
1. Introduction

Let Γ be a connected graph and let G be a subgroup of the automorphism
group of Γ. The general aim of this chapter is to obtain a way to generate all
connected graphs Γ′ having a group of automorphisms G′ resembling the “local”
structure of G. The word “resembling” and “local” should become clear by the
end of the first lecture. However it is good to have an example in mind: say Γ is
the Petersen graph and G is the alternating group Alt(5) of degree 5. Recall that
the Petersen graph can be thought of as the graph with vertex set the collection
of 2-subsets of {1, 2, 3, 4, 5} where two such subsets x and y are declared to be
adjacent if x ∩ y = ∅. (In other words, the Petersen graph is a special case of a
Kneser graph.) In particular, the stabilizer Gx of the vertex x = {1, 2} is the group
〈(1, 2)(3, 4), (1, 2)(3, 5)〉 isomorphic to the symmetric group Sym(3) of degree 3, and
the stabiliser Ge of the edge e = {{1, 2}, {3, 4}} is the group 〈(1, 2)(3, 4), (1, 3)(1, 4)〉
isomorphic to an elementary abelian group of order 4. Moreover, the stabiliser of
the arc a = ({1, 2}, {3, 4}) is Ga = Gx ∩Ge = 〈(1, 2)(3, 4)〉 is cyclic of order 2. (An
arc in a graph is an ordered pair of adjacent vertices.) Broadly speaking, in this
example, the local structure of G is the triple (Gx, Ge, Ga) and we are interested
in describing a way to obtain all connected graphs Γ′ (finite or infinite) admitting
a group of automorphisms G′ looking locally as (Gx, Ge, Ga), that is, Gx′ ∼= Gx,
Ge′ ∼= Ge and Ga′ ∼= Ga for some vertex x′, for some edge e′ and some arc a′ of Γ′.

We follow closely and almost verbatim the wonderful book of Dicks and Dun-
woody [3]. All the material (and the notation) of this course is taken from [3],
the book has too much material to present all here and we advise the reader to
consult [3] for a better and deeper understanding of this area of group actions on
graphs. Another natural reference for this part is the book of Serre [4] or the “Green
book” [2].

2. Group actions

Given a group G, for us a G-set X is a non-empty set X together with an action
of G on X, that is, a function

G×X → X

(g, x) 7→ gx,

such that

(i): 1x = x for every x ∈ X,
(ii): g′(gx) = (g′g)x for every x ∈ X and for every g, g′ ∈ G.

Given x ∈ X, the G-orbit of x is Gx = {gx | g ∈ G}. The stabilizer of x is
the subgroup Gx = {g ∈ G | gx = x} of G. For the quotient set of the G-set X,
we mean X/G = {Gx | x ∈ X}, that is, the set of G-orbits of G on X.

Exercise 2.1. Let G be a group, let H be a subgroup of G and let X be the set of
left cosets of H in G. (That is, X = {gH | g ∈ G}.) Define a function G×X → X
by (x, yH) 7→ xyH. Prove that this function defines an action of G on X.

A G-transversal in X is a subset S of X which intersects each G-orbit exactly
once, so S is a set of representatives for the action of G on X. (Here recall that
G-orbits are pairwise disjoint and their union is the whole of X.)
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If X and Y are two G-sets, then a function α : X → Y is a G-map if α(gx) =
gα(x), for every x ∈ X and for every g ∈ G. If α is bijective, we say that X and Y
are isomorphic G-sets.

Exercise 2.2. Let X be a G-set and let S be a G-transversal of X. Consider the
set

Y =
⋃
s∈S

G/Gs.

Here G/Gs consists of the set of left cosets of Gs in G, that is, G/Gs = {gGs | g ∈
G}. Moreover, here the union has to be understood a disjoint union, that is, if s, s′

are two distinct elements of S with Gs = Gs′ then we take two copies of the coset
space G/Gs = G/Gs′ , one copy labelled with s and the other copy labelled with s′.

Consider the map α : X → Y defined by α(gx) = gGx, for every x ∈ S and
g ∈ G. Prove that α is well-defined and that α is an isomorphism of G-sets.

Exercise 2.3. Let G be a group and set X = G. Now the multiplication in G
defines an action G×X → X of G on X via (g, x) 7→ gx. Prove that X is a G-set.
This is a special case of Exercise 2.1

The following is more than an exercise and is taken from [1].

Exercise 2.4. Prove that the alternating group on 8 symbols Alt(8) and the special
linear group SL4(2) are isomorphic.

The projective special linear group PSL3(2) = SL3(2) is simple and acts on the
Fano plane, that is, on the projective plane over the finite field F2. Now, under
this action, PSL3(2) is a subgroup of Sym(7), and since PSL3(2) is simple we
actually have PSL3(2) ≤ Alt(7). Actually it is important to note that PSL3(2) is
the automorphism group of the Fano plane, or, in other words, the stabilizer in
Sym(7) of the Fano plane is PSL3(2). See Figure 1. Moreover, since |Sym(8) :

Figure 1. Fano plane

PSL3(2)| = 30, there exist exactly 30 different labellings of the Fano plane, or in
other words there are 30 different ways to assign the structure of a projective plane
to the set {1, 2, 3, 4, 5, 6, 7} of seven points. (Another way to see this is to observe
that PSL3(2) is the stabilizer of a Fano plane being the automorphism group of a
Fano plane.) In particular, as PSL3(2) ≤ Alt(7), we see that these 30 Fano planes
fall into two orbits, each of size 15.

Let Ω be one of the Alt(7)-orbits. Consider the set

S = {(`,Π) | Π ∈ Ω, ` ⊆ {1, 2, 3, 4, 5, 6, 7}, |`| = 3, ` line of Π}.
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Each plane contains seven lines and hence there are 15×7 = 105 pairs (`,Π), where
` is a 3-subset of {1, 2, 3, 4, 5, 6, 7}, Π ∈ Ω and ` is a line of Π. That is |S| = 105.
As Alt(7) acts transitively on 3-subsets of {1, 2, 3, 4, 5, 6, 7}, we deduce that each of
the

(
7
3

)
= 35 triples of {1, 2, 3, 4, 5, 6, 7} is a line for exactly 105

35 = 3 planes in Ω.
Now we define a new incident structure G: the “points” are the elements of Ω

and the “lines” are the triples containing a fixed 3-subset `.
We would like to identify the “line” Π1,Π2,Π3 with the 3–subset ` in common

to Π1,Π2,Π3. To do this we have to make sure that Π1,Π2,Π3 do not have two
3-subsets `1 and `2 in common. If this were the case, then we may assume that
`1 = {1, 2, 3} and `2 = {1, 4, 5}. Therefore `3 = {1, 6, 7} must also be a line of
Π1,Π2,Π3. Relabeling the index set, we may assume that `4 = {2, 4, 6} is a line of
Π1. Now it is easy to see that Π1 is uniquely determined and consists of

{{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 5, 6}, {3, 4, 7}.}
Thus we may assume that `4 is not a line of Π2 and Π3. Therefore the line in Π2

and Π3 through 2 and 4 must be {2, 4, 7}; again, there exists a unique Fano plane
having `1, `2, `3 and {2, 4, 7} as lines and hence Π2 = Π3.

This shows that G has 15 “points” and
(

7
3

)
= 35 “lines”.

Observe that given any two “points” Π1 and Π2 there exists at most one “line”
passing through Π1 and Π2 (this is simply due to the fact that each 3-set of
{1, 2, 3, 4, 5, 6, 7} is contained in only three Fano planes, see the counting argu-
ment on the set S above) and hence if there is a “line” passing through Π1 and Π2

it must be unique. We claim that any two distinct “points” is in exactly one “line”.
Consider

S ′ = {(Π1,Π2, `) | Π1,Π2 ∈ Ω, Π1 6= Π2, ` line of Π1 and Π2}.
Take Π1 and Π2 in Ω and suppose (by contradiction) that Π1 and Π2 have two
distinct lines in common, say `1 = {1, 2, 3} and `2 = {1, 4, 5}. Arguing as above we
see that (up to a relabelling) the lines of Π1 are

{{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 5, 6}, {3, 4, 7}.}
and the lines of Π2

{{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7}.}.
Now (6, 7) is an odd permutation mapping Π1 to Π2, contradicting Π1,Π2 ∈ Ω.
Therefore two distinct Fano planes in Ω have at most one line in common. Therefore

|S ′| =
∑

Π1,Π2∈Ω,Π1 6=Π2

|Π1 ∩Π2| ≤
∑

Π1,Π2∈Ω,Π1 6=Π2

1 = 15× 14 = 210.

Since each 3-set ` is in exactly 3 elements of Ω, we have

|S ′| =
(

7

3

)
× 3× 2 = 35× 6 = 210.

Therefore any two distinct elements of Ω do have a line in common, that is, any two
“points” of G are in exactly one “line” of G. We aim to prove that the incidence
structure G is isomorphic to the projective space PG(3, 2). So far we have shown
that it contains the right number of points (namely 15), the right number of lines
(namely 35) and that any two “points” are in a unique “line”.

Fix A = {0}∪Ω, where 0 has to be considered just a symbol. We define a binary
operation + : A×A→ A by
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(i): 0 + Π = Π + 0 = Π, for each Π ∈ Ω;
(ii): Π + Π = 0, for each Π ∈ Ω;
(iii): Π1 + Π2 = Π3, for each Π1,Π2 ∈ Ω with Π1 6= Π2, where {Π1,Π2,Π3}

is a “line” of G.

Clearly, 0 is the identity element of A, + is commutative and each element has an
inverse. We claim that + is associative. Obseve that from this it follows that A is
isomorphic to F4

2. Moreover, the definition of + will imply that G is the projective
geometry over A and hence G is isomorphic to PG(3, 2). We postpone this claim
until the end of the exercise.

By construction Alt(7) acts on G and hence Alt(7) ≤ Aut(G) = PSL4(2) =
SL4(2). From an order argument, we see that Alt(7) has index 8 in SL4(2). Thus by
considering the action of SL4(2) on the left cosets of Alt(7), we obtain an embedding
of SL4(2) in Sym(8). This shows that SL4(2) ∼= Alt(8).

It remains to prove that + is associative. By construction + is associative on
collinear triples, therefore it remains to establish that + is associative on non-
collinear triples (Π1,Π2,Π3). Here we leave some details to check. Given a Fano
plane Π′ on the other Alt(7)-orbit, we construct an injective mapping

fΠ′ : {1, 2, 3, 4, 5, 6, 7} → Ω.

Take x ∈ {1, 2, 3, 4, 5, 6, 7}, consider the three lines `1, `2, `3 of Π′ containing x.
Implicitly we have seen above that there exists only two Fano planes containing
`1, `2, `3: one Fano plane per each Alt(7)-orbit, one Fano plane is Π′, the other is
fΠ′(x). It is not hard to see that fΠ′ takes lines in Π′ in “lines” in G. Therefore
the image of fΠ′ forms a subspace of G isomorphic to Π′ and hence to PG(2, 2).
Clearly, we can construct 15 such subspaces/subplanes, one for each Fano plane
not in Ω. Now each triple of non-collinear “points” of G is in one of these “planes”,
which are isomorphic to the Fano plane PG(2, 2). From this it is easy to deduce
that + is associative.

3. Graphs and G-graphs

Definition 3.1. Let G be a group. A G-graph is a 5-tuple (X,V,E, ι, τ), where
X is a G-set, X = V ∪ E, V ∩ E = ∅, and ι, τ : E → V are two G-maps. The
elements of V are called vertices and the elements of E are called edges. If e ∈ E,
then ιe is called the initial vertex of e and τe is called the terminal vertex of e.
The definition allows the possibility that ιe = τe, in this case we say that e is a
loop. The definition also allows the possibility that ιe = ιe′ and τe = τe′ for two
distinct edges e, e′ ∈ E, in this case in a “geometric” interpretation (for instance
as a CW-complex) of the graph we can think of having two multiple edges from
ιe to τe, one labelled e and the other labelled e′. (Here, for avoiding cumbersome
notation, we write ιe for ι(e) and similarly, we write τe for τ(e).)

In most of our examples the function (ι, τ) : E → V × V defined by e 7→ (ιe, τe)
is injective, but this assumption is not necessary to develop the theory. Observe
that when (ι, τ) is injective, we have Ge = Gιe ∩Gτe for every e ∈ E.

When the word G is omitted we assume that G = 1.
Given a subset Y of X, we write V Y = Y ∩ V and EY = Y ∩ V . If Y is

non-empty an if, for each e ∈ EY , we have ιe, τe ∈ V Y , then Y is a subgraph of
X.
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The quotient graph X/G is the graph (X/G, V/G,E/G, ῑ, τ̄) where ῑ : E/G→
V/G and τ̄ : E/G→ V/G are defined by ῑ(Ge) = G(ιe) and τ̄(Ge) = G(τe).

Exercise 3.2. Prove that the functions ῑ, τ̄ are well-defined and that the 5-tuple
(X/G, V/G,E/G, ῑ, τ̄) is indeed a graph with the above definition.

Let G be a group. Now G is a G-set via the natural action of G on itself by left
multiplication: G × G → G defined by (g, x) 7→ gx. (See Exercise 2.3.) Let S be
a subset of G, with this terminology and notation, the Cayley graph Cay(G,S)
of G with connection set S is the G-graph with V = G, E = G × S, ι : E → V
defined by ι(g, s) = g, τ : G× S → G defined by τ(g, s) = gs. The quotient graph
X/G consists of a single vertex and with |S| edges (actually, |S| loops).

For practising let us turn the Petersen graph structure into a G-graph, where
G = Alt(5), with this notation and terminology. We have two ways to do this. We
give the first way: V = {x ⊆ {1, 2, 3, 4, 5} | |x| = 2}, E = {(x, y) | x, y ∈ V, x ∩ y =
∅}, ι : E → V is defined by ι(x, y) = x and τ(x, y) = y. Now, X/G has only one
vertex and only one edge/loop.

Exercise 3.3. In the construction of the Petersen graph above useG = 〈(1, 2, 3, 4, 5)〉
and describe X/G. Same question with G = 〈(1, 2, 3, 4, 5), (2, 3, 5, 4)〉 and G =
〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉.

Another (more standard) way to encode the Petersen graph structure through
G-graphs is via the idea of subdivision graph. Here

V = {x ⊆ {1, 2, 3, 4, 5} | |x| = 2} ∪ {{x, y} | x, y ⊆ {1, 2, 3, 4, 5}, |x| = |y| = 2, x ∩ y = ∅},
E = {(x, {x, y}) | x, y ⊆ {1, 2, 3, 4, 5}, |x| = |y| = 2, x ∩ y = ∅},

ι : E → V is defined by ι(x, {x, y}) = x and τ : E → V is defined by τ(x, {x, y}) =
{x, y}. When G = Alt(5), X/G consists of two vertices (namely {x ⊆ {1, 2, 3, 4, 5} |
|x| = 2} and {{x, y} | x, y ⊆ {1, 2, 3, 4, 5}, |x| = |y| = 2, x ∩ y = ∅} and with one
edge directed from the first G-orbit to the second G-orbit.

4. Trees and fundamental G-transversals

Let X = (X,V,E, ι, τ) be a graph. We write EX+ = {(e, 1) | e ∈ E} and
EX− = {(e,−1) | e ∈ E}. (For simplicity we write e1 = (e, 1) and e−1 = (e,−1).)
The incident functions ι and τ can be extended to the set EX+ ∪EX− by setting
ιe1 = τe−1 = ιe and ιe−1 = τe1 = τe, for every e ∈ EX. In a geometric interpre-
tation of e1 and e−1, we can think of e1 and e−1 as travelling along e in the “right”
way (for e1) and in the “wrong” way (for e−1).

A path in X is a finite sequence

v0, e
ε1
1 , v1, e

ε2
2 , . . . , e

εn
n , vn

such that

(i): n ∈ N;
(ii): vi ∈ V X for every i ∈ {0, 1, . . . , n};
(iii): eεii ∈ EX+ ∪ EX−, ιeεii = vi−1 and τeεii = vi for every i ∈ {1, . . . , n}.

The integer n is called the length of the path p. Moreover, the functions ι, τ
can be extended to the set of all paths by setting ιp = v0 and τp = vn. Actually
we can simplify the notation here, slightly. We can abbreviate the path p by the
string eε11 , . . . , e

εn
n . Here we should take some care: when n = 0, the path is empty
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and hence to recover the original information we need to specify v0 (or v0 should
be clear from the context); when n ≥ 1, the vertices on the path p can be recovered
from the abbreviated notation by computing ιeεii and τeεii .

If n ≥ 1 and, for each i ∈ {1, . . . , n− 1}, we have e
εi+1

i+1 6= e−εii , then we say that

p is reduced . If p is not reduced and e
εi+1

i+1 = e−εii (for some i ∈ {1, . . . , n − 1}),
then eε11 , . . . , e

εi−1

i−1 , e
εi+2

i+2 , . . . , e
εn
n is a path of length n− 2 in X (still) from v0 to vn.

A graph X is a tree if, for every v, w ∈ V , there exists a unique reduced path
from v to w. If Y is a subgraph of X and Y is a tree, then we say that Y is a
subtree of X.

A path p is closed if ιp = τp; in particular, paths of length zero are closed.
Moreover, p is simple closed if p is closed of length > 0 and there are no other
repetitions of vertices other then ιp = τp. A graph with no simple closed paths is
said to be a forest .

Two elements of X are connected if they both occur in a path of X. Connect-
edness is an equivalence relation (via concatenation and inversion of paths). The
equivalence classes under this relation are called components and are subgraphs
of X. A graph is connected if it has only one component.

The following is a rather easy exercise but it helps to practise with the above
notation and terminology.

Exercise 4.1. Prove that X is a tree if and only if it is a connected forest.

Proposition 4.2. Let X be a G-graph with X/G connected. Then there exist two
subsets Y0 and Y of X with Y0 ⊆ Y ⊆ X and such that

(i): Y is a G-transversal of X;
(ii): Y0 is a subtree of X;
(iii): V Y = V Y0 and for each e ∈ EY , ιe ∈ V Y = V Y0.

Proof. Let X̄ := X/G be the quotient graph. We adopt the “bar” notation for the
projection − : X → X̄ mapping x to x̄ := Gx, for all x ∈ X.

Choose v0 ∈ V X. Let Y0 be a maximal subtree of X with v0 ∈ V Y0 and such
that the restriction of − to Y0 is injective. In other words, Y0 is a maximal subtree
of X with the property that distinct elements of Y0 are in distinct G-orbits. Since
v0 ∈ Y0, we have Y0 6= ∅ and hence the existence of such a subtree Y0 is obvious if
X is finite, and it relies on Zorn’s lemma if X is infinite.

We claim that V Ȳ0 = V X̄. (This yields that Y0 contains a representative of
V X for each G-orbit.) We argue by contradiction and we assume that V Ȳ0 ( V X̄.
Since X/G = X̄ is connected, every vertex of Ȳ0 is connected to a vertex in X̄; in
particular, there exists an edge Ge = ē ∈ EX̄ with one end Gv = v̄ in Ȳ0 and the
other end in X̄ \ Ȳ0. Replacing v by some other element in V Ȳ0, we may assume
that v ∈ V Y0. Clearly, e ∈ EX. We have either v̄ = ῑē or v̄ = τ̄ ē. In both cases, we
see that v is in the same G-orbit of either ιe or τe. That is, there exists g ∈ G, with
v = ι(ge) or v = τ(ge). In particular, replacing e by ge if necessary, we may assume
that v ∈ {ιe, τe}. Write w of the element in {ιe, τe} \ {v}. Since ē, w̄ /∈ Ȳ0,we
get e, w /∈ Y0. However, a moment’s thought gives that Y0 ∪ {e, w} is a tree that
contradicts the maximality of Y0. Therefore V Ȳ0 = V X̄.

Since the restriction of − to Y0 is injective and since V Ȳ0 = V X̄, to find Y it
suffices to add to Y0 some edges of X. Indeed, for each ē ∈ EX̄ \ EȲ0, ῑē comes
from a unique vertex of Y0, and replacing e by ge (for some g ∈ G), we may assume
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that ιe ∈ V Y0. Adjoining these edges e to Y0, we obtain a subset Y of X such that
Y is a G-transversal of X and such that ιe ∈ Y for every e ∈ EY .

By construction Y is a G-transversal of X and hence (i) holds. Also by con-
struction Y0 is a subtree of X and, Y and Y0 satisfy also (iii). �

Corollary 4.3. If X is a connected graph then X has a maximal subtree. Any
maximal subtree of X has vertex set all of V X.

Before moving on let us see a few examples. In the Cayley graph Cay(G,S),
we may take Y0 = {1G} and for Y the subset consisting of the vertex 1 and the
edges {(1, s) | s ∈ S}. In the first version of the Petersen graph, when G = Alt(5),
the subtree Y0 consists only of the vertex {1, 2} and Y consists of the vertex {1, 2}
together with the edge ({1, 2}, {3, 4}). In the second version of the Petersen graph,
when G = Alt(5), we have Y0 = Y , the vertices of Y0 are {1, 2} and {{1, 2}, {3, 4}}
and we have only one edge from {1, 2} to {{1, 2}, {3, 4}}.

In what follows we apply Proposition 4.2 only when X connected. In this case,
clearly X/G is connected.

Exercise 4.4. Let X,Y, Y0 and X̄ = X/G be as in Proposition 4.2. Observe that,
for each e ∈ EY , there exist (and are unique) v, w ∈ V Y = V Y0 with v̄ = ῑē
and w̄ = τ̄ ē. This allow us to define two functions ι̃ : EY → V Y = V Y0 and
τ̃ : V E → V Y = V Y0 by ι̃e = v and τ̃ e = w. Observe that since ιe ∈ V Y = V Y0

by Proposition 4.2 (iii), ι̃ is the restriction of ι to the subset EY of EX.
Prove that the 5-tuple (Y,EY, V Y, ι̃, τ̃) defines a structure of graph on Y . Prove

that, with this structure, Y ∼= X̄ = X/G as graphs.
Observe that this isomorphism allows to think of Y0 simultaneously as a subtree

of X and as a spanning subtree of X̄ = X/G.

Implicitly we use Exercise 4.4 very often later. Before concluding this section we
warn the reader that, although ι̃ is the restriction of ι to EY , in general τ̃ is not
the restriction of τ to EY and hence we cannot think of Y as a subgraph of X. See
the examples above, when X is a Cayley graph.

5. Graph of groups

Definition 5.1. A graph of groups is a pair (G(−), Y ), where (Y,E, V, ῑ, τ̄) is a
connected graph and G(−) is a function which assigns:

(i): a group G(v) for each v ∈ V ;
(ii): a subgroup G(e) of G(ι) for each e ∈ E;
(iii): an injective group homomorphism te : G(e)→ G(τ̄ e) for each e ∈ E.

There is one case that the reader should keep in mind and that motivates our
interest. Let X be a G-graph with X/G connected and choose a fundamental G-
transversal Y for X with subtree Y0. Since each element of X lies in the same
G-orbit as a unique element of Y , for each e ∈ EY there are unique ῑe, τ̄ e ∈ V Y
lying in the same G orbits as ιe, τe respectively, and in fact ῑe = ιe. Using the
incident functions ῑ, τ̄ : EY → EV we turn Y into a graph, and by construction
the graph Y is isomorphic to the graph X/G. See Exercize 4.4.

Now Y0 is a maximal subtree of Y and a subtree of X. However, Y is not a
subgraph of X unless τ̄ equals τ ; in particular, an arbitrary maximal subtree of Y
need not be a subgraph of X.
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For each e ∈ EY , the vertices τe and τ̄ e lie in the same G-orbit in EX, therefore
we can choose an element te ∈ G with te(τ̄ e) = τe; if e ∈ EY0, then τ̄ e = τe and we
can take te = 1 (actually we do take te = 1). We call the collection (te | e ∈ EY ) a
family of connecting elements.

Observe that Ge ≤ Gῑe and Ge ≤ Gτe = teGτ̄et
−1
e and hence there is an embed-

ding te : Ge → Gτ̄e defined by g 7→ gte = t−1
e gte.

In particular this shows that X gives rise to a graph of groups, this graph of
groups is called associated to X, with respect to the fundamental G-transversal Y ,
the maximal subtree Y0, and the family of connecting elements (te | e ∈ EY ).

We now show how this construction is reversible, that is, we show that a graph of
groups determines a group acting on a graph with connected quotient graph. Actu-
ally something deaper will be true. For each graph of groups (G(−), Y ) there exists
a G-graph T , such that the graph of groups associated to G and T is (G(−), Y ).
We will show that T can be chosen to be a tree and the group G can be chosen to
be in some sense “universal”. (This “sense” can be made topologically precise: see
later in the text.)

Definition 5.2. Let (G(−), Y ) be a graph of groups. Choose a maximal subtree
Y0 of Y , so V Y0 = V Y by Corollary 4.3. The associated fundamental group
π(G(−), Y, Y0) is the group presented with

generating set: {te | e ∈ E} ∪
⋃
v∈V G(v) (here the union has to be under-

stood as a disjoint union);
relations: (1) the relations for G(v), for each v ∈ V ,

(2) t−1
e gte = gte for each e ∈ E, g ∈ G(e) ≤ G(ῑe) (thus gte ∈ G(τ̄ e)),

(3) te = 1 for each e ∈ EY0.

To avoid some possible confusion that might arise using the symbol te, in the sequel
we write gte when we think of te as a group homomorphism te : G(e)→ G(τ̄ e), and
we write t−1

e gte when we think of te as conjugation in π(G(−), Y, Y0).

It is not at all clear from Definition 5.2 whether G(y) are genuine subgroups of
π(G(−), Y, Y0), that is, from the definition it is not clear whether G(y) does embed
isomorphically into π(G(−), Y, Y0). It is only clear that G(y) in π(G(−), Y, Y0) is a
projection of the original G(y).

Definition 5.3. Let G = π(G(−), Y, Y0). Let T be the G-set presented with gen-
erating set Y and relations saying that each y ∈ Y is G(y)-stable: see Exercise 2.2.
Formally, we may think of T as the set

T = {(gG(y), y) | g ∈ G, y ∈ Y } =
⋃
y∈Y

G

G(y)
× {y}.

Then T has G subsets V T = GV , ET = GE and here ET = T \ V T . There are
also two maps ι, τ : ET → V T defined by ι(ge) = g(ῑe) and τ(ge) = g(τ̄ e) for all
g ∈ G and e ∈ E. (With the notation above we have ι : (gG(e), e) 7→ (gG(ῑe), ῑe)
and τ : (gG(e), e) 7→ (gG(τ̄ e), τ̄ e).) In particular, T is a G-graph. We call T the
standard graph of the graph of groups.
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By construction Y is a fundamental G-transversal of T . Moreover, once we know
that G(v) embeds into G, for each v ∈ V , we have

ι−1(v) =
⋃

e∈ῑ−1(v)

G(v)e ∼=
⋃

e∈ῑ−1(v)

G(v)

G(e)

τ−1(v) =
⋃

e∈τ̄−1(v)

G(v)t−1
e e ∼=

⋃
e∈τ̄−1(v)

G(v)

G(e)te
.

This proves that in T , the vertex v has
∑
e∈ῑ−1(v) |G(v) : G(e)| edges going out and∑

e∈τ̄−1(v) |G(v) : te(G(e))| edges going in.

Exercise 5.4. Prove that the maps ι, τ above are well-defined. Fill in the details
to prove that T = (T,GV,GE, ι, τ) is a G-graph.

The main results that will follow show that T is a tree and that the vertex
groups embed as subgroups of π(G(−), Y, Y0). In particular, it follows that we can
recover the graph of groups (G(−), Y ) from the action of the fundamental group
π(G(−), Y, Y0) on the fundamental graph (tree) T (G(−), Y, Y0).

Example 5.5. Let (G(−), Y ) be a graph of groups.

(i): If G(y) = 1 for each y ∈ Y , then π(G(−), Y, Y0) is the group generated
by {te | e ∈ EY } subject to the only relations te = 1 for all e ∈ EY0. In
particular π(G(−), Y, Y0) is a free group of rank |EY \ EY0|.

In particular, the isomorphism class of the fundamental group π(G(−), Y, Y0)
does not depend on Y0 and hence we will simply write π(Y ) for π(G(−), Y, Y0):
this is the usual fundamental group of the graph Y . See Definition 10.1.

(ii): Suppose that Y consists of only one edge e and two distinct vertices ιe
and τe. Let A = G(ιe), B = G(τe) and C = A ∩ B = G(e). In particular,
C is a subgroup of A, and there is specified an embedding te : C → B.
Here Y0 = Y and the fundamental group is called the free product of A
and B amalgamating C, denoted A ∗C B. This is the group presented on
the generating set A ∪ B (here the union has to be understood disjoint),
together with the relations of A and B, and with relations saying that
c = cte for all c ∈ C. (To see this observe that e ∈ EY0 and hence te = 1.)

In the case C = 1, we write simply A ∗ B and call it the free product
of A and B.

(iii): Suppose that Y has one edge e and one vertex v = ιe = τe. Let
A = G(v), C = G(e); so C is a subgroup of A and there is specified
an embedding te : C → A. Here Y0 consists of the single vertex v and
the fundamental group is called the HNN extension of A by te : C → A,
denoted by A∗C te. This group is formed by adjoining to A an indeterminate
te satisfying the relations t−1

e cte = cte for all c ∈ C.

Observe that case (i) of Example 5.5 arises (for instance) from the graph of
groups associated to a Cayley graph. Whilst cases (ii) and (iii) of Example 5.5
arise, for example, for the graph of groups associated to the two constructions we
gave of the Petersen graph as a G-graph.

Exercise 5.6. In this exercise we use the HNN extension to show the existence of
an infinite countable group G with the property that any two of its non-identity
elements are G-conjugate. (Incidentally show that C1 and C2 are the only finite
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groups with this property.) For this exercise we need some material that will be
proved later but that we quote here.

Fact. Let G be a group, let A and B be two subgroups of G and let φ : A → B
be an isomorphism. Then the group

Ḡ = 〈G, t | t−1at = φ(a) for all a ∈ A〉

has the following properties:

(i): G embeds isomorphically into Ḡ;
(ii): any element of finite order of Ḡ lies in a Ḡ-conjugate of G, in particular

if G is torsion-free then so is Ḡ;
(iii): t−1Gt ∩G = B and tGt−1 ∩G = A.

Observe that Ḡ is indeed the fundamental group of a graph of groups arising from
a HNN extension.

Here we start the construction. Start with G0 an infinite countable torsion
free group; Z will do. Let a and b be two arbitrary non-identity elements of G0

and observe that A = 〈a〉 and B = 〈b〉 are isomorphic (being both isomorphic to
Z). Therefore from the construction above, there exists a torsion free group G′

containing G0 and such that a and b are G′-conjugate.
Repeating the construction in the paragraph above for each pair of non-identity

elements of G0, we obtain an infinite countable torsion free group G1 with G0 ≤ G1

and such that any two non-identity elements of G0 are G1-conjugate.
Now we construct inductively a chain of infinite countable torsion free groups

(Gn)n∈N. The group Gn+1 is obtained applying the previous paragraph to Gn in
place of G0.

Set G =
⋃
n∈NGn. By construction, G is infinite countable, torsion free and any

two of its non-identity elements are conjugate in G.

Here we give another application of the HNN extension.

Exercise 5.7. Before stating the exercise we give some context to it. Let X =
(X,V,E, ι, τ) be a G-graph with G acting transitively on E. Fix v ∈ V and let
Gv be the stabilizer of v in G. Now consider X+(v) = {τe | e ∈ E with ιe = v},
that is, X+(v) is the set of out-neighbours of v; similarly, consider X−(v) = {ιe |
e ∈ E with τe = v}, that is, X−(v) is the set of in-neighbours of v. Now, Gv acts
transitvely on both X+(v) andX−(v) and hence induces two transitive permutation

groups G
X+(v)
v and G

X−(v)
v . A natural question that one might ask, is whether there

is any relation between G
X+(v)
v and G

X−(v)
v . For finite graphs, these two groups do

share very many properties (and we do not go into this here, I am sure you know
more than I do in this.) Here we are intererested into the infinite world.

Show that given any two transitive permutation groups A and B, there exists
an infinite transitive pemutation group G acting on a graph X = (X,V,E, ι, τ),
such that given a vertex v of Γ, the group A is permutation isomorphic to the
permutation group induced by Gv on the in-neighbours of v (that is, isomorphic

to G
X+(v)
v ), and the group B is permutation isomorphic to the permutation group

induced by Gv on the out-neighbours (that is, isomorphic to G
X−(v)
v ).

Here is a hint. Let ∆ be the doman of A and let Γ be the domain of B. Fix
δ ∈ ∆ and γ ∈ Γ. Here, given a group T , the set T (N) denotes the set of functions
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f : N → T with finite support (that is, {n ∈ N | f(n) 6= 1} is finite). Clearly, T (N)

with the usual point-wise multiplication is a group. Take

Ḡ = H(N) ×H(N)
δ ×K(N) ×K(N)

γ ,

Ā = Hδ ×H(N) ×H(N)
δ ×K(N) ×K(N)

γ ,

B̄ = H(N) ×H(N)
δ ×Kγ ×K(N) ×K(N)

γ .

Observe that Ā and B̄ are isomorphic subgroups of Ḡ. Fix φ : A → B an isomor-
phism. Observe that the permutation group induced by Ḡ on the left cosets of Ā
in Ḡ is permutation isomorphic to A, and that the permutation group induced by
Ḡ on the left cosets of B̄ in Ḡ is permutation isomorphic to B.

Let G = 〈Ḡ, t | t−1at = φ(a) for all a ∈ Ā〉 be the HNN extension with respect
to Ḡ, Ā, B̄ and the isomorphism φ. Consider then the set V consisting of the left
cosets of Ḡ in G and E = {(xḠ, xtḠ) | x ∈ G}. End of hint.

6. Groups acting on trees

For all of this section T is a G-tree. We prove a theorem describing the algebraic
and the group action structure of G.

Theorem 6.1. Let Y be a G-transversal of T with fundamental subtree Y0 and
denote the incidence functions with ῑ and τ̄ ; for each e ∈ EY , choose te ∈ G
with teτ̄ e = τe, and with te = 1 when e ∈ EY0; consider then the graph of
groups (G(−), Y ). Then G is “naturally” isomorphic to the fundamental group
π(G(−), Y, Y0). In other words, G has a presentation with generating set

{te | e ∈ EY } ∪
⋃

v∈V Y
Gv,

where the union has to be understood disjoint; and with relations:

(1) the relations for Gv, for each v ∈ V Y ;
(2) t−1

e gte = gte for all e ∈ EY , g ∈ Ge ≤ Gῑe (and hence gte ∈ Gτ̄e);
(3) te = 1 for all e ∈ EY0.

Among other things, the main point of this theorem is that once we have the
“local” structure of G and we know that T is a tree, the entire structure of G is
also known. A similar result will hold for general groups acting on graphs.

Proof. Let P = π(G(−), Y, Y0). Since P is the group with presentation satisfying
the conditions of this theorem and since G is a group that does also satisfy the
same conditions, we have a natural homomorphism π : P → G and the point of the
theorem and of the proof is to show that π is actually an isomorphism. Observe
that the action of G on T and the homomorphism π allow to define a P -action on
T , formally pt = π(p)t for every t ∈ T and for every p ∈ P .

Claim. Let v ∈ V Y . The paths of length 1 in T starting at v are the sequences

of the form v, gt
1
2 (ε−1)
e eε, gtεew where v, eε, w is a path in Y and g ∈ Gv.

Let v, eε, w be a path in Y . Suppose ε = 1. Then v = ῑe = ιe and w = τ̄ e. Then
the definition of te gives that τe = teτ̄ e = tew and hence v, e, tew is a path in T .
Clearly, v = gv, ge, gtew is a path in T for every g ∈ Gv. Suppose that ε = −1.
Then v = ῑe−1 = τ̄ e = t−1

e τe = τ(t−1
e e) = ι(t−1

e e−1) and τ(t−1
e e−1) = ι(t−1

e e) =
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t−1
e ιe = t−1

e ῑe = t−1
e τ̄ e−1 = t−1

e w. Thus v, t−1
e e−1, t−1

e w is a path in Y . Clearly,
v, gt−1

e e−1, gt−1
e w is also a path in T for every g ∈ Gv.

We prove the converse. Any edge of T incident to v can be written in the form
ge, for some e ∈ EY and g ∈ G. If v = ι(ge) = gιe, then v = ι(ge) = gῑe. Since
Y is a G-transversal, we get g ∈ Gv. Also, τ(ge) = gτe = gteτ̄ e. Since ε = 1,

the path v, ge, τ(ge) is indeed of the form v, gt
1
2 (ε−1)
e eε, gtεeτ̄ e. If v = τ(ge), then

v = τ(ge) = gτe = gteτ̄ e. Since Y is a G-transversal, we get v = τ̄ e = ῑe−1 and
gte ∈ Gv. Write h = gte with h ∈ Gv. Thus g = ht−1

e . Write w = τ̄ e−1. Now,
v, e−1, w is a path in Y . We look at v, ht−1

e e−1, ht−1
e w and observe that this is of

the form v, ht
1
2 (ε−1)
e eε, htεeτ̄ e with ε = −1. �

With this claim and with the connectedness of T it is easy to show that π is
surjetive. (To emphasise the proof we use π.) As P contains all elements te (with
e ∈ EY ) and all elements g (with g ∈ Gv), we get that PY contains all edges
adjacent to elements of Y and also their end vertices. Therefore all edges and all
end vertices of T adjacent to PY also lie in PY . As T is connected, we get T = PY .
Let v0 ∈ V Y . For every g ∈ G, we have gv0 ∈ T = PY and hence there exists
p ∈ P and v ∈ Y with gv0 = π(p)v. As Y is a G-transversal of T , we get v0 = v.
Therefore π(p−1)gv0 = v0. Write h = π(p−1)g ∈ Gv. As h ∈ Gv0 ≤ P , we deduce
g = π(p)h and hence g ∈ π(P ). Therefore π is surjective.

It remains to prove that π is injective. Here we omit the symbol π. Let p ∈ P .
Using the given generating set of P , we may write

(1) p = g0t
ε1
e1g1t

ε2
e2g2 · · · gn−1t

εn
engn,

with n ≥ 0, εi ∈ {1,−1} and gi ∈ Gvi . Observe that we may write the element
p in this form and simultaneosly assume that v0, e

ε1
1 , v1, . . . , vn−1, e

εn
n , vn = v0 is a

path in Y . In fact, we may express p as a product of the given generators and their
inverses, then using the relations for the Gv to collect together generators from the
same Gv into single expressions, and finally inserting 1’s as dictated by paths in
the maximal subtree Y0 to obtain an expression as in (1).

Using the claim above it follows that

v0, g0t
1
2 (ε1−1)
1 eε11 , g0t

ε1
e1v1, g0t

ε1
e1g1t

1
2 (ε2−1)
e2 eε22 , g0t

ε1
e1g1t

ε2
e2v2,(2)

g0t
ε1
e1g1t

ε2
e2g2t

1
2 (ε3−1)
e3 eε33 , g0t

ε1
e1g1t

ε2
e2g2t

ε3
e3v3, . . . ,

g0t
ε1
e1g1t

ε2
e2g2 · · · gn−1t

1
2 (εn−1)
en e

εn−1

n−1 , g0t
ε1
e1g1t

ε2
e2g2 · · · gn−1t

εn
envn = pvn

is a path in the tree T . Observe that via the projection π : P → G, we can think
of these expressions as both elements of P and elements of G.

We prove by induction on n that if π(p) = 1, then p = 1 in P . Since the
composition Gv0 ≤ P → G is injective, we may assume that n ≥ 1. Since T
is a tree and n ≥ 1, the path in (2) is not reduced. In particular, there exists
i ∈ {0, . . . , n− 1} with the ith edge and the (i+ 1)th edge one inverse of the other.
In particular,

εi+1 = −εi and t
1
2 (εi−1)
ei ei = tεieigit

1
2 (εi+1−1)
ei+1 ei+1.

As ei, ei+1 ∈ Y and Y is a G-transversal, we get ei = ei+1 and hence

ei = t
1
2 (εi+1)
ei git

− 1
2 (εi+1)

ei ei.
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Write h = t
1
2 (εi+1)
ei git

− 1
2 (εi+1)

ei . Observe that h ∈ Gei ≤ Gῑei and

htei = t
1
2 (εi−1)
ei git

− 1
2 (εi−1)

ei ∈ Gτ̄ei .

Recall that in P we also have the equation

t−1
ei htei = htei .

Suppose εi = 1. Then ῑei = vi−1 = vi+1, τ̄ ei = vi. Therefore h ∈ Gῑei = Gvi−1

and htei = gi ∈ Gvi−1
. Thus in (1), we may replace gi−1teigit

−1
ei gi+1 with the single

generator gi−1hgi+1 ∈ Gvi+1 = Gvi−1 and delete ei, vi, e
−1
i from the path in Y .

Therefore we reduced the path by 2.
Suppose εi = −1. Then ῑei = vi, τ̄ ei = vi−1 = vi+1. Therefore htei ∈ Gτ̄ei =

Gvi−1
and h = gi. We also have the equation htei = t−1

ei gitei in P . Therefore in (2),

we can repance gi−1t
−1
ei giteigi+1 by the single generator gi−1h

tei gi+1 ∈ Gvi−1
and

we may delete e−1
i , vi, ei from the path in Y . Also in this case we reduced the path

by 2.
Arguing by induction we obtain that p = 1 and hence π : P → G is injective. �

Corollary 6.2. If Gy = 1 for each y ∈ Y , then G is a free group (or rank |EY \
EY0|). In fact, G ∼= π(T/G).

Proof. If Gy = 1 for each y ∈ Y , then G is generated by {te | e ∈ EY \ EY0} with
no relations. Also, G = π(G(−), Y, Y0) = π(Y ) = π(T/G) as Y ∼= T/G. �

Exercise 6.3. If N is a normal subgroup of G, then T/N is a connected G/N -graph
and, for each Nt ∈ T/N , the vertex stabilizer (G/N)Nt equals NGt/N .

Proposition 6.4. If N is the subgroup of G generated by the Gv, v ∈ V T , then N
is normal and G/N is free. Moreover, T/N is a G/N -free G/N -tree and G/N ∼=
π(T/N).

Proof. Theorem 6.1 gives G ∼= π(G(−), Y, Y0) and the definition of N implies that
G/N ∼= π(T/G).

We now apply this theorem again with G replaced by N . Since N is generated
by the vertex stabilizers Nv = Gv, v ∈ V T , we see that π(T/N) = N/N = 1.
Hence T/N is a tree. (It is the only possibility for a graph Z to have π(Z) = 1.) By
Exercise 6.3, G/N acts freely on V T/N , and hence on T/N , so G/N ∼= π(T/G). �

Exercise 6.5. Let H be a subgroup of G with H∩Gt = 1 for each t ∈ T . Prove that
H is a free group. In particular, suppose that π : G→ A is a group homomorphism
such that the restriction of π to Gt is injective, for each t ∈ T . Then the kernel of
π is free.

Proposition 6.6. If G → A is a homomorphism of groups which is injective on
each vertex stabilizer then the kernel N is free. In fact, N ∼= π(X), where X is the
connected G/N -graph T/N .

If the homomorphism G → A is surjective then X is a connected A-graph. In
Theorem 11.1, we shall see that all group actions on connected graphs can be
realised in this way.

Exercise 6.7. Prove that C2 ∗ C2 is an infinite dihedral group.
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Proposition 6.8. Let v be a given vertex of T . Then G stabilizes a vertex of G if
and only if there is an integer N such that the distance from v to each element of
Gv is at most N .

Proof. Suppose that G stabilizers the vertex v0 of T and let n be the distance from
v0 to v. Then clearly, the distance between v and gv is at most d(v, v0)+d(v0, gv) =
2n, for every g ∈ G.

We prove the converse. Suppose that there is an integer N such that, for each
g ∈ G, the T -geodesic from v to gv has length at most N . Let T ′ be the subtree
generated by Gv = {gv | g ∈ G}.

It is not hard to see that T ′ is a G-subtree of T and no reduced path has length
greater than 2N .

If T ′ has at most one edge then every element of T ′ is G-invariant, and we have
the desired G-invariant vertex. Thus we may assume that T ′ has at least two edges,
and hence some vertex of T ′ has valency at least two. Now delte from T ′ all vertices
of valency one, and their incident edges. This leaves a G-subtree T ′′ in which no
reduced path has length greater than 2N − 2. Therefore, arguing by induction, we
deduce that G stabilizes a vertex in T ′′. �

Exercise 6.9. Use Proposition 6.8 to show that if H ≤ G is finite, then H must
by conjugate to Gv for some v. (That is, H stabilizes some vertex of T .)

Fix a vertex v of T . In fact, applying Proposition 6.8 to the group H, we see
that Hv = {hv | h ∈ H} is finite and hence the distance from v to any element of
Hv is bounded above by an absolute constant. Therefore H fixes a vertex. Thus
H is conjugate to Gv0 , for some v0.

7. The special linear group SL2(Z) acting on the hyperbolic plane

Here we consider the group G = SL2(Z), the group of 2×2 matrices with integer
coefficients and determinant 1. The group G has a natural action on the hyperbolic
plane H = {z ∈ C | Im(z) > 0} = {x+ iy | x, y ∈ R, y > 0}. Indeed, given

g =

(
a b
c d

)
and z = x+ iy ∈ H, we define

gz =
az + b

cz + d
.

By expanding, we get(
a b
c d

)
(x+ iy) =

(ax+ b)(cx+ d) + acy2 + iy

(cx+ d)2 + c2y2

and this shows that gz is indeed an element of H.

Exercise 7.1. Show that this does define an action of SL2(Z) on H. Compute
the stabilizer Gi of the imaginary point i and the stabilizer Gz of the point z =
1
2 (1 +

√
3i). Deduce that G has more than one orbit on H: this fact is also clear

because G is countable and H is not.

Let Y = {cos θ+ i sin θ | π/3 ≤ θ ≤ π/2}. We think of Y as a drawing of a graph

with only one edge e having ιe = i and τe = 1
2 (1 + i

√
3).

Define T = GY . So far T is defined as a subset of H. We aim to give a graph
structure to T .
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Lemma 7.2. Let g =

(
a b
c d

)
∈ SL2(Z) and let z = x + iy ∈ Y . Suppose that

gz ∈ Y . Then one of the following holds:

(i): each point of Y is g-invariant;
(ii): z is either ιe or τe and z is g-invariant.

Moreover, if Re(gz) = 0, then gz = ιe = i.

Proof. Suppose that c2 6= d2 and observe that |z| = 1 because z ∈ Y . Using |z| = 1,
we deduce

|(c2 − d2)gz − (ac− bd)| =
∣∣∣∣(c2 − d2)

az + b

cz + d
− (ac− bd)

∣∣∣∣ =

∣∣∣∣dz + c

cz + d

∣∣∣∣ = 1.

(Only in the last equality we need to use |z| = 1.) This shows that gz is on a circle
with center ac−bd

c2−d2 and radius 1
|c2−d2| .

If gz ∈ Y , then Im(gz) ≥
√

3
2 ≥

1
2 and hence |c2 − d2| ≤ 2. In particular, since

c, d ∈ Z, we obtain |c2 − d2| = 1. Therefore 1 = |c2 − d2| = |c+ d||c− d| and hence
|c+ d| = 1 = |c− d|. This is possible if and only if

(3) c = 0 and d ∈ {−1, 1}, or c ∈ {1,−1} and d = 0.

Thus gz is on a circle of centre ac−bd
c2−d2 and radius 1. The centre ac−bd

c2−d2 ∈ Z and has
to be between 0 and 1 to make sure that it does intersect Y . Thus we either have
ac− bd = 0 or ac− bd = 1.

Suppose that ac− bd = 0, that is, ac = bd. Now Eq. (3) easily implies that g is
one of the following four matrices(

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)
.

The first two matrices fix point-wise the whole of H. The third and the fourth
matrix map z to − 1

z = −z̄ and hence g fixes the end point i of Y .
Now, if ac− bd = 1, then Eq. (3) yields that g is one of the following four matrix(

1 −1
0 1

)
,

(
−1 1
0 −1

)
,

(
1 −1
1 0

)
,

(
−1 1
−1 0

)
.

The first two matrices act on the whole of H by the translation z 7→ z − 1, and a
computation shows that there is no point z of Y with gz ∈ Y . The third and the
fourth matrices map z to z−1

z = 1 − 1
z = 1 − z̄ and hence g fixes the end point

1
2 (1 + i

√
3) of Y .

Finally, suppose that c2 = d2. Then d = εc, where ε ∈ {1,−1}. As ad− bc = 1,
we get (aε − b)c = 1. Thus c, d ∈ {1,−1} and, a and b cannot be both odd or
both even (that is, a and b have opposite parity). A computation, with all possible
combinations of c, d ∈ {1,−1}, shows that

2Re(gz) = ca+ bd,

and hence 2Re(gz) is an odd integer. In particular, 2Re(gz) 6= 0.

If gz ∈ Y , we must have ac + bd = 1 and gz = 1
2 (1 +

√
3i) = τe. Another

computation easily shows that g fixes τe. �

Exercise 7.3. Fill in the missing computations in the proof of Lemma 7.2.



16

Lemma 7.2 shows that, for every g ∈ G, either Y = gY , Y ∩ gY = ∅ or Y ∩ gY
is either {ιe} or {τe}, that is, an end point of Y . This allows us to think of T as a
drawing of a G-graph on the hyperbolic space. A computation gives

Gιe =

{(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)}
and hence Gιe ∼= C4. A similar computation gives

Ge =

{(
1 0
0 1

)
,

(
−1 0
0 −1

)}
and hence Ge ∼= C2. Finally,

Gτe =

{(
1 0
0 1

)
,

(
1 −1
1 0

)
,

(
−1 0
0 −1

)
,

(
−1 1
−1 0

)
,

(
0 1
−1 1

)
,

(
0 −1
1 −1

)}
and hence Gτe ∼= C6. See also Exercise 7.1.

From now on we think of T has a graph or the drawing in H of a graph.

Lemma 7.4. The set T contains no simple closed path.

Proof. We argue by contradiction. Suppose that T has a simple closed path. Then,
the definition of T = GY gives that there is a simple closed path from ιe to τe
which does not use e. The only edges adjacent to ιe = i are e itself and

e′ =

(
0 −1
1 0

)
e = {cos θ + i sin θ | π/2 ≤ θ ≤ 2π/3}.

In particular, there is a path in T from 1
2 (1 +

√
3i) = τe to τe′ = 1

2 (−1 +
√

3i).
Now as G acts as a topological group on H, our path must intersect the imaginary
axes. This is a contradiction, because the only point along the imaginary axes is i
by Lemma 7.2. �

From Theorem 6.1, we deduce SL2(Z) = G ∼= C4 ∗C2
C6. In particular, SL2(Z)

has presentation:
〈x, a | x4 = a6 = 1, x2 = a3〉.

We also deduce the famous isomorphism PSL2(Z) ∼= C2 ∗ C3 and hence PSL2(Z)
has presentation:

〈x, a | x2 = a3 = 1〉.
The method presented in this section for determining a presentation of SL2(Z)

can be used for many other interesting arithmetic groups or, more generally, auto-
morphism groups of other algebraic structures (other than the lattice Z2).

Exercise 7.5. With a little more work we could have shown that GL2(Z) = A′ ∗C′
B′, where A′ is a dihedral group of order 8, B′ is a dihedral group of order 12 and
C ′ is an elementary abelian group of order 4.

Now consider F2 = 〈x, y〉 the free group of rank 2 on the generators x and y.
We can encode each automorphism φ ∈ Aut(F2) of F2 with the pair (φ(x), φ(y)).
Consider q = (xy, y−1), r = (x, y−1) and t = (y, x). Prove that

q2 = r2 = t2 = (tr)4 = 1

and that (tr)2(tq)3 is the conjugation by xy.
Observe now that each φ ∈ Aut(F2) deternines an isomorphism of the quotient

F2/[F2, F2] ∼= Z2, and hence there is a natural homomorphism Aut(F2)→ GL2(Z).
Deduce from above that this homomorphism is surjective with kernel F2.
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It is possible to prove that Aut(F2) is generated by q, r and t. Deduce that
Aut(F2) = A ∗C B, where A is an extension of F2 by A′, B is an extension of F2

by B′ and C is an extension of F2 by C ′.

8. The exact sequence of a tree

Let V be a G-set. We write ZV for the free abelian group spanned by V . Thus
the elements of ZV are formal sums

∑
v∈V nvv, with nv ∈ Z being zero for all but

finitely many v ∈ V . Clearly, the action of G on V turns ZV into a ZG-module
(the permutation ZG-module on the set V ):

g

(∑
v∈V

nvv

)
=
∑
v∈V

nv(gv).

Let ε : ZV → Z be the map defined by

ε

(∑
v∈V

nvv

)
=
∑
v∈V

nv.

It is easy to see that ε is a G-module homomorphism, this mapping is called the
augmentation function of V and the kernel of ε is called the augmentation
module of V .

Definition 8.1. Let X = (X,V,E, ι, τ) be a G-graph. The boundary map is the
G-linear map ∂ : ZE → ZV defined by

∂

(∑
v∈V

nvv

)
=
∑
v∈V

nvτv −
∑
v∈V

nvιv.

In particular, ∂(v) = τv − ιv. The sequence

0→ ZE ∂−→ ZV ε−→ Z→ 0

is a complex, that is, the composition of two consecutive maps is zero.

Recall that a sequence of G-modules A
f−→ B

g−→ C is said to be exact if Im(f) =
Ker(g).

Exercise 8.2. Show that the graph X is connected if and only if ZE ∂−→ ZV ε−→ 0
is exact. This requires to prove two things: that Im(∂) = Ker(ε) and that ε is
surjective.

Exercise 8.3. Show that the graph X is a forest if and only if 0 → ZV ∂−→ ZE is
exact. As for Exercise 8.2, this requires to prove that ∂ is injective.

Putting Exercises 8.2 and 8.3 together, we have that when X is a tree, the

sequence 0 → ZET ∂−→ ZV T ε−→ 0 is exact. Actually, we can be more precise than
this and we can contruct an explicit function ZV T → ZET partially inverting ∂.

Definition 8.4. Let T = (T, V,E, ι, τ) be a G-tree. Given two vertices v, w ∈ V ,
consider the geodesic v = v0, e

ε1
1 , . . . , e

εn
n , vn = w of T from v to w. Define

T [v, w] = ε1e1 + · · ·+ εnen ∈ ZE.
This definition is well posed because T is a tree and hence there exists a unique
path (a geodesic) from v to w. Observe that T [w, v] = −T [v, w] and that T [v, w] =
T [v, u] + T [u,w] for every v, w, u ∈ V . Fix v ∈ V . Now define T [v,−] : V → ZE
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by w 7→ T [v, w]. Since ZV is a free abelian group on V , the map T [v,−] can be
extended to a Z-linear map T [v,−] : ZV → ZE.

Theorem 8.5. If T is a G-tree then 0 → ZET ∂−→ ZV T ε−→ Z → 0 is an exact
sequence of G-modules; therefore the augmentation module of V is isomorphic to
ZET .

Proof. See the previous exercises or argue as follows. Fix v ∈ V . For every e ∈ E,
we have

T [v, ∂(e)] = −T [v, ιe] + T [v, τe] = T [ιe, v] + T [v, τe] = T [ιe, τe] = e.

Thus

ZET ∂−→ ZV T T [v,−]−−−−→ ZET

is the identity. The rest of the proof is easy. �

We recall here a rather concrete definition of semidirect product of groups. Let
M be a G-module. The semidirect product, denoted by either M o G or G nM ,
is the group defined on the set G×M with product

(g,m)(g′,m′) = (gg′,m+ gm′).

Exercise 8.6. Let β : G→ GnM be a function of the form β = (idG, d), for some
function d : G → M , that is, β(g) = (g, d(g)), for every g ∈ G. Prove that β is a
group homomorphism if and only if

d(xy) = d(x) + xd(y),

for each x, y ∈ G. A map d : G → M with the properties above is called a
derivation.

We will see homomorphisms β : G → G nM as in Exercise 8.6 in the proof of
Theorem 11.1. These homormorphisms arise naturally in the following way. Fix
m ∈M and let βm : G→ GnM be the automorphism defined by

g 7→ dm(g) = [g,m] = (g, 0)(1,m)(g−1, 0)(1,−m) = (1, gm−m).

Then d : G → M is given by m 7→ gm −m. In general not every homomorphism
β : G → G n M satisfying β = (idG, d) (for some d : G → M) is of the form
β = βm, for some m ∈M . In fact, the existence of homomorphisms β : G→ GnM
satisfying β = (idG, d) (for some d : G → M) not of the form β = βm depends on
the homology of G with coefficients in M and in particular on the non-vanishing of
the first homology group.

Exercise 8.7. Let G be a group and let M be a G-module. Consider E = GnM
and we think of G and M as subgroups of E. A subgroup C of E is said to be
a complement of M in E if C ∩M = 1 and E = CM . Show that there exists
a one-to-one correspondence between complements C of M in G and derivations
d : G → M . (Hint: given a derivation d : G → M consider C = {xd(x) | x ∈ G}.
Conversely, given a complement C of M in E observe that, for each x ∈ G, there
exists a unique mx ∈M with xmx ∈ C.)



19

9. The fundamental graph of a graph of groups is a tree

We now prove another main result on this theory. We set some notation that we
use in the whole of this section.

Let (G(−), Y ) be a graph of groups with connected graph Y = (Y, V,E, ῑ, τ̄).
We use the same notation for Y0, G, T as for Definitions 5.2 and 5.3. Moreover we
fix once and for all a vertex v0 of Y0.

Lemma 9.1. Let H be a group and suppose that for every v ∈ V Y , αv : G(v)→ H
is a group homomorphism. Let α : E → H be a function such that

αῑe(g)α(e) = α(e)ατ̄e(g
te), for all e ∈ E, g ∈ G(e) ≤ G(ῑe).

For v, w ∈ V Y , let
α(v, w) = α(e1)ε1 · · ·α(en)εn ∈ H

where eε11 , . . . , e
εn
n is the Y0-geodesic from v to w.

Then there exists a group homomorphism β : G → H defined on the generating
set of G by

β(g) = α(v0, v)αv(g)α(v, v0) for all g ∈ G(v), v ∈ V,
β(te) = α(v0, ῑe)α(e)α(τ̄ e, v0) for all e ∈ E.

Proof. To prove that β defines an homomorphism β : G → H, directly from the
definition of group presentation, it suffices to show that β respects the relations
defining G.

Observe that the definition of α gives

α(u,w) = α(u, v)α(v, w) and α(w, u) = α(u,w)−1,

for every u, v, w ∈ V .
Fix v ∈ V . We study first the restriction β � G(v) of β to the subset G(v)

of G. As α(v0, v) = α(v, v0)−1, by definition β � G(v) is the composition of αv
(which is a group homomorphism by hypothesis) with the conjugation by α(v0, v).
In particular β � G(v) is a group homomorphism and hence the relations of G (with
respect to G(v)) are respected.

Fix e ∈ E and g ∈ G(e) ≤ G(ῑe). We have

β(g)β(te) = α(v0, ῑe)αῑe(g)α(ῑe, v0)α(v0, ῑe)α(e)α(τ̄ e, v0)

= α(v0, ῑe)αῑe(g)α(e)α(τ̄ e, v0)

= α(v0, ῑe)αιe(g)α(e)α(τ̄ e, v0)

= α(v0, ῑe)α(e)ατ̄e(g
te)α(τ̄ e, v0)

= α(v0, ῑe)α(e)α(τ̄ e, v0)α(v0, τ̄ e)ατ̄e(g
te)α(τ̄ e, v0)

= β(te)β(gte).

In particular,
β(te)

−1β(g)β(te) = β(gte) = β(t−1
e gte),

and hence β respects this type of relations.
Finally, for each e ∈ EY0, we have te = 1 and also

β(1) = β(te) = α(v0, ῑe)α(e)α(τ̄ e, v0)

= α(v0, ῑe)α(ῑe, τ̄ e)α(τ̄ e, v0) = α(v0, v0) = 1.

Thus β respects all relations defining G and hence β : G → H is a group
homomorphism. �
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Using Lemma 9.1 we can now give a more standard definition of fundamental
group.

Definition 9.2. Let P be the group with

generating set: {ue | e ∈ E} ∪
⋃
v∈V G(v);

relations: (1) the relations for G(v), for every v ∈ V ,
(2) gue = ueg

te , for every e ∈ E and for every g ∈ G(e) ≤ G(ῑe) (thus
gte ∈ G(τ̄ e)).

This group resembles very much our fundamental group G = π(G(−), Y, Y0): the
main difference is that in G we also have the relations te = 1 when τ̄ e ∈ Y0.

The fundamental group of (G(−), Y ) with respect to v0 is the subgroup (de-
noted by π(G(−), Y, v0)) of P consisting of all elements p which can be written as
a product

p = g0u
ε1
e1g1 · · · gn−1u

εn
engn,

where v0, e
ε1
1 , v1, . . . , vn−1, e

εn−1

n−1 , vn = v0 is a closed path in Y with gi ∈ G(vi) for
every i ∈ {0, . . . , n}.

As we mentioned above, there exists a natural epimorphism π : P → G sending
G(v) identically to itself for each v ∈ Y and sending ue to te. Now, by using
the function E → P defined by e 7→ ue, we see that Lemma 9.1 yields a group

homomorphism β : G → P . Let us consider the composite: G
β−→ P

π−→ G; this
function maps G(v) identically into G(v) and maps te 7→ te (see how β(te) is defined
in Lemma 9.1). Therefore the composition is the identity. Therefore β is injective.
Moreover,

βG = π(G(−), Y, v0)

and hence G ∼= π(G(−), Y, v0).
Among other things, this shows that the isomorphism class ofG = π(G(−), Y, Y0)

does not depend upon Y0 and that also G is isomorphic to the usual definition of
fundamental group. Sometimes later we write simply π(G(−), Y ) for G: actually
we do this when we want to describe abstract algebraic properties (and not group
actions) of π(G(−), Y, Y0).

Theorem 9.3. Suppose that |G(v)| is finite for each v ∈ V . Let n ∈ N \ {0}
be divisible by |G(v)| for each v ∈ V . Then there exists a group homomorphism
G → Sym(n) such that the composition G(v) → G → Sym(n) is injective for each
v ∈ V .

Proof. Consider the set Ω = {1, . . . , n}. Since |G(v)| divides n, we can partition
Ω into n/|G(v)| sets each having cardinality |G(v)|. Letting G(v) act on each of
these sets via its left regular representation, we obtain an action of G(v) on Ω. Let
αv : G(v)→ Sym(Ω) be the embedding resulting from this faithful action.

Observe that the only element of G(v) fixing some element of Ω is the identity,
that is, G(v) acts freely on Ω.

Let e ∈ E. Now both G(ῑe) and G(τ̄ e) act freely on Ω. Moreover, the emdeddings
G(e) ≤ G(ῑe) and te : G(e)→ G(τ̄ e), determine two G(e)-actions on Ω (inhereded
by the actions of G(ῑe) and G(τ̄ e)). Let us denote these two G(e)-sets by Ωῑe and
Ωτ̄e. For both actions G(e) acts freeely and hence the two actions are isomorphic.
Let α(e) : Ω → Ω be any G(e)-isomorphism. This means that, for each g ∈ G(e)
and for each ω ∈ Ω, we have

α(e)(ατ̄e(g
te)ω) = αῑe(g)(α(e)(ω)).
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This equation shows that α(e) ∈ Sym(Ω) has the property that

α(e)ατ̄e(g
te) = αῑe(g)α(e),

for every g ∈ G(e).
We are in the position to apply Lemma 9.1. Therefore there exists a group

homomorphism β : G→ Sym(Ω) and the restriction of β to G(v) is conjugate (via
an element of Sym(Ω)) to the injective homomorphism αv. Since αv is injective, we
deduce that also the restriction β � G(v) is injective, which is what we wanted. �

The main point of Theorem 9.3 is that G(v) is a genuine subgroup of the funda-
mental group G(v), no “deformations” are possible. This is essentially due to the
fact that we have chosen te to be an injective homomorphisms.

Exercise 9.4. Here we make a short digression and see what can happen if the
connecting homomorphisms are not injective. We do this in an example and we start
with a formal definition. Let C, A1 and A2 be three groups and let f1 : C → A1

and f2 : C → A2 be group homomorphisms. Just for this exercise, we call the
amalgamated product of A1 and A2 on C the group A1 ∗C A2 having the following
universal property:

(i): There exist two group homomorphisms g1 : A1 → G and g2 : A2 → G
with g1 ◦ f1 = g2 ◦ f2.

(ii): If H is a group and if h1 : A1 → H and h2 : A2 → H are two group
homomorphisms with h1 ◦ f1 = h2 ◦ f2, then exists a unique group homo-
morphism h : G→ H such that h1 = h ◦ g1 and h2 = h ◦ g2.

This definition captures and externds the definition of almalgamated product de-
fined earliear.

Let A1 = PSL2(Q), A2 = Z/2Z and C = Z; let f1 : C → A1 be any injective
homomorphism and let f2 : C → A2 be any surjective homomorphism. Prove that
A1 ∗C A2 = 1.

Corollary 9.5. If G(v) is finite for each v ∈ V Y , then the inclusion function
G(v)→ G is injective for each v ∈ V Y .

Proof. Apply Theorem 9.3. �

In view of Corollary 9.5, from now on, we treat G(y) as a subgroup of G, for
every y ∈ Y .

The main result of this course is the following.

Theorem 9.6. The graph T is a tree.

Proof. Let CT be the set of all connected components of T . Now, since CT is a
partition of V T , there is a natural map [−] : V T → CT defined by v 7→ [v], where
[v] is the connected component of T containing v. To show that T is a tree we first
need to convince ourselves that CT consists of the single element [v0]. Observe that
the G-set V T and the map [−] determine a structure of a G-set on CT . Moreover
[ιe] = [τe], for each e ∈ ET . Recall that by definition, V T is the G-set generated
by V and with relations, the condition that v is G(v)-invariant, for each v ∈ V .
In particular, CT is also a G-set generated by V and having at least the relations
saying that [v] ∈ CT is G(v)-invariant, for every v ∈ V T . However, there are
additional relations. Namely, for each e ∈ E, [ιe] = [τe]; therefore,

[ῑe] = [ιe] = [τe] = [teτ̄ e] = te[τ̄ e].
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When we specify this relation with e ∈ EY0, the above relation becomes [ῑe] = [τ̄ e],
for all e ∈ EY0. Therefore [v] = [v0], for every v ∈ V , because Y0 is a spanning
tree of Y . So CT consists of a single G-orbit. Now [v0] is G(v)-invariant for each
v ∈ V because [v] = [v0]; moreover, [v0] is te-invariant for each e ∈ EY because
[v0] = [ῑe] = te[τ̄ e] = te[v0]. Thus [v0] is G-invariant. Therefore CT = {[v0]} and T
is connected.

In view of Exercise 8.3, to show that T is a tree it suffices to show that the
boundary map ∂ : ZET → ZV T is injective.

For each v ∈ G, let αv : G(v) → G n ZET be the injective homomorphism
defined by g 7→ (g, 0). (Here G n ZET is the semidirect product of G via the
G-module ZET .) Let α : E → Gn ZET be the function defined by e 7→ (te, e).

Let e ∈ E and let g ∈ G(e). Then

αῑe(g)α(e) = (g, 0)(te, e) = (gte, ge) = (teg
te , e) = (te, e)(g

te , 0) = α(e)ατ̄e(g
te),

and hence the hypothesis of Lemma 9.1 are satisfied.
Recall the definition of the functions α(v, w) in Lemma 9.1. Given v, w ∈ V , let

eε11 , . . . , e
εn
n be the Y0-geodesic from v to w. Then

α(v, w) = α(e1)ε1 · · ·α(en)εn = (1, eε11 ) · · · (1, eεnn )

= (1, ε1e1 + · · ·+ εnen) = (1, Y0[v, w]),

where Y0[v, w] = ε1e1 + · · · + εnen ∈ ZEY0 ⊆ ZET . (See also Definition 8.4.) By
Lemma 9.1, there exists a group homomorphism β : G→ Gn ZET such that

(1) for each v ∈ V and for each g ∈ G(v),

β(g) = α(v0, v)αv(g)α(v, v0)

= (1, Y0[v0, v])(g, 0)(1, Y0[v, v0]) = (g, Y0[v0, v] + gY0[v, v0]);

(2) for each e ∈ E,

β(te) = α(v0, ῑe)α(e)α(τ̄ e, v0)

= (1, Y0[v0, ῑe])(te, e)(1, Y0[τ̄ e, v0])

= (te, Y0[v0 + ῑe] + e+ teY0[τ̄ e, v0]).

This shows that the group homomorphism β is actually of the form (idG, d), where
d : G→ ZET is a function. Recall now Exercise 8.6.

We highlight here some properties of d that we need:

(4) d(xy) = d(x) + xd(y), for every x, y ∈ G;

(5) d(g) = Y0[v0, v] + gY0[v, v0], for every v ∈ V, g ∈ G(v);

(6) d(te) = Y0[v0, ῑe] + e+ teY0[τ̄ e, v0], for every e ∈ E.

We claim that there exists a Z-linear map T [v0,−] : ZV T → ZET with

(7) T [v0, gv] = d(g) + gY0[v0, v], for all g ∈ G, v ∈ V.

To make sure that such a map T [v0,−] exists we have to make sure that the
definition is consistent, that is, if v, v′ ∈ V and g, g′ ∈ G with gv = g′v′, then
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T [v0, gv] = T [v0, g
′v′], that is, d(g) + gY0[v0, v] = d(g′) + g′Y0[v0, v

′]. Now, as Y is
a G-transversal, we have v = v′ and g′ = gh for some h ∈ G(v). Therefore,

T [v0, g
′v′] = d(g′) + g′Y0[v0, v] = d(gh) + ghY0[v0, v]

= d(g) + gd(h) + ghY0[v0, v]

= d(g) + g(Y0[v0, v] + hY0[v, v0]) + ghY0[v0, v]

= d(g) + gY0[v0, v] + ghY0[v, v] = d(g) + gY0[v0, v]

= T [v0, gv].

This shows that T [v0,−] is well-defined.
For every g ∈ G and for every e ∈ E, we have

T [v0, ∂(ge)] = −T [v0, gιe] + T [v0, gτe] = −T [v0, gῑe] + T [v0, gteτ̄ e]

= (gY0[ῑe, v0]− d(g)) + (d(gte) + gteY0[v0, τ̄ e])

= gY0[ῑe, v0]− d(g) + (d(g) + gd(te)) + gteY0[v0, τ̄ e]

= gY0[ῑe, v0] + g(Y0[v0, ῑe] + e+ teY0[τ̄ e, v0]) + gteY0[v0, τ̄ e]

= ge.

This shows that the composition ZET ∂−→ ZV T T [v0,−]−−−−−→ ZET is the identity map
and hence ∂ is injective. �

From the fact that T is a tree and from the results we proved already for actions
on trees we can deduce some information on the subgroups of G. In fact, from H ≤
G, we deduce that T is an H-tree and hence H is isomorphic to the fundamental
group of the graph of groups associated with T with respect to a fundamental
H-transversal and connecting elements.

Proposition 9.7. Let H be a subgroup of G such that H∩g−1G(y)g = 1, for every
y ∈ Y and for every g ∈ G. Then H is free.

In particular, if H is torsion-free and the vertex groups are torsion groups (for
instance finite), then H is free.

10. More on Cayley graphs and free groups

Definition 10.1. Let Y be a connected graph, let Y0 be a maximal subtree of Y
and let v0 be a vertex of Y .

Here we look a little closer at the graph of groups (G(−), Y ) with G(y) = 1 for
all y ∈ Y . As we observed in Example 5.5 (ii) this graph of groups corresponds to
Cayley graphs.

The fundamental group of Y with respect to v0 is π(Y, v0) = π(G(−), Y, v0) (see
Definition 9.2). In our case, this is the subgroup of the free group on EY consisting
of all elements eε11 e

ε2
2 · · · eεnn , where eε11 , . . . , e

εn
n is a closed path in Y starting at v0.

This is now the standard topological definition of fundamental group of Y at v0

consisting of homotopy classes.
For this case, since the isomorphism type does not depend upon Y0 or v0, we

simply say fundamental group of Y and write π(Y ): it is the free group of rank
|EY \ EY0|.

Let G = π(G(−), Y ) and let T = T (G(−), Y, Y0). We think of T as having a
distinguisted vertex v0. By Theorem 9.6, T is a tree and by construction T is a
G-free G-tree with T/G ∼= Y .
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Actually, the projection map T → G is a local isomorphism, that is, it is an
isomorphism when restricted to the neighbourhood of each vertex. Any tree with
this property is called universal covering tree of Y . Yet again, this is in line with
the usual definition of universal coverings in topology.

Define rankY = |EY \EY0| = rankG (this is the minimal number of generators
for the free group G). Moreover the Euler characteristic of a free group F is
χ(F ) = 1− rankF . This is in line with the usual definition of Euler characteristic
of a graph (as we now show):

χ(Y ) = |V Y | − |EY | = |V Y0| − |EY | = (1 + |EY0|)− |EY |
= 1− |EY \ EY0| = 1− rankY = 1− rankG = χ(G).

We sum up some of the remaks above into theorems.

Theorem 10.2. The group G is freely generated by a subset S if and only if the
Cayley graph Cay(G,S) is a G-tree.

Theorem 10.3. There exists a G-free G-tree if and only if G is a free group.

Clearly the property characterising free groups in Theorem 10.3 is inherited by
subgroups and hence we have the famous Nielsen-Schreier theorem:

Theorem 10.4. Every subgroup of a free group is free.

We conclude with a famous result of Schreier.

Theorem 10.5. If G is a free group of finite rank r and H is a subgroup of G of
finite index n, then H is free of rank 1 + n(r − 1). Writing this in terms of Euler
characteristics, we have χ(H) = |G : H|χ(G).

Proof. Let S be a free generating set of G and let T = Cay(G,S). Thus T is a
G-free G-tree. As H is a subgroup of G, the graph T is also a H-free H-tree. From
Corollary 6.2, we have G ∼= π(T/G) and H ∼= π(T/H). Since T/G is a finite graph,
we have χ(G) = χ(T/G). Since ET is G-free, it consists of |ET/G| copies of G,
and hence it consists of |G : H|(ET/G) copies of H. Therefore |ET/H| = |G :
H||ET/G|. A similar argument gives |V T/H| = |G : H||V T/G|. From this we
obtain χ(T/H) = |G : H|χ(T/G). Therefore χ(H) = χ(T/H) = |G : H|χ(T/G) =
|G : H|χ(G). �

11. Structure theorem for groups acting on connected graphs

In this secton X is a connected G-graph. Let Y be a fundamental G-transversal
in X with subtree Y0 and let ῑ, τ̄ be the corresponding incidence functions for the
quotient graph. Choose v0 ∈ V Y , and for each e ∈ EY choose an element te ∈ G
with teτ̄ e = τe, with te = 1 if e ∈ EY0. Let (G(−), Y ) be the resulting graph
of groups and write P = π(G(−), Y, Y0), T = T (G(−), Y, Y0). We treat v0 as an
element of Y0, Y , X and T . Observe that we know that T is a tree.

Theorem 11.1. There is a natural extension 1→ π(X)→ P → G→ 1. Further,
π(X) acts freely on T , and there is a natural isomorphism of G-graphs T/π(X) ∼=
X. In particular, T is the universal covering tree of X.

The action of P on π(X) by left conjugation induces a natural G-module structure
on π(X)ab, and there is an exact sequence of G-modules

(8) 0→ π(X)ab → Z[EX]
∂−→ Z[V X]→ Z→ 0.
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Proof. Let v ∈ V Y . As in the proof of Theorem 6.1 (see the claim), the paths of
length 1 in X starting at v are the sequences of the form

v, gt
1
2 (ε−1)
e eε, gtεew,

where v, eε, w is a path in Y and g ∈ Gv. Hence, again as in the proof of Theo-
rem 6.1, the natural projection homomorphism π : P → G is surjective (observe
that the connectedness of X is fundamental). Let N be the kernel of π. Thus
G = P/N .

For each y ∈ Y , the composition

G(y)
inclusion−−−−−−→ P

π−→ G

is the natural embedding of G(y) = Gy. Therefore N ∩ G(y) = 1, that is, N does
not meet any vertex groups. Thus T is N -free and N ∼= π(T/N) by Corollary 6.2.

The group P/N = G acts on the graph T/N ; moreover, Y is a fundamental
G-transversal, the te (e ∈ EY ) are connecting elements, and the resulting graph of
groups agrees with (G(−), Y ). As before, the path of length 1 in T/N starting at
v are the sequences of the form

v, gt
1
2 (ε−1)
e eε, gtεew,

where v, eε, w is a path in Y and g ∈ Gv. From this we deduce that X ∼= T/N
as G-graphs, therefore N ∼= π(X). We treat this isomorphism as an identification,
however for the rest of the proof we need to make this more precise.

For every element c ∈ N , the path in T from v0 to cv0 maps to a closed path in
X at v0 which corresponds to the element of π(X) which we identify with c.

We have P acting on π(X) by left conjugation, so by definition in the induced
action on π(X)ab, the group π(X) acts trivially. Thus π(X)ab has the natural
structure of a module over P/N = G. We need to analyse this action. The action
under g ∈ G sends an element of π(X)ab represented by a closed path q in X at
v0 to the element of π(X)ab represented by any g-conjugate of q, that is, a closed
path p, gq, p−1 where p is a path in X from v0 to gv0. This action is independent
of all choices.

The function which associates to a path eε11 , . . . , e
εn
n in X the element ε1e1 +

· · · + εnen ∈ ZEX induces a natural map π(X)ab → ZEX which is easily seen to
be G-linear, and hence we have a complex as in (8).

Since X is connected, (8) is an exact complex at ZV X.
Choose a maximal subtree X0 of X. The group π(X) is free on EX \ EX0,

therefore π(X)ab ∼= Z[EX \ EX0], and the natural map to ZEX takes the form
Z[EX \ EX0] → ZEX, e 7→ e + X0[τe, ιe], where X0[−,−] is as in Definition ??.
This is clearly injective, since composing with the projection onto Z[EX \ EX0]
gives the identity.

It remains to prove the exactness at ZEX. Suppose that

∂

( ∑
e∈EX

nee

)
= 0.

We know that

∂

( ∑
e∈EX

ne(e+X0[τe, ιe])

)
= 0
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and hence

∂

( ∑
e∈EX

neX0[τe, ιe]

)
= 0.

However ∂ restricted to ZEX0 is injective and hence∑
e∈EX

neX0[τe, ιe] = 0.

Therefore ∑
e∈EX

nee =
∑
e∈EX

ne(e+X0[τe, ιe]),

which is the image of π(X)ab, as desired. �

Corollary 11.2. If X is a connected G-free G-graph, then there is an extension of
groups 1→ π(X)→ π(X/G)→ G→ 1.

Corollary 11.3. If F is a free group on a set S, N is a normal subgroup of F and
G = F/N , then there is an exact sequence of G-modules

0→ Nab → Z[G× S]→ ZG→ Z→ 0.

Proof. Let X = Cay(G,S) be the Cayley graph for G with connection set S. Thus
we have a group extension 1→ π(X)→ π(X/G)→ G→ 1 and an exact sequence
of G modules 0 → π(X)ab → Z[G × S] → ZG → Z → 0. Finally, we can identify
F = π(X/G) so that N = π(X). �

To have a complete structure theorem for a group acting on a connected graph,
we want an explicit description of π(X) as a subgroup of P . This is also useful in
computations. An element of π(X) corresponds to a unique closed path in X at v0

and this can be expressed in the form

v0, g0t
1
2 (ε1−1)
e1 eε11 , g0t

ε1
e1v1

g0t
ε1
e1g1t

ε2
e2g2 · · · gn−1t

εn
envn = v0,

where v0, e
ε1
1 , v1, e

ε2
2 , v2, . . . , vn−1, e

εn
n , vn = v0 is a closed path in Y and gi ∈ Gvi for

all i ∈ {0, . . . , n}. Then g0t
ε1
e1g1t

ε2
e2g2 · · · gn−1t

εn
en is an element of Gv0 , and denoting

it by g−1
n , we get an expression

g0t
ε1
e1g1t

ε2
e2g2 · · · gn−1t

εn
engn

representing the desired element of P .
For the purpose of presenting G, one wants a set of elements which generate

π(X) as a normal subgroup of P ; geometrically this amounts to a set of closed
paths at v0 in X whose G-translates generate all of π(X).

Exercise 11.4. Let G be the group generated by the four elements x1, x2, x3, x4

and by the four relations

x2x1x
−1
2 = x2

1, x3x2x
−1
3 = x2

2, x4x3x
−1
4 = x2

3, x1x4x
−1
1 = x2

4.

(i): The group G has a unique subgroup of finite index, namely G itself.
(ii): The group G is infinite.
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Let H be a subgroup of finite index in G. Now, NG(H) has also finite index in G
and hence H has a finite number of conjugates in G. This shows that N =

⋂
g∈GH

g

has finite index in G. Therefore it suffices to show that N = G. Let Ḡ = G/N ans
assume that Ḡ 6= 1. Let ni be the order of x̄i in Ḡ, for i ∈ {1, 2, 3, 4}. Since Ḡi 6= 1,
there exists i ∈ {1, 2, 3, 4} with ni 6= 1. Among all prime divisors p of n1, or n2, or
n3, or n4, choose p as small as possible. By the symmetry on the relations defining
G, we may assume that p divides n1. Now

x̄2n2

1 = x̄n2
2 x̄1x̄

−n2
2 = x̄1

and hence 2n2 ≡ 1 (mod n)1. Therefore 2n2 ≡ 1 (mod p). Clearly, this gives
p 6= 2. Let N be the order of 2 in the multiplicative group (Z/pZ)∗ of the field
Z/pZ. As 2 6≡ 1 (mod p), we have 1 < N ≤ p − 1. Since 2n2 ≡ 1 (mod p), we
deduce n2 ≡ 0 (mod N). If p′ is a prime factor of N , we deduce n2 ≡ 0 (mod p)′

and p′ ≤ N ≤ p− 1, which contradicts the minimality of p.
We need to prove now that G is infinite, clearly by the previous part it suffices

to show that G 6= 1. Write

G12 = 〈x1, x2 | x2x1x
−1
2 = x2

1〉
G23 = 〈x2, x3 | x3x2x

−1
3 = x2

2〉
G34 = 〈x3, x4 | x4x3x

−1
4 = x2

3〉
G41 = 〈x4, x1 | x1x4x

−1
1 = x2

4〉.

We claim that each of these groups is infinite. It suffices to show that G12 is infinite.
Now denote by G1, G2, G3, G4 the subgroups (in each of the previous groups)

generated by x1, x2, x3, x4, that is, Gi = 〈xi〉, for i ∈ {1, 2, 3, 4}. Let Z[1/2] =
{a/2n | a, n ∈ Z}. It is not hard to see that G12 is isomorphic to Z[1/2]oZ where
the action of Z on Z[1/2] is by multiplication by 2, that is, a/2n 7→ 2a/2n = a/2n−1.

Now define

G123 = G12 ∗G2
G23

G234 = G23 ∗G3
G34

G341 = G34 ∗G4
G41.

Clealy, each of G123, G234 and G341 is infinite by the theory developed so far.
Inside G123 the group generated by G1 and G3 is free, thus we set F = 〈G1, G3〉 =

G1 ∗ G2. We do the same for G341. Now a moment’s thought gives that G is
actually G123 ∗F G341 and hence G is infinite because it is obtained by successive
amalgamations and it contains the free group on two generators F .

Exercise 11.5. Let G be the group generated by the three elements x1, x2, x3 and
by the four relations

x2x1x
−1
2 = x2

1, x3x2x
−1
3 = x2

2, x1x3x
−1
1 = x2

3.

Prove that G = 1.

12. The amalgam method

In this lecture we introduce a method (invented by Goldschmidt) that can be
used to determine the order (and possibly classify the structure) of vertex stabilisers
in arc-transitive graphs. We present this method through an example proving a



28

celebrated theorem of Tutte establishing that the vertex stabiliser in a finite cubic
arc-transitive graph has order dividing 48.

Let Γ be a (not necessarily finite) cubic graph and let G be a subgroup of Aut(Γ)
acting transitively on the arcs of Γ. Let α, β be two adjacent vertices, A = Gα,
B = G{α,β} and C = Gα,β . Consider the graph Y having vertices A, B and with an
edge C pointing from A to C. Consider the graph of groups G(−) with G(A) = A,
G(B) = B and G(C) = C. Replacing G by π(G(−), Y, Y0) and Γ by T (G(−), Y, Y0)
we may think that G = A ∗C B and that Γ is a tree. Since |A : C| = 3 and
|B : C| = 2, we have two classes of vertices in Γ, vertices of valency 2 and vertices
of valency 3. Thus Γ is the subdivision of the 3-regular tree.

For simplifying the notation we think of Γ as a 3-regular tree. Let α, β be two
adjacent vertices of Γ. We let Gα be the stabiliser in G of a vertex α. In particular,
α : Gα ∩ Gβ | = 3 and |G{α,β} : Gαβ | = 2. We denote by Qα the kernel of the
action of Gα on its neighbourhood Γ(α). If Qα = 1, then |Gα| ≤ 3! = 6, and hence
there is nothing to prove. Therefore we assume that Qα 6= 1. Observe that the

permutation group induced by Gα on Γ(α) is G
Γ(α)
α = Gα/Qα ∼= Sym(3).

Lemma 12.1. If N is a subgroup of Gαβ with NGα(N) transitive on Γ(α) and
NG{α,β}(N) transitive on {α, β}, then N = 1.

Lemma 12.2. If Qα ≤ Qβ, then |Gα| ≤ 6.

Proof. If Qα ≤ Qβ , then Qα = Qβ because an automorphism of Γ interchanging α
with β swaps Qα with Qβ . Therefore Qα is normal in Gα and in G{α,β}. Therefore
Qα = 1. �

From now on we may assume that Qα � Qβ . In particular, QαQβ = Gα ∩Gβ =
Gαβ is a Sylow 2-subgroup of Gα and of Gβ .

Lemma 12.3. Either CGα(Qα) ≤ Qα or |Gα| = 12.

Proof. Set C = Cα(Qα) and assume that C � Qα. As C EGα, we see that C acts
transitively on Γ(α). Now, consider N = Qαβ . We have NGα(N) ≥ CGα(N) ≥
CGα(Qα) and hence NGα(N) is transitive on Γ. Clearly, NG{α,β}(N) = G{α,β} is

transitive on {α, β}. Therefore N = 1 and Qαβ = 1. �

From the previous lemma we may assume that CGα(Qα) ≤ Qα. We write

Zα = 〈Ω(Z(T )) | T ∈ Syl2(Gα)〉.

Lemma 12.4. (i): Zα ≤ Ω(Z(Qα));
(ii): CGα(Zα) = Qα;
(iii): ZαZβ 6= ZαZγ for every γ ∈ Γ(α) \ {β}.

Proof. Part (i). Let T ∈ Syl2(Gα). Then Qα ≤ T and, as CGα(Qα) ≤ Qα, we
obtain Ω(Z(T )) ≤ Z(Qα). Therefore Ω(Z(T )) ≤ Ω(Z(Qα)).

Part (ii). From (i), we have Qα ≤ CGα(Zα). Set C = CGα(Zα). If C � Qα, then
C is transitive on Γ(α). Set N = Zα. We have that NGα(N) ≥ CGα(N) is transitive
on Γ(α). Let T = QαQβ be a Sylow 2-subgroup of Gα. Now, Ω(Z(T )) is normalized
by G{α,β}. Moreover, CGα(Ω(Z/(T )) ≥ CGα(Zα) and hence CGα(Ω(Z(T ))) is
transitive on Γ(α). This gives Ω(Z(T )) = 1 and T = 1, a contradiction.

Part (iii). Suppose that ZαZβ = ZαZγ for some γ ∈ Γ(α) \ {β}. Then ZαZβ is
normal in Gα. It is always normal in G{α,β}. Therefore ZαZβ = 1, contradicting
Zα 6= 1. �
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Lemma 12.5. If Zα � Qβ, then |Gα| ≤ 48.

Proof. �

In view of Lemma 12.5, we may assume that Zα ≤ Qβ . We will prove that this
yields a contradiction. For this part of the argument the following parameter b
(introduced by Goldschmidt) plays a crucial role.

b = min{d(µ, λ) | µ, λ ∈ V Γ, Zµ � Qλ}.

A pair of vertices (µ, λ) such that d(µ, λ) = b and Zµ � Qλ is called a critical pair.
Observe that Zµ � Qλ implie Zµ � Gλ and hence Zµ acts as a cyclic group of order
2 on Γ(µ).

As G acts transitively on the arcs of Γ, we see that Zα � Qα and Zβ � Qα and
hence b > 1.

13. Computer computations

Suppose that Γ a finite connected directed graph with outvalency 2 and invalency
2. Suppose that there exists a group G acting transitively on the vertices of Γ and
with Gv having two orbits on the neighbours (in- and out-) of v. Suppose that
Gv = 〈x, y, z | x2 = y2 = [x, y] = 1〉 = A is the Klein 4 group. And that the
stabiliser of an edge (v, w) is G(v,w) = 〈x | x2 = 1〉 = C. Now the graph of groups
of G consists of a single vertex v and of a single edge/loop. Let te : C → A be the
embedding corresponding to the stabilizer Gw. This te sends x to y. Therefore the
group G is a quotient of the group with presentation

P = 〈x, y, z, t | x2 = y2 = [x, y] = 1, t−1xt = y〉,

that is, G = P/N for some normal subgroup N of P . Moreover, the original graph
Γ is the quotient T/N , where T is the fundamental free corresponding to P .

Now, the computer algebra system magma gives an invaluable tool for obtaining
the small index normal subgroups of P , via the command

LowIndexNormalSubgroups.

The example has nothing special, and this procedure can be applied each time
that we have complete information on the graph of groups of a certain group action
on graphs.

For example, the famous census of connected cubic arc-transitive graphs of order
at most 10 000 was obtained in this way, by applying this procedure to the possible
graph of groups of finite connected cubic arc-transitive graphs. The same procedure
was also applied more recently to obtain all connected cubic vertex-transitive graphs
of order at most 1 280.

For this method to work it becomes relevant the description of the graph of
groups of the family of graphs we like to generate. In particular, for vertex-transitive
graphs this procedure requires a detailed knowledge of the vertex-stabilizers.

This is still a naive way to attack the problem of building a census of certain
vertex transitive graphs, however it is the key idea and the key method.

The drawback of this method is that there are G-graphs with relatively small
order, compared to the order of their vertex stabilisers. This makes the invaluable
LowIndexNormalSubgroups command impractical to use. To make this method
than to work one need to prove theorems like the following.
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Theorem 13.1. Let Γ be a connected 3-valent G-vertex-transitive graph. Then one
of the following holds:

(A): Γ is in a well described family of examples;
(B): |Gv| ≤ 2436;
(C): |V Γ| ≥ 2|Gv| log2(|Gv|/2).

Morally, this theorem is saying that, from a vertex stabiliser point of view, nature
is rather meager: vertex stabilisers have size comparatively small compared to the
number of vertices, or they are classified (these graphs are usually referred to as
Praeger-Xu graphs, under the name of the people who first investigated rather
symmetric cubic graphs). The method for proving this theorem is rather different
from the theory developed so far, and pertain to the theory of finite groups and in
particular it is an application of the Classification of the Finite Simple Groups.

A key ingredient for the theorem above is the following result (Gardiner, Praeger,
Xu).

Theorem 13.2. Let Γ be a connected finite cubic G-vertex-transitive graph, let A
be an abelian normal subgroup of G. Then either A acts semiregular on V Γ or Γ
is a Praeger-Xu graph.

This theorem exhibits a rather peculiar behaviour. A cubic vertex-transitive G-
graph having a normal abelian subgroup, not acting freely (that is semiregularly)
has a very restricted structure. Any theorem that can generalise this result to other
classes of graphs might (in principle) open the door for classifying other classes of
symmetric graphs. So far, no analogue (as powerful) of this result is known.

References

[1] P. J. Cameron, Notes on Classical groups, http://www.maths.qmul.ac.uk/ pjc/

[2] A. Delgado, D. Goldschmidt, B. Stellmacher, Groups and Graphs: new results and methods,
DMV Seminar, Birkhauser Basel, 1985.

[3] W. Dicks, M. J. Dunwoody, Groups acting on graphs, Cambridge University Press, Cam-
bridge, 1989.

[4] J-P. Serre, Trees, Springer-Verlag, Berlin Heidelberg, 1980.

http://www.maths.qmul.ac.uk/~pjc/class_gps/cg.pdf

	1. Introduction
	2. Group actions
	3. Graphs and G-graphs
	4. Trees and fundamental G-transversals
	5. Graph of groups
	6. Groups acting on trees
	7. The special linear group SL2(Z) acting on the hyperbolic plane
	8. The exact sequence of a tree
	9. The fundamental graph of a graph of groups is a tree
	10. More on Cayley graphs and free groups
	11. Structure theorem for groups acting on connected graphs
	12. The amalgam method
	13. Computer computations
	References

