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Basic Properties



AT-free Graphs — Definition

asteroidal triple: independent set of three vertices where each pair of vertices is joined by a path that avoids the
neighborhood of the third vertex
G AT-free: G does not contain an asteroidal triple
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Theorem (Boland, Lekkerkerker)
G interval graph if and only if G chordal and AT-free
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AT-free Graphs — Definition

asteroidal triple: independent set of three vertices where each pair of vertices is joined by a path that avoids the
neighborhood of the third vertex
G AT-free: G does not contain an asteroidal triple

Theorem (Boland, Lekkerkerker)

G interval graph if and only if G chordal and AT-free

1o 2 5 10 9 11415
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1 2 10 1 Is
3 5 8 12
4 7 13 16
4 37 6 8 13 12 16
Claim: AT-free graphs have a linear structure.
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Relationship to other classes

—
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Why is linear structure of any importance?

Example:
maximum independent set in interval graphs

® |dea:

— take interval model sorted by increasing right endpoint — scan from left to right
— when interval i is opened: update weight of i plus weight of largest interval that has been closed before;
— when interval i is closed put its weight into (ordered) list of closed intervals

o linear time algorithm: O(n+m)

e what does it mean in complement?
scan through partial order by iteratively visiting maximal elements and updating the weight function

e interval model imposes linear ordering = linear structure does help!

4 7 13 16
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e interval model imposes linear ordering = linear structure does help!

10 2 5 10 9 1 14 15
0 6 9 14
1 2 10 1 15

3 5 8 2

4 7 13 16

4 37 6 8 13 12 16
— go to larger family: Cocomparability graphs
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Cocomparability Graphs — Definition
Definition
G = (V,E) is a cocomparability graph if G admits a transitive orientation of its edges:

ifa— bandb — cthena — c.
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Why is linear structure of any importance?

Example (McConnell/Spinrad; Mouatadid/K.).
Maximum (weight) independent set in cocomparability graphs

o Idea: work in G

— take linear extension of a corr. partial order of G

— create layering of the poset by iteratively removing the sets of maximal elements

when element i is removed: for each direct predecessor of i the weight function of j is updated:
w'(j) = max{w'(j),w(j) +w'(i)}

e O(n-+m) — can do this algorithm in G in time linear in the size of G

o linear structure of G used through linear structure of G

e Can such an approach be generalized to AT-free graphs?
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How to generalize "linearity” for AT-free graphs?

1. Idea [Corneil/Olariu/Stewart]:

X,y dominating pair iff all x, y-paths dominate G

NAIA

Theorem (Corneil/Olariu/Stewart)

Every AT-free graph G and each connected induced subgraph has a dominating pair.

e dominating pair vertices define left and right “ends” of graph
® not uniquely determined

® no characterization of AT-free graphs
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How to generalize linearity” for AT-free graphs?

2. Idea [Corneil/Olariu/Stewart):

spine: elimination sequence of consecutive adjacent dominating pair vertices
G has spine property iff V nonadj. dom. pairs of G form end-points of spine of G

.'.‘. .'.‘O 0'0
,A,k,A, N/
Theorem (Corneil/Olariu/Stewart)

G AT-free graph iff each connected induced subgraphs H of G has spine property.

e elimination ordering is not characterizing
e What is so linear about it?

e How to use it algorithmically?
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How to generalize linearity” for AT-free graphs?

3. Idea (Méhring/Parra; Corneil/Olariu/Stewart):

minimal triangulation: inclusion minimal chordal completion

Theorem (Méhring/Parra; Corneil/Olariu/Stewart)

G AT-free iff each minimal triangulation is an interval graph.
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How to generalize linearity” for AT-free graphs?

3. Idea (Méhring/Parra; Corneil/Olariu/Stewart):

minimal triangulation: inclusion minimal chordal completion

Theorem (Méhring/Parra; Corneil/Olariu/Stewart)

G AT-free iff each minimal triangulation is an interval graph.

AVAVA

e “=": iteratively add inclusion minimal set of chords until graph chordal

e can show that no ATs are created
e thus each minimal triangulation is interval graph

e “<=": can show strong relationship between minimal triangulations
and inclusion maximal sets of “pairwise parallel” minimal separators

Problem: Nice idea but how to use this algorithmically???
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Linear structure of cocomparability graphs

e cocomp. graphs defined via comparability graphs and posets
e structure of cocomp. graphs mainly studied via complement
e comparability graphs: have transitive orientation

e early characterization by Gallai via knotting graph
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Linear structure of cocomparability graphs

e cocomp. graphs defined via comparability graphs and posets
e structure of cocomp. graphs mainly studied via complement
e comparability graphs: have transitive orientation

e early characterization by Gallai via knotting graph

forcing of orientation

® |dea: consider edges uv, vw;
when does orientation of uv force orientation of vw?

o if uw ¢ E; then knot’ edges uv and vw at v

w
® because of transitivity: u
orientation of uv forces orientation of vw

e implicit forcing possible? Sure:

e ifu,w € N(v) and 3 path of non-edges between u and w in N (v)
then orientation of uy forces orientation of vw
— ’knot’ edges uv and vw at v

® — knotting graph
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The knotting graph

Definition (Gallai):
G = (V,E) graph — knotting graph of G: K[G] = (Vk, Ex)
veV, Cy,C,...,C, connected components of G[N(v)] = ve, VG- 1 VG, € VK

w € E, weCof GIN(v)] and v € Cj of G[N(w)] = ve,we; € Ex

e forced edges uv, vw are knotted at their copy of v

Knotting Graph 14/26



Knotting graph — characterization of comparability graphs

e know: two edges that force eachother at v — are knotted at v

e can show (Gallai): forcing sufficient to characterize comparability graphs: no odd cyles in K[G]

Theorem (Gallai)
G comparability graph <> K |G| bipartite

G cocomparability graph < K G| bipartite

® linear structure of cocomparability graphs imposed by transitive orientation of the non-edges

e Can this be generalized to AT-free graphs?

Knotting Graph 15/26



Knotting graph — characterization of AT-free graphs

e consider coAT-free graphs
® et vertices u, v, w form AT in G
® then u, v, w form triangle in G and

~ T path of non-edges between « and w in N(v)
~ T path of non-edges between u and v in N(w)
— I path of non-edges between v and w in N (u)

® => edges are knotted at u, v, w

Knotting Graph

6

S

Ql

S

6 1
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Knotting graph — characterization of AT-free graphs

e consider coAT-free graphs

® et vertices u, v, w form AT in G K[G] .
® then u, v, w form triangle in G and

~ T path of non-edges between « and w in N(v) -
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Knotting graph — characterization of AT-free graphs

e consider coAT-free graphs
® et vertices u, v, w form AT in G

® then u, v, w form triangle in G and

~ T path of non-edges between « and w in N(v)
~ T path of non-edges between u and v in N(w)
— I path of non-edges between v and w in N (u)

® => edges are knotted at u, v, w

Theorem

G coAT-ree graph <> K|G] triangle-free
G AT-ree graph < K|G] triangle-free

Theorem
asteroidal number of G is @ (K[G])

® recognition algorithm for AT-free graphs:

construct K [G], check for triangles
e Does this imply linear structure?

e know not enough about the knotting graph

Knotting Graph

BX

Ql
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Properties of the knotting graph — intervals in graphs

e |dea: linearity implies “betweeness”
e for two non-adjacent vertices x, y there are vertices strictly between x and y in the linear order.

e example: interval model of interval graph: 10 between 2 and 12
(other example: function diagram for cocomparability graphs)
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Properties of the knotting graph — intervals in graphs Il

e What is “betweeness” and “interval” in knotting graph?
o I(x,y) set of vertices u such that both

— ux knotted to xy at x and
— uy knotted to xy at y

e intervals of G correspond (somehow) to edges in K [G]

e have “linear” property:

G:

Lemma (BKKM)

G AT-ree and u € I(x,y) then ux, uy not knotted at u

Theorem

G ATHree iff Vu € I(x,y) ux, uy not knotted at u for all intervals

Lemma (BKKM)

G AT-free and Vs € I(x,y): I(x,s)N1(s,y) =0 o
G:

Knotting Graph 18/26



Properties of knotting graph — intervals in graphs lll

o G ATree, s € I(x,y) then s separates x and y in G: x and y in different conn. components of N ()

e —if r has edge to same copy of s as x in K[G] then r adj. to same copy of y as x

e this implies
Lemma (BKKM)
if G AT-free thenV s € I(x,y): I(x,s) C I(x,y) andI(s,y) C I(x,y)
Using knotting graph, characterization of AT-free graphs:

Theorem
G ATfree < VI(x,y) andVz € I(x,y): I(x,z) C I(x,y) andI(z,y) C I(x,y)

Knotting Graph
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What are intervals in (co-)comparability graphs

Lemma
G comparability graph, x,y €V, z € I(x,y) inG
then in any transitive orientation of G vertex z is betweenx andy (x < z <y ory < z < X).

Proof.

wlog x <y

suppose Z < X O——>0
z€l(x,y) = path P=vy,...,%

between z = vj and y = v in G \ Ng ]

all vertices of P are knotted at x

= since z predecessor of x, all vertices of P predecessors
of x, contradicting x <y

Knotting Graph 20/26
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What are intervals in (co-)comparability graphs

Lemma
G comparability graph, x,y €V, z € I(x,y) inG
then in any transitive orientation of G vertex z is betweenx andy (x < z <y ory < z < X).

Proof.

® wlogx <y
® suppose 7 < X

e z€l(x,y) = Jpath P=vy,..., v
between z = vj and y = v in G \ Ng ]

o all vertices of P are knotted at x

® = since 7 predecessor of x, all vertices of P predecessors V3
of x, contradicting x <y

Q: Does that extend to AT-free graphs?
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What are intervals in (co-)comparability graphs

Lemma
G comparability graph, x,y €V, z € I(x,y) inG
then in any transitive orientation of G vertex z is betweenx andy (x < z <y ory < z < X).

Proof.

® wlogx <y
® suppose 7 < X

e z€l(x,y) = Jpath P=vy,..., v
between z = vj and y = v in G \ Ng ]

o all vertices of P are knotted at x

® = since 7 predecessor of x, all vertices of P predecessors V3
of x, contradicting x <y

Q: Does that extend to AT-free graphs?
A: No, not directly!
(There exist AT-free graphs not having linear order that respects intervals [Corneil, Olariu, K., Stewart]).
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Independent sets in AT-free graphs

e Broersma/Kloks/Kratsch/Miiller: O(n*) algorithm

® show here: improvement to O(nin)
(or O(nm) algorithm for maximum weighted clique in coAT-free graphs)

® main idea: dynamic programming using linear structure

«(G) = 1+max <(Z) “(Cf)> O@@@
T\ & =
[N

Cl.G, ..., G+ connected components of G — Nlx].

(c)=1 x<(1(x,))+ (D?')> =
(e Tn) o

DY component of G — N[y] contained in C*.

a(l(x,y)):l-&-sg(a)lc);) (Oc(l(x,s))+a(1(s,y))+Zoc(Cf)> o )
S0 owe

C?: component of G — N/s] contained in /(x, y)
Problem: computation of o(I(x,y)) takes O(n*)
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Independent sets in AT-free graphs Il

Theorem (BKKM)
s €1(x,y) = 3 comp. C},...,C; of G\ Nls] such that I(x,y) \ N[s| = I(x,s) UI(s,y) UU\_, C:.

in knotting graph:

N V@O

O>x y

new idea: can characterize connected components contained in an interval

Theorem
sel(x,y) = andCy,...,C] be the components of €* \ (¢* U€Y U{C*(x),C*(y)})
then 1(x,y) \ N[s] = 1(x,s) UI(s,y) UUi; C}.

€™ set of components of G \ Nx]
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Independent sets in AT-free graphs Il

Theorem
s€l(x,y) = andCy,...,C] be the components of €* \ (€ U€Y U{C*(x),C*(y)})
then 1(x,3) \Ns] = 1(x,5) U1(s,3) UUj_, C}.

=> each of the components of €% \ {C*(x),C*(y)} not contained in I(x,y) is in ¢~ orin €”.

Another betweenness property:

Lemma
s € I(x,y) and C component of both G — N|x] and G — N|y|. Then C is component of G — N s].

Theorem
There is an O(nm) algorithm to compute the independence number of a given AT-free graph.
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Conclusion

® many ways to see linear structure in AT-free graphs
e complementary graph helps to see structural properties that generalize partial orders
® algorithms can profit from this structure

® Open problem: Can linear structure be used for coloring or Hamilton path/cycle in AT-free graphs?
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Conclusion
® many ways to see linear structure in AT-free graphs
e complementary graph helps to see structural properties that generalize partial orders

® algorithms can profit from this structure

® Open problem: Can linear structure be used for coloring or Hamilton path/cycle in AT-free graphs?

Thank you!

Conclusion 26/26



	Basic Properties
	Knotting Graph
	Independent Sets

