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Basic Properties



AT-free Graphs — Definition

asteroidal triple: independent set of three vertices where each pair of vertices is joined by a path that avoids the

neighborhood of the third vertex

G AT-free: G does not contain an asteroidal triple
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Claim: AT-free graphs have a linear structure.
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Relationship to other classes

comparability cocomparability

AT-freecoAT-free

perfect

chordal

interval
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Why is linear structure of any importance?

Example:

maximum independent set in interval graphs

• Idea:

– take interval model sorted by increasing right endpoint → scan from left to right

– when interval i is opened: update weight of i plus weight of largest interval that has been closed before;

– when interval i is closed put its weight into (ordered) list of closed intervals

• linear time algorithm: O(n+m)

• what does it mean in complement?

scan through partial order by iteratively visiting maximal elements and updating the weight function

• interval model imposes linear ordering ⇒ linear structure does help!
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−→ go to larger family: Cocomparability graphs
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Cocomparability Graphs — Definition

Definition

G = (V,E) is a cocomparability graph if G admits a transitive orientation of its edges:

if a → b and b → c then a → c.

a b c a b c
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Why is linear structure of any importance?

Example (McConnell/Spinrad; Mouatadid/K.):

Maximum (weight) independent set in cocomparability graphs

• Idea: work in G

– take linear extension of a corr. partial order of G

– create layering of the poset by iteratively removing the sets of maximal elements

– when element i is removed: for each direct predecessor of i the weight function of j is updated:

w′( j) = max{w′( j),w( j)+w′(i)}

• O(n+m)→ can do this algorithm in G in time linear in the size of G

• linear structure of G used through linear structure of G

• Can such an approach be generalized to AT-free graphs?
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How to generalize ”linearity” for AT-free graphs?

1. Idea [Corneil/Olariu/Stewart]:

x,y dominating pair iff all x,y-paths dominate G

Theorem (Corneil/Olariu/Stewart)

Every AT-free graph G and each connected induced subgraph has a dominating pair.

• dominating pair vertices define left and right “ends” of graph

• not uniquely determined

• no characterization of AT-free graphs
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How to generalize ”linearity” for AT-free graphs?

2. Idea [Corneil/Olariu/Stewart]:

spine: elimination sequence of consecutive adjacent dominating pair vertices

G has spine property iff ∀ nonadj. dom. pairs of G form end-points of spine of G

Theorem (Corneil/Olariu/Stewart)

G AT-free graph iff each connected induced subgraphs H of G has spine property.

• elimination ordering is not characterizing

• What is so linear about it?

• How to use it algorithmically?
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How to generalize ”linearity” for AT-free graphs?

3. Idea (Möhring/Parra; Corneil/Olariu/Stewart):

minimal triangulation: inclusion minimal chordal completion

Theorem (Möhring/Parra; Corneil/Olariu/Stewart)

G AT-free iff each minimal triangulation is an interval graph.
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How to generalize ”linearity” for AT-free graphs?

3. Idea (Möhring/Parra; Corneil/Olariu/Stewart):

minimal triangulation: inclusion minimal chordal completion

Theorem (Möhring/Parra; Corneil/Olariu/Stewart)

G AT-free iff each minimal triangulation is an interval graph.

• “⇒”: iteratively add inclusion minimal set of chords until graph chordal

• can show that no ATs are created

• thus each minimal triangulation is interval graph

• “⇐”: can show strong relationship between minimal triangulations

and inclusion maximal sets of “pairwise parallel” minimal separators

Problem: Nice idea but how to use this algorithmically???
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Linear structure of cocomparability graphs

• cocomp. graphs defined via comparability graphs and posets

• structure of cocomp. graphs mainly studied via complement

• comparability graphs: have transitive orientation

• early characterization by Gallai via knotting graph
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Knotting Graph



The knotting graph

Definition (Gallai):

G = (V,E) graph −→ knotting graph of G: K[G] = (VK,EK)
v ∈V , C1,C2, . . . ,Civ connected components of G[N(v)]⇒ vC1

,vC2
, . . . ,vCiv

∈VK

vw ∈ E , w ∈Ci of G[N(v)] and v ∈C j of G[N(w)]⇒ vCi
wC j

∈ EK

v v

C1

C2

vC1
vC2

K[G]GG

• forced edges uv, vw are knotted at their copy of v

Knotting Graph 14/26



Knotting graph — characterization of comparability graphs

• know: two edges that force eachother at v −→ are knotted at v

• can show (Gallai): forcing sufficient to characterize comparability graphs: no odd cyles in K[G]

Theorem (Gallai)

G comparability graph ⇔ K[G] bipartite

G cocomparability graph ⇔ K[G] bipartite
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• linear structure of cocomparability graphs imposed by transitive orientation of the non-edges

• Can this be generalized to AT-free graphs?
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Knotting graph — characterization of AT-free graphs

• consider coAT-free graphs

• let vertices u,v,w form AT in G

• then u,v,w form triangle in G and

– ∃ path of non-edges between u and w in N(v)
– ∃ path of non-edges between u and v in N(w)
– ∃ path of non-edges between v and w in N(u)

• ⇒ edges are knotted at u,v,w
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Theorem

G coAT-free graph ⇔ K[G] triangle-free

G AT-free graph ⇔ K[G] triangle-free

Theorem

asteroidal number of G is ω(K[G])

• recognition algorithm for AT-free graphs:

construct K[G], check for triangles

• Does this imply linear structure?

• know not enough about the knotting graph
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Properties of the knotting graph — intervals in graphs

• Idea: linearity implies “betweeness”

• for two non-adjacent vertices x,y there are vertices strictly between x and y in the linear order.

• example: interval model of interval graph: 10 between 2 and 12

(other example: function diagram for cocomparability graphs)
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• I(x,y) =Cx(y)∩Cy(x) interval of x and y or I(x,y) is the interval between x and y
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Properties of the knotting graph — intervals in graphs II

• What is “betweeness” and “interval” in knotting graph?

• I(x,y) set of vertices u such that both

– ux knotted to xy at x and

– uy knotted to xy at y

• intervals of G correspond (somehow) to edges in K[G]

• have “linear” property:

Lemma (BKKM)

G AT-free and u ∈ I(x,y) then ux, uy not knotted at u

Theorem

G AT-free iff ∀u ∈ I(x,y) ux, uy not knotted at u for all intervals

Lemma (BKKM)

G AT-free and ∀s ∈ I(x,y): I(x,s)∩ I(s,y) = /0

G:

G:
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Properties of knotting graph — intervals in graphs III

• G AT-free, s ∈ I(x,y) then s separates x and y in G: x and y in different conn. components of NG(s)

• →if r has edge to same copy of s as x in K[G] then r adj. to same copy of y as x

• this implies

Lemma (BKKM)

if G AT-free then ∀ s ∈ I(x,y): I(x,s)⊂ I(x,y) and I(s,y)⊂ I(x,y)

Using knotting graph, characterization of AT-free graphs:

Theorem

G AT-free ⇔∀I(x,y) and ∀z ∈ I(x,y): I(x,z)⊂ I(x,y) and I(z,y)⊂ I(x,y)
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What are intervals in (co-)comparability graphs

Lemma

G comparability graph, x,y ∈V , z ∈ I(x,y) in G

then in any transitive orientation of G vertex z is between x and y (x < z < y or y < z < x).

Proof.

• wlog x < y

• suppose z < x

• z ∈ I(x,y)⇒∃ path P = v1, . . . ,vk

between z = v1 and y = vk in G\NG[x]

• all vertices of P are knotted at x

• ⇒ since z predecessor of x, all vertices of P predecessors

of x, contradicting x < y

x y
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What are intervals in (co-)comparability graphs

Lemma

G comparability graph, x,y ∈V , z ∈ I(x,y) in G
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• z ∈ I(x,y)⇒∃ path P = v1, . . . ,vk
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• ⇒ since z predecessor of x, all vertices of P predecessors

of x, contradicting x < y

x

z = v1

v2
v3

v4

v5

y = v6

Q: Does that extend to AT-free graphs?
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Lemma

G comparability graph, x,y ∈V , z ∈ I(x,y) in G

then in any transitive orientation of G vertex z is between x and y (x < z < y or y < z < x).

Proof.

• wlog x < y

• suppose z < x

• z ∈ I(x,y)⇒∃ path P = v1, . . . ,vk

between z = v1 and y = vk in G\NG[x]

• all vertices of P are knotted at x

• ⇒ since z predecessor of x, all vertices of P predecessors

of x, contradicting x < y

x

z = v1

v2
v3

v4

v5

y = v6

Q: Does that extend to AT-free graphs?

A: No, not directly!

(There exist AT-free graphs not having linear order that respects intervals [Corneil, Olariu, K., Stewart]).
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Independent sets in AT-free graphs

• Broersma/Kloks/Kratsch/Müller: O(n4) algorithm

• show here: improvement to O(nm)
(or O(nm) algorithm for maximum weighted clique in coAT-free graphs)

• main idea: dynamic programming using linear structure

α(G) = 1+max
x∈V

(

r(x)

∑
i=1

α(Cx
i )

)

Cx
1
, Cx

2
, . . . , Cx

r(x): connected components of G−N[x].

x y

α(Cx) = 1+max
y∈Cx

(

α(I(x,y))+∑
i

α(Dy
i )

)

D
y
i : component of G−N[y] contained in Cx.

x y

α(I(x,y))= 1+ max
s∈I(x,y)

(

α(I(x,s))+α(I(s,y))+∑
i

α(Cs
i )

)

Cs
i : component of G−N[s] contained in I(x,y)

Problem: computation of α(I(x,y)) takes O(n4)

x ys
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Independent sets in AT-free graphs II

Theorem (BKKM)

s ∈ I(x,y)⇒∃ comp. Cs
1
, . . . ,Cs

t of G\N[s] such that I(x,y)\N[s] = I(x,s)∪ I(s,y)∪
⋃t

i=1 Cs
i .

in knotting graph:

x y

s

new idea: can characterize connected components contained in an interval

Theorem

s ∈ I(x,y)⇒ and Cs
1
, . . . ,Cs

t be the components of C s \ (C x ∪C y ∪{Cs(x),Cs(y)})
then I(x,y)\N[s] = I(x,s)∪ I(s,y)∪

⋃t
i=1 Cs

i .

C x: set of components of G\N[x]
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Independent sets in AT-free graphs III

Theorem

s ∈ I(x,y)⇒ and Cs
1
, . . . ,Cs

t be the components of C s \ (C x ∪C y ∪{Cs(x),Cs(y)})
then I(x,y)\N[s] = I(x,s)∪ I(s,y)∪

⋃t
i=1 Cs

i .

⇒ each of the components of C z \{Cs(x),Cs(y)} not contained in I(x,y) is in C x or in C y.

Another betweenness property:

Lemma

s ∈ I(x,y) and C component of both G−N[x] and G−N[y]. Then C is component of G−N[s].

Theorem

There is an O(nm) algorithm to compute the independence number of a given AT-free graph.
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Conclusion

• many ways to see linear structure in AT-free graphs

• complementary graph helps to see structural properties that generalize partial orders

• algorithms can profit from this structure

• Open problem: Can linear structure be used for coloring or Hamilton path/cycle in AT-free graphs?
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• complementary graph helps to see structural properties that generalize partial orders

• algorithms can profit from this structure

• Open problem: Can linear structure be used for coloring or Hamilton path/cycle in AT-free graphs?
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Thank you!
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