ,...σ

(i)
i )∈Bi

i∏
l=1

(xl ⊕ σ
(i)
l ⊕ 1)× (f(σ(i), X ′′

n−i)⊕ 1)× u′[σ](X
′′
n−i),

is at most ri + d, (1 ≤ i < n − 1) since deg(u′
[σ(i)]

(X ′′
n−i))+ deg(f(σ(i), X ′′

n−i))+

deg(xj1 · · ·xjq) ≤ ri + 1+ d− 1 = ri + d, for σ ∈ Bi. If we are able to obtain such a

choice of the coefficients aσ
(i)

ι ∈ GF (2) in u′
[σ(i)]

(X ′′
n−i), then the degree of g∗ would be

at most maxn−1
i=0 {ri}+d (but also at least minn−1

i=0 {ri}+d), for all Bi, (1 ≤ i < n−1)
. Notice that when σ(i) runs through all Bi, (1 ≤ i < n − 1), we obtain in total∑

{1≤i≤n−1,||Bi||≠0} ||Bi|| ×
∑ri

j=0

(
n−i
j

)
unknown coefficients aσ

(i)

ι ∈ GF (2). On the
other hand, cancelling all the terms in the ANF of g∗ containing xj1 · · ·xjq , will

induce certain restrictions on the coefficients aσ
(i)

ι ∈ GF (2) in the resulting system

of homogeneous linear equations (involving these aσ
(i)

ι ∈ GF (2)) whose total number
is given by, ∑

{1≤i≤n−1,||Bi||̸=0}

i−d∑
l=0

(
i

i− l

) ri+1∑
j=0

(
n− i
j

)
, (5.7)

where i− d ≥ 0, i− l ≥ 0. The binomial sum term
∑i−d

l=0

(
i
i−l
)
in the above equation

refers to counting all the terms that contain xj1 · · ·xjq in
∑

σ(i)∈Bi
Πil=0(xi⊕σ

(i)
i ⊕1)

section (where {j1, · · · , jq} ⊂ {1, · · · , i}), whose degree q is in the range d to
i. The binomial sum term

∑ri+1
j=0

(
n−i
j

)
counts all the possible terms that are in-

volved in the f(σ(i), X ′′
n−i) × u′[σ(i)]

(X ′′
n−i) portion. Moreover, the summation (i.e.,∑

{1≤i≤n−1,||Bi||≠0}) in the above equation takes into account all homogeneous linear
equations for all ||Bi|| ̸= 0, (1 ≤ i < n− 1).

It is obvious that there will be solutions to this homogeneous system of equations
if the number of equations is less or equal than the number of unknowns.

Thus, if the condition below is satisfied, then we will obtain at least one Boolean
function g∗ of degree r′ + d ≤deg(g∗) ≤ r + d (by solving the system for unknown

aσ
(i)

ι ∈ GF (2)) with r′ + d ≤deg(g∗) ≤ r + d, where r = maxn−1
i=0 {ri} and r′ =

minn−1
i=0 {ri}. This gives us both a lower and upper bound on the value of AI and

these bounds appear to be tight for randomly selected Boolean functions.

Condition 0:
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∑
{1≤i≤n−1,||Bi||̸=0}

||Bi|| ×
ri∑
j=0

(
n− i
j

)
≥

∑
{1≤i≤n−1,||Bi||̸=0}

(

i−d∑
l=0

(
i

i− l

)
×
ri+1∑
j=0

(
n− i
j

)
) (5.8)

It seems to be difficult to obtain a concise expression for the optimal choice of
the parameters r′, r and d.

Remark 5.2.1 From the inequality (5.8), the cardinalities ||Bi||, i = 1, . . . , n − 1,
affect the AI value. In particular, larger ||Bi|| and smaller i usually implies smaller
AI.

5.2.2 Resistance to FAA

Our main objective now is to confirm the existence of a low degree Boolean function
g′ such that the function fg′ also has a low degree, though more precisely the actual
goal is to minimize deg(g′) + deg(fg′), where f has the form given by (5.3). Let us
restrict the degree of g′ with a fixed value r + s, by considering

g′(X ′
i, X

′′
n−i) =

n−1∑
i=1

{
∑

σ(i)=(σ
(i)
1 ,...σ

(i)
i )∈Bi

i∏
l=1

(xl ⊕ σ
(i)
l ⊕ 1) · ξ[σ(i)](X

′′
n−i)}, (5.9)

where each ξ[σ(i)](X
′′
n−i), for any σ

(i) ∈ Bi, is a degree ri function given by,

ξ[σ(i)](X
′′
n−i) = bσ

(i)

0 ⊕ bσ(i)

1 xi+1 ⊕ · · · ⊕ bσ
(i)

n−ixn ⊕ · · ·

⊕ bσ
(i)

1,...,rixi+1 · · ·xi+ri ⊕ · · · ⊕ bσ
(i)

n−ri+1,...,nxn−ri+1 · · ·xn. (5.10)

There are two basic conditions that need to be satisfied so that both g′ and fg′

are of low degree.

(1) Firstly, we need to specify g′ to be of low algebraic degree. We try to se-

lect the coefficients bσ
(i)

ι ∈ GF (2) in (5.10) in such a way that the terms in the ANF
of g′ containing xj1 · · ·xjq are all cancelled for any q in the range s < q ≤ i < n,
where s is a fixed integer and {j1, · · · , jq} ⊂ {1, · · · , i}. This also implies that the
degree of ∑

σ(i)=(σ
(i)
1 ,...σ

(i)
i )∈Bi

i∏
l=1

(xl ⊕ σ
(i)
l ⊕ 1) · ξ[σ(i)](X

′′
n−i)

would be at most ri + s for each Bi and 1 ≤ i < n − 1. If we are able to obtain
such a choice of the coefficients bσ

(i)

ι ∈ GF (2) in ξ[σ(i)](X
′′
n−i), then the degree of

g′ would be at most maxn−1
i=0 {ri} + s (but also at least minn−1

i=0 {ri} + s), for all
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Bi. Notice that when σ(i) runs through all Bi, 1 ≤ i < n − 1, we obtain in total∑
{1≤i≤n−1,||Bi||≠0} ||Bi|| ×

∑ri
j=0

(
n−i
j

)
unknown coefficients bσ

(i)

ι ∈ GF (2). On the

other hand, to cancel all the terms in the ANF of g′ containing xj1 · · ·xjq , will

induce certain restrictions on the coefficients bσ
(i)

ι ∈ GF (2) in the resulting system

of homogeneous linear equations (involving these bσ
(i)

ι ∈ GF (2)) whose total number
is given by, ∑

{1≤i≤n−1,||Bi||≠0}

(
i−s−1∑
l=0

(
i

i− l

) ri∑
j=0

(
n− i
j

)
), (5.11)

where i − s − 1 ≥ 0, i − l ≥ 0. The binomial sum term
∑i−s−1

l=0

(
i
i−l
)
in the above

equation refers to counting all the terms containing xj1 · · ·xjq in
∑

σ∈Bi
Πil=0(xi⊕σi⊕

1) section (where {j1, · · · , jq} ⊂ {1, · · · , i}), whose degree q is in the range s+1 to i.
The binomial sum term

∑ri
j=0

(
n−i
j

)
counts all the possible terms that are involved

in the ξ[σ(i)](X
′′
n−i) portion. Moreover, the summation (i.e.,

∑
{1≤i≤n−1,||Bi||̸=0})

in the above equation takes into account all homogeneous linear equations for all
Bi ̸= ∅, (1 ≤ i < n− 1).

Thus, if the
Condition 1:∑
{1≤i≤n−1,||Bi||̸=0}

||Bi||×
ri∑
j=0

(
n− i
j

)
≥

∑
{1≤i≤n−1,||Bi||̸=0}

( i−s−1∑
l=0

(
i

i− l

) ri∑
j=0

(
n− i
j

))
,

i.e., ∑
{1≤i≤n−1,||Bi||≠0}

||Bi|| ≥
∑

{1≤i≤n−1,||Bi||≠0}

i−s−1∑
l=0

(
i

i− l

)
(5.12)

is satisfied, then we will obtain at least one Boolean function g′ (by solving the system
for unknown bσι ∈ GF (2)) with r′ + s ≤deg(g′) ≤ r + s, where r = maxn−1

i=0 {ri} and
r′ = minn−1

i=0 {ri}.
(2) Secondly, we note that

f(X ′
i, X

′′
n−i)×g′(X ′

i, X
′′
n−i) =

n−1∑
i=1

∑
(σ

(i)
1 ,...σ

(i)
i )∈Bi

i∏
l=1

(xl⊕σ
(i)
l ⊕1)×f(σ

(i), X ′′
n−i)×ξ[σ(i)](X

′′
n−i),

where each deg(f(σ(i), X ′′
n−i)) ≤ 1, for any σ(i) ∈ Bi, (1 ≤ i ≤ n− 1).

It is clear that the algebraic degree of

∑
σ(i)=(σ

(i)
1 ,...σ

(i)
i )∈Bi

i∏
l=1

(xl ⊕ σ
(i)
l ⊕ 1)× f(σ(i), X ′′

n−i)× ξ[σ(i)](X
′′
n−i) (5.13)

is at most ri + i + 1, due to the fact that the degree of ξ[σ(i)](X
′′
n−i) is ri and the

degree of ∑
σ(i)=(σ

(i)
1 ,...σ

(i)
i )∈Bi

i∏
l=1

(xl ⊕ σ
(i)
l ⊕ 1)× f(σ(i), X ′′

n−i)
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is at most i + 1. Moreover, to restrict the degree of fg′ not to be larger than e,
we require that the ANF of fg′ contains the terms of algebraic degree at most e.
In other words, in the ANF of fg′, the coefficients of the terms of algebraic degree
greater than e must be equal to zero. Notice that the coefficients of these terms
can be expressed as some linear equations of the unknowns bσ

(i)

ι ∈ GF (2), σ(i) ∈ Bi,
1 ≤ i ≤ n− 1, which in total induces at most Λ1 equations, where

Λ1 =
∑

{1≤i≤n−1,||Bi||≠0}

(

i+ri+1∑
j=e+1

(
n

j

)
−

i+ri+1∑
l1=e+1

(
i

l1 − v1

) n−i∑
v1=ri+2

(
n− i
v1

)
),

l1 − v1 ≥ 0, and l2 − v2 ≥ 0.
The sum(i.e.,

∑
{1≤i≤n−1,||Bi||̸=0}) in Λ1 refers to counting all homogeneous linear

equations for all Bi ̸= ∅, (1 ≤ i < n− 1). The binomial sum term
∑i+ri+1

j=e+1

(
n
j

)
in Λ1

stands for all the terms in the ANF of equality (5.13) whose degree (denoted by j)
ranges from e+1 to i+ri+1. From this part we have to subtract those equations, cor-
responding to the double binomial sum (i.e.,

∑i+ri+1
l1=e+1

(
i

l1−v1

)∑n−i
v1=ri+2

(
n−i
v1

)
), that

cannot appear in the ANF in equality (5.13). The first binomial term of the double
binomial sum takes into account the number of terms of the form xj1 · · ·xjv1 , where
ri+2 ≤ v1 ≤ n− i and i+1 ≤ j1 < j2 < · · · < jv1 ≤ n, since clearly f(σ(i), X ′′

n−i)×
ξ[σ(i)](X

′′
n−i) in equality (5.13) is of degree at most ri + 1 in xi+1, . . . , xn. The

second binomial term of the double binomial sum takes care of the number of
terms of the form xj∗1 · · ·xj∗l1−v1

as a constituent part of non-appearing terms of

the form xj1 · · ·xjv1xj∗1 · · ·xj∗l1−v1
, where l1 − v1 > 0, e + 1 ≤ l1 ≤ r + 1 + i and

1 ≤ j∗1 < j∗2 < · · · < j∗l1−v1 ≤ i, since clearly
∑

σ(i)=(σ
(i)
1 ,...σ

(i)
i )∈Bi

∏i
l=1(xl ⊕ σ

(i)
l ⊕ 1)

in equality (5.13) is of degree at most i in x1, . . . , xi.
Therefore, we will obtain at least one Boolean function g′ such that the degree

of fg′ is e if Condition 2 below is satisfied.

Condition 2: ∑
{1≤i≤n−1,||Bi||≠0}

||Bi|| ×
ri∑
j=0

(
n− i
j

)
≥ Λ1, (5.14)

where

Λ1 =
∑

{1≤i≤n−1,||Bi||≠0}

(

i+ri+1∑
j=e+1

(
n

j

)
−

i+ri+1∑
l1=e+1

(
i

l1 − v1

) n−i∑
v1=ri+2

(
n− i
v1

)
),

(5.15)

l1 − v1 ≥ 0.

5.2.3 An algorithm for estimating the resistance against AA and
FAA

In this section, an algorithm for estimating the resistance of Boolean functions
against both AA and FAA is introduced. It uses previously described algorithms for
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finding a good decomposition of a Boolean function, thus the sets Bi are found by
using either Algorithm 2 or Algorithm 1.

Algorithm 3
Step 1 For a given n-variable Boolean function f , use Algorithm 2 (or Algorithm
1) to calculate the values of ||Bi||, for i = 1, . . . , n− 1.
Step 2 Use Conditions 0− 2 to calculate

△lower
AA = min{λ+ 1, ⌈n/2⌉, r′ + d}, ∇upperAA = min{⌈n/2⌉, r + d},

and

△lower
FAA = min{n− 1, r′ + s+ e}, ∇upperFAA min{n− 1, r + s+ e}

for AA and FAA, where λ = min{i | ||Bi|| ̸= 0, i = 1, . . . , n− 1}.
Step 3 Repeat Step 1 and Step 2 [ n

log2 n
] times, and return the minimum values of

upper and lower bound: (△lower
AA ,∇upperAA ) and (△lower

FAA ,∇
upper
FAA ), respectively.

The time complexity of this algorithm is about O([ n
log2 n

] × log2 n × n2n) ≈
O(n22n) operations, if Algorithm 2 is used to search for the values of ||Bi||, i =
1, . . . , n− 1. The memory complexity is about O(n2n) bits.

Remark 5.2.2 Algorithm 3 only gives a theoretical upper and lower bound on both
AI and r+ s+ e for FAA. On the other hand, although Algorithm 2 proposes an ap-
proach for calculating the maximum ||Bi|| ̸= 0 for small i, an optimal decomposition
for Bi in Algorithm 3 is still an open problem.

Table 5.1: The time complexity of our algorithm versus previous works.
The ability against AA or FAA The time complexity Resource

AA O(D3) [25]

AA O(nd) [30]

AA O(D2) [3]

FAA O(D2E) [3]

FAA O(DE2 +D2) [8]

AA or FAA O(n2nD) [29]

AA or FAA O(D2±ε) [56]

AA or FAA O(n22n) new

(D =
∑d

i=0

(
n
i

)
, E =

∑e
i=0

(
n
i

)
, ε = 0.5).

Table 1 describes the time complexity of previous works and of our algorithm
for estimating the resistance of random n-variable Boolean functions against AA
and FAA. In particular, Table 2 describes a comparison of the time complexity for
30 ≤ n ≤ 40. For instance, for n = 40, the best previous known time complexity
is about 255.51 operations in [56]. However, the time complexity of our algorithm
is only about 228.64 operations. It is evident that our new algorithm has a more
favorable time complexity than other methods though being probabilistic it may
not succeed in outputting the best possible decomposition choice which may result
in a somewhat lose lower and upper bound.
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Table 5.2: A time complexity comparison for 30 ≤ n ≤ 40.
n [25] [30] [8]§ [29] [56]† [56] ‡ new

30 281.63 273.60 254.42 2144.42 268.02 240.81 222.81

31 284.49 274.31 256.33 2145.37 270.41 242.24 222.81

32 287.49 280.00 258.33 2157.16 272.91 243.74 224.00

33 290.36 280.71 260.24 2158.12 275.30 245.18 224.00

34 293.36 286.49 262.24 2171.09 277.80 246.68 225.17

35 296.24 287.20 264.16 2172.05 280.20 248.12 225.17

36 299.24 293.06 266.16 2183.20 282.70 249.62 226.34

37 2102.12 293.77 268.08 2184.16 285.10 251.06 226.34

38 2105.12 299.71 270.08 2196.46 287.60 252.56 227.50

39 2108.01 2100.42 272.01 2197.42 290.01 254.01 227.50

40 2111.01 2106.44 274.01 2209.88 292.51 255.51 228.64

(§ : e = 1, † : D2+ε, ‡ : D2−ε)

Example 5.2.3 Choose an n = 12 variable Boolean function f(x) whose truth table
in the hexadecimal format is given below. Using the algorithms in [3], we could easily
verify the actual resistance of this function against AA and FAA to be AI(f) = 5,
deg(g)+deg(h) ≥ 7, (deg(f) = 8) for nonzero Boolean functions g and h satisfy-
ing fg = h. On the other hand, we could obtain a decomposition of this function
given by ||B6|| = 13, ||B7|| = 102, ||Bi|| = 0, i ̸= (6, 7), when using the canonical
order of fixing the input variables (thus (x1 → x2 . . . → x11)). Algorithm 3 then
gives the following estimates of the lower and upper bound on AA: 5 ≤ AI(f) ≤ 6,
(△lower

AA = r′ + d = 1 + 4 = 5,∇upperAA = r + d = 1 + 5 = 6), which is consistent
to the actual value AI(f) = 5. Moreover, another decomposition of this function
is given by ||B9|| = 512, ||Bi|| = 0, i ̸= 9, if the order of fixing the input vari-
ables is (x1, x2, x3, x10, x11, x12, x4, x5, x6, x7, x8, x9). Using Algorithm 3 to estimate
the lower and upper bound regarding the resistance of f against FAA gives 6 ≤
deg(g)+deg(h) ≤ 7, (△lower

FAA = r′+s+e = 0+1+5 = 6,∇upperFAA r+s+e = 1+1+5 = 7),
which is also consistent to the actual lower bound deg(g)+deg(h) ≥ 7.
6666 9999 6666 6666 6666 6666 6666 9999 6666 9999 6666 6666 9999 9999 9999 6666 6699

6699 6699 9966 6699 6699 6699 9966 9966 9966 6699 9966 6699 6699 9966 6699 33cc 33cc

33cc cc33 33cc 33cc 33cc cc33 cc33 33cc cc33 cc33 33cc cc33 33cc 33cc 0f0f f0f0 0f0f f0f0

00ff ff00 00ff ff00 0f0f 0f0f f0f0 f0f0 00ff 00ff ff00 ff00 55aa aa55 55aa 55aa 55aa aa55 55aa

55aa 55aa 55aa 55aa aa55 aa55 aa55 aa55 55aa 6996 6996 9669 6996 6996 6996 9669 6996

6996 6996 9669 6996 9669 9669 6996 9669 6969 6969 6969 9696 9696 9696 6969 9696 6969

6969 6969 9696 6969 6969 9696 6969 0000 ffff ffff 0000 55aa 55aa 5555 aaaa 6666 6666

5a5a 5a5a 3c3c 3c3c 33cc 33cc 5a5a 5a5a 5a5a a5a5 5a5a 5a5a 5a5a a5a5 5a5a 5a5a 5a5a

a5a5 a5a5 a5a5 a5a5 5a5a 3cc3 c33c 3cc3 3cc3 3cc3 c33c 3cc3 3cc3 3cc3 c33c 3cc3 3cc3

c33c 3cc3 c33c c33c 0ff0 0ff0 f00f 0ff0 0ff0 0ff0 0ff0 f00f 0ff0 0ff0 f00f 0ff0 f00f f00f f00f 0ff0

5555 aaaa aaaa 5555 0f0f f0f0 f0f0 0f0f 3333 cccc cccc 3333 00ff ff00 ff00 00ff 3c3c 3c3c

3c3c c3c3 c3c3 3c3c c3c3 c3c3 3c3c 3c3c 3c3c c3c3 3c3c c3c3 3c3c 3c3c 5555 aaaa 5555

aaaa 3333 cccc 3333 cccc 5555 5555 aaaa aaaa 3333 3333 cccc cccc 5aa5 5aa5 a55a 5aa5

5aa5 5aa5 a55a 5aa5 5aa5 5aa5 5aa5 a55a a55a a55a a55a 5aa5 3333 cccc 0ff0 0ff0 3cc3

c33c 6699 9966 0f0f f0f0 6969 6969 5aa5 a55a 6996 9669
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Example 5.2.4 We select a random Boolean function f(x) ∈ B14 whose truth ta-
ble is given in the Appendix. Similarly, using algorithms in [3], we easily veri-
fied that the actual resistance of this function against FAA is deg(g)+deg(h) ≥ 13,
(deg(f) = 14) for nonzero Boolean functions g and h such as fg = h. On the other
hand, we obtained a decomposition for this function, i.e., ||B11|| = 132, ||B12|| =
1761, ||B13|| = 4142, ||Bi|| = 0, i ̸= (11, 12, 13). Using Algorithm 3 to estimate the
theoretical lower bound on the ability against FAA, we found r′+s+e = 0+6+7 = 13,
and △lower

FAA = ∇upperFAA = 13, which is also completely consistent to the actual value
deg(g)+deg(h) ≥ 13.

Remark 5.2.5 Some simulations for randomly chosen Boolean functions f(x) with
n = 14 variables, were also performed using Algorithm 3. We found the estima-
tion of theoretical upper and lower bounds on AI and FAA to be consistent to the
actual values. In other words, the actual values belong to a small range given by
the estimated theoretical lower and upper bound (using Algorithm 3). In particu-
lar, Algorithm 3 may return an exact theoretical value, if the decomposition of these
functions always occur so that λ is too close to n − 1 = 13 or n − 2 = 12, where
λ = min{i | ||Bi|| ̸= 0, i = (1, . . . , n − 1)}. (In this case, it usually means that
a Boolean function has quite good algebraic properties). For instance, in Example
5.2.4, we could easily verify that the actual resistance of this function against AA is
AI(f) = 7. Moreover, using Algorithm 3 to estimate the theoretical lower and upper
bound on AA, we found r′+d = 0+8 = 8, r+d = 1+8 = 9 and △lower

AA = ∇upperAA = 7
which also completely consistent to the actual value AI(f) = 7.

Example 5.2.6 We select an n = 10 variable Boolean function f(x) with good
algebraic properties whose truth table in the hexadecimal format is given below. Us-
ing algorithms in [3], we could easily verify the actual resistance of this function
against AA and FAA to be AI(f) = 5, deg(g)+deg(h) ≥ 9, (deg(f) = 8) for nonzero
Boolean functions g and h such that fg = h. In this case, f(x) has an optimal
AI and a suboptimal resistance against FAA. One decomposition of this function
gives ||B7|| = 3, ||B8|| = 126, ||B9|| = 248, ||Bi|| = 0, i ̸= (7, 8, 9), if the order of
fixing the input variables is (x4, x7, x1, x6, x9, x8, x3, x5, x2, x10). Using Algorithm
3 to estimate the theoretical lower and upper bound on AA, we get AI(f) = 5,
(△lower

AA = r′ + d = 0 + 5 = 5,∇upperAA = 5), which is consistent to the exact
value AI(f) = 5. Moreover, another decomposition of this function is given by
||B7|| = 9, ||B8|| = 108, ||B9|| = 260, ||Bi|| = 0, i ̸= (7, 8, 9), if the order of fixing
the input variables is (x8, x4, x7, x9, x6, x3, x2, x5, x1, x10). Using Algorithm 3 to es-
timate the theoretical lower and upper bound on the ability against FAA, we obtain
deg(g)+deg(h) ≥ 9, (△lower

FAA = r′ + s+ e = 0+4+5 = 9,∇upperFAA r+ s+ e = 9), which
is also consistent to the actual value deg(g)+deg(h) ≥ 9.
1bdd 12ea 02eb a024 d67d d7e3 6a3c e80e 0fb8 c099 9fbd cc9c e961 3e2b 1803 2d93 5ed1

564e 5225 558e c9a5 e528 c022 56fd 1e93 f714 85cb fe18 2fbb 5241 a70a 3b5e 741b 13bf

b36e d16f c83c 2e10 f06a 74a2 551c 3843 2768 959a c265 49d1 cfcb be8b 71dc b58d 0602

e8f2 5ee7 f048 61d9 76e5 a253 f153 ca70 caed 33c2 6027 4f5e 8c36

Example 5.2.7 We use Algorithm 3 to check the theoretical upper bound on the
resistance of functions in [124] against AA and FAA (note that some similar func-
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tions are also proposed in [125, 126]), where ||Bn
2
|| = 2

n
2
−1, ||Bn

2
+1|| = 2

n
2
−1,

||Bn
2
+2|| = 2

n
2 , (for even n = 12 to 40). In Table 5.3 and Table 5.4 we compare

the upper bounds on AA and FAA, respectively, for this class of functions to their
optimal values. It is clear that the resistance of functions designed in [124] against
AA and FAA are not optimal or suboptimal, for even n = 18 to 40.

Table 5.3: Estimation the upper bound on the AI values of functions in [124].
n r d r + d Optimal

12 1 5 6 6

14 1 6 7 7

16 1 7 8 8

18 1 7 8 9

20 1 8 9 10

22 1 9 10 11

24 1 9 10 12

26 1 10 11 13

28 1 11 12 14

30 1 11 12 15

32 1 12 13 16

34 1 13 14 17

36 1 13 14 18

38 1 14 15 19

40 1 15 16 20

Table 5.4: Estimation the upper bound on the resistance of functions in [124] against
FAA.

n r s e r + s+ e Suboptimal

12 1 3 6 10 11

14 1 4 7 12 13

16 1 4 8 13 15

18 1 5 8 14 17

20 1 5 9 15 19

22 1 6 10 17 21

24 1 6 10 17 23

26 1 7 11 19 25

28 1 7 12 20 27

30 1 8 12 21 29

32 1 8 13 22 31

34 1 9 14 24 33

36 1 9 14 24 35

38 1 10 15 26 37

40 1 10 16 27 39
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Appendix

The truth table is described in the hexadecimal format, in particular, the most
significant bit is the leftmost bit, e.g. (0001) = 1, etc.
7781 42ae f22d 8aec fd3e 8b57 802c 88c9 ce89 297b 4cce d599 bd82 922b 55fc 3a16
f30a 55f1 4eb7 a053 2e6a fe64 efc8 6ebc c48c b22b 1485 7433 3273 d922 8bae 7489
9b5f f561 56a9 3b3e c55a c06e 2065 d239 d1e3 a264 a2b6 7fe2 a678 950e 008f 0695
92ef d039 0717 1fc6 71aa b196 8995 7e4f 8ca5 e200 d4a5 b60f 63f4 eb32 2a74 4cb0
ee6c d30e 3078 a31c c25c 5830 91f1 1ebc 8cf1 eb9d cb91 249f 4d25 917c 8572 e2bb
296e d5df 8dd1 81a8 c235 0e64 21d8 872a b366 49a6 fbbc 18c5 5cbf 71cb bdaa d167
a080 c782 0bad b799 1a25 b4bb 4735 0698 fe72 9ab7 312c 1390 890c 40a4 9344 8855
c4c1 c5b7 bb84 f631 abbe 6b80 fa0b 6c9b f01b af4a aca8 721e 95c7 0231 58ef ecf7
04ee d85d a353 049d 4b08 db7e 3fef d10c 1844 edb5 554e 5e97 b48e ab12 132f 698a
df59 861c 4f86 8020 b72b 3006 8191 3e44 e0b2 7653 f7af 9f25 d973 888f 78b2 355b
9f0c 0a9b 2fac e83f b2ef 02e5 f309 dc3f 9bc1 df2f c573 4d59 203b 5c16 81b0 1ec5
e0c2 1ccd 8304 79cc 37a3 8c55 61ff c490 3fdf 9913 7e29 8657 c8b0 3f38 6530 0812
37e9 9e58 9877 ba62 28ad ea76 5601 f73e cc7e 841b 3997 9bc7 f825 bc1b a239 db33
3790 3b0b 5450 2586 e031 53fc db34 061b 8721 0b8b 8d35 f4b6 07bc e86c a023 b203
0dfd 2106 122f de79 d841 e718 fafc a8ae 60f1 888f aa40 e68e 3062 faaa 399b fd11
a816 b4f4 9bef 69da 7bca 74f5 f94e 5566 d381 77c3 f922 3d06 b68a 4ddf 2b13 f1ca
1920 3efb 5a83 3016 9ceb 3a77 a0f6 8c53 d371 fcab 704c ce36 91c9 bc18 3f15 7107
a27e 7ec9 7772 9549 1671 4268 67ed f431 bb6f e79f 36fd 0d31 0f0f 6c21 ded9 1a9d
71b3 4eb7 ba37 0c06 5a25 aac2 a8ac ce09 b8e1 c023 7283 46de 5361 4d8a 6e7c a514
0382 5f77 bee7 b05c 0bf6 68e8 8f26 1544 c6aa 6125 6a0e c458 7f6b 4b41 188c 0257
1626 6345 71a6 0ffc 2209 8d8a 59e7 1219 328f e78b 543d e9a5 c2c8 5ad6 d44e 9551
97e1 c67d 9a78 4efb 8de1 e1ae 23fa 5967 1f0f 6803 60e3 ae27 1a7e 5f51 d6e2 e9f9
04d5 39dd c4f0 93ed 8dc5 940e 5b8e 6f15 0023 a091 aedb 0469 91b7 a86a e9a2 6e25
8208 b40a 89fa 7fb5 bb50 6618 d243 f387 5577 f083 0cd8 b4cc 802f aa5c d930 bf3c
5a99 c06c 8dea 29a6 0fe8 5ec8 ffd8 7f18 a99e 30cd d5a4 c0b0 d8cd e626 7138 c026
b6f0 4217 2b09 c37c 7007 8008 fda5 7f98 9439 6ff4 109f 4878 1918 f9bd faea 6933
d666 cd06 6b9c 75d3 ac81 f138 1edb 9af2 cec6 a84f 3734 d2bf 13d0 c475 c1c0 a266
9755 cfa8 7adf af7e 84cf 7419 3261 1583 5a33 13d3 d501 08a6 3038 1a78 d253 0c84
596a 2bf6 18ca db4d 2590 5a1b 32c5 0ffd e21f 9129 a18c 6930 8bbf a26e 70d4 3880
994d ad0f 222c 2a96 c6b0 28a3 c424 e694 7f03 beef 108b 370b 7c02 1f49 b18f ee33
8b8e 92ca bdfe 35de 352a 7853 21c8 5788 1a4a 9b9f 3fec 0cb8 a8aa 7457 c3cf b66f
f9bd 5545 0cc7 e8d3 9f6b 02f5 d92d 4b35 9588 0080 cd38 fe53 23d4 ac46 2ff3 9b3e
a218 bf1b 2b85 6fba 3000 c683 6682 4fdd f861 21d5 9967 c98a f8d0 4b7d 0cb5 bbef
23d7 88d1 1652 6cc9 2712 0189 e538 1667 0e33 684e 8872 029d 474c efd1 e884 ebf8
357e b193 e41c 17da 0810 6907 9ca0 8d2f 73c5 832f 3088 f062 ca22 947e b220 8219
a4bf 908f b40d 0c1a e187 7372 8404 6394 7794 8190 e57b bafa 3d34 62f2 830c 617e
2bf3 de54 8a52 d89d 212a 2167 95b2 4f51 aeb9 22a7 9afa 86fb 4b9d df88 64e0 8da0
ebda fff9 60ed 518c b477 cd5a 9226 7b8f 6b9c 565a 619b 41c8 0c45 3c28 c774 34d1
1872 5d73 9027 fcad 59b6 46f2 ec07 75e4 3a57 27bb 12a9 f365 d6fe 4e43 8f51 340e
4bb4 b5b8 95c4 8d66 7723 2b5a 8fb4 43ba 96f2 51a7 a694 a037 efb2 b226 6146 8ccd
e566 4b93 0d77 86a2 ebf0 aec6 8d36 3f3e 04c9 3d78 c809 cb35 bee8 b430 846e d2d8
f71e 6544 02aa 6292 28b7 3375 2f0e 8d39 0494 8162 1e47 8ac6 a838 d36f 60d0 991a
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e8b0 5df4 3c66 26c7 dde2 d730 a238 a79e 9272 43dd e834 d173 bf99 8334 6c23 6080
2bfc 1394 d8a3 c6c2 37c0 f841 24ee 3b6e 30b0 b26f ed0a 50c2 645b 5bed 18cc 69da
fd96 1278 ce7d 04af d6ac ec0c e916 b9d4 8b43 4d29 1f44 5ea9 5e1c af72 2882 cee4
2405 8681 29a8 d263 f3a6 cd74 d8ef 18bf eeca e074 3338 e1ab 6beb 6d96 6583 7ab9
027e 5c4a 3548 0810 632f 8890 de52 aa75 6c7c ecbe 3b9d 6313 6f56 6cad f00d 5a12
cefe 25c7 49de cad6 1149 3f71 4474 4fde e1b2 e454 0fd5 72ff ac52 0dfd a431 f830
67f7 acc8 7f57 8a2c a5e4 d246 efc6 dea6 e811 6010 1358 07c9 d60e 8705 a59f bb44
036d 8976 c1be 5764 7150 a12e 1e38 ae78 ba6c acae be65 ceaf d3b9 ec8b ebea f99a
2b4a e777 dd69 cf46 5c39 8364 e18d 2072 e2b3 a147 122d 7f18 fb35 5e34 b95e 6249
8554 a956 e2fc 7950 8c40 734a 1be7 1bbb d8da 93d3 b127 0e2f acf8 1279 6572 7e7b
4cb4 ef99 dad8 547c 15f9 7329 6a89 31ca 0d74 1e41 1aa0 5fc8 21fd 1759 626e a379
fc08 35f8 374e 1520 a3d6 f8e6 c6d6 67eb a280 4702 b832 b3e6 9a87 fdec 0f28 ce0d
5975 7789 8a2b 71f9 b2c5 d04a 533d 014c 0872 6d1f c7cf e94d 1938 e4b7 e55b 8096
d03f 9878 7046 0138 9237 d1f1 2112 0073 e208 4c28 1b24 62ac a506 db48 6806 69b2
d9c1 df7f d4c5 463a 064c 8952 99e5 2277 42e6 78cf f304 4c75 2f7e acf3 8a6b c688
dbcf 96be 0eed ec01 2168 eee3 340d 0134 0f3f 7ad2 4dd0 0496 a347 7e99 8769 6310
7edb 7b56 b99b 43e2 8691 eeb4 923f 4d7e 0bf4 1bc6 8ef2 f74d 6f4d c730 b9ff 2553
d224 87a0 db1c 1e1c b774 5f25 fe70 9f99 cbb8 49fc b34b 9e4c af01 73a8 dd68 dbd4
5214 5b58 0724 9416 4e3f 08d5 7d1f d3da 84c7 24b2 d7bc 019a 2dc5 ca18 623b 67a6
df7f c59a e9c9 f230 a971 587a a07a a8ba 7229 a793 10ef c7aa 549a c6cd 311a d4af
a40e 99cb c87b 8522 6106 435d bd9e 8cae c26e e078 15bc 5d31 194d f731 9eb8 12bd
c597 7d42 8c24 6e1d 9043 880c d49c ac85 33c9 c489 a7b6 cf6b cf11 8996 5021 16fd





Chapter 6

On derivatives of polynomials
over finite fields through
integration

For a given polynomial F (x) ∈ Fq[x] its derivative at a ∈ F∗
q is defined as

DaF (x) = F (x+ a)− F (x), where clearly a = 0 results in a trivial annihilation. In
contrast to the standard notion of derivative, which is for instance useful for deter-
mination of multiple roots of F and which coincides to the derivation of polynomials
over real numbers, this notion of derivatives is of great importance in cryptography
and is directly related to differential properties of the mappings used in the sub-
stitution boxes. Indeed, when p = 2 the differential properties of F (that reflects
the resistance to differential cryptanalysis [4]) are characterized by the number of
solutions of F (x + a) + F (x) = b for any a ∈ F∗

q and b ∈ Fq. On the other hand,
for fields of odd prime characteristic p > 2, if F (x+ a)− F (x) is a permutation for
any nonzero a then F is called a planar function [28, 21, 22]. The concept of linear
structures plays an important role in cryptographic applications. Recall that for a
polynomial F (x) ∈ F2n [x], represented as F (x) =

∑q−1
i=0 bix

i, an element a ∈ F2n is
called b-linear structure (b ∈ F2n) if the equality F (x+a)+F (x) = b holds for every
x ∈ F2n . A few general results are known about the form of polynomials F (x) admit-
ting linear structures [19, 20, 121, 114]. The same applies to the Boolean case when
f : F2n → F2 which again may be represented as f(x) =

∑2n−1
i=0 aix

i but the coeffi-
cients ai must satisfy certain conditions, see relation (2.2). In [121], the properties of
the set of differential functions defined as DFq = {DaF (x) : F (x) ∈ Fq[x], a ∈ F∗

q}
was investigated. One should notice that there exist polynomials in Fq[x] which are
not derivatives of any polynomial, thus they do not belong to DFq. The main result
in [121] concerning the existence of linear structures is that F (x) ∈ F2n [x] is a dif-
ferential function (thus F (x) ∈ DFq) if and only if it has a 0-linear structure. This
implies that the necessary condition to avoid linear structures is that F (x) ̸∈ DFq,
for q = 2n. In [19], the authors investigated the existence of linear structures for the
mappings of the form F (x) = Tr(δxs), where F : Fpn → Fp. For polynomials over
finite fields a thorough treatment of binomials F (x) = xs + αxd was taken in [20].

127
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The case of the discrete integration in finite fields of characteristic two and some
result on the 0-linear structures of higher-order derivatives were studied recently in
[114].

In this chapter we firstly derive the relationship between the coefficients bi of
F (x) =

∑q−1
i=0 bix

i and the coefficients ci of its derivative G(x) = F (x+ a)−F (x) =∑q−2
i=0 cix

i (Section 6.1). This connection can be efficiently used for specifying con-
ditions regarding the existence of linear structures for either Boolean functions or
for mappings over finite fields. Though the approach is quite elementary it leads
to several important results in this direction. For instance, it is sufficient that
F (x) contains the highest polynomial degree term xq−1 so that F does not admit
linear structures, which when translated into the domain of Boolean functions cor-
responds to a class of functions of highest algebraic degree. Noticing that any
n-variable Boolean function can also be represented as a univariate polynomial
f(x) =

∑q−1
i=0 bix

i ∈ F2n [x], where the coefficients bi satisfy certain conditions, we ap-
ply the same technique to either mappings over finite fields or to Boolean mappings.
While the linear structures of monomials and binomials are quite easy to handle,
in general the existence of linear structures for arbitrary polynomials is harder to
analyze. Nevertheless, we provide a few interesting results in this direction covering
also some particular cases when F contains an arbitrary number of terms (Section
6.1.2). Finally, using the same technique we provide a nontrivial upper bound on
the degree of planar mappings (Section 6.2). Results of this chapter are published
in [89].

6.1 Linear structures and derivatives

Throughout this chapter we write F (x) =
∑q−1

i=0 bix
i and DF,a(x) = F (x + a) −

F (x) = G(x) =
∑q−2

i=0 cix
i, where bi, ci ∈ Fq and a ∈ F∗

q , for q = pn. Thus, given
DF,a(x) specified by the known coefficients ci our goal is to recover the values of
bi (or possibly a set of different polynomials {F}) so that the derivative of F at a
corresponds to G(x). For convenience, we sometimes write,

F (x) =

q−1∑
i=0

bix
i =

q−1∑
i=1

i̸=pj ;0≤j≤n−1

bix
i +
(
b0 +

n−1∑
j=0

bpjx
pj
)
= F ∗(x) +A(x), (6.1)

where A(x) = b0 +
∑n−1

j=0 bpjx
pj denotes an affine polynomial in Fq[x]. Also, A(x) =

b0 + L(x), where L is a linearized polynomial. Furthermore, denote by Lq and
Aq the sets of all linearized and affine polynomials over Fq, respectively, where
q = pn. Since for any G,H ∈ Fq[x] we have DG+H,a(x) = DG,a(x) +DH,a(x), then
DF,a(x) = DF ∗,a(x)+DA,a(x) = DF ∗,a(x)+L(a) due to the fact thatDA,a(x) = L(a).

In general, for a given a ∈ F∗
q and G(x) the coefficients bi such that

F (x+ a)− F (x) = G(x) for all x ∈ Fq,

can be easily derived. Namely, using

F (x+ a)− F (x) =
q−1∑
i=0

bi[(x+ a)i − xi] =
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q−1∑
i=0

bi

[
i∑
t=0

(
i

t

)
xtai−t − xi

]
=

q−1∑
i=0

bi

[
i−1∑
t=0

(
i

t

)
ai−txt

]
=

q−2∑
t=0

[
q−1∑
i=t+1

(
i

t

)
ai−tbi

]
xt,

the following equations relating a, bi and ct is valid

ct =

q−1∑
i=t+1

(
i

t

)
ai−tbi, for t = 0, 1, . . . , q − 2. (6.2)

The set of equations can be written as(
1
0

)
ab1+

(
2
0

)
a2b2+ . . .+

(
q−1
0

)
aq−1bq−1 = c0(

2
1

)
ab2+ . . .+

(
q−1
1

)
aq−2bq−1 = c1

. . .
...

...(
q−2
q−3

)
abq−2+

(
q−1
q−3

)
a2bq−1 = cq−3(

q−1
q−2

)
abq−1 = cq−2.

(6.3)

In particular, if q = p then all the diagonal coefficients are of the form
(
k
k−1

)
a = ka,

for k = 1, 2, . . . , p− 1, and since these are nonzero the system has a unique solution.
For q = pn and n > 1, we have

(
pu

t

)
≡ 0, for all t ̸= 0, pu. Furthermore, on

the main diagonal we have the coefficients
(
k
k−1

)
a = ka ≡ 0 mod p, for all k = ps,

where s = 0, 1, . . . , qp − 1. The last p equations of the above system are of the form:(
q−p

q−p−1

)
abq−p +

(
q−p+1
q−p−1

)
a2bq−p+1 +

(
q−p+2
q−p−1

)
a3bq−p+2+ . . . +

(
q−1

q−p−1

)
apbq−1 = cq−p−1(

q−p+1
q−p

)
abq−p+1 +

(
q−p+2
q−p

)
a2bq−p+2+ . . . +

(
q−1
q−p

)
ap−1bq−1 = cq−p

. . .
...

...(
q−2
q−3

)
abq−2 +

(
q−1
q−3

)
a2bq−1 = cq−3(

q−1
q−2

)
abq−1 = cq−2

The last p− 1 equations can be uniquely solved for bq−1, . . . , bq−p+1 recursively,
but the first equation has to be a linear combination of the last p − 1 equations,
as
(
q−p
q−p−1

)
≡ 0 (mod p). Therefore, the coefficient cq−p−1 depends on a and on the

coefficients cq−2, . . . , cq−p and furthermore bq−p is free due to the fact that
(
q−p
q−p−1

)
≡

0 (mod p). This also implies that the derivative G(x) cannot be arbitrary due to
this restriction on cq−p−1. Similarly, by considering the last 2p equations of the
system, the fact that

(
q−2p
q−2p−1

)
≡ 0 implies that bq−2p is free. Since the diagonal

coefficient with bq−p is zero, we can choose bq−p to be arbitrary but fixed and evaluate
uniquely the coefficients bq−p−1 . . . , bq−2p+1, but again cq−2p−1 will depend on a and
on cq−2, . . . , cq−2p. The same reasoning applies if we take p more equations.

In general, on the diagonal we have
(
sp
sp−1

)
≡ 0, for s = 0, 1, . . . , qp − 1, and

thus the coefficients bsp are free (can be chosen arbitrary) but the corresponding
equations are linear combinations of the equations below so the coefficient csp−1 is
not arbitrary but it is determined by this linear combination, i.e., with a and ck
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where k > sp− 1. Note that the system has q/p free coefficients and therefore q(q/p)

distinct solutions F (x). On the other hand, given arbitrary G(x) there may not
exist any function F (x) such that G(x) is its derivative for some a ∈ Fq. The reason
for this is that q/p coefficients in G(x) are determined by other coefficients.

6.1.1 Some preliminary results using integration formula

It is of interest to investigate whether the differentiation of two polynomials whose
difference is not an affine polynomial can give rise to same derivatives for the
same/different values of a.

We notice that for a fixed a ∈ F∗
q the derivative F (x+a)−F (x) = G(x) gave rise

to a set of distinct functions {F} whose cardinality is qq/p, for q = pn. On the other
hand, for a given F (x) the set FA = {F (x) + A(x) : A(x) ∈ An} is of cardinality
qn+1 which is significantly smaller than qp

n−1
, for n > 3. This implies that there are

other functions which are not in FA whose derivative is G.
In the above analysis we have assumed that a ∈ F∗

q is fixed, but if this is not
the case one can in general consider the problem of finding (non)distinct functions
whose derivatives (taken at different values a ̸= a′ ∈ F∗

q) are the same.

Proposition 6.1.1 For a given function F (x) =
∑q−1

i=0 bix
i, q = pn, such that

p ̸ |deg(F ), the condition F (x+a)−F (x) = F (x+a′)−F (x) implies a = a′, unless
bi = 0 for all i ̸≡ 0 (mod p).

Proof: Assume deg(F ) = m. The largest nonzero coefficient of both DF,a(x) and
DF,a′(x) being cm−1, we have(

m

m− 1

)
abm = cm−1 =

(
m

m− 1

)
a′bm.

Since
(
m
m−1

)
= m ̸≡ 0 it immediately follows a = a′. Now assuming that F (x+ a)−

F (x) = F (x+ a′)− F (x) for a ̸= a′, then bm = 0 and in general bi = 0 for all i ̸≡ 0
(mod p).

Corollary 6.1.2 If the field is of prime order then F (x+ a)− F (x) = F (x+ a′)−
F (x), that is, F (x+ a) = F (x+ a′), implies a = a′.

Notice that in the case q = p the system (6.3) has a unique solution for any a ∈ F∗
p,

thus Corollary 6.1.2 implies that all the solutions are distinct.

Corollary 6.1.3 Let L(x) be a linearized polynomial over Fq such that L(a) =
L(a′). Then L(x+a)−L(x) = L(x+a′)−L(x). In particular if L(x) is a permutation
over Fq then L(x+ a)− L(x) = L(x+ a′)− L(x) if and only of a = a′.

Finally, we notice that taking a ̸= a′ and considering (6.3) one may easily specify
different functions F and F ′ such that DF,a(x) = DF ′,a′(x).

In what follows we use a well-known result concerning the parity due to James
W. L. Glaisher (also referred to as Luca’s theorem).
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Theorem 6.1.4 Let n and k be two non-negative integers. Then,(
n

k

)
≡

{
0 mod 2 if n is even and k is odd(⌊n/2⌋
⌊k/2⌋

)
mod 2 otherwise.

(6.4)

In general, using the base p expansions of n =
∑r

i=0 nip
i and k =

∑r
i=0 kip

i, we
have

(
n
k

)
≡ 0 (mod p) as soon as ni < ki for at least one i, so that(

n

k

)
̸≡ 0 (mod p) if and only if k 4 n,

where k 4 n means that ki ≤ ni for any i = 0, . . . , r.

6.1.2 Linear structures of mappings over finite fields and Boolean
functions

Obviously, the easiest way of applying the above result in the context of determining
the existence of linear structures is to study sparse polynomials over finite fields.
Notice that a linear structure a ∈ F2n of F : F2n → F2n means that F (x+a)+F (x) =
γ for all x ∈ F2n and some constant element γ ∈ F2n . Furthermore, using the above
notation, it is equivalent to saying that ci = 0 for all i ∈ [1, 2n − 1] and c0 = γ. In
the case of monomials of the form F (x) = brx

r we have the following result.

Theorem 6.1.5 Let F (x) = brx
r be a non-zero monomial, where F (x) ∈ F2n [x]

and 1 ≤ r ≤ 2n− 1. Then, a is a non-zero linear structure of F if and only if r = 2i

for some i ∈ [0, n− 1].

Proof: If r = 2i so that F (x) = b2ix
2i , then F (x + a) + F (x) = b2ia

2i . Thus,
any a is a linear structure of F . Conversely, assume that a is a linear structure of
F (x) = brx

r and consider

cr−k =

(
r − k + 1

r − k

)
abr−k+1 + . . .+

(
r

r − k

)
akbr,

for some 1 ≤ k ≤ r. Since br is the only nonzero bi, we have cr−k =
(
r

r−k
)
akbr. Now

if a is a linear structure, then cr−k = 0 for all k ∈ [1, r−1]. Consequently,
(
r

r−k
)
≡ 0

mod 2 for these values of k. Especially, for k = 1 we have
(
r
r−1

)
≡ 0 mod 2 imply-

ing that r is even. Then, assuming r > 2, the condition that
(
r
r−2

)
≡
( r/2
r/2−1

)
≡ 0

mod 2 (corresponding to cr−2) implies that r/2 is even. Continuing this way, for
any k = 2i we necessarily have that r/2i is even. Let r =

∑n−1
j=0 rj2

j be the 2-adic
representation of r and assume that v is the largest j such rj = 1, thus rv = 1 and
rj = 0 for j > v. Since k ranges from 1 to r, taking k = 2v−1 implies that r/2v−1 is
also even. It means that 2v | r and therefore r is of the form 2v.

A similar analysis can be performed for the case of binomials of the form F (x) =
xd + uxe, but this has already been done in [20] where it was proved that F (x)
cannot have linear structures unless F is affine.
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Remark 6.1.6 For the Boolean case, when p = 2 and F,G : F2n → F2, the same
reasoning as above applies though the coefficients of both F and G must satisfy the
Boolean conditions mentioned in the introduction.

In what follows, we derive some interesting results regarding the polynomial form
of F : F2n → F2n regarding linear structures, where in the remainder of this section
F (x) =

∑2n−1
i=0 bix

i and F either satisfies the Boolean conditions or not.

It is well-known that the presence of the highest degree term in the ANF of
F , corresponding to the term x2

n−1, implies unbalancedness of F (the converse
is of course not true). This means that specifying b2n−1 = 1 the function F is
unbalanced and we show that in this particular case any such F cannot have linear
structures. Assuming that a is a nonzero linear structure of F satisfying b2n−1 = 1,
then c2n−2 = 0 and (6.2) gives for t = 2n − 2,

c2n−2 =

(
q − 1

q − 2

)
abq−1 = a · 1 = 0,

which then implies a = 0, a contradiction.

Theorem 6.1.7 Let F (x) =
∑q−1

i=0 bix
i, q = 2n, where F : Fn2 → F2 so that the

coefficients of F satisfy the Boolean conditions. If bq−1 = 1 so that F is necessarily
unbalanced, since its ANF contains the term x1x2 · · ·xn, then any such F does not
admit linear structures.

The importance of this result lies in the fact that any balanced Boolean function
with good cryptographic properties apart from possibly having linear structures can
easily be transformed into (just slightly) unbalanced function which does not possess
linear structures. Moreover, the algebraic degree is then optimized.

Remark 6.1.8 It is known that if a is all-one linear structure, that is F (x+ a) +
F (x) = 1, then F (which is Boolean) is necessarily balanced since the relation F (x+
a) = F (x)+ 1 means that F takes an equal number of ones and zeros. Nevertheless,
the unbalancedness of F in Theorem 6.1.7, through the term x2

n−1, also excludes
all-zero linear structures.

Let us proceed our investigation for the special case of potentially balanced functions
F , thus requiring that bq−1 = 0. In this case, abq−1 = cq−2 = 0 does not lead to a
contradiction. Then, computing the next few relations between bi and cj from (6.2)

(and constantly using
(
k
k−1

)
= k ≡ 0 mod 2, for all k = 2s where s is a positive

integer) gives for q = 2n ≥ 8 the following

cq−3 = 0 =

(
q − 2

q − 3

)
abq−2 +

(
q − 1

q − 3

)
a2bq−1 = a2bq−1 = a2 · 0

cq−4 = 0 =

(
q − 3

q − 4

)
abq−3 +

(
q − 2

q − 4

)
a2bq−2 +

(
q − 1

q − 4

)
a3bq−1

=

(
q − 3

q − 4

)
abq−3 +

(
q − 2

q − 4

)
a2bq−2.
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The first equation gives us no condition on bq−2, it can be chosen arbitrary (since(
q−2
q−3

)
≡ 0) though if F is Boolean we must also have b2q/2−1 = bq−2. The second

equation depends on the parity of
(
q−3
q−4

)
and

(
q−2
q−4

)
. Now, obviously

(
q−3
q−4

)
= q−3 ≡ 1

mod 2, whereas
(
q−2
q−4

)
≡
(q/2−1
q/2−2

)
= q/2−1 ≡ 1 mod 2. This implies that the second

equation above yields bq−3 = abq−2. In particular, since bi ∈ F2 then assuming that
either bq−2 = 1 or bq−3 = 1 we necessarily have that a = 1.

The expression for cq−5 given by

cq−5 = 0 =

(
q − 4

q − 5

)
abq−4 +

(
q − 3

q − 5

)
a2bq−3 +

(
q − 2

q − 5

)
a3bq−2 +

(
q − 1

q − 5

)
a4bq−1,

requires again the analysis of the coefficients
(
q−3
q−5

)
and

(
q−2
q−5

)
. Clearly

(
q−2
q−5

)
≡ 0

mod 2, since q− 2 is even and q− 5 is odd. Similarly,
(
q−3
q−5

)
≡
(q/2−2
q/2−3

)
= q/2− 2 ≡ 0

mod 2. Thus, since also
(
q−4
q−5

)
≡ 0 mod 2, implies that bq−4 is arbitrary and at the

same time b2q/2−2 = bq−4. Similarly, computing

cq−6 = 0 =

(
q − 5

q − 6

)
abq−5 +

(
q − 4

q − 6

)
a2bq−4 +

(
q − 3

q − 6

)
a3bq−3 +

(
q − 2

q − 6

)
a4bq−2

+

(
q − 1

q − 6

)
a5bq−1 = abq−5 + a4bq−2.

implies that bq−5 = a3bq−2 and also bq−9 = (a3bq−2)
2 using b22i = bi.

Thus, in order to deduce stronger conditions on the coefficients we need to assume
further restrictions on the form of F . Indeed, by requesting that bq−2 = 0 we
necessarily have bq−3 = bq−5 = 0. Then, checking the expression for cq−7 which is
given by,

cq−7 = 0 =

(
q − 6

q − 7

)
abq−6 +

(
q − 5

q − 7

)
a2bq−5 +

(
q − 4

q − 7

)
a3bq−4 +

(
q − 3

q − 7

)
a4bq−3

+

(
q − 2

q − 7

)
a5bq−2 +

(
q − 1

q − 7

)
a6bq−1 =

(
q − 4

q − 7

)
a3bq−4 = a3bq−4,

taking into account that bq−1 = bq−2 = bq−3 = bq−5 = 0 and that
(
q−6
q−7

)
≡ 0 mod 2.

But, since bq−4 is arbitrary then assuming it is non-zero leads to a contradiction
cq−7 = a3bq−4 ̸= 0. Therefore, assuming that bq−1 = bq−2 = bq−3 = bq−5 = 0 and
bq−4 ̸= 0 implies that such an F : F2n → F2n cannot have linear structures. Notice
that the same reasoning is also valid for F : Fn2 → F2 since the Boolean conditions
are actually irrelevant in the above derivation.

Theorem 6.1.9 Let F (x) =
∑q−1

i=0 bix
i, q = 2n, where F : F2n → F2n. If bq−1 =

bq−2 = bq−3 = bq−5 = 0 and bq−4 ̸= 0, then F cannot have linear structure. Fur-
thermore, if the coefficients of F satisfy the Boolean conditions the same condition
implies that F : F2n → F2 does not have linear structures.
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Remark 6.1.10 The above result appears to be rather peculiar in the context of
linear structures. There is no obvious reason why the above condition ensures the
non-existence of linear structures. Certainly, there are other possibilities of speci-
fying the coefficients bi (for instance without forcing that bq−2 = 0) for the same
purpose, though we do not explore this further.

A similar analysis also implies the following result.

Theorem 6.1.11 Let F (x) =
∑2n−1

i=0 bix
i, F ∈ F2n [x], whose polynomial degree is

d, where d ∈ [1, 2n − 1]. Then,

(i) If d is odd and d > 1, then F has no linear structures.

(ii) If d is even such that 4 ̸ |d and bd−1 = 0, then F has no linear structures.

(iii) If d is even such that 4 | d and bd−1 = 1, then F cannot have linear structures.

Proof: Throughout the proof we use the relation between F (x) and its derivative
F (x) + F (x+ a) =

∑2n−2
i=0 cix

i given by (6.2).
(i) The case when d = 2n−1 follows from Theorem 6.1.7, regardless of whether bq−2

is zero or not. Thus, let d < 2n − 1, where d is odd and bd ̸= 0. Since ci = 0 for
i > d− 1 let us consider

cd−1 =

(
d

d− 1

)
abd = dabd ̸= 0,

because d ̸≡ 0. Since cd−1 ̸= 0 and d− 1 > 0, F does not have linear structures.
(ii) If bd−1 = 0 and d is even such that 4 ̸ |d, then

cd−2 =

(
d− 1

d− 2

)
abd−1 +

(
d

d− 2

)
a2bd = a2bd ̸= 0,

and F cannot have linear structures.
(iii) If bd−1 = 1 and d is even such that 4 | d, then

cd−2 =

(
d− 1

d− 2

)
abd−1 +

(
d

d− 2

)
a2bd = abd−1 = a,

thus F cannot have linear structures in this case.
Notice that the above result covers a large class of polynomials, having arbitrary
number of terms, without linear structures. For instance, the main result in [20] was
to establish the fact that binomials F (x) = xe + αxd cannot have linear structures
unless F is affine. The result in Theorem 6.1.11 and a further simple analysis would
lead to the same conclusion as already stated in [20].

6.2 Upper bounds on degree of planar mappings

In this section we will apply formulas for the integration of the polynomials to
the planar mappings and consequently we deduce a nontrivial upper bound on the
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polynomial degree of these mappings. Assume p is odd and that F (x) =
∑q−1

i=0 bix
i

is a planar polynomial, thus p > 2. Then, for all a ∈ F∗
q , the polynomial G(x) =

F (x + a) − F (x) =
∑q−2

i=1 cix
i is a permutation, where the connection between the

coefficients ci and bi has been established in the previous section.

Theorem 6.2.1 Let F (x) =
∑q−1

i=0 bix
i be a planar polynomial over Fq, where the

prime field of Fq is of odd characteristic and q = pm with m ≥ 2 or if q = p, then
q ≥ 7. Then, the polynomial degree of F is less than or equal to q − 1− p+1

2 .

Proof: For F (x) =
∑q−1

i=0 bix
i, if G(x) = F (x + a) − F (x) =

∑q−2
i=1 cix

i is a
permutation, then by Hermite’s criterion Gn(x) (mod xq − x) has the coefficients
with xq−1 equal to zero, for all n = 1, 2, . . . , q− 2. The case n = 1 implies cq−1 = 0.

Consider now n = 2. Squaring G(x) we have that the coefficient d with xq−1

equals to d = c1cq−2 + c2cq−3 + · · · + c2q−1
2

+ · · · + cq−2c1 =
∑q−2

t=1 ctcq−1−t. Using

ct =
∑q−1

i=t+1

(
i
t

)
ai−tbi and substituting in d we obtain

d =

q−2∑
t=1

(
q−1∑
i=t+1

bi

(
i

t

)
ai−t

) q−1∑
j=q−t

bj

(
j

q − 1− t

)
aj−q+1+t

 .

Let us use a new variable s = i+ j + 1 − q. If j = q − t then s = i + 1 − t and for
j = q − 1 we have that s = i. Therefore,

d =

q−2∑
t=1

q−1∑
i=t+1

i∑
s=i+1−t

(
i

t

)(
s+ q − 1− i
q − 1− t

)
bibs+q−1−ia

s.

By changing the order of summation we obtain

d =

q−2∑
t=1

q−1∑
s=2

min{s+t−1,q−1}∑
i=max{s,t+1}

(
i

t

)(
s+ q − 1− i
q − 1− t

)
bibs+q−1−i

 as =

q−1∑
s=2

q−2∑
t=1

min{s+t−1,q−1}∑
i=max{s,t+1}

(
i

t

)(
s+ q − 1− i
q − 1− t

)
bibs+q−1−i

 as.

We have that d = 0, for all a ∈ F∗
q . Note that this is a polynomial in a, which

is identically equal to zero for all a ∈ F∗
q and its degree is q − 1. Thus, all the

coefficients with as, for s = 2, 3, . . . , q − 1, are equal to zero.
The coefficient with aq−1, i.e., for s = q − 1, equals to

q−2∑
t=1

(
q − 1

t

)(
q − 1

q − 1− t

)
b2q−1,

since i = q − 1. The binomial formula implies

2(q−1)∑
t=0

(
2(q − 1)

t

)
yt = (y+1)2(q−1) = (y+1)q−1(y+1)q−1 =

q−1∑
i=0

(
q − 1

i

)
yi·

q−1∑
j=0

(
q − 1

j

)
yj .
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Equating the coefficient with yq−1 we obtain the equality(
2(q − 1)

q − 1

)
=

q−1∑
i=0

(
q − 1

i

)(
q − 1

q − 1− i

)
.

Using this identity we obtain a simpler expression for the coefficient with aq−1 (note
that the summation in the formula for the coefficient starts with 1)((2(q − 1)

q − 1

)
− 2
)
b2q−1 =

(2(q − 1) · · · q
(q − 1)!

− 2
)
b2q−1 = −2b2q−1.

Since this coefficient is equal to zero we have bq−1 = 0.
Assume now that bq−1 = . . . = bq−u = 0, with u < p/2. Let us evaluate the

coefficient with aq−1−2u. Since s = q−1−2u, max{q−1−2u, t+1} = q−1−2u, for
t ≤ q− 2− 2u and similarly max{q− 1− 2u, t+1} = t+1, for t > q− 2− 2u. Also,
min{q−1−2u+ t−1, q−1} = q−1 if t ≥ 2u+1 and min{q−1−2u+ t−1, q−1} =
q−1−2u+t−1, for t < 2u+1. If q = p the only planar polynomials are quadratic so
in this case theorem is satisfied. Assume q = pn where n > 1. Notice that q > 2p+1
for u < p/2 implies q − 2u− 2 ≥ 2u+ 1.
The coefficient with aq−1−2u is

q−2∑
t=1

min{s+t−1,q−1}∑
i=max{s,t+1}

(
i

t

)(
s+ q − 1− i
q − 1− t

)
bib2(q−1)−2u−i =

2u∑
t=1

q−1−2u+t−1∑
i=q−1−2u

(
i

t

)(
2(q − 1)− 2u− i

q − 1− t

)
bib2(q−1)−2u−i+

q−2−2u∑
t=2u+1

q−1∑
i=q−1−2u

(
i

t

)(
2(q − 1)− 2u− i

q − 1− t

)
bib2(q−1)−2u−i+

q−2∑
t=q−1−2u

q−1∑
i=t+1

(
i

t

)(
2(q − 1)− 2u− i

q − 1− t

)
bib2(q−1)−2u−i.

Consider now the sum in the middle. If i = q − 1 − 2u, q − 1 − 2u + 1, . . . , q − 1 −
2u + (u − 1) = q − 2− u then b2(q−1)−2u−i equals to bq−1 = bq−2 = . . . = bq−u = 0.
If i = q − u, . . . , q − 1 then bi = 0 by assumption. For i = q − 1 − u we have that
bib2(q−1)−2u−i = b2q−1−u. Therefore, the inner sum equals to

q−2−2u∑
t=2u+1

(
q − 1− u

t

)(
q − 1− u
q − 1− t

)
b2q−1−u.

Consider now the first sum. Here, q − 2 ≥ i ≥ q − 2 − 2u. Similarly, the product
bib2(q−1)−2u−i ̸= 0 only if i = q− 1−u ≤ q− 1− 2u+ t− 1. There are nonzero terms
only for t ≥ u+ 1 and first sum equals to the

2u∑
t=u+1

(
q − 1− u

t

)(
q − 1− u
q − 1− t

)
b2q−1−u.
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Finally, let us consider the third sum. Here, i takes values q−2u, q−2u+1, . . . , q−1.
As already mentioned, bib2(q−1)−2u−i = 0 for all values of i except for i = q−1−u ≥
t+ 1 and thus t ≤ q − u− 2. Therefore, the third sum equals to

q−u−2∑
t=q−1−2u

(
q − 1− u

t

)(
q − 1− u
q − 1− t

)
b2q−1−u.

The coefficient now is

q−u−2∑
t=u+1

(
i

t

)(
q − 1− u
q − 1− t

)
b2q−1−u = b2q−1−u

q−1−u−1∑
t=u+1

(
q − 1− u

t

)(
q − 1− u
q − 1− t

)
.

In order to simplify this expression consider

2(q−1)−2u∑
t=0

(
2(q − 1)− 2u

t

)
yt = (y + 1)2(q−1)−2u = (y + 1)q−1−u(y + 1)q−1−u =

q−1−u∑
i=0

(
q − 1− u

i

)
yi
q−1−u∑
j=0

(
q − 1− u

j

)
yj .

Equating the coefficient with yq−1 on both sides (j = q − 1− i) we obtain equality

q−1−u∑
i=u

(
q − 1− u

i

)(
q − 1− u
q − 1− i

)
=

(
2(q − 1)− 2u

q − 1

)
.

Now we have that
q−1−u−1∑
t=u+1

(
q − 1− u

t

)(
q − 1− u
q − 1− t

)
=

(
2(q − 1)− 2u

q − 1

)
−
(
q − 1− u

u

)(
q − 1− u
q − 1− u

)
−
(
q − 1− u
q − 1− u

)(
q − 1− u

u

)
=

(2(q − 1)− 2u) · · · q · · · (q − 2u)

(q − 1)!
−2
(
q − 1− u
q − 1− u

)(
q − 1− u

u

)
≡ −2

(
q − 1− u

u

)
(mod p).

Therefore, the coefficient is now

−2b2q−1−u

(
q − 1− u

u

)
.

Note that(
q − 1− u

u

)
=

(q − 1− u)(q − 1− u− 1) · · · (q − 2u)

u!
̸= 0 (mod p)

if q−2u > q−p, i.e., for u < p
2 . Therefore, if u <

p
2 we can conclude that bq−1−u = 0.

Inductively, we have that

bq−1 = bq−2 = . . . = bq− p+1
2

= 0
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for planar polynomials.

If q = p in the previous proof, successively considering s = q − 1, s = q − 2,
we can show that bi = 0 for all i > q−1

2 . Applying the same idea to (G(x))3, . . .,
(G(x))p−2 it can be shown that the only planar polynomials over a prime field are
quadratic, which is a well-known and established fact.

Corollary 6.2.2 Assume that f(x) =
∑q−1

i=0 bix
i is a planar polynomial. If there

exists 1 ≤ s ≤ n− 1 where q = pn such that q− p+1
2 ≤ kp

s mod (q− 1) ≤ q− 1 then
bk = 0.

Proof: If f(x) is planar then f(xp
s
) is also planar where the coefficient with xkp

s

mod (xq − x) = xkp
s mod (q−1) is bk. Since the degree of f is less than q − p+1

2 we

have that bk = 0 if kps mod (q − 1) ≥ q − p+1
2 .





Chapter 7

Conclusions

The results of the PhD Thesis represent a significant contribution to a number
of the standing open problems in cryptography which have been an active topic of
research in mathematical community in the last decades.

The major part of this thesis deals with the characterisation of generalized bent
(gbent) functions (mappings from Zn2 to Zq), where necessary and sufficient condi-
tions are derived for q being a power of 2. Some of direct implications are determina-
tion of its dual function and the analysis of Gray maps. Additionally, the notion of
Zq-bent functions is introduced and analyzed. Corresponding to (2n, 2k, 2n, 2n−k)-
relative difference sets in Fn2 ×Z2k , Zq-bent functions have its own interest in differ-
ence set theory. In difference to recent constructions of gbent functions for particular
values of q, the first generic construction methods are also provided.

The importance of optimizing the placement of tap positions in LFSR-based
ciphers lies in a fact that crypt-schemes (with tap positions which are inputs to fil-
tering function) so far mainly used tap positions which correspond to difference sets,
or tap positions which are selected heuristically. Namely, our analysis of GFSGA
attacks and proposed algorithms shows that full positive difference sets (which are
widely used) do not provide an optimal resistance to GFSGA-like attacks. We show
that a significant improvement can be achieved, if our algorithms are used. Although
that they do not provide an optimal selection of taps, which leaves space for further
improvements, we actually show that the problem of taps selection requires more
advanced methods which need to take in a consideration the nature of GFSGA-like
attacks, and not only to rely on properties which come from difference sets.

Although several methods for estimating the resistance of a random Boolean
function against (fast) algebraic attacks were proposed [25, 30, 3, 8, 29, 56], these
methods are usually infeasible in practice for relative large number of input variables
n (for instance n ≥ 30) due to increased computational complexity. Introducing the
concept of partial linear relations dissection, we develop an efficient probabilistic
algorithm which estimates the resistance of Boolean function against (fast) algebraic
attacks with time complexity about O(n22n), thus offering much less complexity at
the price of being probabilistic.

Using rather elementary techniques to connect the coefficients of a polynomial
over a finite field and its derivatives, some new infinite classes of polynomials which
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cannot possess linear structures are identified. The connection between the exis-
tence of linear structures and the differential profile of functions over finite fields is
an important area of investigation in the context of the designs of S-boxes, since
achieving the resistance against differential cryptanalysis is of a great importance.
It is sufficient to mention that billion devices today are using Advanced Encryption
Standard (AES), which is a block cipher designed upon S-boxes.

The basic tools used in the research range from combinatorial and algebraic
methods in cryptography. An important tool in the study of gbent functions is the
use of properties of cyclomatic fields and certain methods from linear algebra. An
essential part in optimizing the placement of tap positions is detailed analysis of
the GFSGA with a constant sampling rate. Since finding optimal solutions for tap
selection is infeasible we rely on a sophisticated computer search using Mathematica
software. To identify some infinite classes of polynomials which do not posses linear
structures we rely on the theory of finite fields. Development of algorithms which
estimate the resistance of Boolean function against AA and FAA is based on a novel
method, which decomposes an arbitrary function into many small partial linear
subfunctions by using the disjoint sets of input variables.
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[41] J. Dj. Golić. Intrinsic statistical weakness of keystream generators. In Advances in
Cryptology—ASIACRYPT 1994, Springer-Verlag, vol. LNCS 917, pp. 91–103, 1995.
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[50] S. Hodžić, E. Pasalic. Generalized bent functions - Some general construction methods and
related necessary and sufficient conditions. Cryptography and Communications, vol. 7, no. 4,
pp. 469–483, 2015.
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Chapter 8

Povzetek v slovenskem jeziku

KARAKTERIZACIJA POSPLOŠNIH ZLOMLJENIH FUNKCIJ IN NEKATERE
DRUGE KRIPTOGRAFSKE TEME

Ljudje so že v antičnih časih želeli, da ostanejo določene, na papir zapisane,
informacije zaupne. Družba še naprej zahteva metode za zaščito občutljivih infor-
macij, a se je v informacijski dobi enkripcijska abeceda zreducirala na ničle in enke
v elektronskih podatkih. Posledično je postal šifrirni proces vse bolj matematične
narave. Tehnike za zaščito podatkov spadajo v kriptografijo, ki predstavlja znanost
o informacijski in komunikacijski varnosti.

Poglavitni cilj kriptografije je omogočanje dvema osebama, da komunicirata
preko nezaščitenega kanala na tak način, da nasprotnik (tretja oseba) ne more
razbrati vsebine prvotnega sporočila (imenovanega čistopis) iz informacije, ki je bila
poslana preko kanala (šifropis). Povedano splošneje, kriptografija sestavlja in anal-
izira sisteme (protokole), ki onemogočajo branje zasebnih sporočil tretjim osebam.
Na drugi strani kriptoanaliza preučuje kako ukaniti take sisteme. Obe vedi združuje
kriptologija, ki preučuje komunikacijo preko nezaščitenih kanalov. Moderna krip-
tografija leži v preseku številnih ved v matematiki, računalnǐstvu in elektrotehniki.

Uporabo kriptografije v družbi zasledimo v obliki avtentikacije, šifriranja (bančne
kartice, brezžični telefoni, elektronsko poslovanje), nadzora dostopa (zaklenjanje av-
tomobilov, smučarske karte) in plačilnih postopkov (preplačnǐske telefonske kartice,
spletna banka). Kriptografski sistem, ki je v ozadju naprav pri vseh omenjenih
uporabah, mora zadoščati številnim varnostnim vidikom. Med njimi so zaupnost
podatkov, celovitost podatkov, avtentikacija in nezatajljivost. Nekatere izmed teh
aspektov lahko opǐsemo v kontekstu Boolovih funkcij.

Klasičen primer kriptosistema je prikazan na sliki 8.1. Tovrstni kriptografski
gradnik predstavlja šifrirni algoritem simetričnih ključev, saj se pri šifriranju in
dešifriranju uporablja enak ključ, ki si ga delita pošiljatelj in prejemnik. Krip-
tografija simetričnih ključev preučuje dve široki družini kriptografskih gradnikov, ki
jih imenujemo bločne in tokovne šifre (glej sliko 8.2). Ker se tako bločne kot tokovne
šifre precej bolǰse obnašajo od tehnik v kriptografiji javnih ključev, se le-te pogosto
uporabljajo v praksi. Pri tem pa se dizajn enih in drugih precej razlikuje med sabo.

Pri bločnih šifrah je čistopis razdeljen na bloke (dolžina le teh je potenca števila
dva, tipično 64, 128 ali 256 bitov), ki so zakodirani posamično. Dizajn enkripcijskega
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Figure 8.1: Shema klasičnega kriptosistema

Figure 8.2: Sheme pri enkripciji simetričnih ključev

algoritma pri bločni šifri (glej sliko 8.2) uporablja kriptografske gradnike imeno-
vane S-škatle (ang. substitution boxes) oz. vektorske Boolove funkcije, na katere
lahko gledamo kot nabor Boolovih funkcij. Izbor in lastnosti slednjih je odvisen
od posamezne uporabe. Šifriranje posameznega bloka čistopisa zajema večkratno
uporabo istega sloja S-̌skatel v bločni šifri, kar ustreza konceptu zmede (vsak bit
šifropisa je na zapleten način odvisen od čistopisa in bitov skrivnega ključa). Po-
leg tega se v vsaki rundi enkripcije uporabi še linearni sloj, kjer je dodan skriven
ključ, kar ustreza konceptu razpršitve (biti vmesnega šifropisa so po posamezni rundi
šifriranja odvisni od mnogih vhodnih podatkov). Omenjena koncepta zmede in
razpršitve je vpeljal Claude E. Shannon leta 1945 v svojem delu A Mathematical
Theory of Cryptography [105]. Čeprav ni težko zagotoviti dobrih lastnosti glede teh
dveh konceptov, pa so običajno dobre tokovne šifre nekoliko hitreǰse od bločnih, saj
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se pri bločnih šifrah ves proces šifriranja ponovi večkrat (tipično 10 do 30 krat). Med
dobro poznane bločne šifre, ki bazirajo na omrežjih Feistel ali SP (ang. Substitution
Permutation), so DES (ang. Data Encryption Standard), IDEA (ang. International
Data Encryption Algorithm), Triple DES, Twofish, Serpent, in AES (ang. Advanced
Encryption Standard).

Na drugi strani tokovne šifre bazirajo na (ne)linearnih pomičnih registrih, ki
predstavljajo naprave s končnimi stanji in so sposobne shranjevanja in manipu-
lacije svojih bitov na (ne)linearen način. Običajno je del teh bitov sprocesiranih z
(ne)linearnim mehanizmom (npr. z Boolovo filtrirno funkcijo), preko katerega nas-
tanejo biti toka ključev. Ti so prǐsteti (modulo dva) k čistopisu, kar nam generira
ustrezen šifropis. Za razliko od bločnih šifer je poglavitni cilj pri tokovnih šifrah
bodisi hitra enkripcija (hitreǰsa od bločnih šifer) bodisi kompaktna strojna imple-
mentacija. Dva znana tipa pomičnih registrov sta linearni in nelinearni povratni
pomični register LFSR in NFSR. Nekatere konstrukcije tokovnih šifer uporabljajo
registre LFSR v kombinaciji z (vektorsko) Boolovo funkcijo, katere glavni namen je
filtriranje skrivnih bitov stanj in zagotavljanje zmede pri šifri. Med pomembneǰse
predstavnike tokovnih šifer spadajo SEAL [95, 96], SNOW (glej npr. [36]), ISAAC
[97], Grain family [47] in nekatere druge.

V splošnem nam dobre tokovne in bločne šifre zagotavljajo le računsko varnost,
za razliko od kriptografskih sistemov pri kriptografiji javnih ključev, kjer je varnost
povezana z določenim znanim težkim problemom, ki ga ni možno učinkovito rešiti
z znanimi postopki. V nadaljevanju bomo na kratko opisali razlike med krip-
tografijo simetričnih ključev in kriptografijo javnih ključev. Za razliko od krip-
tografije simetričnih ključev, kjer isti ključ uporabljata tako pošiljatelj kot prejem-
nik, se pri kriptografiji javnih ključev uporablja javni ključ (poznan vsem) in zasebni
ključ (poznan le prejemniku). Pri šifrirni shemi z javnim ključem lahko vsak šifrira
sporočilo z javnim ključem, dešifriranje sporočila pa je možno le s prejemnikovim za-
sebnim ključem. Varnost pri teh sistemih se večinoma zanaša na težke matematične
probleme (praštevilski razcep, problem diskretnega logaritma ipd.), za katere ni
znanih učinkovitih algoritmov. Če podobne probleme, kot je problem diskretnega
logaritma, definiramo na matematičnih strukturah kot so eliptične krivulje, zago-
tovimo še večjo varnost. Poleg tega šifrirni algoritmi iz kriptografije javnih ključev
ne potrebujejo varnega kanala za začetno izmenjavo skrivnih ključev. Vendar so vsi
znani kriptosistemi, ki bazirajo na javnem ključu, precej manj učinkoviti od siste-
mov v simetrični kriptografiji, saj je njihova podatkovna prepustnost nižja (zaradi
časovne zahtevnosti enkripcije). Zaradi večje hitrosti šifriranja se sheme simetrične
kriptografije uporabljajo pri šifriranju podatkov, kriptografija javnih ključev pa se
uporabi za izmenjavo ključev.

Glede na tip informacije s katero razpolaga nasprotnik, ločimo štiri tipe krip-
toanalize:

• Poznan šifropis - kriptoanalitik (napadalec) lahko le pasivno posluša šifrirano
komunikacijo. Zgolj s pomočjo šifropisa poskuša pridobiti šifrirni ključ oz. del
ključa ali del čistopisa.

• Poznan čistopis - kriptoanalitik poskuša pridobiti šifrirni ključ ali del ključa,
pri čemer ima na voljo del čistopisa in pripadajoči del šifropisa.
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• Izbran čistopis - kriptoanalitik lahko šifrira katerikoli izbrani čistopis. Cilj
napada je pridobiti del skrivnega ključa.

• Izbran šifropis - kriptoanalitik ima napravo za dešifriranje in lahko dešifrira
poljuben šifropis. Cilj napada je pridobiti ključ.

Od tu dalje se bomo osredotočili na konstrukcije in kriptoanalizo tokovnih šifer.
Predvsem nas bodo zanimale tiste sheme, ki uporabljajo pomične registre LFSR/NFSR
v kombinaciji s filtrirnimi (vektorskimi) Boolovimi funkcijami.

Med številnimi kriptoanalitičnimi metodami za tokovne šifre, sta algebraični na-
pad (AA) in hitri algebraični napad (FAA) [25, 26] deležna posebne pozornosti.
Ti napadi, ki so generičnega tipa za tokovne šifre, ki bazirajo na pomičnih reg-
istrih LFSR, so povečali konstrukcijske zahteve pri izbiri filtrirne (vektorske) Boolove
funkcije. Osrednjo idejo pri teh dveh napadih lahko opǐsemo na naslednji način. V
prvem koraku nastavimo sistem enačb nizke stopnje, kjer so neznanke biti skrivnega
ključa, in kjer je stopnja enačb v tesni povezanosti z algebraičnimi lastnostmi filtrirne
funkcije F (glej sliko 8.3). V drugem koraku rešimo sistem enačb in pridobimo bite
skrivnega ključa. Medtem, ko je drugi korak dobro preučen, pa prvi korak zaradi vi-
soke kompleksnosti predstavlja odprt problem, če je število spremenljivk n relativno
veliko. V preteklem desetletju so se kriptografi in kriptoanalitiki precej ubadali
z oceno zaščite nelinearne Boolove funkcije proti napadom tipov AA in FAA. Na
konferenci EUROCRYPT 2003 je bil predstavljen prvi algoritem za določitev ob-
stoja anihilatorjev stopnje d za poljubno Boolovo funkcijo f v n spremenljivkah
(tj. za določitev funkcije g, za katero je fg = 0) [25]. Časovna zahtevnost algo-
ritma znaša približno O(D3) operacij, kjer je D =

∑d
i=0

(
n
i

)
. Sledilo je več poskusov

za izbolǰsanje računske učinkovitosti teh ocen [3, 8, 29, 30, 56], a noben izmed
predlaganih algoritmov ni dopuščal Boolovih funkcij z relativno velik številom spre-
menljivk, npr. n ≥ 30. En izmed prispevkov te disertacije je učinkovita verjetnostna
metoda za določitev algebraičnih lastnosti Boolovih funkcij za velik n.

Nelinearni filtrirni generator je tipični gradnik pri konstrukcijah tokovnih šifer,
ki se uporabljajo pri strojni opremi (glej sliko 8.3). Sestavljen je iz enega samega

Figure 8.3: Filtrirni generator

pomičnega registra LFSR in nelinearne funkcije F : Fn2 → Fm2 , ki sprocesira n fiksih
celic v registru LFSR. Zaščita nelinearnih filtrirnih generatorjev proti napadom kot
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so (hitri) korelacijski napadi [77, 106, 82], algebraični napadi [23, 24, 78], verjetnos-
tno algebraični napadi [9, 87] in napadi, ki izkoristijo normalnost Boolovih funkcij
[83], je odvisna predvsem od izbire filtrirne funkcije F . Konstrukcijska pravila za
zagotavljanje dobre zaščite proti tem napadom so tako bolj ali manj znana. Po
drugi strani pa to ne velja za kriptoanalizo tipa ugani-in-določi, ki se večinoma ne
naslanja na filtrirno funkcijo (enako velja za t.i. napade ‘time-memory-data trade-off
attacks’ [7], [48], [54]), temveč na lastnosti registra LFSR kot so velikost, izbira prim-
itivnega polinoma in izbira fiksnih celic. Tovrstna kriptoanaliza stremi k določanju
dela skrivnih bitov v registru LFSR, pri tem pa si pomaga s strukturo šifre. Kot
‘strukturo’ tukaj mislimo predvsem na pozicije fiksnih celic. Pomembnost izbire
slednjih je bila prvič eksplicitno zapisana v članku [42], kjer so bili vpeljani inverzni
napadi (glej tudi [41, 43]). Sicer pa je ta pomembna tema o (sub)optimalni izbiri
fiksnih celic, pri fiksnem številu n in dolžini L registra LFSR, precej zapostavljena
v literaturi. Čeprav obstaja nekaj hevrističnih poskusov za določanje fiksnih celic,
pa tovrstna učinkovita in generična metoda še ni poznana. V disertaciji bomo tako
predstavili nekaj novih algoritmov za (sub)optimalno izbiro teh fiksnih celic.

Med znane metode v kriptoanalizi bločnih šifer spada tudi diferenčna kriptoanal-
iza, ki sta jo vpeljala Eli Biham in Adi Shamir [5]. Slednja se uporablja predvsem
pri iteriranih bločnih šifrah, čeprav jo je moč uporabiti tudi pri določenih tokovnih
šifrah. Gre za napad tipa ‘izbran-čistopis’, čeprav se ga lahko spremeni v napad
tipa ‘poznan-čistopis’, v kolikor je poznanih dovolj čistopisov. V grobem rečeno ta
metoda ǐsče pare čistopisov in šifropisov, ki imajo konstantno razliko, in preučuje
diferenčno obnašanje kriptosistema. V zadnjih letih je bila diferenčna kriptoanal-
iza posplošena na več načinov, kar vključuje prisekano analizo in diferenčno analizo
vǐsjega reda [58, 63], nemogočo diferenčno analizo [59], bumerangov napad [118] in
druge.

Za zagotovitev visoke varnosti morajo funkcije, ki se uporabljajo v bločnih šifrah,
zadoščati številnim kriterijem. Med mnoge pomembne kriptografske lastnosti, ki so
opisane v nadaljevanju, spada tudi koncept linearne strukture. Pri funkcijah nad
končnimi obsegi karakteristike dva je pomembno, da S-̌skatle, ki so predstavljene
v obliki polinoma F (x) ∈ F2n [x], F (x) =

∑q−1
i=0 bix

i, ne premorejo elementa a za
katerega velja F (x + a) + F (x) = b za nek fiksen b ∈ F2n in vse x ∈ F2n . Tovrstni
element a se imenuje b-linearna struktura. Zato je identifikacija funkcij, ki (ne)
premorejo te strukture, pomemben problem. Prve raziskave v tej smeri je objavil
Evertse [37], ki je preučeval kriptoanalizo šifer tipa DES. Študij linearnih struktur
zasledimo tudi pri Nybergu in Knudsenu, ki sta raziskovala varnost proti diferenčnim
napadom [85] ter pri drugih kasneǰsih delih [64, 34, 65, 114]. Povezava med obstojem
linearnih struktur in diferenčnim profilom funkcij nad končnim obsegom je pomem-
bna pri dizajnu S-̌skatel. Zaradi uporabe S-̌skatel pri šifrah lahke uteži [55, 6] je
razvoj omenjene povezave še pridobil na pomenu. Pomembnosti tovrstnih študij
se je v predgovoru knjige o zlomljenih funkcijah avtorja Tokareva [117] dotaknil
tudi Bart Preneel, ki je zapisal, da je morebiti največji vpliv moderne kriptografije
ravno v študiju posplošitev vektorskih Boolovih funkcij, ki nudijo močno zaščito proti
diferenčnim in linearnim napadom. Omenjene raziskave so namreč močno vplivale na
S-̌skatle, ki se uporabljajo v standardu AES, kar danes uporablja milijarda naprav.
Zlomljene funkcije, h katerimi se bomo posvetili kasneje, so Boolove funkcije, ki
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nimajo linearnih struktur in njihovo uporabo zasledimo tako v kriptografiji, pri kon-
strukciji CAST, Grain in HAVAL, kot tudi v drugih področjih matematike, med
katerimi so konstrukcija Hadamardovih matrik, krepko regularnih grafov, Kerdock-
ovih kod in zaporedij CDMA.

Poleg linearnih struktur, ki smo jih omenili v kontekstu S-̌skatel (vektorskih
Boolovih funkcij), obstajajo številni indikatorji, ki opǐsejo kriptografske lastnosti
posamezne Boolove funkcije. Tovrstna funkcija v n spremenljivkah je preslikava iz
vektorskega prostora Fn2 v binarni obseg F2 = {0, 1}.

Eno izmed ključnih raziskovalnih področij v kriptografiji predstavlja konstrukcija
kriptografsko pomembnih Boolovih funkcij. To so funkcije, ki premorejo nasled-
nje lastnosti. Visoka nelinearnost je izjemnega pomena pri dizajnu kriptosiste-
mov simetričnih ključev, saj direktno vpliva na zaščito šifre pred številnimi meto-
dami kriptoanalize. Le-ta izmeri Hammingovo razdaljo do množice vseh afinih
funkcij. Zato visoka nelinearnost nudi večjo zaščito proti napadom afine aproksi-
macije [74, 75]. Uravnoteženost Boolove funkcije pomeni, da sta prasliki ničle in
enice enako močni, kar nam zagotavlja statistično neodvisnost vhodnih in izhodnih
podatkov. Visoka algebraična stopnja zvǐsa linearno kompleksnost šifer. Algebraična
imunost reda d (tj. minimalna stopnja anihilatorja dane funkcije) ima pomembno
vlogo pri zaščiti proti (hitrim) algebraičnim napadom v tokovnih šifrah. Zaščita
(bločne) šifre proti diferenčnim napadom je opisana z odvodi S-̌skatel. Visoka zaščita
je zagotovljena z dobrimi diferenčnimi lastnostmi.

Največji problem pri konstrukciji kriptografsko pomembnih funkcij je v tem,
da morajo biti številni, zgoraj omenjeni, kriteriji zadoščeni sočasno, pri tem pa je
potrebno omeniti, da optimizacija ene lastnosti običajno pomeni zmanǰsanje druge.
Ker je število vseh Boolovih funkcij v n spremenljivkah izjemno veliko (= 22

n
),

celoten pregled funkcij, ki premorejo določene lastnosti, ni možen. Posledično so
nove konstrukcije tovrstnih funkcij še vedno zelo zanimiv prispevek v tej raziskovalni
sferi.

Pojem zlomljene funkcije je vpeljal Rothaus leta 1976 [98]. Gre za funkcije z mak-
simalno nelinearnostjo. Njihov razvoj v nadaljnjih desetletjih so podpirale številne
aplikacije v različnih področjih matematike in računalnǐstva (npr. v komunikaci-
jskih sistemih, dizajnu zaporedij, kriptografiji, algebraičnih kodah, teoriji diferenčnih
množic itd.). Obstajajo številne ekvivalentne definicije zlomljenih funkcij. Med na-
jbolj običajne spada zgoraj omenjena, ki se nanaša na nelinearnost oz. na Hammin-
govo razdaljo do afinih funkcij. Slednja je v resnici povezana z ravnim Walshovim
spektrom (Sylvester-Hadamardova transformacija) funkcije (glej (2.3)). Čeprav je
nekaj razredov generičnih zlomljenih funkcij znanih [14, 31, 33, 60], se zdi njihova
popolna klasifikacija nemogoča. Lastnost zlomljene vektorske Boolove funkcije (S-
škatle) F : Fn2 → Fm2 lahko razširimo z zahtevo, da so vse (neničelne) linearne
kombinacije koordinatnih funkcij tudi zlomljene. ˇe zapǐsemo funkcijo F v obliki
F (x) = (f1(x), . . . , fm(x)), kjer so fi Boolove funkcije, to pomeni, da je funkcija
a1f1(x) ⊕ . . . ⊕ amfm(x) zlomljena za vsak neničelen nabor binarnih koeficientov
ai. Konstrukcije tovrstnih vektorskih zlomljenih funkcij je prvi preučeval Nyberg v
članku [84], kjer je bilo pokazano, da slednje lahko obstajajo le za m ≤ n

2 . Kon-
strukcije nekaterih tovrstnih funkcij so temeljile na določenih znanih razredih zloml-
jenih funkcij (npr. na razredu Maiorana-McFarland [31, 32] in Dillonovem razredu
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[17, 31, 32, 98]). V kontekstu preslikav oblike F : Znp → Znp , kjer je p > 2 praštevilo,
namesto o vektorskih zlomljenih funkcijah govorimo o ravninski funkciji.

Posplošene Boolove funkcije oblike Znq → Zq so bile vpeljane v članku [62]. Še
več preučevanja so bile deležne posplošitve tipa Zn2 → Zq, kjer je q ≥ 2 celo število,
saj so naravno povezane s cikličnimi kodami nad kolobarji. V članku [101] je npr. K.
U. Schmidt preučeval povezave med posplošenimi zlomljenimi funkcijami, kodami
konstantne amplitude in Z4-linearnimi kodami (q = 4). Drugi tip funkcij bomo v dis-
ertaciji imenovali posplošene zlomljene funkcije ali gbent funkcije. Ostale posplošitve
(zlomljenih) Boolovih funkcij najdemo v delih [101, 103, 66, 60, 109, 111, 110, 117].
Za preučevanje posplošenih zlomljenih funkcij obstaja več razlogov. V prvi vrsti so
v tesnem sorodstvu s klasičnimi zlomljenimi funkcijami. Pogoj zlomljenosti kompo-
nentnih funkcij (glede na ustrezno dekompozicijo) posplošene zlomljene funkcije je
bil tako preučevan v članku [109] za q = 4, v članku [113] za q = 8 in v članku [70]
za q = 16. Zlomljenost komponentnih funkcij določenih vrst gbent funkcij je tema
tudi del [107, 108, 111, 76]. Zahtevneǰsa naloga je podati direktno konstrukcijsko
metodo, ki bi funkciji oblike Zn2 → Zq za ustrezen q priredila netrivialno dekompozi-
cijo na standardne (še nepoznane) zlomljene funkcije. Drugi razlog za raziskovanje
tovrstnih objektov je njihova neposredna povezanost z dizajnom dveh tipov komu-
nikacijskih sistemom: OFDM (ang. Orthogonal Frequency-Division Multiplexing)
[69, 94, 35] in MC-CDMA (ang. Multi-Carrier Code Division Multiple Access)
[44, 45, 100]. OFDM je metoda za simultan prenos podatkov preko enakomernih
nosilnih frekvenc. Uporabljena je bila za številne radijske sisteme kot so brezžično
omrežja, digitalno audio in video oddajanje, internetna omrežja in 4G mobilno ko-
municiranje. Metoda MC-CDMA prevladuje med tretjo generacijo celičnih komu-
nikacijskih sistemov. Predstavlja shemo z večkratnim dostopom, ki se uporablja v
telekomunikacijskih sistemih, ki temeljijo na OFDM, in omogoča sočasno več uporab-
nikov. Obe modulacijski tehniki sta podvrženi relativno visoki vrednosti PMEPR.
Golayeva zaporedja [40], ki imajo nizek PMEPR, so lahko hitro identificirana s
pomočjo posplošenih Boolovih funkcij, ki so asociirana s temi zaporedji (glej članek
[104] in reference v njem). Pri tem gbent funkcija ustreza zaporedju z najmanǰso
vrednostjo PAPR. Zato so učinkovite konstrukcijske metode za gbent funkcije zelo
uporabne v komunikacijskih sistemih.

Struktura disertacije je sledeča. V poglavju 2 predstavimo temelje (posplošenih)
Boolovih funkcij in osnove kriptoanalize tipa ugani-in-določi.

V poglavju 3 je predstavljena popolna karakterizacija gbent funkcij oblike f :
Zn2 → Zq, kjer je q potenca števila 2. Podana je tudi analiza njihovih dualnih
preslikav in Grayevih preslikav. Dokazani so tudi zadostni pogoji za posplošeno
zlomljenost za poljubno sodo število q. Prikazana je povezava med določenim po-
drazredom gbent funkcij in relativnimi diferenčnimi množicami, ki jih imenujemo
Zq-zlomljene funkcije. Pri tem pokažemo, da ustrezajo razredu vektorskih zloml-
jenih funkcij. Poglavje zaključimo s prvo splošno znano konstrukcijsko metodo za
gbent funkcije.

Optimalna izbira fiksnih celic v šifrirnih shemah, ki bazirajo na pomičnih reg-
istrih LFSR je preučevana v poglavju 4. Pri tem sta obravnavana tako konstrukcijski
kot tudi kriptoanalitični vidik. Predstavljena sta dva nova algoritma za optimalno
izbiro fiksnih celic, ki nudita (sub)optimalno zaščito proti generičnim kriptoanal-
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itičnim tehnikam za tovrstne sheme. Prikazana sta dva načina vzorčenja blokov
toka ključev. Pokazano je, da se v mnogih primerih ta dva načina odrežeta bolje
od standardnega načina GFSGA [119] (ki predstavlja posebno obliko kriptoanalize
tipa ugani-in-določi). Pokažemo tudi, da je mogoče GFSGA napade izvesti na šifre,
ki temeljijo na NFSR (npr. na šifre v [47]) in na filtrirne generatorje, ki proizvedejo
posamezen bit vsakič, ko je šifra ustvarjena.

Učinkovita ocena zaščite Boolove funkcije z relativno velikim številom vhodnih
spremenljivk n proti (hitrim) algebraičnim napadom je predstavljena v poglavju
5. Vpeljana je dekompozicija nelinearne Boolove funkcije na več linearnih (afinih)
podfunkcij, kjer se uporabi disjunktne množice vhodnih spremenljivk. Sama dekom-
pozicija temelji na delnih linearnih relacijah. Predstavljen je nov splošen verjetnostni
dekompozicijski algoritem, ki učinkovito oceni zaščito Boolove funkcije proti (hitrim)
algebraičnim napadom za velike vrednosti n. Pri tem je potrebno poudariti, da je
računska kompleksnost do sedaj znanih metod previsoka za uporabo v praksi.

Disertacija se zaključi s poglavljem 6, kjer so predstavljeni številni novi neskončni
razredi polinomov, ki so brez linearne strukture.

Zaključek

V disertaciji so predstavljeni številni pomembni prispevki pri reševanju odprtih prob-
lemov iz kriptografije iz zadnjih nekaj desetletij.

Večji del disertacije zajema karakterizacijo posplošenih zlomljenih funkcij (pres-
likav iz Zn2 v Zq). Podani so potrebni in zadostni pogoji za tovrstne funkcije, v
primeru da je q potenca števila 2. Kot direktna posledica je podana določitev dualne
funkcije in analiza Grayevih preslikav. Vpeljan je pojem Zq-zlomljenosti, ki je anal-
iziran. Prikazana je povezava med Zq-zlomljenostjo in teorijo diferenčnih množic,
ki je podana preko (2n, 2k, 2n, 2n−k)-relativnih diferenčnih množic v Fn2 × Z2k . Za
razliko od znanih konstrukcij gbent funkcij, ki delujejo za posamezno vrednost q, je
v disertaciji podana prva generična konstrukcijska metoda.

Pomembnost optimizacije izbora fiksnih celic pri šifrah, ki temeljijo na pomičnih
registrih LFSR, leži v dejstvu, da so kripto-sheme do sedaj izbirale fiksne celice
predvsem preko diferenčnih množic, ali pa je bil izbor hevristične narave. Anal-
iza GFSGA napadov z algoritmi, ki so predstavljeni v disertaciji, je pokazala, da
totalno pozitivne diferenčne množice (ki se pogosto uporabljajo) ne ponujajo opti-
malne zaščite pri GFSGA napadih. Uporaba omenjenih algoritmov precej izbolǰsa
izbor, ki pa še ni optimalen, kar predstavlja odprt problem za nadaljnje raziskovanje.
Hkrati je analiza pokazala, da ni dovolj, da izbor fiksnih celic temelji le na lastnos-
tih porojenih iz diferenčnih množic, ampak so potrebne bolj napredne metode, ki
upoštevajo naravo GSFGA napadov.

Čeprav je znanih več metod za oceno zaščite slučajne Boolove funkcije proti
(hitrim) algebraičnim napadom [25, 30, 3, 8, 29, 56], so le-te v praksi običajno neu-
porabne, če je število n vhodnih spremenljivk relativno veliko (npr. za n ≥ 30), saj
je njihova računska kompleksnost prevelika. V disertaciji je podan učinkovit verjet-
nostni algoritem za oceno zaščite Boolove funkcije proti (hitrim) algebraičnim na-
padom, ki temelji na razrezu v parcialne linearne relacije, in ima časovno zahtevnost
O(n22n). V zameno za tip algoritma, ki je verjetnostne narave, tako dobimo precej
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manǰso časovno zahtevnost.
Z uporabo dokaj elementarnih tehnik, ki povežejo koeficiente polinoma nad

končnim obsegom in njegovega odvoda, so v disertaciji identificirani novi neskončni
razredi polinomov, ki nimajo linearnih struktur. Povezava med obstojem linearnih
struktur in diferenčnim profilom funkcij nad končnimi obsegi predstavlja pomembno
raziskovalno področje pri konstrukciji S-̌skatel, saj je zagotovitev dobre zaščite proti
diferenčni kriptoanalizi bistvena. Omeniti zadošča dejstvo, da nešteto današnjih
aparatur uporablja enkripcijski standard AES, kar predstavlja bločno šifro, ki temelji
na S -̌skatlah.

Osnovna orodja pri raziskovanju segajo od kombinatoričnih do algebraičnih metod
iz kriptografije. Pomembno orodje pri študiju posplošenih zlomljenih funkcij je
uporaba lastnosti ciklotomičnih obsegov in določenih metod iz linearne algebre.
Bistveni del pri optimizaciji pozicij fiksnih celic je detajlna analiza napada GFSGA
s konstantno hitrostjo vzorčenja, pomagali pa smo si tudi s sofisticiranim iskanjem s
pomočjo računalnǐskega programa Mathematica. Pri identifikaciji novih neskončnih
razredov polinomov, ki nimajo linearnih struktur, smo se posluževali teorije končnih
obsegov. Razvoj algoritma, ki oceni zaščito Boolove funkcije proti napadom AA
in FAA, temelji na novi metodi, ki razbije poljubno funkcijo na več majhnih delno
linearnih podfunkcij, in pri tem uporabi disjunktne množice vhodnih spremenljivk.
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MM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 Semi-zlomljene funkcije disjunktnih spektrov v razredu MM . . . 55

3.4.4 Notrivialna izbira komponentnih funkcij, n lih . . . . . . . . . . . . . . . . . 57

3.4.5 Konstrukcija za sode n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



Povzetek v slovenskem jeziku 161

3.4.6 Prikaz konstrukcijskih detajlov - primer . . . . . . . . . . . . . . . . . . . . . . . 61
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3.5.6 Posplošene zlomljene funkcije na Zn2 , n sod . . . . . . . . . . . . . . . . . . . . 71

3.5.7 Konstrukcijske metode za posplošene zlomljene funkcije v GB4sn 72
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5 Ocena algebraičnih lastnosti Boolovih funkcij za velike vrednosti
n 107

5.1 Verjetnostni dekompozicijski algoritem za nelinearne Boolove
funkcije . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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posplošena zlomljena (gbent), 17, 34,
43

planotska funkcija, 17

semi-zlomljena, 17

vektorska, 14

vektorska zlomljena, 16

karakterji grupe, 16

odvod, 15

disjunktni spektri, 16, 57

skalarni produkt, 14

totalno pozitivne diferenčne množice, 98
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utež, 14

leksikografsko urejanjanje, 13
linearna struktura, 131

Maiorana-McFarlandov razred, 57

nelinearen filtrirni generator, 19
nonlinearnost, 14

delne linearne relacije, 114, 117
ravninske preslikave, 138
primitivni element, 13

relativna diferenčna množica, 16, 50
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