Construction of Rational Spline Motions of Low Degree

Karla Počkaj

University of Primorska
Andrej Marušič Institute

Rogla, May 18, 2013
(1) Preliminaries

- Motions of a rigid body
- Geometric continuity for motions
(2) Construction of G^{1} Hermite rational spline motion
- Geometric Hermite interpolation problem
- Spherical motion
- Translational part

Motivation

- Rational spline motions, prove to be very useful in many industrial applications.
- An important task is to construct a rational spline motion that matches a given sequence of positions.
- The solution of the interpolation problem is required in Computer Graphics in order to animate objects, as well as in Robotics, e.g. for path planning of robot manipulators.

Example

Figure: Some intermediate positions (silver) of a rigid body motion of a robot gripper arm interpolating six given input positions Σ_{i} (blue).

Motions of a rigid body

- Consider two coordinate systems in Euclidian 3-space:
- the fixed coordinate system E^{3}
- the moving coordinate system \widehat{E}^{3}
- Points can be described in either coordinate system: por $\widehat{\boldsymbol{p}}$.

Motions of a rigid body

- Consider two coordinate systems in Euclidian 3-space:
- the fixed coordinate system E^{3}
- the moving coordinate system \widehat{E}^{3}
- Points can be described in either coordinate system: \boldsymbol{p} or $\widehat{\boldsymbol{p}}$.
- Coordinate transformation $\widehat{E}^{3} \rightarrow E^{3}$?
- It can be represented in Cartesian coordinates:
- by 3×3 matrix \mathcal{R}
- by vector \boldsymbol{c}
- \mathcal{R} is a special orthogonal matrix: $\mathcal{R}^{\top}=I, \quad \operatorname{det}(\mathcal{R})=1$.
- If \mathcal{R} and \boldsymbol{c} depend on time t, we speak of a rigid body motion.
- A trajectory of an arbitrary point $\hat{\boldsymbol{p}}$ of a rigid body:

$$
(\widehat{\boldsymbol{p}}, t) \mapsto \boldsymbol{p}(t)=\boldsymbol{c}(t)+\mathcal{R}(t) \widehat{\boldsymbol{p}}
$$

- If $\boldsymbol{c} \equiv(0,0,0)^{\top}$, then $\boldsymbol{p}(t)$ of any point $\hat{\boldsymbol{p}}$ lies on a sphere of radius $\|\hat{\boldsymbol{p}}\|$, centered at the origin.
- $\mathcal{R}(t)$ describes motion of the unit sphere, we call it the spherical (rotational) part of the motion.
- $\boldsymbol{c}(t)$ defines the translational part.
- The motion is called rational (spline) motion, if the elements of \boldsymbol{c} and \mathcal{R} are rational (spline) functions.
- The degree of the motion is the maximal degree of the functions involved.
- Difficulty: $\mathcal{R} \in \mathrm{SO}_{3}$.

The kinematical mapping

We define the kinematical mapping $\chi: \mathbb{H} \backslash\{\mathbf{0}\} \rightarrow \mathrm{SO}_{3}$,

$$
\begin{aligned}
& \boldsymbol{Q}=\left(q_{i}\right)_{i=0}^{3} \mapsto \chi(\boldsymbol{Q}):= \\
& \frac{1}{q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}\left(\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2\left(q_{1} q_{2}-q_{0} q_{3}\right) & 2\left(q_{1} q_{3}+q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}+q_{0} q_{3}\right) & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}-q_{0} q_{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}
\end{array}\right) .
\end{aligned}
$$

- $\mathcal{R}=\chi(\boldsymbol{Q})$
- $\chi(\lambda \boldsymbol{Q})=\chi(\boldsymbol{Q}), \quad \lambda \in \mathbb{R} \backslash\{0\}$
- It defines a correspondence between the space of rotations and the unit quaternion sphere \mathbb{S}^{3} with identified antipodal points.

- Applying mapping χ to a polynomial (spline) curve of degree n gives a spherical rational (spline) motion of degree $2 n$.

Translational part $\boldsymbol{c}=\left(c_{i}\right)_{i=1}^{3}$: the functions c_{i} should be choosen as

$$
c_{i}=\frac{w_{i}}{r}, \quad r=\sum_{j=0}^{3} q_{j}^{2}, \quad i=1,2,3
$$

where $\boldsymbol{w}:=\left(w_{i}\right)_{i=1}^{3}$ is a polynomial (spline) curve of degree $\leq 2 n$.

Interpolation problem

Consider $n+1$ positions of a moving object. The positions are described by the corresponding Euclidian spatial displacements. How to interpolate a certain set of positions?

Disadvantages of standard interpolation techniques:

- The resulting motion heavily depends on a particular parametrization which has to be chosen in advance.
- They lead to rational motions of relatively high polynomial degree.
- ...

Disadvantages of standard interpolation techniques:

- The resulting motion heavily depends on a particular parametrization which has to be chosen in advance.
- They lead to rational motions of relatively high polynomial degree.
- ...

Another approach is geometric interpolation, which yields at least three important advantages:

- an automatically chosen parametrization,
- a higher asymptotic approximation order,
- we obtain rational motions of lower degree.

Disadvantages of standard interpolation techniques:

- The resulting motion heavily depends on a particular parametrization which has to be chosen in advance.
- They lead to rational motions of relatively high polynomial degree.
- ...

Another approach is geometric interpolation, which yields at least three important advantages:

- an automatically chosen parametrization,
- a higher asymptotic approximation order,
- we obtain rational motions of lower degree.

The difficulty: the uniqueness and the existence analysis may be quite hard.

Literature

宣
H.-P. Schröcker, B. Jüttler, Motion Interpolation with Bennett Biarcs, Proc. Computational Kinematics, Springer (2009), 101-108.
B. Jüttler, M. Krajnc, E. Žagar, Geometric interpolation by quartic rational spline motions, Advances in Robot Kinematics: Motion in Man and Machine, Springer (2010), 377-384.

G. Jaklič, B. Jüttler, M. Krajnc, V. Vitrih, E. Žagar, Hermite interpolation by rational G^{k} motions of low degree, Journal of Computational and Applied Mathematics 240 (2013), 20-30.
『
M. Krajnc, K. Počkaj, V. Vitrih, Construction of a low degree rational Lagrange motions, submitted

Geometric continuity for motions

The trajectories

$$
\begin{array}{ll}
\boldsymbol{p}_{t}(t)=\boldsymbol{c}_{t}(t)+\mathcal{R}_{t}(t) \widehat{\boldsymbol{p}}, & t \in\left[t_{0}, t_{1}\right], \\
\boldsymbol{p}_{s}(s)=\boldsymbol{c}_{s}(s)+\mathcal{R}_{s}(s) \widehat{\boldsymbol{p}}, & s \in\left[s_{0}, s_{1}\right] .
\end{array}
$$

of an arbitrary point $\widehat{\boldsymbol{p}}$ join with G^{1} continuity at the common point $\boldsymbol{p}_{t}(\tau)=\boldsymbol{p}_{s}(\sigma)$ iff there exists a regular reparametrization $\varphi:\left[t_{0}, t_{1}\right] \rightarrow\left[s_{0}, s_{1}\right]$, such that $\varphi^{\prime}>0, \varphi(\tau)=\sigma$ and

$$
\begin{aligned}
& \left.\frac{d^{j} \boldsymbol{q}_{t}(t)}{d t^{j}}\right|_{t=\tau}=\left.\frac{d^{j}}{d t^{j}}\left(\lambda(t) \boldsymbol{q}_{s}(\varphi(t))\right)\right|_{t=\tau}, \\
& \left.\frac{d^{j} \boldsymbol{c}_{t}(t)}{d t^{j}}\right|_{t=\tau}=\left.\frac{d^{j}\left(\boldsymbol{c}_{s} \circ \varphi\right)(t)}{d t^{j}}\right|_{t=\tau},
\end{aligned}
$$

where $\boldsymbol{q}_{t}, \boldsymbol{q}_{s}$ represent the rotations $\mathcal{R}_{t}, \mathcal{R}_{s}$ and $\lambda:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ is a zero free scalar function.

Geometric Hermite interpolation problem

- Data: $2 N+1$ positions $\operatorname{Pos}_{\ell}$, described by a center position $\boldsymbol{C}_{\ell} \in \mathbb{R}^{3}$ and by a unit quaternion $\boldsymbol{Q}_{\ell} \in \mathbb{H}$. Additionally, every position is supplemented with unit tangent vector \boldsymbol{d}_{ℓ} and velocity quaternion \boldsymbol{U}_{ℓ}.
- $\boldsymbol{Q}_{\ell} \cdot \boldsymbol{Q}_{\ell+1} \geq 0, \quad \ell=1,2, \ldots, 2 N$.
- The task is to construct a spline motion of degree six, which interpolates these positions and the corresponding derivative data.
- $\boldsymbol{q}_{S}:[0, N] \rightarrow \mathbb{H}, \quad \boldsymbol{c}_{S}:[0, N] \rightarrow \mathbb{R}^{3}$?
- They have integer knots and consist of segments \boldsymbol{q}^{k} and \boldsymbol{c}^{k},

$$
\begin{aligned}
\boldsymbol{q}^{k}\left(t^{k}\right) & :=\left.\boldsymbol{q}_{S}(u)\right|_{[k-1, k]}, \quad \boldsymbol{c}^{k}\left(t^{k}\right):=\left.\boldsymbol{c}_{S}(u)\right|_{[k-1, k]}, \\
t^{k} & :=u-k+1 \in[0,1], \quad k=1,2, \ldots, N .
\end{aligned}
$$

- $\boldsymbol{q}_{S}:[0, N] \rightarrow \mathbb{H}, \quad \boldsymbol{c}_{S}:[0, N] \rightarrow \mathbb{R}^{3}$?
- They have integer knots and consist of segments \boldsymbol{q}^{k} and \boldsymbol{c}^{k},

$$
\begin{aligned}
\boldsymbol{q}^{k}\left(t^{k}\right) & :=\left.\boldsymbol{q}_{S}(u)\right|_{[k-1, k]}, \quad \boldsymbol{c}^{k}\left(t^{k}\right):=\left.\boldsymbol{c}_{S}(u)\right|_{[k-1, k]}, \\
t^{k} & :=u-k+1 \in[0,1], \quad k=1,2, \ldots, N .
\end{aligned}
$$

- Curve \boldsymbol{q}^{k} must satisfy:

$$
\boldsymbol{q}^{k}\left(t_{i}^{k}\right)=\lambda_{i}^{k} \boldsymbol{Q}_{2 k-2+i} \quad i=1,2,3
$$

Definition

The solution of the nonlinear system (1) is admissible if the following relations are satisfied,

$$
0<t_{2}^{k}<1, \quad \lambda_{2}^{k}>0, \quad \varphi_{i}^{k}>0, \quad i=1,2,3 .
$$

- If a given unit tangent vector $\boldsymbol{d}_{\ell}, \ell=1,2, \ldots, 2 N+1$, is multiplied by an arbitrary positive constant, the tangent direction of the trajectory $\boldsymbol{c}^{k}, k=1,2, \ldots N$, does not change.
- Hence we obtain free parameters $\beta^{k}=\left(\beta_{i}^{k}\right)_{i=1}^{3}$ that influence the lengths of the tangents and therefore the shape of the trajectory \boldsymbol{c}^{k}.
- Each spline segment $\boldsymbol{c}^{k}=\boldsymbol{w}^{k} / r^{k}$, where $r^{k}=\sum_{i=0}^{3}\left(q_{i}^{k}\right)^{2}$, must satisfy:

$$
\begin{align*}
& \boldsymbol{w}^{k}\left(t_{i}^{k}\right)=r^{k}\left(t_{i}^{k}\right) \boldsymbol{C}_{2 k-2+i} \\
& \left(\boldsymbol{w}^{k}\right)^{\prime}\left(t_{i}^{k}\right)=\varphi_{i}^{k} r^{k}\left(t_{i}^{k}\right) \beta_{i}^{k} \boldsymbol{d}_{2 k-2+i}+\left(r^{k}\right)^{\prime}\left(t_{i}^{k}\right) \boldsymbol{C}_{2 k-2+i} \tag{2}
\end{align*} \quad i=1,2,3,
$$

Some notation, which will be used further on:

- $A^{k}:=\left(\begin{array}{lllll}\boldsymbol{U}_{2 k-1}\end{array}, \quad \boldsymbol{Q}_{2 k-1}, \quad \boldsymbol{Q}_{2 k}, \quad \boldsymbol{Q}_{2 k+1}, \quad \boldsymbol{U}_{2 k}, \quad \boldsymbol{U}_{2 k+1}\right) \in \mathbb{R}^{4 \times 6}$,
- $\left(A^{k}\right)^{[i, j]}$ denotes a matrix A^{k} with columns i and j omitted,
- $\alpha_{i, j}^{k}:=\operatorname{det}\left(A^{k}\right)^{[6-5 i, j+1]}, i=0,1, j=i, i+1, \ldots, i+4$.

Some notation, which will be used further on:

- $A^{k}:=\left(\begin{array}{lllll}\boldsymbol{U}_{2 k-1}\end{array}, \quad \boldsymbol{Q}_{2 k-1}, \quad \boldsymbol{Q}_{2 k}, \quad \boldsymbol{Q}_{2 k+1}, \quad \boldsymbol{U}_{2 k}, \quad \boldsymbol{U}_{2 k+1}\right) \in \mathbb{R}^{4 \times 6}$,
- $\left(A^{k}\right)^{[i, j]}$ denotes a matrix A^{k} with columns i and j omitted,
- $\alpha_{i, j}^{k}:=\operatorname{det}\left(A^{k}\right)^{[6-5 i, j+1]}, i=0,1, j=i, i+1, \ldots, i+4$.

The presented G^{1} Hermite spline motion is constructed entirely locally, so it is enough to analyse the case $k=1$ only.

Construction of G^{1} Hermite rational spline motion

Spherical motion

Spherical motion

$$
\begin{gather*}
t_{2}^{k}=\frac{u^{k}}{1+u^{k}}, \quad u^{k}:=\sqrt[3]{-\frac{\alpha_{0,3}^{k}}{\alpha_{0,4}^{k}} \frac{\alpha_{1,4}^{k}}{\alpha_{1,1}^{k}}}, \quad \lambda_{2}^{k}=-\left(1-t_{2}^{k}\right)^{3} \frac{\alpha_{1,2}^{k}}{\alpha_{1,1}^{k}}-\left(t_{2}^{k}\right)^{3} \frac{\alpha_{0,2}^{k}}{\alpha_{0,3}^{k}}, \tag{3}\\
\varphi_{1}^{k}=\left(\frac{t_{2}^{k}}{1-t_{2}^{k}}\right)^{2} \frac{\alpha_{0,0}^{k}}{\alpha_{0,3}^{k}}, \quad \varphi_{2}^{k}=\frac{1}{\lambda_{2}^{k}} \frac{\left(t_{2}^{k}\right)^{2}}{1-t_{2}^{k}} \frac{\alpha_{0,4}^{k}}{\alpha_{0,3}^{k}}, \quad \varphi_{3}^{k}=\left(\frac{t_{2}^{k}}{1-t_{2}^{k}}\right)^{-2} \frac{\alpha_{0,0}^{k}}{\alpha_{1,1}^{k}}, \tag{4}\\
\mu_{1}^{k}=-\left(\frac{t_{2}^{k}}{1-t_{2}^{k}}\right)^{2} \frac{\alpha_{0,1}^{k}}{\alpha_{0,3}^{k}}-\frac{2+t_{2}^{k}}{t_{2}^{k}}, \quad \mu_{2}^{k}=\frac{\left(t_{2}^{k}\right)^{2}}{1-t_{2}^{k}} \frac{\alpha_{0,2}^{k}}{\alpha_{0,3}^{k}}+\lambda_{2}^{k} \frac{2-3 t_{2}^{k}}{t_{2}^{k}\left(1-t_{2}^{k}\right)}, \\
\mu_{3}^{k}=\left(\frac{t_{2}^{k}}{1-t_{2}^{k}}\right)^{-2} \frac{\alpha_{1,3}^{k}}{\alpha_{1,1}^{k}}+\frac{3-t_{2}^{k}}{1-t_{2}^{k}}, \tag{5}
\end{gather*}
$$

Theorem

Let $\boldsymbol{Q}_{2 k-2+i} \in \mathbb{H}$ be a sequence of normalized quaternions, and let $\boldsymbol{U}_{2 k-2+i}$ be given velocity quaternions for $i=1,2,3$, such that

$$
\begin{aligned}
& \operatorname{det}\left(\boldsymbol{Q}_{2 k-1}, \boldsymbol{Q}_{2 k}, \boldsymbol{Q}_{2 k+1}, \boldsymbol{U}_{2 k-3+2 j}\right) \neq 0, \\
& \operatorname{det}\left(\boldsymbol{Q}_{2 k-2+j}, \boldsymbol{Q}_{2 k-1+j}, \boldsymbol{U}_{2 k-2+j}, \boldsymbol{U}_{2 k-1+j}\right) \neq 0,
\end{aligned} \quad j=1,2,
$$

for every $k=1,2, \ldots, N$. Then there exists a unique cubic interpolating spline curve \boldsymbol{q}_{S}, satisfying (1) with $\lambda_{1}^{k}=\lambda_{3}^{k}=1$, where $t_{2}^{k}, \lambda_{2}^{k},\left(\varphi_{i}^{k}\right)_{i=1}^{3}$ and $\left(\mu_{i}^{k}\right)_{i=1}^{3}$ are determined by (3), (4) and (5).

Theorem

Suppose that the assumptions of Theorem 2 hold. Then the interpolating quaternion spline \boldsymbol{q}_{S} is admissible iff

$$
\begin{equation*}
\frac{\alpha_{0,0}^{k}}{\alpha_{0,3}^{k}}, \frac{\alpha_{0,0}^{k}}{\alpha_{1,1}^{k}}, \frac{\alpha_{0,4}^{k}}{\alpha_{0,3}^{k}}>0, \quad \frac{\alpha_{1,4}^{k}}{\alpha_{1,1}^{k}}<0, \quad \frac{\alpha_{0,2}^{k}}{\alpha_{0,4}^{k}}<\frac{\alpha_{1,2}^{k}}{\alpha_{1,4}^{k}}, \quad k=1,2, \ldots, N . \tag{6}
\end{equation*}
$$

Construction of G^{1} Hermite rational spline motion

Translational part

$$
\boldsymbol{w}^{k}, \operatorname{deg}\left(\boldsymbol{w}^{k}\right) \leq 6 ?
$$

The translational part \boldsymbol{c}_{S} which satisfies (2) is a G^{1} continuous for an arbitrary choice of positive parameters

$$
\beta^{k} \in \mathbb{R}^{3}, k=1,2, \ldots, N
$$

Construction of G^{1} Hermite rational spline motion

Translational part

$$
\boldsymbol{w}^{k}, \operatorname{deg}\left(\boldsymbol{w}^{k}\right) \leq 6 ?
$$

The translational part \boldsymbol{c}_{S} which satisfies (2) is a G^{1} continuous for an arbitrary choice of positive parameters

$$
\beta^{k} \in \mathbb{R}^{3}, k=1,2, \ldots, N
$$

What if we choose $\beta^{k}=(1,1,1)^{\top}$?

Example

$$
\begin{aligned}
& \widetilde{\boldsymbol{q}}=\frac{\boldsymbol{q}}{\|\boldsymbol{q}\|}, \quad \boldsymbol{q}(s)=\left(s+\cos \left(\frac{\pi s}{4}\right), s^{3}, s+\sin \left(\frac{\pi s}{4}\right), \sqrt{s^{2}+1}\right)^{\top} \\
& \widetilde{\boldsymbol{c}}(s)=3\left(\log (s+1) \sin \left(\frac{\pi s}{3}\right), \log (s+1) \cos \left(\frac{\pi s}{3}\right) \sqrt{s^{2}+1}\right)^{\top}
\end{aligned}
$$

The positions and the corresponding derivative data are sampled as

$$
\begin{equation*}
\boldsymbol{Q}_{\ell}=\widetilde{\boldsymbol{q}}\left(s_{\ell}\right), \quad \boldsymbol{U}_{\ell}=\widetilde{\boldsymbol{q}}^{\prime}\left(s_{\ell}\right), \quad \boldsymbol{C}_{\ell}=\widetilde{\boldsymbol{c}}\left(s_{\ell}\right), \quad \boldsymbol{d}_{\ell}=\frac{\widetilde{\boldsymbol{c}}^{\prime}\left(s_{\ell}\right)}{\left\|\widetilde{\boldsymbol{c}}^{\prime}\left(s_{\ell}\right)\right\|}, \tag{7}
\end{equation*}
$$

where $s_{\ell}=\ell-1, \ell=1,2,3$. The polynomial \boldsymbol{w} is of degree five and the parameters $\left(\beta_{i}\right)_{i=1}^{3}$ are set to one. Solution of the equations (3), (4):

$$
\varphi_{1}=1.15, \varphi_{2}=2.17, \varphi_{3}=4.11, t_{2}=0.66, \lambda_{2}=0.77
$$

Figure: Three positions of a cuboid interpolated by rational motion of degree six (left) and two center trajectories (right), one of the original (bold curve) and one of the G^{1} Hermite (thin curve) motion. The polynomial \boldsymbol{w} is of degree five and the parameters $\left(\beta_{i}\right)_{i=1}^{3}$ are set to one.

- A common way in modeling smooth curves which satisfy some interpolation conditions is to minimize some functionals, such as

$$
\int \kappa^{j}(t)\left\|\boldsymbol{c}^{\prime}(t)\right\| d t, \quad j=0,2
$$

- The stretch $(j=0)$ and the bend energy $(j=2)$ can be approximated with the following functionals:

$$
E_{1}=\int_{0}^{1}\left\|\boldsymbol{c}^{\prime}(t)\right\|^{2} d t, \quad E_{2}=\int_{0}^{1}\left\|\boldsymbol{c}^{\prime \prime}(t)\right\|^{2} d t
$$

- We will minimize their convex combination,

$$
\begin{equation*}
E=\delta E_{1}+(1-\delta) E_{2}, \tag{8}
\end{equation*}
$$

where $\delta \in[0,1]$ is a fixed weight given in advance.

- Let us assume that the degree of \boldsymbol{w}^{k} is equal to m.
- First, consider the case $m=4$:
- We obtain a linear system for unknown β

$$
\begin{align*}
& \left(\varphi_{1} r(0) t_{2}\left(1-t_{2}\right)^{3} \boldsymbol{d}_{1}, \varphi_{2} r\left(t_{2}\right) t_{2}\left(1-t_{2}\right) \boldsymbol{d}_{2}, \varphi_{3} r(1) t_{2}^{3}\left(1-t_{2}\right) \boldsymbol{d}_{3}\right) \boldsymbol{\beta} \\
= & -\left(2 r(0)\left(1+t_{2}\right)\left(1-t_{2}\right)^{3}+r^{\prime}(0) t_{2}\left(1-t_{2}\right)^{3}\right) \boldsymbol{C}_{1} \tag{9}\\
& -\left(2 r\left(t_{2}\right)\left(2 t_{2}-1\right)+r^{\prime}\left(t_{2}\right) t_{2}\left(1-t_{2}\right)\right) \boldsymbol{C}_{2} \\
& -\left(2 r(1) t_{2}^{3}\left(t_{2}-2\right)+r^{\prime}(1) t_{2}^{3}\left(1-t_{2}\right)\right) \boldsymbol{C}_{3} .
\end{align*}
$$

- Once $\left(\beta_{i}\right)_{i=1}^{3}$ are computed, the polynomial \boldsymbol{w} can be determined by any standard interpolation scheme componentwise.

Example

- The polynomial \boldsymbol{w} is of degree four and the solution of the system (9) is equal to

$$
\beta=(-4.50,3.46,1.70)^{\top} .
$$

- The value of the functional (8) where $\delta=1 / 2$, is for the obtained center trajectory equal to 916.32 , while for the original center trajectory it is equal to 462.34 .

Figure: Three positions of a cuboid interpolated by rational motion of degree six (left) and two trajectories, one of the original (bold curve) and one of the G^{1} Hermite (thin curve) motion (right). The polynomial \boldsymbol{w} is of degree four.

- A more interesting case is $m=5$, where three degrees of freedom are left for the construction.
- Let $\left(\beta_{i}\right)_{i=1}^{3}$ be taken as free parameters. They are used to minimize the shape functional (8).
- Using quintic Hermite basis polynomials $\left(h_{k, 5}\right)_{k=1}^{6}$ the polynomial \boldsymbol{w} can be written as

$$
\boldsymbol{w}=\sum_{i=1}^{3} r\left(t_{i}\right) \boldsymbol{C}_{i} h_{i, 5}+\left(\varphi_{i} r\left(t_{i}\right) \beta_{i} \boldsymbol{d}_{i}+r^{\prime}\left(t_{i}\right) \boldsymbol{C}_{i}\right) h_{i+3,5}
$$

- \boldsymbol{w} can be expressed in a matrix form as $\boldsymbol{w}=A_{6} \boldsymbol{v}$, where

$$
\begin{aligned}
& A_{6}:=\left(\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \boldsymbol{C}_{3}, \beta_{1} \boldsymbol{d}_{1}, \beta_{2} \boldsymbol{d}_{2}, \beta_{3} \boldsymbol{d}_{3}\right) \in \mathbb{R}^{3 \times 6} \\
& \boldsymbol{v}:=\binom{\left(r\left(t_{i}\right) h_{i, 5}+r^{\prime}\left(t_{i}\right) h_{i+3,5}\right)_{i=1}^{3}}{\left(\varphi_{i} r\left(t_{i}\right) h_{i+3,5}\right)_{i=1}^{3}} \in \mathbb{R}^{6}[t]
\end{aligned}
$$

- Let us define mappings

$$
\begin{aligned}
& d_{1}: \mathbb{R}^{n}[t] \rightarrow \mathbb{R}^{n}[t], \quad d_{1}: \boldsymbol{v} \mapsto d_{1}(\boldsymbol{v}):=\frac{1}{r} \boldsymbol{v}^{\prime}-\frac{r^{\prime}}{r^{2}} \boldsymbol{v} \\
& d_{2}: \mathbb{R}^{n}[t] \rightarrow \mathbb{R}^{n}[t], \quad d_{2}: \boldsymbol{v} \mapsto d_{2}(\boldsymbol{v}):=\frac{1}{r} \boldsymbol{v}^{\prime \prime}-2 \frac{r^{\prime}}{r^{2}} \boldsymbol{v}^{\prime}+\frac{2\left(r^{\prime}\right)^{2}-r^{\prime \prime} r}{r^{3}} \boldsymbol{v} \\
& F: \mathbb{R}^{n}[t] \rightarrow \mathbb{R}^{n \times n}[t], \quad F(\boldsymbol{v}):=\delta d_{1}(\boldsymbol{v}) d_{1}(\boldsymbol{v})^{\top}+(1-\delta) d_{2}(\boldsymbol{v}) d_{2}(\boldsymbol{v})^{\top}
\end{aligned}
$$

- $G_{6}:=A_{6}^{\top} A_{6} \in \mathbb{R}^{6 \times 6}$
- $\left\|\boldsymbol{c}^{\prime}\right\|^{2}=\left(d_{1}(\boldsymbol{v})\right)^{\top} G_{6} d_{1}(\boldsymbol{v}), \quad\left\|\boldsymbol{c}^{\prime \prime}\right\|^{2}=\left(d_{2}(\boldsymbol{v})\right)^{\top} G_{6} d_{2}(\boldsymbol{v})$
- The unknowns $\left(\beta_{i}\right)_{i=1}^{3}$ are computed as the solution of the equations

$$
\int_{0}^{1} \frac{d}{d \beta_{i}}\left(\delta\left(d_{1}(\boldsymbol{v})(t)\right)^{\top} G_{6} d_{1}(\boldsymbol{v})(t)+(1-\delta)\left(d_{2}(\boldsymbol{v})(t)\right)^{\top} G_{6} d_{2}(\boldsymbol{v})(t)\right) d t=0
$$

- Written as a linear system:

$$
\begin{equation*}
D(v) \beta=g(v) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& D(v):=\left(\boldsymbol{d}_{i}^{\top} \boldsymbol{d}_{j} \int_{0}^{1}(F(v)(t))_{i+3, j+3} d t\right)_{i, j=1}^{3}, \\
& \boldsymbol{g}(\boldsymbol{v}):=-\left(\int_{0}^{1} \boldsymbol{d}_{k}^{\top} \sum_{i=1}^{3}(F(v)(t))_{i, k+3} \boldsymbol{C}_{i} d t\right)_{k=1}^{3} .
\end{aligned}
$$

Theorem

Let $\boldsymbol{d}_{\ell} \in \mathbb{R}^{3}, \ell=1,2, \ldots, 2 N+1$, be given unit tangent vectors. If $\operatorname{det}\left(D\left(\boldsymbol{v}^{k}\right)\right) \neq 0$, then there exists a unique spline curve \boldsymbol{c}_{S} determined by the polynomials $w^{k}, k=1,2, \ldots, N$, of degree 5 , which minimize the integral (8) and satisfy (2). The parameters β^{k} are defined by (10).

Example

The polynomial \boldsymbol{w} is of degree 5 and $\delta=1 / 2$. The solution of (10) is equal to $\beta=(3.11,3.90,2.95)^{\top}$ and the value of the functional (8) is 443.83.

Figure: Three positions of a cuboid interpolated by rational motion of degree six (left) and the trajectories of the original (bold curve) and of the G^{1} Hermite (thin curve) motion (right). The polynomial \boldsymbol{w} is of degree five.

- Now assume that the degree of w is equal to 6 .
- β and three additonal free parameters are left for the construction.
- \boldsymbol{w} can be written as

$$
\boldsymbol{w}=\sum_{i=1}^{3}\left(r\left(t_{i}\right) \boldsymbol{C}_{i} h_{i, 6}+\left(\varphi_{i} r\left(t_{i}\right) \beta_{i} \boldsymbol{d}_{i}+r^{\prime}\left(t_{i}\right) \boldsymbol{C}_{i}\right)\right) h_{i+3,6}+\boldsymbol{e} h_{7,6}
$$

- β_{i} and $\boldsymbol{e}:=\boldsymbol{w}^{\prime \prime}\left(t_{2}\right)$ are unknown and will be computed by minimizing the integral (8)
- The unknowns β and \boldsymbol{e}, which minimize the integral (8) are the solution of a system

$$
\left(\begin{array}{lc}
D(\boldsymbol{u}), & H(\boldsymbol{u})^{\top} \tag{11}\\
H(\boldsymbol{u}), & \int_{0}^{1}(F(\boldsymbol{u})(t))_{7,7} d t \text { I }
\end{array}\right)\binom{\boldsymbol{\beta}}{\boldsymbol{e}}=\binom{\boldsymbol{g}(\boldsymbol{u})}{-\int_{0}^{1} \sum_{i=1}^{3}(F(\boldsymbol{u})(t))_{i, 7} \boldsymbol{C}_{i} d t \mathbf{1}}
$$

where

$$
H(\boldsymbol{u}):=\left(\boldsymbol{d}_{1} \int_{0}^{1}(F(\boldsymbol{u})(t))_{4,7} d t, \boldsymbol{d}_{2} \int_{0}^{1}(F(\boldsymbol{u})(t))_{5,7} d t, \boldsymbol{d}_{3} \int_{0}^{1}(F(\boldsymbol{u})(t))_{6,7} d t\right) .
$$

Theorem

Let $\boldsymbol{d}_{\ell} \in \mathbb{R}^{3}, \ell=1,2, \ldots, 2 N+1$, be given unit tangent vectors. If

$$
\operatorname{det}\left(D\left(\boldsymbol{u}^{k}\right) \int_{0}^{1}\left(F\left(\boldsymbol{u}^{k}\right)(t)\right)_{7,7} d t I-H\left(\boldsymbol{u}^{k}\right)^{\top} H\left(\boldsymbol{u}^{k}\right)\right) \neq 0
$$

then there exists a unique interpolating spline curve \boldsymbol{c}_{S} determined by polynomials w^{k}, of degree 6 , which minimize the integral (8) and satisfy $\left(\boldsymbol{w}^{k}\right)^{\prime \prime}\left(t_{2}^{k}\right)=\boldsymbol{e}^{k}$ and (2). The parameters $\boldsymbol{\beta}^{k}$ and \boldsymbol{e}^{k} are defined by (11).

Example

The polynomial \boldsymbol{w} is of degree 6 and $\delta=1 / 2$. The solution of the linear system (11) is equal to

$$
\boldsymbol{\beta}=(2.94,3.93,3.16)^{\top}, \quad \boldsymbol{e}=(7.20,-12.13,22.42)^{\top}
$$

and the value of the functional (8) is 433.09 .

Figure: Three positions of a cuboid interpolated by rational motion of degree six (left) and two center trajectories (right), one of the original (bold curve) and one of the G^{1} Hermite (thin curve) motion. The polynomial \boldsymbol{w} is of degree six.

Example

Let us compare the values of the functional (8) for different weights δ and different methods to determine the parameters $\left(\beta_{i}\right)_{i=1}^{3}$.

The values of (8) where:	$\delta=\frac{1}{3}$	$\delta=\frac{1}{2}$	$\delta=\frac{2}{3}$
$\operatorname{deg}(\boldsymbol{w})=5, \boldsymbol{\beta}=(1,1,1)$			
$\operatorname{deg}(\boldsymbol{w})=4, \boldsymbol{\beta}$ is defined by (9)	2910.04	2200.20	1490.37
$\operatorname{deg}(\boldsymbol{w})=5, \boldsymbol{\beta}$ is defined by (10)	1201.16	916.32	631.48
$\operatorname{deg}(\boldsymbol{w})=6, \boldsymbol{\beta}$ and \boldsymbol{e} are defined by (11)	570.85	443.83	316.78
original curve	595.57	433.09	309.63

Table: The values of the functional (8) with $\delta \in\left\{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right\}$, for the original curve and for different choices of free parameters.

Thank you.

