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respectively.

The digraph T is called a graph when the relation A is symmetric.

An automorphism of T is a permutation of V which preserves the
the relation A.



Cayley digraphs
Let G be a finite group and let S C G.



Cayley digraphs
Let G be a finite group and let S C G.

The Cayley digraph on G with connection set S, denoted
Cay(G,S), is the digraph with vertex-set G and with (g, h) being
an arc if and only if gh™! € S.



Cayley digraphs
Let G be a finite group and let S C G.

The Cayley digraph on G with connection set S, denoted

Cay(G,S), is the digraph with vertex-set G and with (g, h) being
an arc if and only if gh™! € S.

CaY(Z107 {17 37 7})



Cayley digraphs, Il

Note that Cay(G,S) may be disconnected and may have loops.



Cayley digraphs, Il

Note that Cay(G,S) may be disconnected and may have loops.

Easy observation : Cay(G, S) is a graph if and only if S is
inverse-closed, in which case it is called a Cayley graph.



Cayley digraphs, Il

Note that Cay(G,S) may be disconnected and may have loops.

Easy observation : Cay(G, S) is a graph if and only if S is
inverse-closed, in which case it is called a Cayley graph.

Easy result : G acts regularly as a group of automorphisms of
Cay(G, S) by right multiplication.



Cayley digraphs, Il

Note that Cay(G,S) may be disconnected and may have loops.

Easy observation : Cay(G, S) is a graph if and only if S is
inverse-closed, in which case it is called a Cayley graph.

Easy result : G acts regularly as a group of automorphisms of
Cay(G, S) by right multiplication.

Proof : Let x € G and let 0 : G — G, 0x(g) = gx. Then
gh™! = gxx71h™1 = 0, (g)ox(h)~L, hence (g, h) is an arc of
Cay(G,S) if and only if (ox(g), 0x(h)) is. This shows that oy is
an automorphism of Cay(G, S). Clearly 0,0, = o hence

{ox | x € G} is a group of automorphisms of Cay(G, S).
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Digraphical regular representation

If G is the full automorphism group of Cay(G, S), then it is called
a DRR.

Babai (1980) showed that apart from 5 small exceptions, every
finite group G has a subset S such that Cay(G,S) is a DRR.

In 1982, Babai and Godsil made the following conjecture:

Conjecture

Let G be a group of order n. The proportion of subsets S of G
such that Cay(G,S) is a DRR goes to 1 as n — oc.

Philosophically, this conjecture says that almost all Cayley digraphs
have automorphism group as small as possible.

Babai and Godsil proved the conjecture for nilpotent groups of odd
order.
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Graphical regular representation

A DRR which is a graph is called a GRR (for graphical regular
representation).

The naive corresponding conjecture for graphs is false, for simple
reasons.

Let A be an abelian group and let ¢ : A — A, 1(a) = a~ 1. Then
is an automorphism of A. Moreover, ¢ # 1 unless A = (Z,)".

Let Cay(A, S) be a Cayley graph on A. Then ¢ is an automorphism
of Cay(A, S): since S is inverse-closed, gh~* € S if and only if
(gh™!) € S but «(gh™1) = «(g)e(h) L.

Conclusion : if Ais an abelian group and A % (Z3)", then no
Cayley graph on Ais a GRR.
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Corresponding conjectures

Conjecture (Babai, Godsil, Imrich, Lévasz, 1982)

Let G be a group of order n which is neither generalized dicyclic
nor abelian. The proportion of inverse-closed subsets S of G such
that Cay(G,S) is a GRR goes to 1 as n — co.

Conjecture (Babai, Godsil 1982)

Let A be an abelian group of order n. The proportion of
inverse-closed subsets S of A such that Aut(Cay(A,S)) = (A, )
goes to 1l as n — oo.

This is now a theorem. (Dobson, Spiga, V.) We also proved the
digraph conjecture for abelian groups.



An important idea

Lemma
Let A be a group of order n. The number of subsets of A which

are fixed setwise by some element of Aut(A) \ {1} is at most
23n/4+o(n)

Proof.

Note that A is at most |log,(n)|-generated and hence

|Aut(A)| < n'og2(n) < 2°(n) We now count the number of subsets
which are fixed setwise by a given ¢ € Aut(A) \ {1}. Let Ca(yp)
denote the elements of A that are fixed by ¢. Note that ¢ induces
orbits of length 1 on C4(y) and of length at least 2 on A\ Ca(¢p).
Let ¢ = |Ca(¢)|- The number of subsets of A which are fixed
setwise by ¢ is at most 26+(7=€)/2 = 2n/2+¢/2 Since Cy(p) is a
subgroup of A, we have ¢ < n/2 and n/2+ ¢/2 < 3n/4. O
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Outline of proof ideas

Lemma

Let A be a group of order n. The number of subsets of A which
are fixed setwise by some element of Aut(A) \ {1} is at most
23n/4+o(n)

Note that the total number of subsets is 27 and %:o(") — 0. It
follows that the “important” case is when A is self-normalizing in
Aut(Cay(A, S)).

What we actually do is study transitive permutation groups
containing a self-normalizing regular abelian subgroup.

We prove some structural results and then “count” how often
things can “go wrong”.

In the graph case, there are some extra complications.
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We plan to have a look at some other families of group in the near
future.

1. 2-groups,
2. nilpotent groups,
3. certain classes of solvable groups, etc..
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