

1-Sperner hypergraphs and new characterizations of threshold graphs

Martin Milanič, UP IAM and UP FAMNIT

Joint work with

Endre Boros and Vladimir Gurvich, Rutgers University

Raziskovalni matematični seminar, UP FAMNIT, 9. november 2015

Background and motivation

Hypergraph: a pair $\mathcal{H} = (V, \mathcal{E})$ where

- V is a finite set of vertices
- E is a set of subsets of V, called hyperedges

Example:

▶
$$V = \{1, 2, 3, 4\}$$

 $\blacktriangleright \ \mathcal{E} = \{\{1,2\},\{1,3\},\{1,4\},\{1,2,3\},\{2,3,4\}\}$

Hypergraph: a pair $\mathcal{H} = (V, \mathcal{E})$ where

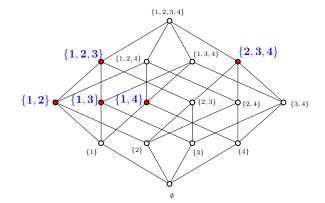
- V is a finite set of vertices
- E is a set of subsets of V, called hyperedges

$$\{1, 2, 3\}$$
 $\{2, 3, 4\}$

 $\{1,2\} \qquad \{1,3\} \qquad \{1,4\}$

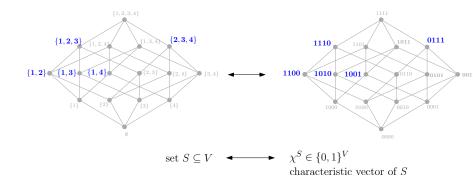
Hypergraph: a pair $\mathcal{H} = (V, \mathcal{E})$ where

- V is a finite set of vertices
- E is a set of subsets of V, called hyperedges



Hypergraph: a pair $\mathcal{H} = (V, \mathcal{E})$ where

- V is a finite set of vertices
- \triangleright *E* is a set of subsets of *V*, called **hyperedges**

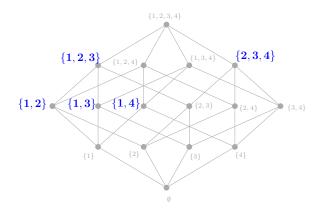


An **independent set** in a hypergraph $\mathcal{H} = (V, \mathcal{E})$ is a set $X \subseteq V$ containing no hyperedge of \mathcal{H} .

A set $X \subseteq V$ is **dependent** if it is not independent.

Equivalently: if it contains a hyperedge.

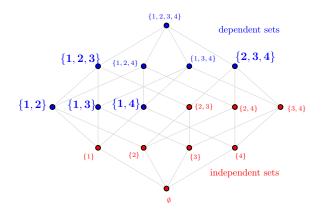
Example:



An **independent set** in a hypergraph $\mathcal{H} = (V, \mathcal{E})$ is a set $X \subseteq V$ containing no hyperedge of \mathcal{H} .

A set $X \subseteq V$ is **dependent** if it is not independent.

Example:



Threshold hypergraphs

A hypergraph \mathcal{H} is **threshold** if $\exists w : V \to \mathbb{Z}_{\geq 0}, \exists t \in \mathbb{Z}_{\geq 0}$ such that

for all $X \subseteq V$:

X is a dependent set of $\mathcal{H} \Leftrightarrow w(X) \ge t$

 $w(X) := \sum_{x \in X} w(x).$

Geometric interpretation: there is a hyperplane separating the characteristic vectors of independent sets from the characteristic vectors of dependent sets.

Threshold hypergraphs - example

 $\exists w : V \to \mathbb{Z}_{\geq 0}, \exists t \in \mathbb{Z}_{\geq 0} \text{ such that}$ for all $X \subseteq V$: X is a dependent set of $\mathcal{H} \quad \Leftrightarrow \quad w(X) \geq t$.

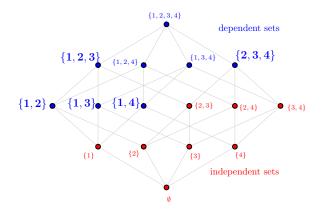
Example:

 $\{1,2,3\}$ $\{2,3,4\}$ $\{1,2\}$ $\{1,3\}$ $\{1,4\}$

Threshold hypergraphs - example

 $\exists w : V \to \mathbb{Z}_{\geq 0}, \exists t \in \mathbb{Z}_{\geq 0} \text{ such that}$ for all $X \subseteq V$: X is a dependent set of $\mathcal{H} \quad \Leftrightarrow \quad w(X) \geq t$.

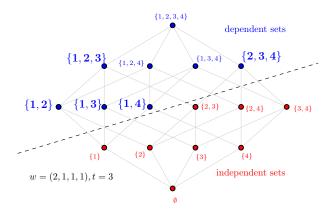
Example:



Threshold hypergraphs - example

 $\exists w : V \to \mathbb{Z}_{\geq 0}, \exists t \in \mathbb{Z}_{\geq 0} \text{ such that}$ for all $X \subseteq V$: X is a dependent set of $\mathcal{H} \quad \Leftrightarrow \quad w(X) \geq t$.

Example:



Threshold hypergraphs

Some historical remarks:

- Threshold hypergraphs were defined in the uniform case by Golumbic in 1980 and studied further by Reiterman, Rödl, Šiňajová, Tůma in 1985.
- In their full generality, the concept of threshold hypergraphs is equivalent to that of threshold monotone Boolean functions studied, e.g., by Muroga in 1971.

Threshold hypergraphs

- A polynomial time recognition algorithm for threshold monotone Boolean functions represented by their complete DNF was given by Peled and Simeone in 1985.
- The algorithm is based on linear programming and implies the existence of a polynomial time recognition algorithm for threshold hypergraphs.

Threshold hypergraphs arising from graphs

Several classes of threshold hypergraphs arising from graphs were studied in the literature:

G – a graph

hyperedges	studied by	resulting graph class
edges (of G)	Chvátal-Hammer, 1977	threshold graphs
vertex covers	-	threshold graphs
dominating sets	Benzaken-Hammer, 1978	domishold graphs
total dom. sets	Chiarelli-M., 2014-15	total dom. graphs
connected dom. sets	Chiarelli-M, 2014	connected dom. graphs
maximal cliques	???	???

Threshold hypergraphs arising from graphs

Several classes of threshold hypergraphs arising from graphs were studied in the literature:

G – a graph

hyperedges	studied by	resulting graph class
edges (of G)	Chvátal-Hammer, 1977	threshold graphs
vertex covers	-	threshold graphs
dominating sets	Benzaken-Hammer, 1978	domishold graphs
total dom. sets	Chiarelli-M., 2014-15	total dom. graphs
connected dom. sets	Chiarelli-M, 2014	connected dom. graphs
maximal cliques	this talk	threshold graphs

Sperner hypergraphs

A hypergraph is said to be **Sperner** (or: a **clutter**) if no hyperedge contains another one, that is,

```
if e, f \in \mathcal{E} and e \subseteq f implies e = f.
```

Example:

```
▶ V = \{1, 2, 3, 4\}

▶ \mathcal{E} = \{1, 2, 3\} {2, 3, 4}

{1, 2} {1, 3} {1, 4}
```

not Sperner since $\{1,2\} \subset \{1,2,3\}$

Dually Sperner hypergraphs

Sperner hypergraphs can be equivalently defined as the hypergraphs such that

$$e \neq f \Rightarrow \min\{|e \setminus f|, |f \setminus e|\} \ge 1.$$

This point of view motivated Chiarelli and M. to define in 2014 a hypergraph ${\cal H}$ to be **dually Sperner** if

$$e \neq f \quad \Rightarrow \quad \min\{|e \setminus f|, |f \setminus e|\} \leq 1.$$

Dually Sperner hypergraphs

 $e \neq f \quad \Rightarrow \quad \min\{|e \setminus f|, |f \setminus e|\} \leq 1.$

Example:

The hypergraph from the previous example is dually Sperner:

► $\mathcal{E} =$ {1,2,3}
{2,3,4}
{1,2} {1,3} {1,4}

The following hypergraph is not dually Sperner:

•
$$V = \{1, 2, 3, 4\}$$

▶ $\mathcal{E} = \{\{1, 2\}, \{3, 4\}\}$

Dually Sperner hypergraphs

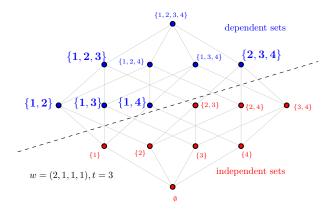
Theorem (Chiarelli-M. 2014)

Every dually Sperner hypergraph is threshold.

Chiarelli and M. applied dually Sperner hypergraphs to characterize two classes of graphs related to separation of total, resp. connected dominating sets.

Threshold hypergraphs

A hypergraph \mathcal{H} is **threshold** if $\exists w : V \to \mathbb{Z}_{\geq 0}, \exists t \in \mathbb{Z}_{\geq 0}$ such that for all $X \subseteq V$: *X* is an dependent set of $\mathcal{H} \Leftrightarrow w(X) \geq t$.



Threshold hypergraphs

It follows from the definition of threshold hypergraphs that **only minimal hyperedges matter** for the thresholdness property of a given hypergraph.

Example:

 $\{1,2,3\} \end{tabular} \{2,3,4\}$ $\{1,2\} \end{tabular} \{1,3\} \end{tabular} \{1,4\}$ is threshold if and only if $\{2,3,4\}$

 $\{1,2\}$ $\{1,3\}$ $\{1,4\}$

is threshold.

1-Sperner hypergraphs

Since dually Sperner hypergraphs are threshold, we focus on the family of hypergraphs that are **both Sperner and dually Sperner**.

We call such hypergraphs 1-Sperner.

A hypergraph \mathcal{H} is 1-Sperner if and only if

 $e \neq f \Rightarrow \min\{|e \setminus f|, |f \setminus e|\} = 1.$

1-Sperner hypergraphs

 $e \neq f \quad \Rightarrow \quad \min\{|e \setminus f|, |f \setminus e|\} = 1.$

Example:

The hypergraph from the previous example is not 1-Sperner, since it is not Sperner:

► $\mathcal{E} =$ {1,2,3}
{1,2} {1,3} {1,4}

Deleting the hyperedge $\{1, 2, 3\}$ results in a 1-Sperner hypergraph:

►
$$V = \{1, 2, 3, 4\}$$

 $\blacktriangleright \ \mathcal{E} = \{\{1,2\},\{1,3\},\{1,4\},\{2,3,4\}\}$

Our results

Our results

- 1. A composition result for 1-Sperner hypergraphs.
- 2. Its consequences.
- 3. New characterizations of threshold graphs.

An operation preserving 1-Spernerness

Gluing of hypergraphs

 $\mathcal{H}_1 = (V_1, \mathcal{E}_1)$ and $\mathcal{H}_2 = (V_2, \mathcal{E}_2)$ – vertex-disjoint hypergraphs z – a new vertex

The gluing of \mathcal{H}_1 and \mathcal{H}_2 is the hypergraph

 $\mathcal{H}=\mathcal{H}_1\odot\mathcal{H}_2$

such that

 $V(\mathcal{H}) = V_1 \cup V_2 \cup \{z\}$

and

 $E(\mathcal{H}) = \{\{z\} \cup e \mid e \in \mathcal{E}_1\} \cup \{V_1 \cup e \mid e \in \mathcal{E}_2\}.$

Incidence matrices

The operation of gluing can be visualized easily in terms of **incidence matrices**.

Every hypergraph
$$\mathcal{H} = (V, \mathcal{E})$$
 with $V = \{v_1, \dots, v_n\}$ and $\mathcal{E} = \{e_1, \dots, e_m\}$

can be represented with its **incidence matrix** $A^{\mathcal{H}} \in \{0, 1\}^{m \times n}$: rows are indexed by hyperedges of \mathcal{H} , columns are indexed by vertices of \mathcal{H} ,

and

$$m{A}_{i,j}^{\mathcal{H}} = \left\{egin{array}{cc} 1, & ext{if } m{v}_j \in m{e}_i; \ 0, & ext{otherwise}. \end{array}
ight.$$

Gluing of hypergraphs

If
$$\mathcal{H} = \mathcal{H}_1 \odot \mathcal{H}_2$$
 then

$$\boldsymbol{A}^{\mathcal{H}_1 \odot \mathcal{H}_2} = \left(\begin{array}{ccc} \boldsymbol{1}^{m_1, 1} & \boldsymbol{A}^{\mathcal{H}_1} & \boldsymbol{0}^{m_1, n_2} \\ \boldsymbol{0}^{m_2, 1} & \boldsymbol{1}^{m_2, n_1} & \boldsymbol{A}^{\mathcal{H}_2} \end{array} \right) \,.$$

Example:

Gluing of hypergraphs

Proposition

For every pair $\mathcal{H}_1 = (V_1, \mathcal{E}_1)$ and $\mathcal{H}_2 = (V_2, \mathcal{E}_2)$ of vertex-disjoint 1-Sperner hypergraphs, their gluing $\mathcal{H}_1 \odot \mathcal{H}_2$ is a 1-Sperner hypergraph, unless $\mathcal{E}_1 = \{V_1\}$ and $\mathcal{E}_2 = \{\emptyset\}$ (in which case $\mathcal{H}_1 \odot \mathcal{H}_2$ is not Sperner).

$$A^{\mathcal{H}_1} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

$$A^{\mathcal{H}_2} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$$

$$A^{\mathcal{H}_2} = \begin{pmatrix} z \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

A composition result for 1-Sperner hypergraphs

We show that every nontrivial 1-Sperner hypergraph can be generated this way.

We say that a gluing of two vertex-disjoint hypergraphs $\mathcal{H}_1 = (V_1, \mathcal{E}_1)$ and $\mathcal{H}_2 = (V_2, \mathcal{E}_2)$ is **safe** unless $\mathcal{E}_1 = \{V_1\}$ and $\mathcal{E}_2 = \{\emptyset\}$.

Theorem

A hypergraph \mathcal{H} is 1-Sperner if and only if

it either has no vertices (that is, $\mathcal{H} \in \{(\emptyset, \emptyset), (\emptyset, \{\emptyset\})\})$

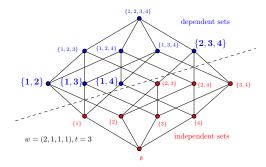
or it is a safe gluing of two smaller 1-Sperner hypergraphs.

Consequences of the structural result

Consequences

Using the composition result for 1-Sperner hypergraph, we obtain the following:

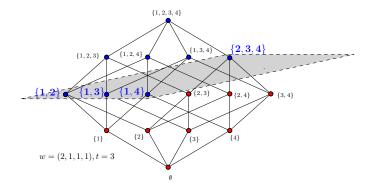
1. An alternative proof of the fact that every 1-Sperner hypergraph is threshold.



Unlike the previous proof establishing thresholdness of dually Sperner hypergraphs (due to Chiarelli-M.), this proof is constructive and builds a separating hyperplane of a given 1-Sperner hypergraph.

Consequences

2. A proof of the fact that every 1-Sperner hypergraph is equilizable.



 Equilizable hypergraphs form a generalization of equistable graphs (introduced in 1980 by Payan and studied afterwards in over 10 papers).

Consequences

3. An upper bound on the size of 1-Sperner hypergraphs:

Proposition

For every 1-Sperner hypergraph $\mathcal{H} = (V, \mathcal{E})$ with $\mathcal{E} \neq \{\emptyset\}$, we have $|\mathcal{E}| \leq |V|$.

Proof idea: the characteristic vectors of the hyperedges are linearly independent in R^V.

Can we prove a similar lower bound?

Consequences

- universal vertex: a vertex contained in all hyperedges
- isolated vertex: a vertex contained in no hyperedges
- two vertices u, v are twins if they are contained in exactly the same hyperedges

Adding universal vertices, isolated vertices, or twin vertices preserves the 1-Sperner property, while

- keeping the number of hyperedges unchanged and
- increasing the number of vertices.

Consequently, there is no lower bound on the number of hyperedges of a 1-Sperner hypergraph in terms of the number of vertices.

However ...

Consequences

4. A lower bound on the size of 1-Sperner hypergraphs without universal, isolated, and twin vertices:

Proposition

For every 1-Sperner hypergraph $\mathcal{H} = (V, \mathcal{E})$ with $|V| \ge 2$ and without universal, isolated, and twin vertices, we have

$$|\mathcal{E}| \ge \left\lceil \frac{|V|+2}{2} \right\rceil$$

This bound is sharp.

New characterizations of threshold graphs

Threshold graphs

A **threshold graph** is a threshold hypergraph in which all hyperedges are of size 2.

- Threshold graphs were introduced by Chvátal and Hammer in the 1970s and were studied in numerous papers (and in a monograph by Mahadev and Peled from 1995).
- Threshold graphs have many different characterizations.

Threshold graphs

Theorem (Chvátal and Hammer, 1977)

A graph G is threshold if and only if it is $\{P_4, C_4, 2K_2\}$ -free.

Theorem (Chvátal and Hammer, 1977) A graph G is threshold if and only if $V(G) = K \cup I$ where K is a clique, I is an independent set, $K \cap I = \emptyset$, and there exists an ordering v_1, \ldots, v_k of I such that $N(v_i) \subseteq N(v_j)$ for all $1 \le i < j \le k$.

Clique hypergraphs of graphs

Given a graph *G*, the **clique hypergraph of** *G* is the hypergraph C(G) with vertex set V(G) in which the hyperedges are exactly the maximal cliques of *G*.

Theorem (Berge, 1989)

The clique hypergraphs of graphs are exactly those Sperner hypergraphs \mathcal{H} that are also **normal** (or: **conformal**), that is,

for every set $X \subseteq V(\mathcal{H})$ such that every pair of elements in X is contained in a hyperedge,

there exists a hyperedge containing X.

A necessary condition for thresholdness

A hypergraph is *k*-summable if it has k (not necessarily distinct) independent sets A_1, \ldots, A_k and k (not necessarily distinct) dependent sets B_1, \ldots, B_k such that

$$\sum_{i=1}^{k} \chi^{A_i} = \sum_{i=1}^{k} \chi^{B_i}$$

If a graph is *k*-summable for some $k \ge 2$, then it cannot be threshold.

A hypergraph is *k*-asummable if it is not *k*-summable.

A necessary condition for thresholdness

Theorem

A hypergraph is threshold if and only if it is k-asummable for all k.

 A restatement of the analogous characterization of threshold Boolean functions proved in 1961 independently by Chow and Elgot.

Corollary

Every threshold hypergraph is 2-asummable.

1-Sperner, threshold, 2-asummable

In general:

1-Sperner \Rightarrow threshold \Rightarrow 2-asummable

and none of the implications can be reversed.

In the class of **conformal** Sperner hypergraphs, all these three notions coincide.

Moreover, they exactly characterize threshold graphs.

New characterizations of threshold graphs

Theorem

For every graph G, the following statements are equivalent:

- (1) G is threshold.
- (2) The clique hypergraph C(G) is 1-Sperner.
- (3) The clique hypergraph C(G) is threshold.
- (4) The clique hypergraph C(G) is 2-asummable.

clique hypergraph $\mathcal{C}(G)$

\rightsquigarrow independent set hypergraph $\mathcal{I}(G)$

in (2), (3), (4) also ok

(since the class of threshold graphs is closed under taking complements)

Summary

We introduced a new class of hypergraphs, the class of 1-Sperner hypergraphs:

 $e \neq f \Rightarrow \min\{|e \setminus f|, |f \setminus e|\} = 1.$

- We proved a structural theorem for 1-Sperner hypergraphs and examined several of its consequences, including bounds on the size of 1-Sperner hypergraphs and a new, constructive proof of the fact that every 1-Sperner hypergraph is threshold.
- ► Within the class of normal Sperner hypergraphs: 1-Sperner ⇔ threshold ⇔ 2-asummable
- New characterizations of the class of threshold graphs.

THank you!

 \mathcal{H} vala!