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Basic Facts and Notation

A finite projective plane:= (P;L)
P:= non empty set whose elements points
L:= family of subsets of P whose elements lines
satisfying incident axioms:

any two distinct points are contained in exactly one line;

any two distinct lines have exactly one common point;

there exists a non-degenerate quadrangle.

Basic facts:

(i) Each line consists of the same number of points

(ii) Each point is contained in the same number of lines

(iii) The numbers in (i) and (ii) coincide. This number is denoted
by n + 1 where n ≥ 2 is an integer the order of the projective
plane

(iv) The total number of points, as well as of lines, is n2 + n + 1.
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Example

Classical plane:= Projective plane PG (2, q) over a finite field
Three equivalent definitions of PG (2, q):
V (3, q) := 3-dimensional vector-space over the finite field Fq with
q elements, q := ph p ≥ 2 prime
(i) P := 1-dimensional subspaces of V (3, q), L:= 2-dimensional
subspaces of V (3, q)
(ii) A(2, q) := affine plane over Fq, PG (2, q) its projective closure
(iii) P := set of all nontrivial homogeneous triples (x1, x2, x3) with
xi ∈ Fq, U := set of all nontrivial homogeneous triples [u1, u2, u3]
with ui ∈ Fq,
for [u1, u2, u3] ∈ U : ` := {P(x1, x2, x3)| : u1x1 + u2x2 + u3x3 = 0}.
The order of PG (2, q) is equal to q.

∃ many finite projective planes of order q other than PG (2, q)
Open problem: ∃ projective plane of order n with n 6= q?
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Symmetries of a projective plane

Π:=finite projective plane (P,L)

Symmetry (automorphism, collineation) of Π:= permutation on P
which takes lines to lines, i.e.
σ is automorphism of (P;L) ⇔ σ(`) ∈ L for ∀` ∈ L
Aut(Π) := set (group) of all automorphisms of Π

For Π = PG (2, q), Aut(Π) ⊇ PGL(3, q) where
PGL(3, q) = GL(3, q)/Z (GL(3, q)), Z (GL(3, q)) = {λ I3|λ ∈ F∗

q}

The study of Aut(Π) is a difficult task: It combines three theories:
Geometry, Group Theory, Combinatorics.
Typical problem: For some nice point-set Ω in Π, determine the
subgroup G of Aut(Π) which leaves Ω invariant.

We shall see how to do this when Ω is an oval.
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Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective
plane:
Oval:= pointset Ω in Π s.t.

no three points of Ω are collinear

for every point P ∈ Ω, ∃! ` ∈ L such that Ω ∩ ` = {P}.

The line ` is the tangent of Ω at P.
|Ω| = n + 1 for any oval Ω in a projective plane of order n.
Conic in PG (2, q) is the classical oval.
Conic C:= set of all points P(x1, x2, x3) in PG (2, q) s.t.

a11x2
1 + a12x1x2 + a22x2

2 + a13x1x3 + a23x2x3 + a33x2
3 = 0.

For q odd, conic C is the set of all self-conjugate points of an
orthogonal polarity,
The collineation group preserving C is PΓL(2, q) and hence
contains PSL(2, q).
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Gábor Korchmáros Symmetries of finite projective planes



Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective
plane:
Oval:= pointset Ω in Π s.t.

no three points of Ω are collinear

for every point P ∈ Ω, ∃! ` ∈ L such that Ω ∩ ` = {P}.

The line ` is the tangent of Ω at P.
|Ω| = n + 1 for any oval Ω in a projective plane of order n.
Conic in PG (2, q) is the classical oval.
Conic C:= set of all points P(x1, x2, x3) in PG (2, q) s.t.

a11x2
1 + a12x1x2 + a22x2

2 + a13x1x3 + a23x2x3 + a33x2
3 = 0.

For q odd, conic C is the set of all self-conjugate points of an
orthogonal polarity,
The collineation group preserving C is PΓL(2, q) and hence
contains PSL(2, q).
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Gábor Korchmáros Symmetries of finite projective planes



Ovals of a projective plane

Oval is a combinatorial abstraction of a conic of the real projective
plane:
Oval:= pointset Ω in Π s.t.

no three points of Ω are collinear

for every point P ∈ Ω, ∃! ` ∈ L such that Ω ∩ ` = {P}.

The line ` is the tangent of Ω at P.
|Ω| = n + 1 for any oval Ω in a projective plane of order n.
Conic in PG (2, q) is the classical oval.
Conic C:= set of all points P(x1, x2, x3) in PG (2, q) s.t.

a11x2
1 + a12x1x2 + a22x2

2 + a13x1x3 + a23x2x3 + a33x2
3 = 0.

For q odd, conic C is the set of all self-conjugate points of an
orthogonal polarity,
The collineation group preserving C is PΓL(2, q) and hence
contains PSL(2, q).
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Geometry of an oval of a projective plane of odd order

Ω:= oval in a projective plane Π of odd order,

Points of Π are partitioned in three types:

(i) Points on the oval
(ii) External points (through each there are exactly two tangents)
(iii) Internal points (through each there is no tangent)

|Ω| = n + 1, E(Ω) = 1
2 (n + 1)n, I(Ω) = 1

2 (n − 1)n

Segre’s Theorem (1955): In PG (2, q) with q odd, every oval is a
conic.
Segre’s theorem fails for q even.
Open problem Classification of ovals in PG (2, q) for q even.
Open problem Do exist finite projective planes without any oval?
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Gábor Korchmáros Symmetries of finite projective planes



Geometry of an oval of a projective plane of odd order

Ω:= oval in a projective plane Π of odd order,

Points of Π are partitioned in three types:

(i) Points on the oval
(ii) External points (through each there are exactly two tangents)
(iii) Internal points (through each there is no tangent)

|Ω| = n + 1, E(Ω) = 1
2 (n + 1)n, I(Ω) = 1

2 (n − 1)n

Segre’s Theorem (1955): In PG (2, q) with q odd, every oval is a
conic.
Segre’s theorem fails for q even.

Open problem Classification of ovals in PG (2, q) for q even.
Open problem Do exist finite projective planes without any oval?
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|Ω| = n + 1, E(Ω) = 1
2 (n + 1)n, I(Ω) = 1

2 (n − 1)n

Segre’s Theorem (1955): In PG (2, q) with q odd, every oval is a
conic.
Segre’s theorem fails for q even.
Open problem Classification of ovals in PG (2, q) for q even.
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Involutory collineations of an oval in an odd order plane

Π:=projective plane of odd order n

Central-axial collineation (C , `):= collineation fixing a line `
pointwise (axis) and each line through a point C (center)
Homology:= Central-axial collineation (C , `) with C /∈ `
Elation:=Central-axial collineation (C , `) with C ∈ `

σ ∈ Aut(Π), Fix(σ) = {P : σ(P) = P,P ∈ Π}

If σ is involutory (i.e. σ2 = 1, σ 6= 1) then either

σ is a homology (C , `) with C /∈ Ω, ` is not tangent, or

n = m2, and σ is a Baer involution, i.e. Fix(σ) is a subplane
Π0 of order m and if |Fix(σ) ∩Ω| ≥ 1 then Ω0 = Π0 ∩Ω is an
oval in Π0.

If σ1, σ2 ∈ Aut(Π) are Bare involutions preserving Ω and
σ1σ2 = σ2σ1 then σ1σ2 is a (involutory) homology.
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2-groups of collineations of an oval in an odd order plane

S2:=subgroup of Aut(Π) of order 2h h ≥ 1 preserving an oval Ω
Results on the structure of S2:

If S2 contains no involutory homology then S2 is cyclic;

r2(S2) ≤ 3, i.e. S2 has no elementary abelian subgroup of
order > 8 = 23;

r2(S2) = 3 ⇒ S2 contains both involutory homologies and
Baer involution.

H(S2):=subgroup generated by all (involutory) homologies in S2.

r(S2) = 1 ⇒ H(S) ∼= C2,
r(S2) = 2 ⇒ H(S) ∼= C2,E4,D2m ,C4 ◦ D2m ,Q2u ◦ D2m ,m, u ≥ 3,
r(S3) = 3 ⇒ H(S) ∼= E4,D2n .
Theorem If G is a (non-abelian) simple collineation group
preserving Ω then G ∼= PSL(2, q) with 5 ≤ q ≤ n.
Remark The above results fail when Π has even order: In the dual
Lüneburg plane of order 22h, h ≥ 3 odd, Sz(2h) preserves an oval.
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Gábor Korchmáros Symmetries of finite projective planes



2-groups of collineations of an oval in an odd order plane

S2:=subgroup of Aut(Π) of order 2h h ≥ 1 preserving an oval Ω
Results on the structure of S2:

If S2 contains no involutory homology then S2 is cyclic;

r2(S2) ≤ 3, i.e. S2 has no elementary abelian subgroup of
order > 8 = 23;

r2(S2) = 3 ⇒ S2 contains both involutory homologies and
Baer involution.

H(S2):=subgroup generated by all (involutory) homologies in S2.

r(S2) = 1 ⇒ H(S) ∼= C2,
r(S2) = 2 ⇒ H(S) ∼= C2,E4,D2m ,C4 ◦ D2m ,Q2u ◦ D2m ,m, u ≥ 3,
r(S3) = 3 ⇒ H(S) ∼= E4,D2n .
Theorem If G is a (non-abelian) simple collineation group
preserving Ω then G ∼= PSL(2, q) with 5 ≤ q ≤ n.
Remark The above results fail when Π has even order: In the dual
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Action of collineation group of an oval in odd order plane

G := collineation group preserving an oval Ω in a projective plane
Π of odd order n
The action of G on Ω is faithful
Theorem G is 2-transitive on Ω ⇒ Π ∼= PG (2, q) (and Ω = C).
Theorem G is primitive on Ω ⇒ either G is 2-transitive on Ω, or
Π ∼= PG (2, 9), Ω = C, and PSL(2, 5) ≤ G ≤ PGL(2, 5).
Conjecture G is transitive on Ω ⇒ Π ∼= PG (2, q) (and Ω = C).
Let G be minimal transitive on Ω. For n ≡ 1 (mod 4), either G is
primitive on Ω, or

(i) |G | = 2d d odd;

(ii) G ∼= PSL(2, q), and n = q(q + 1)− 1 or n = q(q − 1) + 1
according as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).

Remark: Case (ii) occurs in PG (2, 29) with G ∼= PSL(2, 5) (and
also in PG (2, 5) with G ∼= PSL(2, 3)).
No (analogous) results are known about case n ≡ 3 (mod 4).
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Gábor Korchmáros Symmetries of finite projective planes



Action of collineation group of an oval in odd order plane

G := collineation group preserving an oval Ω in a projective plane
Π of odd order n
The action of G on Ω is faithful
Theorem G is 2-transitive on Ω ⇒ Π ∼= PG (2, q) (and Ω = C).
Theorem G is primitive on Ω ⇒ either G is 2-transitive on Ω, or
Π ∼= PG (2, 9), Ω = C, and PSL(2, 5) ≤ G ≤ PGL(2, 5).
Conjecture G is transitive on Ω ⇒ Π ∼= PG (2, q) (and Ω = C).
Let G be minimal transitive on Ω. For n ≡ 1 (mod 4), either G is
primitive on Ω, or

(i) |G | = 2d d odd;

(ii) G ∼= PSL(2, q), and n = q(q + 1)− 1 or n = q(q − 1) + 1
according as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).

Remark: Case (ii) occurs in PG (2, 29) with G ∼= PSL(2, 5) (and
also in PG (2, 5) with G ∼= PSL(2, 3)).

No (analogous) results are known about case n ≡ 3 (mod 4).
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Irreducible collineation groups in projective planes

Irreducible collineation group G := G fixes no point, preserves no
line and triangle in Π.
Strongly irreducible group G :=G is irreducible and preserves no
subplane in Π.
Hering’s classification of strongly irreducible groups containing
central-axial collineations. (1970-1985)
Local version of irreducibility on an oval.
G :=collineation group preserving an oval Ω in a projective plane.
G :=irreducible on Ω if G fixes no point of Ω, preserves no chord or
triangle of Ω.
G :=strongly irreducible on Ω if G is irreducible on Ω, and
preserves no suboval of Ω.
suboval:=Ω0 = Ω ∩ Π0 with Π0 a subplane and Ω0 an oval in Π0.
Remark G transitive on Ω ⇒ G strongly irreducible on Ω.
Strongly irreducible oval:=∃ strongly irreducible collineation group
on the oval.
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Gábor Korchmáros Symmetries of finite projective planes



Irreducible collineation groups in projective planes

Irreducible collineation group G := G fixes no point, preserves no
line and triangle in Π.
Strongly irreducible group G :=G is irreducible and preserves no
subplane in Π.
Hering’s classification of strongly irreducible groups containing
central-axial collineations. (1970-1985)
Local version of irreducibility on an oval.
G :=collineation group preserving an oval Ω in a projective plane.
G :=irreducible on Ω if G fixes no point of Ω, preserves no chord or
triangle of Ω.
G :=strongly irreducible on Ω if G is irreducible on Ω, and
preserves no suboval of Ω.
suboval:=Ω0 = Ω ∩ Π0 with Π0 a subplane and Ω0 an oval in Π0.

Remark G transitive on Ω ⇒ G strongly irreducible on Ω.
Strongly irreducible oval:=∃ strongly irreducible collineation group
on the oval.
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on the oval.
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Classification of strongly irreducible ovals I

Π:=projective plane of order n with n ≡ 1 (mod 4)
Ω:=strongly irreducible oval in Π
G :=strongly irreducible collineation group of Ω

Theorem If G ≤ AltΩ then either

(i) G is isomorphic to a subgroup of PΓL(2, q) containing
PSL(2, q) for some odd prime power q; or

(ii) G fixes a point-line pair {P, `}, where P is an internal point
whereas ` is an external line to Ω and all involutions in G are
homologies.
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Classification of strongly irreducible ovals II

Π:=projective plane of even order n
Ω:=strongly irreducible oval in Π
G :=strongly irreducible collineation group of Ω

Theorem The subgroup H of G generated by all (involutory)
elations is either

(i) H = O(G ) o C2; or

(i) H ∼= PSL(2, q), Sz(q), PSU(3, q) with q = 2h.

Open problem: Does the case H ∼= PSU(3, q) actually occur (in
some non-classical plane)?.
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Gábor Korchmáros Symmetries of finite projective planes



Classification of strongly irreducible ovals II

Π:=projective plane of even order n
Ω:=strongly irreducible oval in Π
G :=strongly irreducible collineation group of Ω

Theorem The subgroup H of G generated by all (involutory)
elations is either

(i) H = O(G ) o C2; or

(i) H ∼= PSL(2, q), Sz(q), PSU(3, q) with q = 2h.

Open problem: Does the case H ∼= PSU(3, q) actually occur (in
some non-classical plane)?.
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Gábor Korchmáros Symmetries of finite projective planes



Classification of strongly irreducible ovals II

Π:=projective plane of even order n
Ω:=strongly irreducible oval in Π
G :=strongly irreducible collineation group of Ω

Theorem The subgroup H of G generated by all (involutory)
elations is either

(i) H = O(G ) o C2; or

(i) H ∼= PSL(2, q), Sz(q), PSU(3, q) with q = 2h.

Open problem: Does the case H ∼= PSU(3, q) actually occur (in
some non-classical plane)?.
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