Cayley graphs on abelian groups

Gabriel Verret

Rogla, May 18th, 2013

A digraph Γ is an ordered pair $(\mathcal{V}, \mathcal{A})$ where the vertex-set \mathcal{V} is a finite non-empty set and the arc-set \mathcal{A} is a binary relation on \mathcal{V} .

A digraph Γ is an ordered pair $(\mathcal{V}, \mathcal{A})$ where the vertex-set \mathcal{V} is a finite non-empty set and the arc-set \mathcal{A} is a binary relation on \mathcal{V} .

The elements of $\mathcal V$ and $\mathcal A$ are called vertices and arcs of Γ , respectively.

A digraph Γ is an ordered pair $(\mathcal{V}, \mathcal{A})$ where the vertex-set \mathcal{V} is a finite non-empty set and the arc-set \mathcal{A} is a binary relation on \mathcal{V} .

The elements of $\mathcal V$ and $\mathcal A$ are called vertices and arcs of Γ , respectively.

The digraph Γ is called a graph when the relation ${\mathcal A}$ is symmetric.

A digraph Γ is an ordered pair $(\mathcal{V}, \mathcal{A})$ where the vertex-set \mathcal{V} is a finite non-empty set and the arc-set \mathcal{A} is a binary relation on \mathcal{V} .

The elements of $\mathcal V$ and $\mathcal A$ are called vertices and arcs of Γ , respectively.

The digraph Γ is called a graph when the relation \mathcal{A} is symmetric.

An automorphism of Γ is a permutation of $\mathcal V$ which preserves the the relation $\mathcal A$.

Cayley digraphs

Let G be a finite group and let $S \subseteq G$.

Cayley digraphs

Let G be a finite group and let $S \subseteq G$.

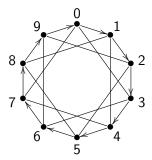
The Cayley digraph on G with connection set S, denoted $\operatorname{Cay}(G,S)$, is the digraph with vertex-set G and with (g,h) being an arc if and only if $gh^{-1} \in S$.

Cayley digraphs

Let G be a finite group and let $S \subseteq G$.

The Cayley digraph on G with connection set S, denoted $\operatorname{Cay}(G,S)$, is the digraph with vertex-set G and with (g,h) being an arc if and only if $gh^{-1} \in S$.

$$Cay(\mathbb{Z}_{10}, \{1, 3, 7\})$$
:



Note that Cay(G, S) may be disconnected and may have loops.

Note that Cay(G, S) may be disconnected and may have loops.

Easy observation : Cay(G, S) is a graph if and only if S is inverse-closed, in which case it is called a Cayley graph.

Note that Cay(G, S) may be disconnected and may have loops.

Easy observation : Cay(G, S) is a graph if and only if S is inverse-closed, in which case it is called a Cayley graph.

Easy result : G acts regularly as a group of automorphisms of Cay(G,S) by right multiplication.

Note that Cay(G, S) may be disconnected and may have loops.

Easy observation : Cay(G, S) is a graph if and only if S is inverse-closed, in which case it is called a Cayley graph.

Easy result : G acts regularly as a group of automorphisms of Cay(G,S) by right multiplication.

Proof: Let $x \in G$ and let $\sigma_x : G \longrightarrow G$, $\sigma_x(g) = gx$. Then $gh^{-1} = gxx^{-1}h^{-1} = \sigma_x(g)\sigma_x(h)^{-1}$, hence (g,h) is an arc of $\operatorname{Cay}(G,S)$ if and only if $(\sigma_x(g),\sigma_x(h))$ is. This shows that σ_x is an automorphism of $\operatorname{Cay}(G,S)$. Clearly $\sigma_x\sigma_y = \sigma_{yx}$ hence $\{\sigma_x \mid x \in G\}$ is a group of automorphisms of $\operatorname{Cay}(G,S)$.

If G is the full automorphism group of Cay(G, S), then it is called a DRR.

If G is the full automorphism group of Cay(G, S), then it is called a DRR.

Babai (1980) showed that apart from 5 small exceptions, every finite group G has a subset S such that Cay(G,S) is a DRR.

If G is the full automorphism group of Cay(G, S), then it is called a DRR.

Babai (1980) showed that apart from 5 small exceptions, every finite group G has a subset S such that Cay(G, S) is a DRR.

In 1982, Babai and Godsil made the following conjecture:

Conjecture

Let G be a group of order n. The proportion of subsets S of G such that $\operatorname{Cay}(G,S)$ is a DRR goes to 1 as $n\to\infty$.

If G is the full automorphism group of Cay(G, S), then it is called a DRR.

Babai (1980) showed that apart from 5 small exceptions, every finite group G has a subset S such that Cay(G, S) is a DRR.

In 1982, Babai and Godsil made the following conjecture:

Conjecture

Let G be a group of order n. The proportion of subsets S of G such that $\operatorname{Cay}(G,S)$ is a DRR goes to 1 as $n \to \infty$.

Philosophically, this conjecture says that almost all Cayley digraphs have automorphism group as small as possible.

If G is the full automorphism group of Cay(G, S), then it is called a DRR.

Babai (1980) showed that apart from 5 small exceptions, every finite group G has a subset S such that Cay(G, S) is a DRR.

In 1982, Babai and Godsil made the following conjecture:

Conjecture

Let G be a group of order n. The proportion of subsets S of G such that $\operatorname{Cay}(G,S)$ is a DRR goes to 1 as $n \to \infty$.

Philosophically, this conjecture says that almost all Cayley digraphs have automorphism group as small as possible.

Babai and Godsil proved the conjecture for nilpotent groups of odd order.

A DRR which is a graph is called a GRR (for graphical regular representation).

A DRR which is a graph is called a GRR (for graphical regular representation).

The naive corresponding conjecture for graphs is false, for simple reasons.

A DRR which is a graph is called a GRR (for graphical regular representation).

The naive corresponding conjecture for graphs is false, for simple reasons.

Let A be an abelian group and let $\iota: A \longrightarrow A$, $\iota(a) = a^{-1}$. Then ι is an automorphism of A. Moreover, $\iota \neq 1$ unless $A \cong (\mathbb{Z}_2)^n$.

A DRR which is a graph is called a GRR (for graphical regular representation).

The naive corresponding conjecture for graphs is false, for simple reasons.

Let A be an abelian group and let $\iota:A\longrightarrow A$, $\iota(a)=a^{-1}$. Then ι is an automorphism of A. Moreover, $\iota\neq 1$ unless $A\cong (\mathbb{Z}_2)^n$.

Let $\operatorname{Cay}(A,S)$ be a Cayley graph on A. Then ι is an automorphism of $\operatorname{Cay}(A,S)$: since S is inverse-closed, $gh^{-1} \in S$ if and only if $\iota(gh^{-1}) \in S$ but $\iota(gh^{-1}) = \iota(g)\iota(h)^{-1}$.

A DRR which is a graph is called a GRR (for graphical regular representation).

The naive corresponding conjecture for graphs is false, for simple reasons.

Let A be an abelian group and let $\iota:A\longrightarrow A$, $\iota(a)=a^{-1}$. Then ι is an automorphism of A. Moreover, $\iota\neq 1$ unless $A\cong (\mathbb{Z}_2)^n$.

Let $\operatorname{Cay}(A,S)$ be a Cayley graph on A. Then ι is an automorphism of $\operatorname{Cay}(A,S)$: since S is inverse-closed, $gh^{-1} \in S$ if and only if $\iota(gh^{-1}) \in S$ but $\iota(gh^{-1}) = \iota(g)\iota(h)^{-1}$.

Conclusion : if A is an abelian group and $A \ncong (\mathbb{Z}_2)^n$, then no Cayley graph on A is a GRR.

Conjecture (Babai, Godsil, Imrich, Lóvasz, 1982)

Let G be a group of order n which is neither generalized dicyclic nor abelian. The proportion of inverse-closed subsets S of G such that Cay(G,S) is a GRR goes to 1 as $n \to \infty$.

Conjecture (Babai, Godsil, Imrich, Lóvasz, 1982)

Let G be a group of order n which is neither generalized dicyclic nor abelian. The proportion of inverse-closed subsets S of G such that Cay(G,S) is a GRR goes to 1 as $n \to \infty$.

Conjecture (Babai, Godsil 1982)

Let A be an abelian group of order n. The proportion of inverse-closed subsets S of A such that $\operatorname{Aut}(\operatorname{Cay}(A,S)) = \langle A,\iota \rangle$ goes to 1 as $n \to \infty$.

Conjecture (Babai, Godsil, Imrich, Lóvasz, 1982)

Let G be a group of order n which is neither generalized dicyclic nor abelian. The proportion of inverse-closed subsets S of G such that Cay(G,S) is a GRR goes to 1 as $n \to \infty$.

Conjecture (Babai, Godsil 1982)

Let A be an abelian group of order n. The proportion of inverse-closed subsets S of A such that $\operatorname{Aut}(\operatorname{Cay}(A,S)) = \langle A,\iota \rangle$ goes to 1 as $n \to \infty$.

This is now a theorem. (Dobson, Spiga, V.)

Conjecture (Babai, Godsil, Imrich, Lóvasz, 1982)

Let G be a group of order n which is neither generalized dicyclic nor abelian. The proportion of inverse-closed subsets S of G such that $\operatorname{Cay}(G,S)$ is a GRR goes to 1 as $n\to\infty$.

Conjecture (Babai, Godsil 1982)

Let A be an abelian group of order n. The proportion of inverse-closed subsets S of A such that $\operatorname{Aut}(\operatorname{Cay}(A,S)) = \langle A, \iota \rangle$ goes to 1 as $n \to \infty$.

This is now a theorem. (Dobson, Spiga, V.) We also proved the digraph conjecture for abelian groups.

An important idea

Lemma

Let A be a group of order n. The number of subsets of A which are fixed setwise by some element of $\operatorname{Aut}(A) \setminus \{1\}$ is at most $2^{3n/4+o(n)}$.

Proof.

Note that A is at most $\lfloor \log_2(n) \rfloor$ -generated and hence $|\operatorname{Aut}(A)| \leq n^{\log_2(n)} \leq 2^{o(n)}$. We now count the number of subsets which are fixed setwise by a given $\varphi \in \operatorname{Aut}(A) \setminus \{1\}$. Let $\mathbf{C}_A(\varphi)$ denote the elements of A that are fixed by φ . Note that φ induces orbits of length 1 on $\mathbf{C}_A(\varphi)$ and of length at least 2 on $A \setminus \mathbf{C}_A(\varphi)$. Let $c = |\mathbf{C}_A(\varphi)|$. The number of subsets of A which are fixed setwise by φ is at most $2^{c+(n-c)/2} = 2^{n/2+c/2}$. Since $\mathbf{C}_A(\varphi)$ is a subgroup of A, we have $c \leq n/2$ and $n/2 + c/2 \leq 3n/4$.

Lemma

Let A be a group of order n. The number of subsets of A which are fixed setwise by some element of $\operatorname{Aut}(A) \setminus \{1\}$ is at most $2^{3n/4+o(n)}$.

Lemma

Let A be a group of order n. The number of subsets of A which are fixed setwise by some element of $\operatorname{Aut}(A) \setminus \{1\}$ is at most $2^{3n/4+o(n)}$.

Note that the total number of subsets is 2^n and $\frac{2^{3n/4+o(n)}}{2^n} \to 0$.

Lemma

Let A be a group of order n. The number of subsets of A which are fixed setwise by some element of $\operatorname{Aut}(A) \setminus \{1\}$ is at most $2^{3n/4+o(n)}$.

Note that the total number of subsets is 2^n and $\frac{2^{3n/4+o(n)}}{2^n} \to 0$. It follows that the "important" case is when A is self-normalizing in $\operatorname{Aut}(\operatorname{Cay}(A,S))$.

Lemma

Let A be a group of order n. The number of subsets of A which are fixed setwise by some element of $\operatorname{Aut}(A) \setminus \{1\}$ is at most $2^{3n/4+o(n)}$.

Note that the total number of subsets is 2^n and $\frac{2^{3n/4+o(n)}}{2^n} \to 0$. It follows that the "important" case is when A is self-normalizing in $\operatorname{Aut}(\operatorname{Cay}(A,S))$.

What we actually do is study transitive permutation groups containing a self-normalizing regular abelian subgroup.

Lemma

Let A be a group of order n. The number of subsets of A which are fixed setwise by some element of $\operatorname{Aut}(A) \setminus \{1\}$ is at most $2^{3n/4+o(n)}$.

Note that the total number of subsets is 2^n and $\frac{2^{3n/4+o(n)}}{2^n} \to 0$. It follows that the "important" case is when A is self-normalizing in $\operatorname{Aut}(\operatorname{Cay}(A,S))$.

What we actually do is study transitive permutation groups containing a self-normalizing regular abelian subgroup.

We prove some structural results and then "count" how often things can "go wrong".

Lemma

Let A be a group of order n. The number of subsets of A which are fixed setwise by some element of $\operatorname{Aut}(A) \setminus \{1\}$ is at most $2^{3n/4+o(n)}$.

Note that the total number of subsets is 2^n and $\frac{2^{3n/4+o(n)}}{2^n} \to 0$. It follows that the "important" case is when A is self-normalizing in $\operatorname{Aut}(\operatorname{Cay}(A,S))$.

What we actually do is study transitive permutation groups containing a self-normalizing regular abelian subgroup.

We prove some structural results and then "count" how often things can "go wrong".

In the graph case, there are some extra complications.

Future work

We plan to have a look at some other families of group in the near future.

Future work

We plan to have a look at some other families of group in the near future.

- 1. 2-groups,
- 2. nilpotent groups,
- 3. certain classes of solvable groups, etc..