Construction of Rational Spline Motions of Low Degree

Karla Počkaj

University of Primorska Andrej Marušič Institute

Rogla, May 18, 2013

Preliminaries

- Motions of a rigid body
- Geometric continuity for motions

2 Construction of G^1 Hermite rational spline motion

- Geometric Hermite interpolation problem
- Spherical motion
- Translational part

Motivation

- Rational spline motions, prove to be very useful in many industrial applications.
- An important task is to construct a rational spline motion that matches a given sequence of positions.
- The solution of the interpolation problem is required in Computer Graphics in order to animate objects, as well as in Robotics, e.g. for path planning of robot manipulators.

 $\begin{array}{c} \mbox{Motivation} \\ \mbox{Preliminaries} \\ \mbox{Construction of } G^1 \mbox{ Hermite rational spline motion} \end{array}$

Example

Figure : Some intermediate positions (silver) of a rigid body motion of a robot gripper arm interpolating six given input positions Σ_i (blue).

Motions of a rigid body

- Consider two coordinate systems in Euclidian 3-space:
 - the fixed coordinate system E^3
 - the moving coordinate system \widehat{E}^3
- Points can be described in either coordinate system: p or \hat{p} .

Motions of a rigid body

- Consider two coordinate systems in Euclidian 3-space:
 - the fixed coordinate system E^3
 - the moving coordinate system \widehat{E}^3
- Points can be described in either coordinate system: p or \hat{p} .
- Coordinate transformation $\widehat{E}^3 \rightarrow E^3$?
- It can be represented in Cartesian coordinates:
 - $\bullet~$ by 3 \times 3 matrix ${\cal R}$
 - by vector **c**

• \mathcal{R} is a special orthogonal matrix: $\mathcal{RR}^{\top} = I$, $det(\mathcal{R}) = 1$.

- If \mathcal{R} and \boldsymbol{c} depend on time \boldsymbol{t} , we speak of a rigid body motion.
- A trajectory of an arbitrary point \hat{p} of a rigid body:

 $(\widehat{\boldsymbol{p}},t)\mapsto \boldsymbol{p}(t)=\boldsymbol{c}(t)+\mathcal{R}(t)\,\widehat{\boldsymbol{p}}$

- If c ≡ (0,0,0)^T, then p(t) of any point p̂ lies on a sphere of radius ||p̂||, centered at the origin.
- $\mathcal{R}(t)$ describes motion of the unit sphere, we call it the spherical (rotational) part of the motion.
- c(t) defines the translational part.

- The motion is called *rational (spline) motion*, if the elements of *c* and *R* are rational (spline) functions.
- The *degree of the motion* is the maximal degree of the functions involved.
- Difficulty: $\mathcal{R} \in SO_3$.

Motions of a rigid body Geometric continuity for motions

The kinematical mapping

We define the kinematical mapping $\chi : \mathbb{H} \setminus \{\mathbf{0}\} \to SO_3$,

$$\begin{split} \boldsymbol{Q} &= \left(q_{i}\right)_{i=0}^{3} \mapsto \chi(\boldsymbol{Q}) := \\ &\frac{1}{q_{0}^{2} + q_{1}^{2} + q_{2}^{2} + q_{3}^{2}} \begin{pmatrix} q_{0}^{2} + q_{1}^{2} - q_{2}^{2} - q_{3}^{2} & 2(q_{1}q_{2} - q_{0}q_{3}) & 2(q_{1}q_{3} + q_{0}q_{2}) \\ 2(q_{1}q_{2} + q_{0}q_{3}) & q_{0}^{2} - q_{1}^{2} + q_{2}^{2} - q_{3}^{2} & 2(q_{2}q_{3} - q_{0}q_{1}) \\ 2(q_{1}q_{3} - q_{0}q_{2}) & 2(q_{2}q_{3} + q_{0}q_{1}) & q_{0}^{2} - q_{1}^{2} - q_{2}^{2} + q_{3}^{2} \end{pmatrix}. \end{split}$$

•
$$\mathcal{R} = \chi(\boldsymbol{Q})$$

• $\chi(\lambda \boldsymbol{Q}) = \chi(\boldsymbol{Q}), \quad \lambda \in \mathbb{R} \setminus \{0\}$

 It defines a correspondence between the space of rotations and the unit quaternion sphere S³ with identified antipodal points.

• Applying mapping χ to a polynomial (spline) curve of degree n gives a spherical rational (spline) motion of degree 2n.

Translational part $\boldsymbol{c} = (c_i)_{i=1}^3$: the functions c_i should be choosen as

$$c_i = rac{w_i}{r}, \quad r = \sum_{j=0}^3 q_j^2, \quad i = 1, 2, 3,$$

where $\boldsymbol{w} := (w_i)_{i=1}^3$ is a polynomial (spline) curve of degree $\leq 2n$.

Motivation Preliminaries Construction of G^1 Hermite rational spline motion

Motions of a rigid body Geometric continuity for motions

Interpolation problem

Consider n + 1 positions of a moving object. The positions are described by the corresponding Euclidian spatial displacements. How to interpolate a certain set of positions?

Disadvantages of standard interpolation techniques:

- The resulting motion heavily depends on a particular parametrization which has to be chosen in advance.
- They lead to rational motions of relatively high polynomial degree.

• . . .

Disadvantages of standard interpolation techniques:

- The resulting motion heavily depends on a particular parametrization which has to be chosen in advance.
- They lead to rational motions of relatively high polynomial degree.
- . . .

Another approach is geometric interpolation, which yields at least three important advantages:

- an automatically chosen parametrization,
- a higher asymptotic approximation order,
- we obtain rational motions of lower degree.

Disadvantages of standard interpolation techniques:

- The resulting motion heavily depends on a particular parametrization which has to be chosen in advance.
- They lead to rational motions of relatively high polynomial degree.
- . . .

Another approach is geometric interpolation, which yields at least three important advantages:

- an automatically chosen parametrization,
- a higher asymptotic approximation order,
- we obtain rational motions of lower degree.

The difficulty: the uniqueness and the existence analysis may be quite hard.

Literature

- H.-P. Schröcker, B. Jüttler, Motion Interpolation with Bennett Biarcs, Proc. Computational Kinematics, Springer (2009), 101-108.
- B. Jüttler, M. Krajnc, E. Žagar, Geometric interpolation by quartic rational spline motions, Advances in Robot Kinematics: Motion in Man and Machine, Springer (2010), 377-384.

- G. Jaklič, B. Jüttler, M. Krajnc, V. Vitrih, E. Žagar, Hermite interpolation by rational G^k motions of low degree, Journal of Computational and Applied Mathematics 240 (2013), 20-30.
- $\mathsf{M}.$ Krajnc, K. Počkaj, V. Vitrih, Construction of a low degree rational Lagrange motions, submitted

Geometric continuity for motions

The trajectories

$$\begin{aligned} \boldsymbol{\rho}_t(t) &= \boldsymbol{c}_t(t) + \mathcal{R}_t(t)\,\widehat{\boldsymbol{\rho}}, \quad t \in [t_0, t_1], \\ \boldsymbol{\rho}_s(s) &= \boldsymbol{c}_s(s) + \mathcal{R}_s(s)\,\widehat{\boldsymbol{\rho}}, \quad s \in [s_0, s_1]. \end{aligned}$$

of an arbitrary point $\hat{\boldsymbol{\rho}}$ join with G^1 continuity at the common point $\boldsymbol{p}_t(\tau) = \boldsymbol{p}_s(\sigma)$ iff there exists a regular reparametrization $\varphi : [t_0, t_1] \rightarrow [s_0, s_1]$, such that $\varphi' > 0$, $\varphi(\tau) = \sigma$ and

where $\boldsymbol{q}_t, \, \boldsymbol{q}_s$ represent the rotations $\mathcal{R}_t, \, \mathcal{R}_s$ and $\lambda \colon [t_0, t_1] \to \mathbb{R}$ is a zero free scalar function.

Geometric Hermite interpolation problem

- **Data:** 2N + 1 positions Pos_{ℓ} , described by a center position $C_{\ell} \in \mathbb{R}^3$ and by a unit quaternion $Q_{\ell} \in \mathbb{H}$. Additionally, every position is supplemented with unit tangent vector d_{ℓ} and velocity quaternion U_{ℓ} .
- $\boldsymbol{Q}_{\ell} \cdot \boldsymbol{Q}_{\ell+1} \geq 0, \quad \ell = 1, 2, \dots, 2N.$
- The task is to construct a spline motion of degree six, which interpolates these positions and the corresponding derivative data.

 Motivation
 Geometric Hermite interpolation problem

 Preliminaries
 Spherical motion

 Construction of G¹ Hermite rational spline motion
 Translational part

- $\boldsymbol{q}_{S} \colon [0, N] \to \mathbb{H}, \ \boldsymbol{c}_{S} \colon [0, N] \to \mathbb{R}^{3}$?
- They have integer knots and consist of segments q^k and c^k ,

$$egin{aligned} m{q}^k(t^k) &:= m{q}_{\mathcal{S}}(u)ig|_{[k-1,k]}, \quad m{c}^k(t^k) &:= m{c}_{\mathcal{S}}(u)ig|_{[k-1,k]}, \ t^k &:= u-k+1 \in [0,1], \quad k=1,2,\ldots,N. \end{aligned}$$

- $\boldsymbol{q}_{S} \colon [0, N] \to \mathbb{H}, \ \boldsymbol{c}_{S} \colon [0, N] \to \mathbb{R}^{3}$?
- They have integer knots and consist of segments q^k and c^k ,

$$m{q}^k(t^k) := m{q}_{\mathcal{S}}(u) \big|_{[k-1,k]}, \quad m{c}^k(t^k) := m{c}_{\mathcal{S}}(u) \big|_{[k-1,k]}.$$

$$t^k := u - k + 1 \in [0, 1], \quad k = 1, 2, \dots, N.$$

• Curve **q**^k must satisfy:

 $\begin{aligned}
 q^{k}(t_{i}^{k}) &= \lambda_{i}^{k} \mathbf{Q}_{2k-2+i} \\
 (q^{k})'(t_{i}^{k}) &= \mu_{i}^{k} \mathbf{Q}_{2k-2+i} + \lambda_{i}^{k} \varphi_{i}^{k} \mathbf{U}_{2k-2+i} \\
 (1)
 \end{aligned}$

Definition

The solution of the nonlinear system (1) is admissible if the following relations are satisfied,

 $0 < t_2^k < 1, \quad \lambda_2^k > 0, \quad \varphi_i^k > 0, \quad i = 1, 2, 3.$

Motivation	Geometric Hermite interpolation problem
Preliminaries	
Construction of G^1 Hermite rational spline motion	

- If a given unit tangent vector d_ℓ, ℓ = 1, 2, ..., 2N + 1, is multiplied by an arbitrary positive constant, the tangent direction of the trajectory c^k, k = 1, 2, ... N, does not change.
- Hence we obtain free parameters β^k = (β_i^k)³_{i=1} that influence the lengths of the tangents and therefore the shape of the trajectory c^k.
- Each spline segment $c^k = w^k/r^k$, where $r^k = \sum_{i=0}^3 (q_i^k)^2$, must satisfy:

 $\boldsymbol{w}^{k}(t_{i}^{k}) = r^{k}(t_{i}^{k}) \boldsymbol{C}_{2k-2+i}$ $(\boldsymbol{w}^{k})'(t_{i}^{k}) = \varphi_{i}^{k} r^{k}(t_{i}^{k}) \beta_{i}^{k} \boldsymbol{d}_{2k-2+i} + (r^{k})'(t_{i}^{k}) \boldsymbol{C}_{2k-2+i}$ i = 1, 2, 3, (2) Some notation, which will be used further on:

- $A^k := (U_{2k-1}, Q_{2k-1}, Q_{2k}, Q_{2k+1}, U_{2k}, U_{2k+1}) \in \mathbb{R}^{4 \times 6},$
- $(A^k)^{[i,j]}$ denotes a matrix A^k with columns *i* and *j* omitted,

•
$$\alpha_{i,j}^k := \det(A^k)^{[6-5i,j+1]}, i = 0, 1, j = i, i+1, \dots, i+4.$$

Some notation, which will be used further on:

- $A^k := (U_{2k-1}, Q_{2k-1}, Q_{2k}, Q_{2k+1}, U_{2k}, U_{2k+1}) \in \mathbb{R}^{4 \times 6},$
- $(A^k)^{[i,j]}$ denotes a matrix A^k with columns *i* and *j* omitted,

•
$$\alpha_{i,j}^k := \det(A^k)^{[6-5i,j+1]}, i = 0, 1, j = i, i+1, \dots, i+4.$$

The presented G^1 Hermite spline motion is **constructed entirely** locally, so it is enough to analyse the case k = 1 only.

Motivation Preliminaries Construction of G^1 Hermite rational spline motion Geometric Hermite interpolation problem Spherical motion Translational part

Spherical motion

Motivation Preliminaries Construction of G^1 Hermite rational spline motion Geometric Hermite interpolation problem Spherical motion Translational part

Spherical motion

$$t_{2}^{k} = \frac{u^{k}}{1+u^{k}}, \quad u^{k} := \sqrt[3]{-\frac{\alpha_{0,3}^{k}}{\alpha_{0,4}^{k}}} \frac{\alpha_{1,4}^{k}}{\alpha_{1,1}^{k}}, \quad \lambda_{2}^{k} = -(1-t_{2}^{k})^{3} \frac{\alpha_{1,2}^{k}}{\alpha_{1,1}^{k}} - (t_{2}^{k})^{3} \frac{\alpha_{0,2}^{k}}{\alpha_{0,3}^{k}}, \quad (3)$$

$$\varphi_{1}^{k} = \left(\frac{t_{2}^{k}}{1 - t_{2}^{k}}\right)^{2} \frac{\alpha_{0,0}^{k}}{\alpha_{0,3}^{k}}, \quad \varphi_{2}^{k} = \frac{1}{\lambda_{2}^{k}} \frac{(t_{2}^{k})^{2}}{1 - t_{2}^{k}} \frac{\alpha_{0,4}^{k}}{\alpha_{0,3}^{k}}, \quad \varphi_{3}^{k} = \left(\frac{t_{2}^{k}}{1 - t_{2}^{k}}\right)^{-2} \frac{\alpha_{0,0}^{k}}{\alpha_{1,1}^{k}}, \tag{4}$$

$$\mu_{1}^{k} = -\left(\frac{t_{2}^{k}}{1-t_{2}^{k}}\right)^{2} \frac{\alpha_{0,1}^{k}}{\alpha_{0,3}^{k}} - \frac{2+t_{2}^{k}}{t_{2}^{k}}, \quad \mu_{2}^{k} = \frac{(t_{2}^{k})^{2}}{1-t_{2}^{k}} \frac{\alpha_{0,2}^{k}}{\alpha_{0,3}^{k}} + \lambda_{2}^{k} \frac{2-3t_{2}^{k}}{t_{2}^{k}(1-t_{2}^{k})},$$

$$\mu_{3}^{k} = \left(\frac{t_{2}^{k}}{1-t_{2}^{k}}\right)^{-2} \frac{\alpha_{1,3}^{k}}{\alpha_{1,1}^{k}} + \frac{3-t_{2}^{k}}{1-t_{2}^{k}},$$
(5)

Theorem

Let $Q_{2k-2+i} \in \mathbb{H}$ be a sequence of normalized quaternions, and let U_{2k-2+i} be given velocity quaternions for i = 1, 2, 3, such that

 $\begin{aligned} &\det(\boldsymbol{Q}_{2k-1}, \boldsymbol{Q}_{2k}, \boldsymbol{Q}_{2k+1}, \boldsymbol{U}_{2k-3+2j}) \neq 0, \\ &\det(\boldsymbol{Q}_{2k-2+j}, \boldsymbol{Q}_{2k-1+j}, \boldsymbol{U}_{2k-2+j}, \boldsymbol{U}_{2k-1+j}) \neq 0, \end{aligned} \qquad \qquad j = 1, 2, \end{aligned}$

for every k = 1, 2, ..., N. Then there exists a unique cubic interpolating spline curve \mathbf{q}_{S} , satisfying (1) with $\lambda_{1}^{k} = \lambda_{3}^{k} = 1$, where $t_{2}^{k}, \lambda_{2}^{k}, (\varphi_{i}^{k})_{i=1}^{3}$ and $(\mu_{i}^{k})_{i=1}^{3}$ are determined by (3), (4) and (5).

Theorem

Suppose that the assumptions of Theorem 2 hold. Then the interpolating quaternion spline \mathbf{q}_S is admissible iff

$$\frac{\alpha_{0,0}^{k}}{\alpha_{0,3}^{k}}, \frac{\alpha_{0,0}^{k}}{\alpha_{1,1}^{k}}, \frac{\alpha_{0,4}^{k}}{\alpha_{0,3}^{k}} > 0, \quad \frac{\alpha_{1,4}^{k}}{\alpha_{1,1}^{k}} < 0, \quad \frac{\alpha_{0,2}^{k}}{\alpha_{0,4}^{k}} < \frac{\alpha_{1,2}^{k}}{\alpha_{1,4}^{k}}, \quad k = 1, 2, \dots, N.$$
 (6)

 $\begin{array}{c} \mbox{Motivation} \\ \mbox{Preliminaries} \\ \mbox{Construction of } G^1 \mbox{ Hermite rational spline motion} \end{array}$

Geometric Hermite interpolation problem Spherical motion Translational part

Translational part

$$\boldsymbol{w}^k, \deg(\boldsymbol{w}^k) \leq 6$$
?

The translational part c_S which satisfies (2) is a G^1 continuous for an arbitrary choice of positive parameters

$$\boldsymbol{\beta}^k \in \mathbb{R}^3, \ k = 1, 2, \dots, N.$$

 $\begin{array}{c} \mbox{Motivation} \\ \mbox{Preliminaries} \\ \mbox{Construction of } G^1 \mbox{ Hermite rational spline motion} \end{array}$

Geometric Hermite interpolation problem Spherical motion Translational part

Translational part

$$\boldsymbol{w}^k, \deg(\boldsymbol{w}^k) \leq 6$$
?

The translational part c_S which satisfies (2) is a G^1 continuous for an arbitrary choice of positive parameters

$$\boldsymbol{\beta}^k \in \mathbb{R}^3, \ k = 1, 2, \dots, N.$$

What if we choose $\beta^k = (1, 1, 1)^\top$?

Example

$$\widetilde{\boldsymbol{q}} = rac{\boldsymbol{q}}{\|\boldsymbol{q}\|}, \quad \boldsymbol{q}(s) = \left(s + \cos\left(rac{\pi s}{4}
ight), s^3, s + \sin\left(rac{\pi s}{4}
ight), \sqrt{s^2 + 1}
ight)^{\top}$$

$$\widetilde{\boldsymbol{c}}(s) = 3\left(\log(s+1)\sin\left(\frac{\pi s}{3}
ight), \log(s+1)\cos\left(\frac{\pi s}{3}
ight)\sqrt{s^2+1}
ight)^{-1}$$

The positions and the corresponding derivative data are sampled as

$$\boldsymbol{Q}_{\ell} = \widetilde{\boldsymbol{q}}(\boldsymbol{s}_{\ell}), \ \boldsymbol{U}_{\ell} = \widetilde{\boldsymbol{q}}'(\boldsymbol{s}_{\ell}), \ \boldsymbol{C}_{\ell} = \widetilde{\boldsymbol{c}}(\boldsymbol{s}_{\ell}), \ \boldsymbol{d}_{\ell} = \frac{\widetilde{\boldsymbol{c}}'(\boldsymbol{s}_{\ell})}{\|\widetilde{\boldsymbol{c}}'(\boldsymbol{s}_{\ell})\|},$$
(7)

where $s_{\ell} = \ell - 1$, $\ell = 1, 2, 3$. The polynomial **w** is of degree five and the parameters $(\beta_i)_{i=1}^3$ are set to one. Solution of the equations (3), (4):

$$\varphi_1 = 1.15, \ \varphi_2 = 2.17, \ \varphi_3 = 4.11, \ t_2 = 0.66, \ \lambda_2 = 0.77.$$

Figure : Three positions of a cuboid interpolated by rational motion of degree six (left) and two center trajectories (right), one of the original (bold curve) and one of the G^1 Hermite (thin curve) motion. The polynomial **w** is of degree five and the parameters $(\beta_i)_{i=1}^3$ are set to one.

Motivation Preliminaries Construction of G¹ Hermite rational spline motion Translational part

• A common way in modeling smooth curves which satisfy some interpolation conditions is to minimize some functionals, such as

$$\int \kappa^j(t) \|oldsymbol{c}'(t)\| dt, \quad j=0,2.$$

• The stretch (j = 0) and the bend energy (j = 2) can be approximated with the following functionals:

$$E_1 = \int_0^1 \|m{c}'(t)\|^2 dt, \quad E_2 = \int_0^1 \|m{c}''(t)\|^2 dt.$$

• We will minimize their convex combination,

$$E = \delta E_1 + (1 - \delta) E_2, \tag{8}$$

where $\delta \in [0, 1]$ is a fixed weight given in advance.

- Let us assume that the degree of w^k is equal to m.
- First, consider the case *m* = 4 :
- We obtain a linear system for unknown eta

$$(\varphi_1 r(0)t_2(1-t_2)^3 \boldsymbol{d}_1, \varphi_2 r(t_2)t_2(1-t_2)\boldsymbol{d}_2, \varphi_3 r(1)t_2^3(1-t_2)\boldsymbol{d}_3) \beta = -(2r(0)(1+t_2)(1-t_2)^3+r'(0)t_2(1-t_2)^3)\boldsymbol{C}_1$$
(9)
$$-(2r(t_2)(2t_2-1)+r'(t_2)t_2(1-t_2))\boldsymbol{C}_2 -(2r(1)t_2^3(t_2-2)+r'(1)t_2^3(1-t_2))\boldsymbol{C}_3.$$

 Once (β_i)³_{i=1} are computed, the polynomial *w* can be determined by any standard interpolation scheme componentwise.

Example

• The polynomial **w** is of degree four and the solution of the system (9) is equal to

 $\boldsymbol{\beta} = (-4.50, 3.46, 1.70)^{\top}.$

• The value of the functional (8) where $\delta = 1/2$, is for the obtained center trajectory equal to 916.32, while for the original center trajectory it is equal to 462.34.

Motivation	
Preliminaries	
Construction of G^1 Hermite rational spline motion	Translational part

Figure : Three positions of a cuboid interpolated by rational motion of degree six (left) and two trajectories, one of the original (bold curve) and one of the G^1 Hermite (thin curve) motion (right). The polynomial **w** is of degree four.

Motivation	Geometric Hermite interpolation problem
Preliminaries	Spherical motion
Construction of G ¹ Hermite rational spline motion	Translational part

- A more interesting case is m = 5, where three degrees of freedom are left for the construction.
- Let (β_i)³_{i=1} be taken as free parameters. They are used to minimize the shape functional (8).
- Using quintic Hermite basis polynomials $(h_{k,5})_{k=1}^6$ the polynomial w can be written as

$$\boldsymbol{w} = \sum_{i=1}^{3} r(t_i) \boldsymbol{C}_i h_{i,5} + (\varphi_i r(t_i) \beta_i \boldsymbol{d}_i + r'(t_i) \boldsymbol{C}_i) h_{i+3,5}.$$

Motivation Geometric Hermite interpolation problem Preliminaries Spherical motion Translational part

• w can be expressed in a matrix form as $w = A_6 v$, where

$$\begin{aligned} & \mathcal{A}_{6} := \left(\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \boldsymbol{C}_{3}, \beta_{1} \boldsymbol{d}_{1}, \beta_{2} \boldsymbol{d}_{2}, \beta_{3} \boldsymbol{d}_{3} \right) \in \mathbb{R}^{3 \times 6}, \\ & \boldsymbol{v} := \begin{pmatrix} \left(r(t_{i}) \ h_{i,5} + r'(t_{i}) \ h_{i+3,5} \right)_{i=1}^{3} \\ \left(\varphi_{i} \ r(t_{i}) \ h_{i+3,5} \right)_{i=1}^{3} \end{pmatrix} \in \mathbb{R}^{6}[t]. \end{aligned}$$

• Let us define mappings

$$d_{1}: \mathbb{R}^{n}[t] \to \mathbb{R}^{n}[t], \quad d_{1}: \mathbf{v} \mapsto d_{1}(\mathbf{v}) := \frac{1}{r}\mathbf{v}' - \frac{r'}{r^{2}}\mathbf{v},$$

$$d_{2}: \mathbb{R}^{n}[t] \to \mathbb{R}^{n}[t], \quad d_{2}: \mathbf{v} \mapsto d_{2}(\mathbf{v}) := \frac{1}{r}\mathbf{v}'' - 2\frac{r'}{r^{2}}\mathbf{v}' + \frac{2(r')^{2} - r''r}{r^{3}}\mathbf{v},$$

$$F: \mathbb{R}^{n}[t] \to \mathbb{R}^{n \times n}[t], \quad F(\mathbf{v}) := \delta d_{1}(\mathbf{v})d_{1}(\mathbf{v})^{\top} + (1 - \delta) d_{2}(\mathbf{v})d_{2}(\mathbf{v})^{\top}.$$

$$\bullet \quad G_{6}:= A_{6}^{\top}A_{6} \in \mathbb{R}^{6 \times 6}$$

• $\|\boldsymbol{c}'\|^2 = (d_1(\boldsymbol{v}))^\top G_6 d_1(\boldsymbol{v}), \quad \|\boldsymbol{c}''\|^2 = (d_2(\boldsymbol{v}))^\top G_6 d_2(\boldsymbol{v})$

• The unknowns $(\beta_i)_{i=1}^3$ are computed as the solution of the equations

$$\int_0^1 \frac{d}{d\beta_i} \left(\delta \left(d_1(\boldsymbol{v})(t) \right)^\top G_6 d_1(\boldsymbol{v})(t) + (1-\delta) \left(d_2(\boldsymbol{v})(t) \right)^\top G_6 d_2(\boldsymbol{v})(t) \right) dt = 0.$$

• Written as a linear system:

$$D(\mathbf{v})\beta = \mathbf{g}(\mathbf{v}),\tag{10}$$

where

$$D(\mathbf{v}) := \left(\mathbf{d}_i^{\top} \mathbf{d}_j \int_0^1 (F(\mathbf{v})(t))_{i+3,j+3} dt\right)_{i,j=1}^3,$$

$$\mathbf{g}(\mathbf{v}) := -\left(\int_0^1 \mathbf{d}_k^{\top} \sum_{i=1}^3 (F(\mathbf{v})(t))_{i,k+3} \mathbf{c}_i dt\right)_{k=1}^3.$$

Theorem

Let $\mathbf{d}_{\ell} \in \mathbb{R}^3$, $\ell = 1, 2, ..., 2N + 1$, be given unit tangent vectors. If det $(D(\mathbf{v}^k)) \neq 0$, then there exists a unique spline curve \mathbf{c}_S determined by the polynomials \mathbf{w}^k , k = 1, 2, ..., N, of degree 5, which minimize the integral (8) and satisfy (2). The parameters β^k are defined by (10).

Example

The polynomial **w** is of degree 5 and $\delta = 1/2$. The solution of (10) is equal to $\beta = (3.11, 3.90, 2.95)^{\top}$ and the value of the functional (8) is 443.83.

Figure : Three positions of a cuboid interpolated by rational motion of degree six (left) and the trajectories of the original (bold curve) and of the G^1 Hermite (thin curve) motion (right). The polynomial \boldsymbol{w} is of degree five.

- Now assume that the degree of \boldsymbol{w} is equal to 6.
- β and three additonal free parameters are left for the construction.
- w can be written as

$$\boldsymbol{w} = \sum_{i=1}^{3} (r(t_i) \boldsymbol{C}_i h_{i,6} + (\varphi_i r(t_i) \beta_i \boldsymbol{d}_i + r'(t_i) \boldsymbol{C}_i)) h_{i+3,6} + \boldsymbol{e} h_{7,6}$$

β_i and e := w''(t₂) are unknown and will be computed by minimizing the integral (8)

Motivation Preliminaries Construction of G¹ Hermite rational spline motion Translational part

• The unknowns β and e, which minimize the integral (8) are the solution of a system

$$\begin{pmatrix} D(\boldsymbol{u}), & H(\boldsymbol{u})^{\top} \\ H(\boldsymbol{u}), & \int_{0}^{1} (F(\boldsymbol{u})(t))_{7,7} dt \ l \end{pmatrix} \begin{pmatrix} \beta \\ \boldsymbol{e} \end{pmatrix} = \begin{pmatrix} \boldsymbol{g}(\boldsymbol{u}) \\ -\int_{0}^{1} \sum_{i=1}^{3} (F(\boldsymbol{u})(t))_{i,7} \ \boldsymbol{C}_{i} \ dt \ \boldsymbol{1} \end{pmatrix},$$
(11)

where

$$H(\boldsymbol{u}) := \left(\boldsymbol{d}_1 \int_0^1 (F(\boldsymbol{u})(t))_{4,7} dt, \ \boldsymbol{d}_2 \int_0^1 (F(\boldsymbol{u})(t))_{5,7} dt, \ \boldsymbol{d}_3 \int_0^1 (F(\boldsymbol{u})(t))_{6,7} dt\right).$$

Theorem

Let $oldsymbol{d}_\ell \in \mathbb{R}^3, \, \ell=1,2,\ldots,2N+1,$ be given unit tangent vectors. If

$$\det\left(D(\boldsymbol{u}^k)\int_0^1 (F(\boldsymbol{u}^k)(t))_{7,7}dt\,I - H(\boldsymbol{u}^k)^\top H(\boldsymbol{u}^k)\right) \neq 0.$$

then there exists a unique interpolating spline curve c_{S} determined by polynomials \boldsymbol{w}^{k} , of degree 6, which minimize the integral (8) and satisfy $(\boldsymbol{w}^{k})''(t_{2}^{k}) = \boldsymbol{e}^{k}$ and (2). The parameters β^{k} and \boldsymbol{e}^{k} are defined by (11).

Example

The polynomial **w** is of degree 6 and $\delta = 1/2$. The solution of the linear system (11) is equal to

 $\beta = (2.94, 3.93, 3.16)^{\top}, \quad \boldsymbol{e} = (7.20, -12.13, 22.42)^{\top},$

and the value of the functional (8) is 433.09.

Figure : Three positions of a cuboid interpolated by rational motion of degree six (left) and two center trajectories (right), one of the original (bold curve) and one of the G^1 Hermite (thin curve) motion. The polynomial **w** is of degree six.

Example

Let us compare the values of the functional (8) for different weights δ and different methods to determine the parameters $(\beta_i)_{i=1}^3$.

The values of (8) where:	$\delta = \frac{1}{3}$	$\delta = \frac{1}{2}$	$\delta = \frac{2}{3}$
$deg(oldsymbol{w})=5,\ eta=(1,1,1)^ op$	2910.04	2200.20	1490.37
$\deg(oldsymbol{w})=4,\ eta$ is defined by (9)	1201.16	916.32	631.48
$deg(oldsymbol{w})=5,\ eta$ is defined by (10)	570.85	443.83	316.78
$deg(oldsymbol{w})=6,eta$ and $oldsymbol{e}$ are defined by (11)	556.52	433.09	309.63
original curve	595.57	462.34	329.10

Table : The values of the functional (8) with $\delta \in \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\}$, for the original curve and for different choices of free parameters.

Motivation	
Preliminaries	
Construction of G^1 Hermite rational spline motion	Translational part

Thank you.