
Regular polytopes and almost
simple groups

Dimitri Leemans
University of Auckland

Department of Mathematics
Private Bag 92019

Auckland 1142
New Zealand

and
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Chapter 1

Basic Theory

1.1 Posets

A partially ordered set (P , ≤) is a set P equipped with a binary relation ≤
which is

• reflexive: a ≤ a for all a ∈ P ;

• antisymmetric: if a ≤ b and b ≤ a then a = b ; and

• transitive: if a ≤ b and b ≤ c then a ≤ c.

Examples include the real numbers under their standard ordering, subsets of
a set under inclusion, and the positive integers under divisibility.

We define a < b to mean that a ≤ b but a 6= b. If a ≤ b or b ≤ a, then a and
b are said to be comparable, and otherwise incomparable. Any subset of P in
which every pair of elements is comparable is called a chain, or linear order,
while any subset in which no two distinct elements are comparable is called
an antichain.

An element x ∈ P is called a maximum element of P if a ≤ x for all
a ∈ P , or a minimum element of P if x ≤ a for all a ∈ P . Weaker but
still important are these: an element x ∈ P is called a maximal element of
P if there is no element a ∈ P apart from x for which x ≤ a, or a minimal
element of P if there is no element a ∈ P apart from x for which a ≤ x. Every
maximum element is maximal (and every minimum element is minimal), but
not vice versa.
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1.2 Abstract polytopes

We now follow [21]. The propositions/theorems are numbered as in [21] to
facilitate the connection with the book.

An abstract polytope is a partially ordered set (P , ≤) with special properties
that hold for certain solid geometric objects (known as geometric polytopes).

(P1) The polytope has a maximum element (which is usually called P as
well), and a minimum element, which is often denoted by φ (like the empty
set).

All other elements of the polytope are called faces of the polytope, and they
occur in ‘layers’. Specifically, for some positive integer n there is a rank func-
tion r : P → {−1, 0, 1, 2, . . . , n}, such that r(φ) = −1 and r(P) = n, and
r(x) < r(y) whenever x < y in P .

The elements of rank k are called the k-faces of P . In particular, the elements
of rank 0 are called the vertices , the elements of rank 1 are called the edges ,
and the elements of rank n− 1 are called the facets of the polytope P .

(P2) Every maximal chain in P is required to have length n+2 and therefore
be of the form

φ < x0 < x1 < . . . < xn−1 < P

where each xk is a k-face. Every such maximal chain is called a flag of P .

We denote by F(P) the set of flags of P .

To complete the definition of an abstract polytope, we require two more
properties, which depend on the following concepts. We say that two flags
are adjacent if one can be obtained from the other by replacing just one of
its faces; and if x and z are elements of P , then we call the set [x, z] = {y ∈
P : x ≤ y ≤ z} a section of P .

(P3) The polytope P must be strongly connected, which means that in any
section Q of P , for any two faces F and G, there exists a finite sequence of
proper faces F = H0, . . . , Hk = G such that Hi−1 and Hi are comparable for
each i = 1, . . . k.

We say that a polytope P is flag-connected if any flag F ′ can be obtained from
any other flag F by a sequence (F0, F1, F2, . . . , Fm) of flags where F0 = F
and Fm = F ′, and the flag Fi−1 is adjacent to the flag Fi for 1 ≤ i ≤ m.
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A polytope P is strongly flag-connected if each section of P is flag-connected.

Proposition 2A1 Let P be a poset with properties (P1) and (P2). Then P
is strongly connected if and only if it is strongly flag-connected.

⇒ (P3)’ The polytope P must be strongly flag-connected.

(P4) The polytope P must satisfy the diamond condition, which says that
for each rank k, if x and z are elements with x ≤ z and r(x) = k − 1 and
r(z) = k + 1, then there are exactly two elements of rank k in the section
[x, z]; in other words, the section [x, z] is like a diamond, with top element
z, bottom element x, and two intermediate elements y and y′.

If n ≥ 1, then, for each 0 ≤ j ≤ n − 1, and each flag Φ of P , we denote by
Φj the flag adjacent to Φ that differs in the j-face. By extension, for r ≥ 2,
we write

Φj(1)...j(r−1)j(r) := (Φj(1)...j(r−1))j(r)

The following lemma summarises basic facts about flags.

Lemma 2A2 Let Φ be a flag of an abstract n-polytope P , and let 0 ≤ j ≤
k ≤ n− 1. Then

1. Φjj = Φ;

2. Φjk = Φkj for k ≥ j + 2.

For example, an abstract polytope of rank 2 is a standard polygon. Note
that every edges has exactly two vertices, and every vertex lies is exactly two
edges. Similarly, an abstract polytope of rank 3 is a non-degenerate map,
whose faces are the elements of rank 2. (By non-degenerate, we mean that
the underlying graph is simple, and every edges lies in two faces.)

We usually write P instead of (P ,≤).
Let (P ,≤) and (Q,≤′) be two abstract polytopes.

A map ϕ : P → Q between the element-sets of two polytopes P and Q is
called a homomorphism if it preserves incidence (i.e. F ≤ G in P implies
Fϕ ≤′ Gϕ in Q).

An isomorphism ϕ : (P ,≤) → (Q,≤′) is a bijection for which both ϕ and
ϕ−1 are homomorphisms.

P and Q are said to be isomorphic if there exists an isomorphism from one
to the other. In that case we write P ∼= Q.
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An automorphism of a polytope P is an isomorphism of P onto itself. The
set of all automorphisms of a polytope P together with the composition law
forms a group called the automorphism group Γ(P). Clearly, if P is finite,
then Γ(P) is also finite.

A bijection ϕ : P → Q is a duality if both ϕ and ϕ−1 reverse incidence. We
then call P and Q duals of each other.

A polytope P is self-dual if P ∼= P∗ where P∗ is the dual polytope of P .

The automorphisms of a polytope are defined as permutations of its face-set.
Sometimes other representations will be used as we will see further in this
course.

Proposition 2A4 For each polytope P , the group Γ(P) acts freely on the
flags of P .

1.3 Abstract regular polytopes

An abstract regular polytope is an abstract polytope (P ,≤) such that Γ(P)
is transitive on F(P).

Proposition 2B2 If P is a finite abstract regular polytope, then | Γ(P) |=| F(P) |.

For n ≥ 2 and i = 1, . . . , n − 1, if F is an (i − 2)-face and G is an (i + 1)-
face of P incident with F , then we write pi(F,G) for the number of i-faces
(or (i − 1)-faces) of P in the section G/F . Then G/F is isomorphic to a
2-polytope with pi(F,G) vertices. Observe that in the case of regular poly-
topes, this number is independent of the choice of F and G so we write it pi.
We call the ordered set [pi : i = 1, . . . , n− 1] the Schläfli symbol of P .

Proposition 2B3 Let P be a regular n-polytope.

1. All sections of P are regular polytopes, and any two sections which are
defined by faces of the same ranks are isomorphic. In particular P has
isomorphic facets and isomorphic vertex-figures.

2. The group of each section of P is a subgroup of Γ(P). More precisely,
if Fj is a j-face and Fk is a k-face with −1 ≤ j < k ≤ n, and Fj < Fk,
then Γ(Fk/Fj) is isomorphic to the stabilizer in Γ(P) of any chain of
type {−1, 0, . . . , j−1, j, k, k+1, . . . , n} which includes both Fj and Fk.
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Proposition 2B4 An n-polytope P is regular if and only if, for some flag Φ of
P and each j = 0, . . . , n−1, there exists a (unique) involutory automorphism
ρj of P such that Φρj = Φj.

Observe that such automorphisms exist for one flag if they exist for each flag.

Let P be a regular n-polytope. We choose a fixed flag

Φ := F−1, F0, . . . , Fn

of P and call it the base flag.

For j ∈ I := {0, . . . , n−1}, let ρj denote the unique involutory automorphism
of P such that Φρj = Φj. The elements ρ0, . . . , ρn−1 are called the distin-
guished generators of Γ(P). Subgroups generated by subsets of the distin-
guished generators are called distinguished subgroups or sometimes parabolic
subgroups.

We write ΦJ := {Fj ∈ Φ | j ∈ J} and ΓJ := {ρj | j 6∈ J}. In the latter case,
we use the shorthand Γj := Γ{j}. Also Γ∅ = Γ(P) and ΓI = {1}, the trivial
subgroup.

We write Γ(P ,Ω) for the stabiliser in Γ(P) of a chain Ω.

Proposition 2B7 Let Φ be the base flag of P . Let ΦJ be the chain of type
J with ΦJ ⊆ Φ. Then Γ(P ,ΦJ) = ΓJ .

Proposition 2B8 Let P be a regular n-polytope and let ρ0, . . . , ρn−1 be
the distinguished generators of its group with respect to some flag. Then
Γ(P) = 〈ρ0, . . . , ρn−1〉.

Proposition 2B9 Let P be a regular n-polytope and let Γ = 〈ρ0, . . . , ρn−1〉
be its group. Then

1. If −1 ≤ j ≤ k ≤ n, then Γ(Fk/Fj) ∼= 〈ρj+1, . . . , ρk−1〉.

2. In particular,
Γ(Fj/F−1) ∼= 〈ρ0, . . . , ρj−1〉,

Γ(Fn/Fj) ∼= 〈ρj+1, . . . , ρn−1〉.

3. If P is of type [p1, . . . , pn−1], then for 1 ≤ k ≤ n− 1,

Γ(Fk+1/Fk−2) ∼= 〈ρk−1, ρk〉 ∼= D2pk
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Proposition 2B10 If J,K ⊆ I, then

〈ρj | j ∈ J〉 ∩ 〈ρk | k ∈ K〉 = 〈ρj | j ∈ J ∩K〉

The condition in the above proposition is called the intersection property of
P (with respect to the generators ρ0, . . . , ρn−1).

Proposition 2B11 If | j − k |≥ 2, then ρjρk = ρkρj.

Propositions 2B8 shows that the automorphism group Γ(P) of an abstract
regular polytope P is a group generated by involutions (or ggi). Proposition
2B11 says the generators ρj and ρk commute if | j − k |≥ 2. Hence the ggi
Γ(P) is of a special kind called string ggi or sggi for short.

Proposition 2B12 If 0 ≤ k ≤ n− 1, then

Γ(P , Fk) = Γk = Γ(Fk/F−1)× Γ(Fn/Fk)

Lemma 2B13 Let 0 ≤ j, k ≤ n− 1 and let Gj be a j-face of P . Then Gj is
incident with Fk if and only if Gj = Fjγ for some γ ∈ Γk.

Theorem 2B14 Let 0 ≤ j, k ≤ n− 1 and let ϕ, ψ ∈ Γ. Then the following
three conditions are equivalent.

1. Fjϕ ≤ Fkψ;

2. ϕψ−1 ∈ 〈ρj+1), . . . , ρn−1〉〈ρ0, . . . , ρk−1〉;

3. Γjϕ ∩ Γkψ 6= ∅.

By Propositions 2B9 and 2B11, if P is a regular n-polytope of type [p1, . . . , pn−1],
then the distinguished generators of Γ(P) satisfy relations (ρjρk)

pjk = 1 for
0 ≤ j ≤ k ≤ n− 1, where

1. pjk = 1 if j = k;

2. pjk = 2 if | j − k |≥ 2;

3. pjk = pk if j = k − 1.
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1.4 Coxeter groups

Here we study only Coxeter groups constructed with finitely many distin-
guished generators.

Let M = (mij)i,j=1,...,k be a k× k matrix whose entries mij are positive inte-
gers or∞. The matrix M is called a Coxeter matrix if mii = 1 for i = 1, . . . , k
and mij = mji ≥ 2 for 1 ≤ i < j ≤ k.

Let M be a Coxeter matrix. The Coxeter group with Coxeter matrix M is
the group W = W (M) with generators σ1, . . . , σk and presentation

(σiσj)
mij = 1W for all i, j with mij 6=∞

The set S := {σ1, . . . , σk} is called the set of distinguished generators of W .

The rank of W (M) is the size of S.

The pair (W ;S) is called a Coxeter system.

If k = 1 then W ∼= C2. If k = 2 then W ∼= D2m12 .

Let K := {1, . . . , k}. For I ⊆ K, we define the distinguished subgroup or
parabolic subgroup WI of W by

WI := 〈σi | i ∈ I〉.

Then W∅ = {1W} and WK = W .

Theorem 3A2 Let W = 〈S〉 be a Coxeter group with Coxeter matrix M =
(mij)i,j∈K . Then the distinguished subgroups have the following properties.

1. Each group WI with ∅ 6= I ⊂ K is (isomorphic to) the Coxeter group
with Coxeter matrix M = (mij)i,j∈I ;

2. If I, J ⊂ K, then WI ∩WJ = WI∩J ;

3. The subgroups WI with I ⊂ K are mutually distinct. Equivalently, if
j 6∈ I, then σj 6∈ WI .

Point 2. of the Theorem above is called the intersection property.

If W = W (M) is a Coxeter group with Coxeter matrix M , the Coxeter dia-
gram D = D(M) is a labelled graph whose vertices represent the generators
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of W , and, for i, j ∈ K, an edge with label mij joins the ith and jth vertex,
omitting edges when mij ≤ 2. Also, if mij = 3, we don’t write the label on
the corresponding edge.

A string-Coxeter diagram is a diagram of the form

t t t t t tp1 p2 pn−2 pn−1

with possibly some of the pi’s equal to 2. This group is denoted by [p1, . . . , pk−1]
if k ≥ 2, or [1] if k = 1. A string Coxeter group is a Coxeter group with a
string Coxeter diagram.

Proposition 3A4 Let D be a Coxeter diagram without improper branches
and let D1, . . . ,Dm be its connected components. Then

W (D) ∼= W (D1)× . . .×W (Dm),

but no component W (Di) is itself a direct product of non-trivial distinguished
subgroups.

A Coxeter group is irreducible if its Coxeter diagram is connected. It is
reducible otherwise.

The symmetric group of a convex regular n-polytope or a regular tessellation
in euclidean or hyperbolic (n− 1)-space is a Coxeter group.

Let M = (mij)i,j∈I be a Coxeter matrix, and W = W (M) = 〈σ1, . . . , σk〉
the corresponding Coxeter group. Let E := IRk and let {e1, . . . , ek} be the
canonical basis of E. Define the symmetric bilinear form 〈·, ·〉M by

〈ei, ej〉M := −cos(π/mij) for i, j = 1, . . . , k.

This bilinear form is called the canonical bilinear form.

For i = 1, . . . , k, consider the linear mapping Si : E → E defined for x ∈ E
by

xSi := x− 2〈ei, x〉Mei.

Denote by I(M) the isometry group determined by 〈·, ·〉M ; this is the sub-
group of the general linear group GL(E) comprising the linear transforma-
tions which preserve the form 〈·, ·〉M . By the construction of 〈·, ·〉M , for
i, j = 1, . . . , k, we have

(SiSj)
mij = 1I(M).
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Hence α : W (M)→ I(M) : σi → Si(i = 1, . . . , k) is a homomorphism. This
homomorphism is called the canonical representation of W .

Theorem 3B1 The Coxeter group W = W (M) is finite if and only if the
canonical bilinear form 〈·, ·〉M is positive definite.

Theorem 3B2 The finite irreducible Coxeter groups are precisely those with
a diagram listed in Table 1.1.

1.5 C-groups and string C-groups

Let n ≥ 1 be an integer. A C-group of rank n is a group Γ generated by
pairwise distinct involutions ρ0, . . . , ρn−1 which satisfy the following property,
called the intersection property.

∀J,K ⊆ I := {0, . . . , n− 1}, 〈ρj | j ∈ J〉 ∩ 〈ρk | k ∈ K〉 = 〈ρj | j ∈ J ∩K〉.

A C-group (Γ, {ρ0, . . . , ρn−1}) is a string C-group if its generators satisfy the
following relations.

(ρjρk)
2 = 1Γ∀j, k ∈ {0, . . . n− 1}with | j − k |≥ 2.

In that case, the underlying Coxeter diagram is a string diagram.

1.6 From string C-groups to abstract regular

polytopes

We explain how to construct a regular n-polytope P from a string C-group
(Γ, {ρ0, . . . , ρn−1}) with n ≥ 1.

For i = −1, . . . , n, define
Γj := 〈ρi | i 6= j〉.

Observe that Γ−1 = Γ = Γn and that the subgroups Γ0, . . . ,Γn−1 are mutually
distinct and distinct from Γ.

For j ∈ I, take as set of j-faces of P the set of all right cosets Γjϕ in Γ, with
ϕ ∈ Γ. As improper faces of P , we choose two copies of Γ, one denoted by
Γ−1 and the other denoted by Γ.
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Notation Diagram Order

An with n ≥ 1 t t t t t t (n+ 1)!

Bn = Cn with n ≥ 2 t t t t t t4 2nn!

Dn with n ≥ 4 t t t t t t
t

��
�

H
HH

2n−1n!

E6 t t t t t
t

72 · 6! = 51840

E7 t t t t t t
t

8 · 9! = 2903040

E8 t t t t t t t
t

192 · 10! = 696729600

F4 t t t t4 1152

H3 t t t5 120

H4 t t t t5 14400

In with n ≥ 1 t tn 2n

Table 1.1: Spherical Coxeter groups
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Define Γjϕ ≤ Γkψ to mean

2E3 − 1 ≤ j ≤ k ≤ n and ϕψ−1 ∈ 〈ρj+1, . . . , ρn−1〉〈ρ0, . . . , ρk−1〉

or equivalently

2E5 − 1 ≤ j ≤ k ≤ n and Γjϕ ∩ Γkψ 6= ∅.

Lemma 2E4 The group Γ acts on P as a family of order preserving auto-
morphisms.

Lemma 2E6 The condition (2E3) induces a partial order on P .

Lemman 2E8 Γ is transitive on all chains of P of each given type K ⊆ I.

We define the base flag of P as Φ := {Γ0, . . . ,Γn−1}.

Lemma 2E9 If K ⊆ I, then the stabiliser of the chain ΦK of type K in the
base flag Φ is ΓK := 〈ρi | i 6∈ K〉.

Corollary 2E10 Γ is simply transitive on F(P).

Theorem 2E11 Let n ≥ 1, and let (Γ, {ρ0, . . . , ρn−1}) be a string C-group
and P := P(Γ) the corresponding poset. Then P is a regular n-polytope
such that Γ(P) = Γ.

Proof of Theorem 2E11

We need to check that (P1), . . ., (P4) are satisfied by P .

(P1) : trivial with Γ−1 and Γn.

(P2) : By Lemma 2E8, every chain Ω in P of type K can be expressed in
the form Ω = ΦKϕ for some ϕ ∈ Γ. Hence Ω ⊆ Φϕ.

(P4) : By Lemma 2E8, taking K = I\{j} for any j ∈ I, we see that the
stabiliser of ΦI\{j} is ΓI\{j} = 〈ρj〉. Hence there is exactly one flag apart from
Φ which contains ΦI\{j}, namely Φj = {Γ0, . . . ,Γj−1,Γjρj,Γj+1, . . . ,Γn−1}.

(P3) or (P3)’: By Corollary 2E10, Γ is simply transitive on F(P). It thus
suffices to consider the special case where one flag is the base flag Φ. If
Ψ ∈ F(P) is another flag, let K ⊆ I be such that Φ ∩ Ψ = ΦK . Since
ΦK ⊆ Ψ, Lemma 2E9 and Corollary 2E10 give Ψ = Φϕ for a unique ϕ ∈ ΓK .
This says that

Ψ = Φρk(1)...ρk(m)
= Φk(1)...k(m)
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for some k(1) . . . k(m) ∈ I\K, giving an adjacency sequence of flags which
each contain ΦK . 2

Corollary 2E13 The string C-groups are precisely the groups of regular
polytopes.

1.7 Permutation representation graphs

In this section we discuss permutation representations of string C-groups. In
particular we define permutation representation graphs for regular polytopes,
introduced by Pellicer in his PhD thesis (see also [23]).

A permutation representation graph of a regular d-polytope P is a permu-
tation representation of Γ(P) = 〈ρ0, . . . , ρd−1〉 represented on a graph as
follows. Let φ be an embedding of Γ(P) into the symmetric group Sn for
some n. The permutation representation graph G of P determined by φ is
the multigraph with n vertices, and with edge labels in the set {0, . . . , d−1},
such that any two vertices v, w are joined by an edge of label j if and only if
(v)(φ(ρj)) = w. These representations are faithful since φ is an embedding.

Since Γ(P) has a string diagram, the connected components of the graphs
induced by edges with labels i and j for |i − j| > 1 must either be single
vertices, single edges, double edges, or alternating squares. The value of n
for which we choose an embedding into Sn is not unique. For example the
regular toroidal polytope P = {4, 4}(2,0) has 32 flags and thus there is an
embedding of Γ(P) into S32, giving a permutation representation graph iso-
morphic to the Cayley graph of Γ(P). However, the action of Γ(P) on the
edges of the polytope determines the action on the flags, and thus there is
an embedding into S8 acting on the set of edges. From the two different
embeddings, we get the two different permutation representation graphs in
Figure 1.1. Here ρ0, ρ1, and ρ2 are represented by the edges coloured blue,
red, and green respectively.

1.8 Exercises

1. For each axiom (P1), (P2), (P3) and (P4), find examples of posets that
don’t satisfy it but satisfy the three others.

2. Given a cube and a base flag, write the distinguished generators of
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Figure 1.1: Permutation representation graphs of {4, 4}(2,0)

the automorphism group of the cube and show that this group acts
regularly on the flags of the cube.

3. Show that these generators satisfy the intersection property.

4. Draw the permutation representation graph corresponding to the gen-
erators you wrote for the automorphism group of the cube.

5. Show that the automorphism group of the cube is isomorphic to Sym(4)×
C2.

6. Prove that there exists a unique abstract regular 3-polytope with Schläfli
symbol [3, 3].

7. Give a string C-group representation for each of the five platonic solids
(i.e. the tetrahedron, the cube, the octahedron, the dodecahedron and
the icosahedron).

8. The Cayley graph of a string C-group (G, {ρ0, . . . , ρn−1} is a graph
whose vertices are the elements of G. Two vertices v, w are joined by
an edge with label j provided v ∗ ρj = w. Draw the Cayley graph of
the automorphism group of the cube.
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9. Compute the Schläfli symbols of the tesselations of the euclidean plane
by equilateral triangles, squares and hexagons. Show that the first and
third one are dual of each other and that the second one is self-dual.

10. A Petrie path of a polyhedron P is defined from a vertex v0 and an
incident edge e0 of P by taking successive vertices vi and ei such that
vi is adjacent to ei−1 and ei, ei is adjacent to vi−1 and vi (for i ≤ 1),
and no three consecutive edges in the path lie on a same face of P .
A Petrie polygon is a Petrie path with v0 = vi for some i > 0. The
length of a Petrie polygon is the smallest value of i such that v0 = vi
and e0 = ei. Compute the lengths of the Petrie polygons of the five
platonic solids.

11. The Petrial of an abstract regular polyhedron P is the polyhedron
obtained from P by taking the same vertices and edges and replacing
the faces by the Petrie polygons of P . What are the Schläfli symbols
of the Petrials of the five platonic solids?



Chapter 2

Algorithms and Atlases

2.1 Algorithms

In [20] Vauthier and I designed a series of algorithms to classify all string-
C-group representations of a given group up to isomorphism and duality.
In this section, we present two possible search algorithms, one depth-first
search (which we denote by the letter ‘D’ in Table 2.1) and one breadth-
first search (denoted by the letter ‘B’ in Table 2.1), which outperform the
Leemans-Vauthier algorithm. This section is mainly taken from [17].

In both algorithms, we will be concerned with classifying all regular poly-
topes with automorphism group G up to isomorphism. In other words, we
will be looking for all nonisomorphic ways of representing G as a string C-
group 〈ρ0, . . . , ρr〉.

Both the breadth search and the depth search start out the same way.

Step 0: Find the automorphism group of G. Represent this group Aut(G)
as a permutation group acting on the set L of all involutions of G, as these
are the possible generators in the string C group. Construct a list L0 of all
conjugacy classes of involutions. This gives the candidates for ρ0.

2.1.1 Breadth-first algorithm for classifying polytopes

In [12] a very similar algorithm is provided and was implemented in GAP.

1. Given Lk construct Lk+1 as follows. Let Kt be the stabilizer of a tuple
t in Lk under the action of Aut(G).

19
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2. Pick a set R of representatives of the orbits of the action of Kt on L.

3. For each element r of R, check if the group 〈t, r〉 is a string C-group.

(a) If it is a string C group and generates the whole group, add it to
the list P .

(b) If it is a string C-group but generates a proper subgroup of G,
then add [t, r] to the set Lk+1.

4. Stop when Lk+1 is empty.

2.1.2 Depth-first algorithm for classifying polytopes

This algorithm gives a recursive approach for finding all polytopes up to
isomorphism.

1. For each element ti = [r0, . . . , ri] of Li, find the stabilizer Sti of ti under
the action of S[r0,...,ri−1] on L.

2. Construct a list Rt,ri of representatives of the orbits of this action. This
will give you candidates for ρi+1.

3. For each element ri+1 of Rt,ri , check if the group 〈t, ri+1〉 is a string
C-group.

(a) If it is a string C group and generates the whole group then add
it to the list P .

(b) If it is a string C-group but generates a proper subgroup of G then
repeat the algorithm on ti+1 = [r0, . . . , ri, ri+1].

2.1.3 Comparison of algorithms

In general the depth-first search algorithm has two clear advantages. First,
we saw in the breadth-first search algorithm that the entire list L1 is con-
structed, then the entire list L2 is constructed before calculating L3, and so
on. These lists can be very large, so storing them can become very memory
intensive for large groups. For this reason, the depth first search is usually
less memory intensive.

Second, in the breadth-first search algorithm, you are computing the sta-
bilizer of a tuple of elements tk = [r0, . . . , rk] under the action of a large group
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Group Time 2 Time B Time D Memory 2 Memory B Memory D

Alt(5) 0.18s 0.16s 0.17s 0.01MB 0.01MB 0.01MB
Alt(5)× C2 0.29s 0.19s 0.17s 0.01MB 0.01MB 0.01MB
PΓL(2, 9) 1.86s 0.35s 0.29s 0.01MB 0.01MB 0.01MB
Sym(7) 5.95s 0.66s 0.45s 1.04MB 0.01MB 0.01MB

PSL(2, 25) 0.39 s 0.27s 0.22s 0.01MB 0.01MB 0.01MB
PΣU(3, 3) 4.62 s 0.63s 0.35s 1.29MB 1.29MB 1.29MB
PGL(2, 27) 4.38s 1.27s 0.36s 1.04MB 1.04MB 0.01MB
Sz(8) 0.44s 0.26s 0.26s 1.29MB 1.29MB 1.29MB
M12 12.19s 1.49s 1.02s 2.32MB 2.32MB 1.29MB
J1 54.36s 9.04s 2.78s 3.95MB 27.32MB 4.82MB

Alt(9) 37.12s 2.86s 1.68s 2.32MB 1.82MB 0.01MB
Sym(9) 2193.75s 49.42s 26.77s 10.26MB 4.54MB 1.45MB
Alt(10) 851.78s 41.53s 19.57s 16.36MB 8.07MB 1.57MB
HS 301.86s 97.75s 90.45MB 16.39MB

Table 2.1: Comparison of algorithms

Aut(G). By comparison, in the depth-first search algorithm, you simply con-
sider the stabilizer of the rk under the action of a much smaller group which
is Sti−1

which you have stored from the previous step. These two approaches
yield the same stabilizing subgroup, but dealing with the action of a smaller
group will usually make the depth first search faster.

We also note that there are many more ways that could be used to im-
prove the memory use of our algorithms. For example, currently we consider
Aut(G) as a permutation group acting on the list L of all involutions. In-
stead of acting on L, one could instead construct Aut(G) to act on the set
of indices of each involution in this list. It is easy to convert back and forth
from an index to an involution, and storing and working with these indices
can be more efficient than working in the original group. This approach was
in fact used in [20].

We conclude this section by giving a quantitative comparison of the 3
algorithms in the form of the following table comparing time and memory
usage in the classification of all non-isomorphic polytopes for a given group.
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G Aut(G) # G # of involutions Number of Polytopes

M11 M11 7920 165 0
M12 M12 : 2 95040 891 = 396+495 37 = 23+14

M12 : 2 M12 : 2 190080 1683 = 396+495+792 266 = 223+43
J1 J1 175560 1463 150 = 148+2
M22 M22 : 2 443510 1155 0

M22 : 2 M22 : 2 887040 2871 = 330+1155+1386 195 = 133+62
J2 J2 : 2 604800 2835 =315+2520 154 = 137+17

J2 : 2 J2 : 2 1209600 4635 = 315+1800+2520 452 = 368+82+2

Table 2.2: Sporadic groups and their automorphism groups

2.2 Atlases

Several papers have been published announcing classifications of string-C-
group representations for groups.

2.2.1 The Leemans-Vauthier atlas

This atlas [20], available online at http://www.auckland.ac.nz/∼dleemans/polytopes/”
contains classifications for all the finite almost simple groups appearing in
the Atlas of Finite Groups [8].

2.2.2 Hartley’s atlas

This atlas, also available online at http://www.abstract-polytopes.com/atlas/
contains all abstract regular polytopes with at most 2000 flags (except for
1024 and 1536).

2.2.3 Conder’s atlas

This atlas, available on Marston Conder’s website, contains abstract regular
polytopes with at most 2000 flags excluding those of rank two and those that
have a ”2” in their Schläfli symbol.
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G Aut(G) # G # of involutions Number of Polytopes

Alt(5) Sym(5) 60 15 2
Sym(5) Sym(5) 120 25 = 10+15 5 = 4+1
Alt(6) PΓL(2, 9) 360 45 0

PGL(2, 9) PΓL(2, 9) 720 81 =36+45 14
PΣL(2, 9) PΓL(2, 9) 720 75 = 15+15+45 7 = 2+4+1

M10 PΓL(2, 9) 720 45 0
PΓL(2, 9) PΓL(2, 9) 1440 111 = 30+36+45 12
Alt(7) Sym(7) 2520 105 0
Sym(7) Sym(7) 5040 231 = 21+105+105 44 = 35+7+1+1
Alt(8) Sym(8) 20160 315 = 105+210 0
Sym(8) Sym(8) 40320 763 = 28+105+210+420 117 = 68+36+11+1+1
Alt(9) Sym(9) 181440 1323 = 378+945 47 = 41+6
Sym(9) Sym(9) 362880 2619 = 36+378+945+1260 182 = 129+37+7+7+1+1

Table 2.3: Alternating groups and their automorphism groups

2.2.4 Hartley-Hulpke and sporadic groups

In [12], Hartley and Hulpke pushed further the computations started in [?] by
writing a new algorithm that permitted them to classify all abstract regular
polytopes for sporadic groups up to the Held group (of order 4,030,387,200).

2.2.5 Leemans and Mixer

With Mark Mixer [17], we designed a new series of algorithms (described
before) that permitted us to go even further, classifying all abstract regular
polytopes for Co3 (of order 495,766,656,000). We also gathered more data
on the alternating and symmetric groups at the time.

2.2.6 Connor, Leemans and Mixer

With Connor and Mixer [7], we pushed even further by designing a complete
new approach for polytopes of rank at least 4. We managed to get a complete
classification of abstract regular polytopes of rank at least 4 for the O’Nan
group (whose size is roughly the same as Co3 but which has a much larger
permutation representation degree). With Connor, we attacked the rank 3
using character theory [5].
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G Aut(G) # G # invols # of Polytopes

PSL(2, 4) = PSL(2, 5) Sym(5) 60 15 2
Sym(5) Sym(5) 120 25 = 10+15 5 = 4+1

PSL(3, 2) = PSL(2, 7) PΓL(2, 7) 168 21 0
PGL(2, 7) = PΓL(2, 7) PΓL(2, 7) 336 49 = 21+28 16
Alt(6) = PSL(2, 9) PΓL(2, 9) 360 45 0

PGL(2, 9) PΓL(2, 9) 720 81 = 36+45 14
PΣL(2, 9) PΓL(2, 9) 720 75 = 15+15+45 7 = 2+4+1

M10 PΓL(2, 9) 720 45 0
PΓL(2, 9) PΓL(2, 9) 1440 111 = 30+36+45 12
PSL(2, 8) PΓL(2, 8) 504 63 7
PΓL(2, 8) PΓL(2, 8) 1512 63 0
PSL(2, 11) PGL(2, 11) 660 55 4 = 3+1
PGL(2, 11) PGL(2, 11) 1320 121 = 55+66 42
PSL(2, 13) PGL(2, 13) 1092 91 11
PGL(2, 13) PGL(2, 13) 2184 169 = 78+91 59
PSL(2, 17) PGL(2, 17) 2448 153 16
PGL(2, 17) PGL(2, 17) 4896 289 = 136+153 110
PSL(2, 19) PGL(2, 19) 3420 171 18 = 17+1
PGL(2, 19) PGL(2, 19) 6840 361 = 171+190 140
PSL(2, 16) PΓL(2, 16) 4080 255 27

PSL(2, 16) : 2 PΓL(2, 16) 8160 323 = 68+255 26 = 21+5
PΓL(2, 16) PΓL(2, 16) 16320 323 = 68+255 0
PSL(2, 23) PGL(2, 23) 6072 253 28
PGL(2, 23) PGL(2, 23) 12144 529 = 253+276 212
PSL(2, 25) PΓL(2, 25) 7800 325 17
PGL(2, 25) PΓL(2, 25) 15600 625 = 300+325 127
PΣL(2, 25) PΓL(2, 25) 15600 455 =65+65+325 51 = 34+17
PSL(2, 25).2 PΓL(2, 25) 7800 325 0
PΓL(2, 25) PΓL(2, 25) 31200 755 = 130+300+325 64
PSL(2, 27) PΓL(2, 27) 9828 351 14
PGL(2, 27) PΓL(2, 27) 19656 729 = 351+378 98
PΣL(2, 27) PΓL(2, 27) 29484 351 0
PΓL(2, 27) PΓL(2, 27) 58968 729 = 351+378 0
PSL(2, 29) PGL(2, 29) 12180 435 50
PGL(2, 29) PGL(2, 29) 24360 841 = 406+435 337
PSL(2, 31) PGL(2, 31) 14880 465 51
PGL(2, 31) PGL(2, 31) 29760 961 = 465+496 394
PSL(2, 32) PΓL(2, 32) 32736 1023 93
PΓL(2, 32) PΓL(2, 32) 163680 1023 0

Table 2.4: PSL(2, q) groups and their automorphism groups
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G Aut(G) # G # invols # of Polytopes

PSL(3, 2) = PSL(2, 7) PΓL(2, 7) 168 21 0
PGL(2, 7) = PΓL(2, 7) PΓL(2, 7) 336 49 = 21+28 16

PSL(3, 3) PSL(3, 3) : 2 5616 117 0
PSL(3, 3) : 2 PSL(3, 3) : 2 11232 351 = 117+234 68 = 67+1
PSL(3, 4) PSL(3, 4).D12 20160 315 0
PSL(3, 4).21 PSL(3, 4).D12 40320 595 = 280+315 4

PSL(3, 4).3 = PGL(3, 4) PSL(3, 4).D12 60480 315 0
PSL(3, 4).3.23 PSL(3, 4).D12 120960 1323 = 315+1008 52 = 50+2

PSL(3, 4).3.22 = PΓL(3, 4) PSL(3, 4).D12 120960 675 = 315+360 0
PSL(3, 4).6 PSL(3, 4).D12 120960 595 = 280+315 0
PSL(3, 4).D12 PSL(3, 4).D12 241920 1963 = 280+ 119 = 100+16+3

315+360+1008
PSL(3, 4).23 PSL(3, 4).22 40320 651 = 315+336 53 = 44+9

PSL(3, 4).22 = PΣL(3, 4) PSL(3, 4).22 40320 435 = 120+315 0
PSL(3, 4).22 PSL(3, 4).22 80640 1051 = 120+ 147 = 88+59

280+315+336
PSL(3, 5) PSL(3, 5) : 2 372000 775 0

PSL(3, 5) : 2 PSL(3, 5) : 2 744000 3875 =775+3100 498 = 496+2

Table 2.5: Other linear groups and their automorphism groups

G Aut(G) # G # invols # of Polytopes

PSU(3, 3) PΓL(3, 3) 6048 63 0
PΓU(3, 3) PΓU(3, 3) 12096 315 = 62+252 31 = 25+6
PSU(4, 2) PΓU(4, 2) 25920 315 = 45+270 0
PΓU(4, 2) PΓU(4, 2) 51840 891 = 36+45+270+540 147 = 87+50+10
PSU(3, 4) PΓU(3, 4) 62400 195 0

PSU(3, 4) : 2 PΓU(3, 4) 124800 1235 =195+1040 80 = 78+2
PΓU(3, 4) PΓU(3, 4) 249600 1235 = 195+1040 0
PSU(3, 5) PΓU(3, 5) 126000 525 0
PGU(3, 5) PΓU(3, 5) 378000 525 0
PΓU(3, 5) PΓU(3, 5) 756000 3675 = 525+3150 247 = 237+10
PΣU(3, 5) PΣU(3, 5) 252000 1575 = 525+1050 116 = 105+11

Table 2.6: Unitary groups and their automorphism groups
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G Aut(G) # G # invols # of Polytopes

Sz(8) Sz(8) : 3 29120 455 7
Sz(8) : 3 Sz(8) : 3 87360 455 0

Table 2.7: Suzuki groups and their automorphism groups



Chapter 3

Suzuki groups

3.1 Basic facts

Looking at the data obtained in the Leemans-Vauthier atlas, some conjec-
tures arose and several have now been proven for the Suzuki groups, the
groups PSL(n, q) with n ≤ 4, the symmetric and alternating groups, etc.
The Suzuki groups were the first ones studied in this vein. We refer to [25, 26]
for the basic properties of Suzuki groups. Throughout this section, q = 22e+1

and e > 0 is an integer.
In the projective 3-space PG(3, q) over the finite field GF(q), an ovoid D

is a set of q2 + 1 points satisfying the following axioms:

1. no three points are collinear;

2. for every p ∈ D, there exists a hyperplane E of PG(3, q) such that
D ∩ E = {p};

3. for each such p ∈ D and E, for every line ` of PG(3, q) through p that
is not contained in E, there exists a point p′ ∈ D ∩ ` with p′ 6= p.

For instance, quadrics are ovoids in PG(3, q). Jacques Tits exhibited a
class of ovoids that are not quadrics, but occur as the fixed points of an
involutary automorphism of PSp(4, q) [26]. Those ovoids are now called Tits
ovoids or Suzuki ovoids. The Suzuki group Sz(q) is defined as the subgroup
of the collineations of PG(3, q) that leave a Suzuki-Tits ovoid invariant. Tits
showed that the choice of different Suzuki-Tits ovoids D (of the same pro-
jective space PG(3, q)) gives rise to conjugate groups in the group of all
collineations of PG(3, q). Suzuki showed that such a group is simple.

27
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We shall use several properties of Suzuki groups, their subgroups and
their elements. Given q, the maximal subgroups of Sz(q) have one of the
following structures [25]:

(Eq · Eq) : Cq−1, D2(q−1), Cαq : C4, Cβq : C4, Sz(q′),

where the symbol “:” stands for a split extension (also called semi-direct
product) and the symbol “·” stands for a non-split extension, Eq denotes an
elementary abelian group of order q, αq := q +

√
2q + 1, βq := q −

√
2q + 1

and q′ := 22e′+1 such that 2e′+1 | 2e+1. Clearly, if 2e+1 is a prime number,
then Sz(q) has no proper subgroups of Suzuki type.

Proposition 3.1.1. [26, 25] Let D be an ovoid of PG(3, q) and let Sz(q) be
its Suzuki group. Then:

1. The order of Sz(q) is (q2 + 1)q2(q − 1) and Sz(q) acts 2-transitively on
D.

2. The order of Sz(q) is not divisible by 3.

3. The group Sz(q) has no dihedral subgroup of order 8.

4. Aut(Sz(q)) ∼= Sz(q) : C2e+1; hence, for every involution ρ of Aut(Sz(q))
we have that ρ ∈ Sz(q). In particular, if Sz(q) < G ≤ Aut(Sz(q)), then
G cannot be generated by involutions.

3.2 Abstract regular polytopes

Theorem 3.2.1. [16] Let Sz(q) ≤ G ≤ Aut(Sz(q)) with q = 22e+1 and e > 0
a positive integer. Then G is a C-group if and only if G = Sz(q). Moreover,
if (G, {ρ0, . . . , ρn−1}) is a string C-group, then n = 3.

We may translate this theorem in abstract regular polytopes theory. It
means that

• if Sz(q) < G ≤ Aut(Sz(q)), then G is not the automorphism group of
an abstract regular polytope;

• if G = Sz(q), there exists an abstract regular polytope P such that
G = Aut(P). Moreover, if P is an abstract regular polytope such that
G = Aut(P), then P must be an abstract polyhedron, i.e. an rank
three polytope.



Chapter 4

Dihedral groups

4.1 Basic facts and classification theorem

Dihedral groups are usually defined as a finitely presented group with two
generators a and b satisfying

a2 = b2 = (a ∗ b)n = 1

(with n a positive integer or infinity which we won’t allow here). The gener-
ators a and b are involutions (i.e. elements of order 2). Observe that when
n = 1, D2 is a cyclic group of order 2. Hence, when we talk about dihedral
(sub)groups, we assume n > 1. All finite groups generated by two involutions
are dihedral groups. They also appear as automorphism groups of regular
n-gons. Dihedral groups are used as “stones” to build C-groups of rank at
least three. They are parabolic subgroups of rank two (and, as we will see,
sometimes rank three) of C-groups.

We write Cn to denote a cyclic group of order n and D2n to denote a dihe-
dral group of order 2n. We say that D2n is odd, simply even or doubly even
provided that n is odd, or congruent to 2 or 0 modulo 4, respectively.

Classification Theorem 4.1.1. [4] Let D := (D2n, {ρ0, . . . , ρr−1}) be a C-
group (with n a positive integer). Then r ≤ 3. Moreover,

1. r = 1 if and only if n = 1; and there exists a unique choice of ρ0 in
D2
∼= C2 such that D is a C-group.

2. if r = 2, there exists a unique choice of ρ0, ρ1 up to isomorphism such
that D is a C-group.

29
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3. if r = 3, then n > 2 and n ≡ 2 (mod 4). Also, there exists a unique
choice of ρ0, ρ1, ρ2 up to isomorphism such that (D2n, {ρ0, ρ1, ρ2}) is a
C-group.

As an application of the Classification Theorem 4.1.1, we have the following
obvious corollary.

Corollary 4.1.2. [4] All C-groups of D2n are string C-groups.

We recall here what the normalizer of a maximal dihedral subgroup of a
dihedral group is.

Lemma 4.1.3. [15] Let m be a maximal divisor of n. If n
m
6= 2 and m 6= 1,

then D2m is self-normalizing in D2n. If n
m

= 2 then D2m is a normal subgroup
of D2n. Moreover there are two subgroups isomorphic to D2m in D2n which
are fused under the action of Aut(D2n).

By applying Lemma 4.1.3 recursively for maximal subgroups we obtain the
following corollary.

Corollary 4.1.4. [4] Let n be an odd integer. Let G ∼= D2n and let D2m
∼=

H,K < G. Then H and K are self-normalizing in G. Moreover H and K
are conjugate in G. The length of their conjugacy class is n

m
.

Proof. The first part is an application of Lemma 4.1.3 and is clear. It remains
to prove the second part of the statement. Observe that H = 〈σH , τH〉 and
K = 〈σK , τK〉 where σH and σK are involutions of G, and τH and τK are
cycles of length m of G. Moreover σH and σK are conjugate in G, while
〈τH〉 = 〈τK〉. Hence there exists g ∈ G such that σgH = σK and which
normalizes 〈τK〉. Therefore Hg = K. The third part of the statement is clear
at this point.

The following lemma determines when two dihedral subgroups of a dihedral
group can intersect in a cyclic group of order 2.

Lemma 4.1.5. [4] Let G = D2n, and let D2p, D2q be subgroups of G such
that D2p ∩D2q = C2. The following statements hold:

• if n is odd then (p, q) = 1;

• if n is even then (p, q) = 1 or 2.
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Proof. Set k = (p, q). Observe that D2p has a unique subgroup Cp and that
D2q has a unique subgroup Cq. Moreover there exists a unique cyclic group
Cl of order l in G for all 2 6= l | n. Since k is the greatest common divisor
of p and q, we conclude that Cp ∩ Cq = Ck. In particular, D2p ∩ D2q = C2

contains Ck. Therefore we see that k ≤ 2. This shows that if n is odd, then
(p, q) = 1.

Now assume that n is even and that k = 2. Then Cp ∩ Cq = D2p ∩D2q and
therefore D2p ∩D2q = Z(G) ∼= C2.

4.2 Proof of the Classification Theorem 4.1.1

Lemma 4.2.1. [4] Let n be odd. Then D2n is not a C-group of rank 3.

Proof. By way of contradiction, suppose that D = (D2n, {ρ0, ρ1, ρ2}) is a C-
group of rank 3. Since n is odd, the maximal parabolic subgroups of D are
odd dihedral groups, say G0

∼= D2p, G1
∼= D2q and G2

∼= D2r, while the min-
imal parabolic subgroups of D are cyclic groups of order 2. By Lemma 4.1.5,
we see that p, q and r are coprime and pqr must divide n. But then, 〈G0, G1〉
is a dihedral group whose cyclic subgroup H of index 2 is generated by the
cyclic subgroups of G0 and G1. The subgroup H is of order pq and as 〈G0, G1〉
contains ρ0, ρ1 and ρ2, we have that 〈ρ0, ρ1, ρ2〉 6= G, a contradiction.

Lemma 4.2.2. [4] Let n be odd. Then D2n is not a C-group of rank r for
r ≥ 3.

Proof. By Lemma 4.2.1, we already know that D2n is not a C-group of rank 3.
Suppose that D = (D2n, {ρ0, . . . , ρr−1}) is a C-group of rank r ≥ 4. Observe
that each subgroup of G is either a cyclic group or an odd dihedral group.
Therefore the minimal parabolic subgroups of D are cyclic groups of order
2 and the remaining parabolic subgroups must be odd dihedral groups. In
particular, any triple {ρi, ρj, ρk} of involutions of D provides a C-group of
rank 3 for an odd dihedral group, a contradiction in view of Lemma 4.2.1.

Lemma 4.2.3. [4] Let n be odd. Up to isomorphism, there exists a unique
C-group (D2n, {ρ0, ρ1}) of rank 2.

Proof. Since n is odd, the group D2n has a unique conjugacy class of invo-
lutions. Each of them is a reflection through a vertex and the middle of the
opposite edge in the permutation representation of D2n as the automorphism
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group of a regular n-gon in a Euclidean space. Let ρ0 and ρ1 be any of them.
The angle formed by the corresponding reflection axes is 2kπ

n
for some posi-

tive integer 1 6= k < n. If (k, n) = 1, it is clear that 〈ρ0, ρ1〉 = D2n. Up to
isomorphism, there is obviously a unique pair of generating involutions in a
D2n as they give exactly the same presentation for this group.

Lemma 4.2.4. [4] Let n be even. Up to isomorphism, there exists a unique
C-group of rank 2 (D2n, {ρ0, ρ1}). Moreover, up to isomorphism, there ex-
ists also a unique C-group of rank 3 (D2n, {ρ0, ρ1, ρ2}) if and only if n ≡
2 (mod 4). Finally, there does not exist a C-group (D2n, {ρ0, . . . , ρr−1}) for
r ≥ 4.

Proof. Let D := (D2n, {ρ0, . . . , ρr−1}) be a C-group of rank r. We divide our
proof in two cases.

First case: suppose without loss of generality that ρ0 is the central involution
ofD2n. In that case, ρ0 commutes with ρi for all i = 1, . . . , r−1. In particular,
D2n = 〈ρ0〉 × 〈ρ1, . . . , ρr−1〉. However a doubly even dihedral group cannot
be written as a direct product of a cyclic group of order 2 and a dihedral
group of order n and therefore n ≡ 2 (mod 4). We can write n = 2m with m
odd and (D2m, {ρ1, . . . , ρr−1}) is a C-group. By Lemmas 4.2.1 and 4.2.2, we
have r− 1 = 2. We conclude that the only rank 3 C-group (D2n, {ρ0, ρ1, ρ2})
for n ≡ 2 (mod 4) is such that ρ0 commutes with both ρ1 and ρ2, with
〈ρ1, ρ2〉 ∼= Dn.

Second case: suppose that none of the involutions ρ0, . . . , ρr−1 is central. The
group D2n has three conjugacy classes of involutions: the class of the central
involution and two classes of length n

4
each. The ρi’s belong to those two

classes by assumption. By Lemma 4.1.5, the orders of the products ρiρj are
pairwise coprime and thus at most one of them is even. Set p = o(ρ0ρ1)
and q = o(ρ0ρr−1). Using similar arguments as in the proof of Lemma 4.2.1,
we can conclude that D does not satisfy the intersection property or that
〈ρ0, . . . , ρr−1〉 < D2n. Therefore D is not a C-group, a contradiction. In
conclusion, r cannot be larger than 2 when none of the ρi’s is central in D2n.
By applying the same kind of argument as in the proof of Lemma 4.2.3, it is
easily seen that, up to isomorphism, there is a unique C-group (D2n, {ρ0, ρ1})
of rank 2.

Proof of Classification Theorem 4.1.1. The fact that r < 4 as well as (3) are
consequences of Lemma 4.2.2 and the second part of Lemma 4.2.4. (1) is
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straightforward. (2) is a combination of Lemma 4.2.3 and the first part of
Lemma 4.2.4.
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Chapter 5

Almost simple groups with
socle PSL(2, q)

The following definitions (restricted to the finite case) are borrowed from
Carter [3]. Let V be a vector space of dimension n over a finite field GF(q).
The group of all non-singular linear transformations of V onto itself is called
the general linear group GL(n, q). The transformations of determinant 1
form a normal subgroup SL(n, q), the special linear group. The factor group
GL(n, q)/SL(n, q) is isomorphic to the multiplicative group of non-zero ele-
ments of GF(q). The centre Z of GL(n, q) consists of all transformations of
the form T (x) = λx for λ ∈ GF(q) with λ 6= 0. The factor group GL(n, q)/Z
is the projective general linear group PGL(n, q). It operates on the projec-
tive space of dimension n − 1 associated with V . The centre of SL(n, q) is
the subgroup Z∩SL(n, q), and the factor group SL(n, q)/(Z∩SL(n, q)) is the
projective special linear group PSL(n, q). The projective special linear groups
are generally simple. In fact, PSL(n, q) is a simple group for all n ≥ 2, except
for the groups PSL(2, 2) ∼= S3 and PSL(2, 3) ∼= A4. The order of PSL(2, q) is
given by

|PSL(2, q)| = q(q2 − 1)

(2, q − 1)

where (2, q − 1) denotes the greatest common divisor of 2 and q − 1.

We denote the automorphism group of PSL(2, q) by PΓL(2, q). It is ob-
tained by adjoining field automorphisms to the transformations of PGL(2, q).
Hence PΓL(2, q) = PGL(2, q)oGal(GF(q)) and thus PΓL(2, q) = PSL(2, q)o
(Cn × 2). Adjoining the field automorphisms to PSL(2, q) yields a sub-

35
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group of PΓL(2, q) denoted by PΣL(2, q). Naturally PΣL(2, q) = PSL(2, q)o
Gal(GF(q)).

Observe that PGL(2, q) and PSL(2, q) coincide in even characteristic and
so do PΓL(2, q) and PΣL(2, q).

5.1 The groups PSL(2, q) and PGL(2, q)

These groups were investigated by Leemans and Schulte in [18] and [19]
respectively. The subgroup structure of PSL(2, q) (and hence of PGL(2, q)
as PGL(2, q) may be seen as a subgroup of PSL(2, q2)) may be found in
Dickson [10] or Huppert [13]. It was first obtained in papers by Moore [22]
and Wiman [27].

Theorem 5.1.1. The group PSL(2, q) of order q(q2−1)
(2,q−1)

, where q = pr with p
a prime, contains only:

1. q+1 conjugate elementary abelian subgroups of order q, denoted by Eq.

2. q(q∓1)
2

conjugate cyclic subgroups of order d, denoted by d, for all divi-

sors d of (q±1)
(2,q−1)

.

3. q(q2−1)
2d(2,q−1)

dihedral groups of order 2d, denoted by D2d, for all divisors d of
(q±1)

(2,q−1)
with d > 2. The number of conjugacy classes of these subgroups

is one if (q±1)
d(2,q−1)

is odd, and two if it is even.

4. For q odd, q(q2−1)
12(2,q−1)

dihedral groups of order 4, denoted by 22. The

number of conjugacy classes of these groups is one if q ≡ ±3(8) and
two if q ≡ ±1(8). For q even, the groups 22 are listed under family 5.

5. (2,1,1)(pk−1)(pr−1)(pr−p)···(pr−ps−1)
(q−1)(ps−1)(ps−p)···(ps−ps−1)

sets, each of q2−1
(2,1,1)(pk−1)

conjugate ele-
mentary abelian subgroups of order ps, denoted by Eps, for all natural
number s such that 1 ≤ s ≤ r − 1, where k = (r, s) and (2, 1, 1) is
defined as 2, 1 or 1 according as p > 2 and r

k
is even, p > 2 and r

k
is

odd, or p = 2.

6. (2,1,1)(pk−1)(pr−p)···(pr−ps−1)
pr−s(q−1)(ps−1)(ps−p)···(ps−ps−1)

sets of (q2−1)pr−s

(2,1,1)(pk−1)
subgroups Eps : h, each

a semidirect product of an elementary abelian group Eps and a cyclic
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group of order h, for all natural numbers s such that 1 ≤ s ≤ r and all

divisors h of pk−1
(2,1,1)

, where again k = (r, s) and (2, 1, 1) is defined as 2,
1 or 1 according as p > 2 and r

k
is even, p > 2 and r

k
is odd, or p = 2.

7. For q odd or q = 4m, q(q2−1)
12(2,q−1)

alternating groups A4, of order 12. The

number of conjugacy classes of these groups is one if q ≡ ±3(8) and
two if q ≡ ±1(8).

8. For q ≡ ±1(8), two conjugacy classes of q(q2−1)
24(2,q−1)

symmetric groups S4,
of order 24.

9. For q ≡ ±1(5), two conjugacy classes of q(q2−1)
60(2,q−1)

alternating groups A5,

of order 60; and for q = 4m, one conjugacy class of q(q2−1)
60(2,q−1)

alternating

groups A5. For q ≡ 0(5), the groups A5 are listed under family 10.

10. q(q2−1)
pw(p2w−1)

groups PSL(2, pw), for all divisors w of r. The number of
conjugacy classes of these groups is two, one or one according as p > 2
and r

w
is even, p > 2 and r

w
is odd, or p = 2.

11. Two conjugacy classes of q(q2−1)
2pw(p2w−1)

groups PGL(2, pw), for all w such
that 2w is a divisor of r.

Observe that when q is even, family 11 of Theorem 5.1.1 is a subfamily
of family 10.

Suppose Γ is a string C-group representation of rank r of PSL(2, q) with
distinguished generators ρ0, . . . , ρr−1.

The following theorem, due to Sjerve and Cherkassoff, shows when a
group PSL(2, q) or PGL(2, q) has a string C-group representation of rank 3.

Theorem 5.1.2. [24] The group PSL(2, q) can be generated by three involu-
tions, two of which commute, if and only if q 6= 2, 3, 7 or 9.

The group PGL(2, q) can be generated by three involutions, two of which
commute, if and only if q 6= 2.

We now bound the rank.

Theorem 5.1.3. If q is even, the maximum rank of a string C-group repre-
sentation for PSL(2, q) = PGL(2, q) is 3. If q is odd, the maximum rank of
a string C-group representation for PSL(2, q) and for PGL(2, q) is 4.
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Proof. If q is even, the centralizer of an involution is an elementary abelian
group of order q = 2d for some d. Therefore, the subgroup Γ1 = 〈ρ0〉 ×
〈ρ2, . . . , ρr−1〉 is also elementary abelian. This implies that the diagram of
Γ is connected if and only if r = 3. If Γ is PSL(2, q) we then readily see
that the rank of Γ is at most 3 as Γ is simple. If Γ is PGL(2, q) then, since
we know PGL(2, q) cannot be written as the direct product of two smaller
groups, we also have r = 3.

If q is odd, the centralizer of an involution in PSL(2, q) is a dihedral group
Dq−1 when q ≡ 1mod4 or Dq+1 when q ≡ 3mod4. In both cases, the centre
is a cyclic group of order 2. Hence the subgroup Γ1 must be a subgroup of
a dihedral group and referring to Classification Theorem 4.1.1, we get that
r is at most 4.

So it remains to consider the rank four with q odd. We assume that G is
a group isomorphic to PSL(2, q) or PGL(2, q), with q = pr, p an odd prime
and r a positive integer. Moreover, we assume that (G, {ρ0, . . . , ρ3}) is a
string C-group of type {t, l, s} (i.e. the orders of ρ0ρ1, ρ1ρ2 and ρ2ρ3 are t,
l and s, respectively). Clearly, t, l, s ≥ 3, since G is not a direct product of
two non-trivial groups. As before we set

Gi = 〈ρj | j ∈ {0, . . . , 3}\{i}〉,

for i = 0, . . . , 3.
We say that a subgroup H of G is an (irreducible) rank 3 subgroup of G

if H is a rank 3 string C-group with a connected Coxeter diagram.
By Theorem 5.1.1, the rank 3 subgroups of G are isomorphic to S4, A5,

or PSL(2, q′) or PGL(2, q′) for some q′. These are the only possible types of
subgroups for G0 and G3.

We begin with a sequence of lemmas aimed at eliminating PSL(2, q′) and
PGL(2, q′) as possibilities.

Lemma 5.1.4. The orders t of ρ0ρ1 and s of ρ2ρ3 must be odd.

Proof: This is due to the fact that the centralizer of an involution is a
dihedral group and its centre is a cyclic group of order 2. 2

Lemma 5.1.5. [18] Let H and K be two subgroups of type PSL(2, q′) in
PSL(2, q), with q′m = q for some positive integer m. Then H ∩K cannot be

a dihedral group D2k with k > 2 (and k a divisor of (q′±1)
2

).
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Proof: Let k > 2, and let k be a divisor of q′±1
2

. By Theorem 5.1.1, we
know that

• in PSL(2, q), there are q(q2−1)
q′(q′2−1)

subgroups isomorphic to PSL(2, q′);

• in PSL(2, q), there are q(q2−1)
4k

subgroups isomorphic to D2k;

• in PSL(2, q′), there are q′(q′2−1)
4k

subgroups isomorphic to D2k.

Let n := (q′−1)
2

if k | (q′−1)
2

and n := (q′+1)
2

if k | (q′+1)
2

. By Theorem 5.1.1,

there are q(q2−1)
4n

subgroups D2n in PSL(2, q). Each subgroup D2n contains
n
k

subgroups D2k. Therefore, each subgroup D2k is contained in exactly one
subgroup D2n. The same kind of arguments show that each D2n is contained
in exactly one PSL(2, q′). Therefore, each subgroup D2k of PSL(2, q) (with

k > 2 and k a divisor of (q′±1)
2

) is contained in a subgroup PSL(2, q′) of
PSL(2, q), and the number of subgroups PSL(2, q′) containing a given sub-
group D2k is precisely one. Now the lemma follows. 2

Lemma 5.1.6. [18] The subgroups G0 and G3 of G cannot be isomorphic
to PSL(2, q′), with q′m = q for some positive integer m.

Proof: Suppose, without loss of generality, that G3
∼= PSL(2, q′). Then

ρ3 conjugates two subgroups PSL(2, q′) of G whose intersection contains a
dihedral group of order 2t; in terms of the underlying polytope, of which G
is the automorphism group, these two subgroups are the stabilizers of the
two facets which share the 2-face in the base flag. Then this intersection
itself, being a subgroup of PSL(2, q), must be a dihedral group. However,
this contradicts Lemma 5.1.5. 2

Lemma 5.1.7. The subgroups G0 and G3 of G cannot be isomorphic to
PGL(2, q′), with q′m = q for some positive integer m.

Proof: Suppose that G0
∼= PGL(2, q′). Then G0∩Gρ0

0 ≥ D2s with s odd.
The normalisers NG(D2s) = D4s and NG0(D2s) = D4s as n must divide one of
q′± 1 and the normaliser is twice bigger if (q′± 1)/n is even. But then there
is a unique subgroup PGL(2, q′) containing D2s implying that G0 = Gρ0

0 . But
then G0 is normalised by G, a contradiction. 2

We finally have all the tools to prove the following theorem.
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Facet Vertex-figure Order of G Structure of G
{5, 5}3 {5, 5}3 1
{5, 5}3 {5, 3}5 1
{5, 3}5 {3, 5}5 3420 PSL(2, 19)
{5, 3}5 {3, 4}3 60 A5

∼= PSL(2, 5)
{5, 3}5 {3, 3}4 1
{4, 3}3 {3, 4}3 96 24 :S3

{4, 3}3 {3, 3}4 24 S4 = PGL(2, 3)
{3, 5}5 {5, 3}5 660 PSL(2, 11)
{3, 4}3 {4, 3}3 1
{3, 3}4 {3, 3}4 120 S5

∼= PGL(2, 5)

Table 5.1: Combinations of rank 3 polytopes

Theorem 5.1.8. [18] Let (G, {ρ0, . . . , ρ3}) be a string C-group. If G ∼=
PSL(2, q), then q = 11 or 19. If G ∼= PGL(2, q) then q = 5.

Proof: Lemmas 5.1.5 and 5.1.7 reduce the possible subgroups for G0 and
G3 to only two kinds, S4 and A5.

The only rank 3 polytopes with group S4 are {3, 3} (= {3, 3}4), {3, 4}3 and
{4, 3}3, and those with group A5 are {3, 5}5, {5, 3}5 and {5, 5}3. Recall here
from [9] that {m,n}k is obtained from the regular tessellation {m,n} by iden-
tifying any two vertices that are separated by k steps along a Petrie polygon
of {m,n}. Its group 〈τ0, τ1, τ2〉 has a presentation consisting of the standard
Coxeter type relations for {m,n} and the single extra relation (τ0τ1τ2)k = 1.)

We can now check which pairs of polyhedra can be combined to form the
facets and vertex-figures, respectively, of a regular rank 4 polytope. Table 5.1
gives the possible combinations and the structure of the corresponding “uni-
versal” groups; these groups are obtained by taking as defining relations just
those of the facet group and vertex-figure group as well as (ρ0ρ3)2 = 1. Only
one from a pair of dual combinations is listed, since dual combinations yield
the same groups (with the orders of the generators reversed). The results
in this table can easily be obtained using a Computational Algebra package
like Magma [1] (or, if necessary, by hand). Finally, by inspection we readily
see that the only possibilities for (G, {ρ0, . . . , ρ3}) to be a string C-group of
rank 4 occur when q = 11 or q = 19. 2

Note that the groups occurring in rows 1, 2, 5 and 9 of Table 5.1 are trivial.
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In row 4, the group actually is a group PSL(2, q) but is too small to be a C-
group of rank 4. In row 7 we also do not have a C-group of rank 4. Finally,
in row 6 we obtain a C-group of rank 4 isomorphic to 24 : S3, namely the
group of the universal locally projective regular 4-polytope {{4, 3}3, {3, 4}3}.

In terms of regular polytopes Theorem 5.1.8 can be rephrased as follows.

Theorem 5.1.9. The only regular polytopes of rank 4 with automorphism
groups of type PSL(2, q) are the 11-cell {{3, 5}5, {5, 3}5} with group PSL(2, 11)
of order 660, and the 57-cell {{5, 3}5, {3, 5}5} with group PSL(2, 19) of order
3420. The only regular polytope of rank 4 with automorphism groups of type
PGL(2, q) is the 4-simplex {{3, 3}4, {3, 3}4} with group PGL(2, 5) of order
120.

5.2 The groups Γ(2, q) and Σ(2, q)

The subgroup structure of PΓL(2, q) has been extensively studied for instance
in [11] or [2].

We first state a lemma that sums up the possible factor groups of an
almost simple groups with socle isomorphic to PSL(2, q).

Lemma 5.2.1. Let q = pd be a prime power. Then

PΓL(2, q)/PSL(2, q) ∼=
{

Cd if p = 2
Cd × 2 if p 6= 2

As suggested by Lemma 5.2.1, we divide our discussion in two cases ac-
cording to the parity of d, the power of the prime p.

Case 1: q = p2k+1

We can assume without loss of generality that k ≥ 1 for if k = 0 then
q = p in which case PΓL(2, q) = PGL(2, q). Let PSL(2, p2k+1) ≤ G ≤
PΓL(2, p2k+1) and suppose that G is the automorphism group of an abstract
regular polytope. It is obvious from Lemma 5.2.1 that all involutions of G lie
in the normal subgroup isomorphic to PSL(2, p2k+1) or PGL(2, p2k+1) of G.
Hence involutions generate G if and only if G is isomorphic to PSL(2, p2k+1)
or PGL(2, p2k+1).

Case 2: q = p2d

Lemma 5.2.1 shows that there exist involutions in G that do not lie in
PGL(2, q). They are so-called Baer involutions and will be detailed later.
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PΓL(2, q)

PΣL(2, q)Γ(2, q)

PGL(2, q) Σ(2, q) M(2, q)

PSL(2, q)

Figure 5.1: PSL(2, p2d) and some overgroups

Moreover it is obvious that the subgroup generated by all involutions of
PΓL(2, q) is a group four times larger than PSL(2, q)in odd characteristic
and twice larger in even characteristic.

We make use of the following notation. Let γ be a PGL-involution (i.e.
an involution of PGL(2, q) that is not in PSL(2, q)) of PΓL(2, p2d) and let
β be a Baer involution. Then Γ(2, p2d) := PSL(2, p2d) o 〈γ, β〉, Σ(2, p2d) :=
PSL(2, p2d) o 〈β〉 and M(2, p2d) := PSL(2, p2d) · 〈βγ〉. In the latter case,
the extension of PSL(2, q) by 〈βγ〉 is non split because this group has a
unique conjugacy class of involutions, all in the normal subgroup isomorphic
to PSL(2, q). Hence M(2, q) is not generated by involutions.

Observe that the notation M(2, q) comes from the fact that, in PΓL(2, 9),
the group M(2, 9) is isomorphic to the stabiliser of a point in the degree 11
permutation representation of the Mathieu group M11.

We now assume that q = p2d is a prime power with d ≥ 1, as we showed
that no group PSL(2, p2k+1) ≤ G ≤ PΓL(2, p2k+1) other that PSL(2, p2k+1)
or PGL(2, p2k+1) is generated by involutions. Consider the group PSL(2, q)
in its natural action on q + 1 points.

Let us first assume that p is odd. The group PSL(2, q) has a unique con-
jugacy class of involutions. As q = p2d, q − 1 is divisible by 4 and therefore
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any involution of PSL(2, q) lies in the stabilizer of a point, hence fixes at least
one point and thus at least two because q+1 is even. Since PSL(2, q) is a sub-
group of PGL(2, q) which is strictly 3-transitive, each involution of PSL(2, q)
fixes exactly two points. The group PGL(2, q) has two conjugacy classes of
involutions, namely those that are in the subgroup PSL(2, q) of PGL(2, q) and
those that are not. We call involutions of the first kind PSL-involutions and
involutions of the latter kind PGL-involutions. The centralizer in PGL(2, q)
of a PGL-involution is isomorphic to D2(q+1) and has no fixed point. Thus a
PGL-involution has no fixed point.

The group G ∼= PΓL(2, q) (with q = p2d) has three conjugacy classes of
involutions: PSL-involutions, PGL-involutions, and Baer involutions induced
by the field automorphism or order 2 which is the composition of d Frobenius
automorphisms x 7→ xp. Consider Γ(2, q) the subgroup of PΓL(2, q) gener-
ated by all involutions of PΓL(2, q). It is a group of order 2q(q2−1) and con-
tains PGL(2, q) as an index two normal subgroup as shown by Lemma 5.2.1.
Since PGL(2, q) is strictly 3-transitive on q+1 points, the pointwise stabilizer
in PGL(2, q) of any three points is trivial. Therefore the pointwise stabilizer
in Γ(2, q) of three points is of order 2 and yields a Baer involution β. More-
over three points yield a subfield GF(

√
q). Hence the elements commuting

with a Baer involution β act transitively on the
√
q + 1 points fixed by β

and this action corresponds to the action of PGL(2,
√
q) on

√
q + 1 points.

Therefore the centralizer of β in PΓL(2, q) is CPΓL(2,q)(β) ∼= 〈β〉×PGL(2,
√
q).

Obviously PGL(2,
√
q) < PSL(2, q).

In even characteristic, it is well known that PSL(2, q) = PGL(2, q).
Therefore PΣL(2, q) = PΓL(2, q) has two conjugacy classes of involutions:
PSL-involutions and Baer involutions. The former ones have exactly one
fixed point and the latter ones have q + 1 fixed points.

Theorem 5.2.2. [6] Let q := p2d be a prime power with p odd and let G ∼=
Γ(2, q). Then G acts regularly on polytopes of rank 3 only.

Proof. Let us first show by induction that G does not act regularly on poly-
topes of rank ≥ 4. By way of contradiction, suppose that G acts regularly on
a polytope P = {ρ0, . . . , ρ3} of rank 4. In order to have Γ(2, q) ∼= 〈ρ0, . . . , ρ3〉,
one of the involutions of P must be a Baer involution and another must be
a PGL-involution. Let us first assume that ρ0 is a Baer involution β. Since
CG(β) = 〈β〉×PGL(2,

√
q), it is clear that every involution commuting with β

must be a PSL-involution or a Baer involution since PGL(2,
√
q) < PSL(2, q).
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Hence ρ1 has to be a PGL-involution γ and ρ3 has to be a PSL-involution,
say σ.

Observe that βγ is of order divisible by 4. Indeed, βγ belongs to the left
coset PGL(2, q)β in G as does any product of an odd number of βγ, while
(βγ)o(βγ) = 1G. Hence o(βγ) is even. Consider the involution

δ := (βγ)(βγ) · · · (βγ)︸ ︷︷ ︸
o(βγ)

2

= (γβ)(γβ) · · · (γβ)︸ ︷︷ ︸
o(βγ)

2

.

Observe that βδ = δβ and γδ = δγ, i.e. δ is the central involution of 〈β, γ〉.
Therefore γδ is an element of PGL(2, q). Thus o(βγ)/2 must be even since
the product of γ with an odd number of βγ lies in the left coset PGL(2, q)β.

Observe moreover that δ is a PSL-involution since it commutes simul-
taneously with a Baer involution and with a PGL-involution. Hence δ has
exactly two fixed points. We now divide our proof in two cases: in the first
case we assume that β and σ do not fix common points; in the second case
we assume that β fixes the two points fixed by σ.
Case 1. The CPR graph of P , when restricted to β and σ, is composed with
the following connected components, when restricted to β and σ. Since β
does not fix the points fixed by σ but commute with σ, it has to swap them.
Hence there is exactly one connected component (where loops are not drawn)

·σ

·σ
β

The
√
q + 1 points fixed by β are swapped pairwise by σ. Thus there are

√
q+1

2
connected components

·β

·β
σ

There remains q −√q − 2 points. Since β and σ commute, the product βσ
is a Baer involution and thus βσ has

√
q + 1 fixed points. Hence there are

√
q+1

2
connected components

·

·
σ β
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The remaining q − 2
√
q − 3 points are partitioned into

q−2
√
q−3

4
squares

·

· ·

·
σ σβ

β

Now γ commutes with σ, hence γ swaps the two points fixed by σ. Thus the
PSL-involution δ fixes the points fixed by σ. Since the pointwise stabilizer
of two points in PSL(2, q) is a cyclic group, it has a unique involution, and
therefore δ = σ. Hence 〈β, σ〉 ≤ 〈β, γ〉 and the intersection property fails.
Thus β and σ must have two common fixed points.
Case 2. Assume that β fixes the two points fixed by σ. The CPR graph
of P , when restricted to β and σ, is composed with the following connected
components. By assumption, there are two double loops suggested by

·σ, β

·σ, β

The remaining
√
q − 1 points fixed by β are swapped pairwise by σ. Thus

there are
√
q−1

2
connected components

·β

·β
σ

Since β and σ commute, the product βσ is a Baer involution and thus βσ
has
√
q + 1 fixed points. Hence there are

√
q−1

2
double edges

·

·
σ β

The remaining q − 2
√
q + 1 points are partitioned into

q−2
√
q+1

4
squares

·

· ·

·
σ σβ

β
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Now γ swaps the two points fixed by σ (that are also fixed by β). Since
o(βγ) ≡ 0 mod 4, δ fixes the two points fixed by σ. As in Case 1, we
conclude that δ = σ and 〈β, σ〉 ≤ 〈β, γ〉 which contradicts the intersection
property.

Notice that these arguments apply also if γ = ρ0 and β = ρ1 to get
to a contradiction. Whence if a polytope of rank 4 exists for G, say P =
{ρ0, . . . , ρ3}, the conjugacy classes to which the involutions ρi’s belong are
completely determined up to duality: τ := ρ0 and σ := ρ3 must be PSL-
involutions, γ := ρ1 must be a PGL-involution and ρ2 must be a Baer invo-
lution. Consider the subgroup 〈τ, γ〉. Obviously τγ has even order and we
define the involution

δ := (τγ)(τγ) · · · (τγ)︸ ︷︷ ︸
o(τγ)

2

.

Since both τ and γ commute with σ, they must swap the two points fixed
by σ. Hence δ fixes those two points and we conclude that δ = σ. Therefore
〈γ, σ〉 ≤ 〈τ, γ〉 and the intersection property is violated.

This shows that there does not exist string C-group representations of G
of rank 4. Using these arguments, it is now trivial to show by induction that
G does not act on abstract regular polytopes of rank ≥ 4.

Finally we have to show that there exist string C-group representations
of G of rank 3. Let γ be a PGL-involution and σ a PSL-involution that
generate a subgroup isomorphic to D2(q+1) which is a maximal subgroup of
PGL(2, q) < G. Let β ∈ CG(σ) be a Baer involution. It obviously does
not commute with γ. Moreover 〈β, γ, σ〉 cannot be a proper subgroup of G
for otherwise it has to be NG(〈γ, σ〉) and therefore β normalizes 〈γ, σ〉, a
contradiction. Whence β, γ and σ generate the whole of G. Since q − 1 ≡
0mod4, q+1

2
is odd. Suppose that χ ∈ 〈γσ〉 ∩ 〈βγ〉. Observe that χ belongs

to PSL(2, q) since any element (γσ) . . . (γσ) belongs to PSL(2, q) or its coset
PSL(2, q)γ in PGL(2, q), and similarly any element (γβ) . . . (γβ) belongs to
PSL(2, q) or its coset PSL(2, q)β in PSL(2, q) · 〈βγ〉. Now we make use of
Theorem 1.5 of [11] to observe that 〈β, γ〉 is a subgroup of NG(D2(q−1)). Thus
o(γβ) | q− 1 and o(γβ) - q+ 1 since 4 | o(γβ). Hence (o(γβ), o(γσ)) = 2 and
therefore χ = 1G or χ is an involution. If χ is an involution, then

χ = (γσ) . . . (γσ)︸ ︷︷ ︸
q+1
2
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but since q+1
2

is odd, χ belongs to the coset PSL(2, q)γ, a contradiction.
Thus χ = 1G. This shows 〈γ, σ〉 ∩ 〈γ, β〉 = 〈γ〉. By Proposition 2E16
of [21], this is the only intersection condition to check in order to ensure that
P := (G, {β, γ, σ}) is an abstract regular polytope as the remaining ones
hold trivially.

Theorem 5.2.3. [6] Let q = p2d be a prime power and let G ∼= Σ(2, q).

• If q = 4 then G ∼= S5 has polytopes of ranks 3 and 4.

• If q = 9 then G ∼= S6 has polytopes of ranks 3, 4 and 5.

• If q ≥ 16 then G has polytopes of ranks 3 and 4.

Proof. In case q = 4 or 9, it is straightforward to check the result with
Magma [1]. We may also refer to [20]. Let us assume from now on that
q ≥ 16. It follows from Giudici [11] that G has no subgroup isomorphic to
a direct product of two dihedral subgroups of orders at least 6. Hence the
bound of the rank of an abstract regular polytope for G is 4. Let us show that
this bound is sharp. Consider a Baer involution β of G and its centralizer
CG(β) ∼= C2 × PGL(2,

√
q). It follows from Conder, et al. [?, Theorem 6.1]

that C2 × PGL(2, q′) always has polytopes of rank 3 with Schläfli symbols
{q′ + 1, q′ − 1} for any q′ ≥ 5. Hence there is a polytope {βσ0, βσ1, βσ2} for
CG(β) with Schläfli symbols {√q+ 1,

√
q− 1} where the σi’s are involutions

of PGL(2,
√
q). Since 〈βσ1, βσ2〉 ∼= 〈σ1, σ2〉 ∼= D2(

√
q−1), the involutions σ1

and σ2 have two fixed points in their permutation representations on
√
q+ 1

points. Hence they are PSL-involutions in PGL(2,
√
q) and thus are conjugate

by an element χ ∈ PGL(2,
√
q), i.e. σχ1 = σ2. Moreover χ and β commute

and the following holds:

(βσ1)χβ = χσ1βχ
−1

= βχσ1χ
−1

= βσ2

Therefore χβ normalizes 〈βσ1, βσ2〉 and swaps βσ1 and βσ2 by conjugation.
Set ρi := βσi for i ∈ {0, 1, 2} and ρ3 := ρχβ0 . Then ρ3 is a Baer involution
different from ρ0. The 4-tuple {ρ0, ρ1, ρ2, ρ3} yields an abstract regular poly-
tope for 〈ρ0, ρ1, ρ2, ρ3〉 = G (because CG(β) is a maximal subgroup of G)
and

〈ρ0, ρ1, ρ2〉 ∩ 〈ρ1, ρ2, ρ3〉 = 〈ρ1, ρ2〉.
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Again, by Proposition 2E16 of [21], the intersection property therefore holds.
The Schläfli symbols of this polytopes are {√q+ 1,

√
q−1,

√
q+ 1}. Observe

that this polytope is self-dual.
Now let us show that G always has string C-group representations of rank

3. Let us assume first that q is odd. Let σ, τ be two PSL-involutions that
generate a subgroup isomorphic to Dq+1. Let β be a Baer involution that
commutes with τ but not with σ. Obviously, 〈β, σ, τ〉 = Σ(2, q), for otherwise
it has to generate NG(Dq+1), a contradiction. Moreover, 〈β, σ〉∩〈σ, τ〉 = 〈σ〉.
Indeed, let χ belong to 〈βσ〉 ∩ 〈στ〉. By assumption, o(στ) = q+1

2
is odd,

while o(βσ) is even. Moreover either o(βσ) divides q− 1 (in case β and σ do
not fix common points) or p divides o(βσ) (in case β fixes the two fixed points
of σ) as it is clear by looking at Theorem 5 in [11]. In either case we conclude
that (o(βσ), o(στ)) = 1 and thus χ = 1G. Therefore, by Proposition 2E16
of [?], the intersection property is satisfied. In conclusion, {β, σ, τ} yields an
abstract regular polytope of rank 3 with automorphism group isomorphic to
Σ(2, q).

Assume now that q is even and let σ and τ be two PSL-involutions that
generate a subgroup isomorphic to D2(q+1). We then play the same game as
before by taking a Baer involution β that commutes with σ and not with
τ .

We can now state our classification theorem for almost simple groups with
socle PSL(2, q).

Theorem 5.2.4. [6] Let PSL(2, q) ≤ G ≤ PΓL(2, q) be an almost simple
group acting regularly on abstract polytopes. Then

1. if q = 2 then G ∼= PSL(2, 2) ∼= S3 and G has a unique rank 2 abstract
regular polytope, namely the triangle;

2. if q = 3 then G ∼= PGL(2, 3) ∼= S4 and G acts on polytopes of rank 3
only;

3. if q = 4 or 5 then either G ∼= PSL(2, 4) ∼= PSL(2, 5) ∼= A5 and G acts
on polytopes of rank 3 only, or G ∼= PGL(2, 5) ∼= S5 and G acts on
polytopes of ranks 3 and 4;

4. if q = 7 then G ∼= PGL(2, 7) and G acts on polytopes of rank 3 only;

5. if q ≥ 8 then
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(a) if q = 22k+1, k ≥ 1, then G ∼= PSL(2, 22k+1) and G acts on
polytopes of rank 3 only;

(b) if q = 9 then either G ∼= PGL(2, 9), or G ∼= PΣL(2, 9) ∼= S6,
or G ∼= PΓL(2, 9), and G acts on polytopes of rank 3; moreover
PΣL(2, 9) acts on polytopes of ranks 3, 4 and 5;

(c) if q = p2k+1 ≥ 11, p an odd prime and k ≥ 0, then G ∼=
PSL(2, p2k+1) or G ∼= PGL(2, p2k+1); in either case, G acts on
polytopes of rank 3; if moreover q = 11 or 19 then G ∼= PSL(2, q)
acts on polytopes of rank 4;

(d) if q = p2k ≥ 16, p any prime and k ≥ 1 then either G ∼=
PSL(2, p2k) or G ∼= PGL(2, p2k) or G ∼= PSL(2, p2k)o 〈β〉 or G ∼=
PGL(2, p2k)o 〈β〉, where β is a Baer involution of PΓL(2, p2k); in
all four cases, G acts on polytopes of rank 3; moreover, PSL(2, p2k)o
〈β〉 acts on polytopes of rank 4.
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