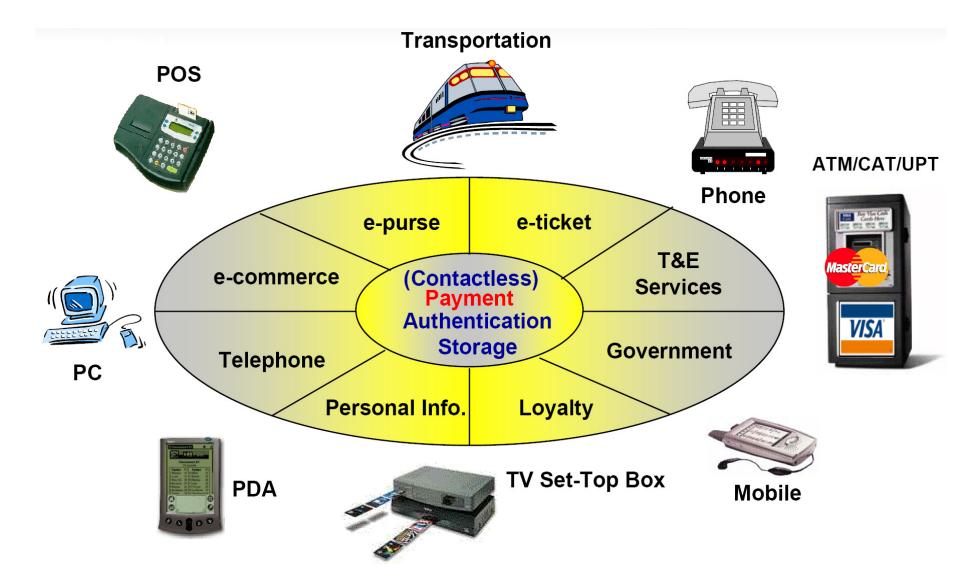
Cryptology, homomorphisms and graph theory

Rogla, May 2013

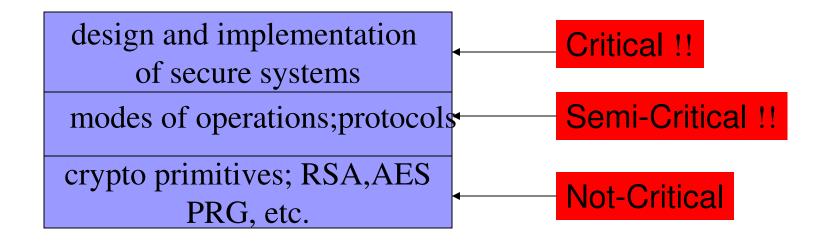
Enes Pasalic

Applications of cryptography



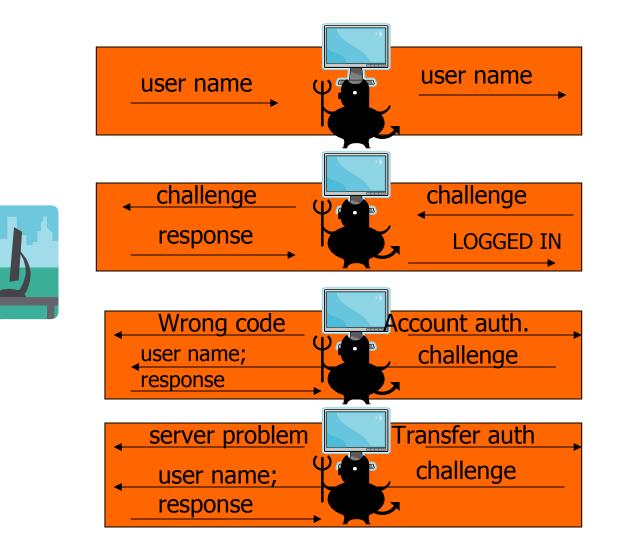
Cryptography in a nutshell

Talking about cryptography – not hacking !!



Missusing protocols

User



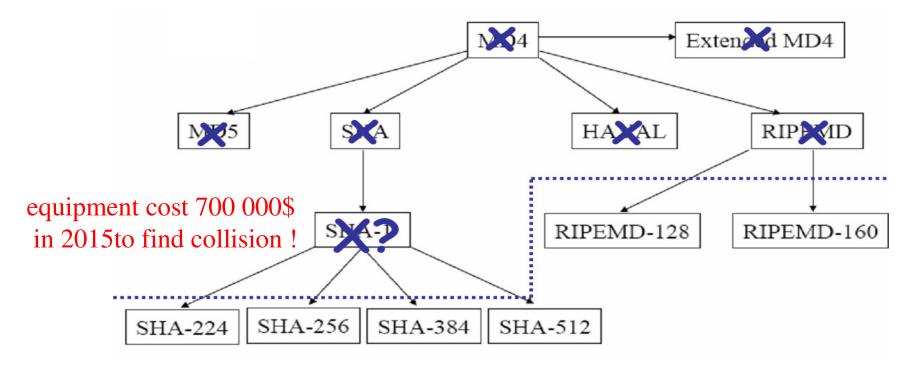
Bank server

Why standard primitives are secure ?

- Because thousands of academics are designing and cryptanalyzing these primitives
- Do you really care when using public key crypto based on :
 - Factoring problem RSA
 - Discrete log problem ElGammal ...
 - or using finite **nonabelian (e.g. Braid)** groups, based on solving equations in **noncommutative** groups, **polycyclic** groups ...
- As long as the primitive has undergone public scrutiny you are doing fine

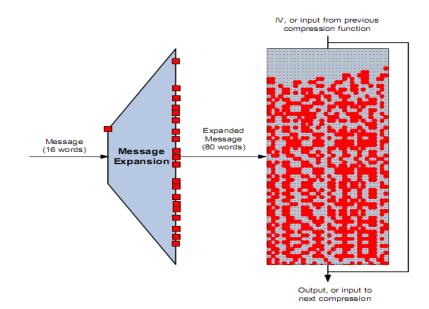
BLAKE hash function YES or NOT ?

 BLAKE entered the final phase of NIST competition (5 left) – probably a hash standard



BLAKE is secure even though ...

- Janoš Vidali, Peter Nose, Enes Pasalic. <u>Collisions for</u> <u>variants of the BLAKE hash function</u>, IPL, 2010
- Attacks on simplified version, BLAKE not compromized !



Flipping a single bit causes c.a. half of bits to change, etc.

Loose "Guidelines" - secure implementation

- Use well-analyzed primitives, AES, RSA, SHA xx, unless you come from military (black box scenario :)
- Update your primitives, check if still using MD5 ⁽ⁱ⁾ (even SHA-1 will need an update soon)
- Implement all the steps of protocols (try not to speed up algorithm by cheating !)
- How do you generate the keys ? Where do you store them ?
- > Open source usage ? IV vector is reset to 0 when you lose elektricity ?

Copyright, PKC, homomorphic encryption ...

- Imagine that all encryption algorithms are copyrighted, I would be doing fine how about you ?
- Only possibility seems to be pattent applications (possibly on standalone basis or with some support) ...
- Cloud computing and homomorphic encryption seem to be very hot topic, though probably not for ARRS
- + 30 year open problem to embed fully homomorphic encryption scheme

One-way functions

A one-way function $f : X \rightarrow Y$ has the properties that

- it is computationally "easy" to compute f(x) for any $x \in X$.
- it is computationally "difficult" to invert *f*, i.e. given *y* ∈ *Y*, to find an *x* ∈ *X* such that *f*(*x*) = *y*.

Of course, this is vague and needs to be more precisely defined, but the idea is to use such an *f* as encryption function.

This makes life difficult for the Adversary, (GOOD) but also for the intended receiver! (BAD)

Trapdoor one-way function

A **trapdoor one-way function** is a one-way function *f* with the further property that if you know some secret extra information, inverting *f* becomes "easy".

Refined idea: For encryption, we use a trapdoor one-way function for which only the receiver knows the secret (the trapdoor).

We need not only one trapdoor one-way function $E : \mathcal{M} \to \mathcal{C}$ but a whole family of such functions, indexed by keys.

 The public key cryptography realizes these ideas. Based on some old number theoretical problems.

RSA – Public key cryptosystem

Key generation:

- Generate two large primes p and q of at least 512 bits.
- Compute $N = p \cdot q$ and $\phi(N) = (p-1)(q-1)$.
- Select a random integer e, $1 < e < \phi(N)$, such that

$$gcd(e, (p-1)(q-1)) = 1.$$

Using the XGCD compute the unique integer d, 1 < d < \phi(N) with</p>

$$\boldsymbol{e} \cdot \boldsymbol{d} \equiv 1 \pmod{\phi(N)}.$$

Public key = (N, e) which can be published. Private key = (d, p, q) which needs to be kept secret.

RSA encryption/decryption

RSA key setup

Alice chooses secret primes p and q, computes N = pq and chooses an e such that $gcd(e, \Phi(N)) = 1$. She then computes d = 1/e in $\mathbb{Z}^*_{\Phi(N)}$. Her public key is (N, e) and her private key is d.

RSA encryption

Bob wants to encrypt $m \in \mathbb{Z}_N^*$ for Alice. He computes $C = m^e \mod N$.

RSA decryption

Alice computes $m = C^d \mod N$.

Decryption - proof

Assume that $m \in \mathbb{Z}_N^*$. Alice computes

 $C^d \mod N = m^{ed} \mod N = m^{1+k \cdot \Phi(N)} = (m^{\Phi(N)})^k \cdot m = 1^k \cdot m = m.$

What if $m \notin \mathbb{Z}_N^*$?

- This means that m is a multiple of p or q, a very unlikely case that can be ignored in practice.
- The equality $m^{ed} \mod N = m$ holds also in this case, but requires another proof, based on the Chinese Remainder

Proving that decryption works

We have to show that m^{ed}=m. Recall that

 $ed = 1 + k \phi(n) = 1 + k(p-1)(q-1)$

- If gcd(m, p) = 1:
 - By Fermat's Little Theorem we have $m^{p-1} \equiv 1 \pmod{p}$.
 - Taking k(q-1)-th power and multiplying with m yields $m^{1+k(p-1)(q-1)} \equiv m \pmod{p}$ (*)

▶ If gcd(m, p) = p, then $m \equiv 0 \pmod{p}$ and (*) is valid again. Hence, in all cases $m^{e \cdot d} \equiv m \pmod{p}$ and by a similar argument we have $m^{e \cdot d} \equiv m \pmod{q}$.

Since p and q are distinct primes, the CRT leads to

$$c^d = (m^e)^d = m^{ed} = m^{k(p-1)(q-1)+1} = m \pmod{N}.$$

Homomorphic property of RSA (multiplicative)

Essentially RSA is malleable owing to the homomorphic property.

Given the encryption of m_1 and m_2 we can determine the encryption c_3 of $m_1 \cdot m_2$.

Let $c_1 = m_1^e \pmod{N}$ and $c_2 = m_2^e \pmod{N}$

 $c_3 = c_1 \cdot c_2 = m_1^{e} \cdot m_2^{e} = (m_1 \cdot m_2)^{e} \pmod{N}.$

We did this without knowing m_1 or m_2 .

Research problem: To increase speed of encryption/decryption **binary weight of** *e* and *d* should be small. Can we derive a lower bound on wt(e) + wt(d)!

Pallier E-voting – additive homomorphism

Suppose Alice, Bob and Oscar are running in an election. Only 6 people voted in the election.

00 00 **01** = 1

00 **01** 00 = 4

00 **01** 00 = 4

00 00 **01** = 1

01 00 00 = 16

00 00 **01** = 1

Vote	Oscar	Bob	Alice
1			\bigcirc
2		\bigcirc	
3		\bigcirc	
4			\bigcirc
5	\bigcirc		
6			\bigcirc

Short mathematical description

- Decisional composite residuosity assumption
 - Given composite n and integer z, it is hard to determine if y exists such that

$$z \equiv y^n \pmod{n^2}$$

Definition

Pick two large primes p and q and let n = pq. Let λ denote the Carmichael function, that is, $\lambda(n) = \text{lcm}(p - 1, q - 1)$. Pick random $g \in \mathbb{Z}_{n^2}^*$ such that $L(g^{\lambda} \mod n^2)$ is invertible modulo n (where $L(u) = \frac{u-1}{n}$). n and g are public; p and q (or λ) are private. For plaintext x and resulting ciphertext y, select a random $r \in \mathbb{Z}_n^*$. Then,

$$e_{\mathcal{K}}(x,r) = g^{x} r^{n} \mod n^{2}$$
$$d_{\mathcal{K}}(y) = \frac{L(y^{\lambda} \mod n^{2})}{L(g^{\lambda} \mod n^{2})} \mod n^{2}$$

Pallier voting - counting

Let p = 5 and q = 7. Then n = 35, n² = 1225. g is chosen to be 141 (so that n | ord(g)). For the first vote x1 = 1, r is randomly chosen as 4.

Then,

 $e_{K}(x1,r1) = e_{K}(1, 4) = g^{x1} * r1^{n} = 141^{1} * 4^{35} = 359 \mod 1225$

x1	r	$e_{K}(x1,r)$
1	4	359
4 4	17	173
4	26	486
1	12	1088
16	11	541
1	32	163

Encryption/decryption

In order to sum the votes, we *multiply* the encrypted data modulo n^2 : $359 \cdot 173 \cdot 486 \cdot 1088 \cdot 541 \cdot 163 \mod 1225 = 983$ We then decrypt:

$$L(y^{\lambda} \mod n^{2}) = L(983^{12} \mod 1225) = \frac{36-1}{35} = 1$$

$$L(g^{\lambda} \mod n^{2}) = L(141^{12} \mod 1225) = \frac{456-1}{35} = 13$$

$$d_{\kappa}(y) = (L(y^{\lambda} \mod n^{2}))(L(g^{\lambda} \mod n^{2}))^{-1} \mod n$$

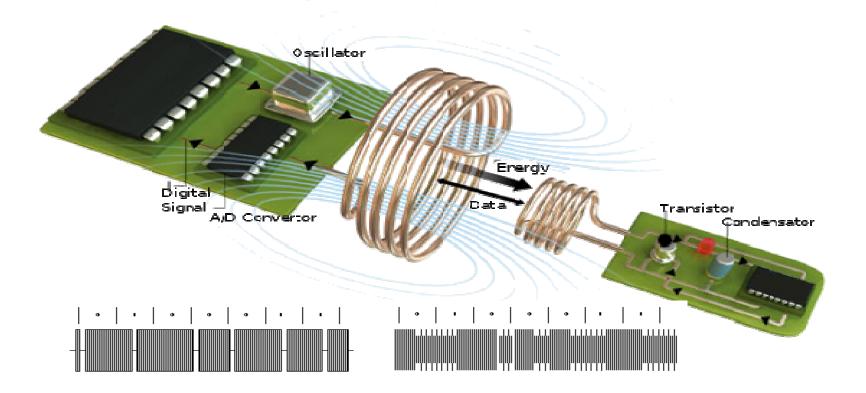
$$= 1 \cdot 13^{-1} \mod 35$$

$$= 27$$

We convert 27 to (01 02 03) for the final results.

Cryptography and graph theory (a few words)

RFID Technology



Reader to tag signal

- Dropping field
- Modified Miller Encoding

Tag to reader signal

- Modulating field
- Manchester Encoding

MIFARE

MIFARE product family from NXP

- Ultralight
- Classic or Standard (320B, 1KB and 4KB)
- DESFire
- SmartMX

MIFARE dominance

- Over 1 billion MIFARE cards sold
- Over 200 million MIFARE Classic cards in use covering 85% of the contactless smart card market

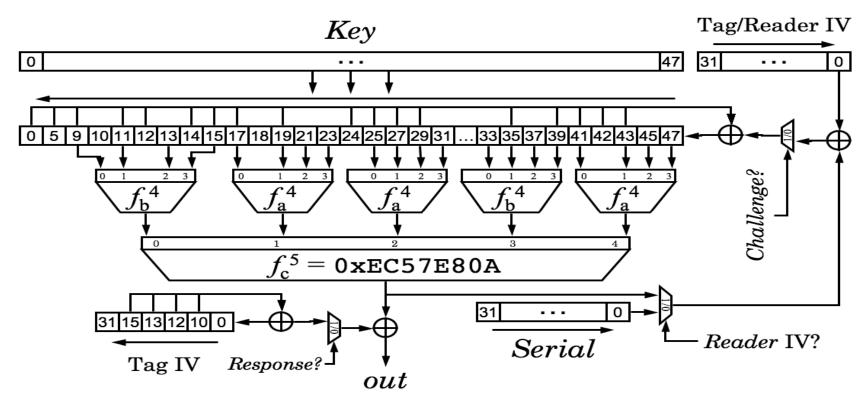
MIFARE Classic

- Used in many office and official buildings
- Public transport systems
 - OV-Chipkaart (Netherlands)
 - Oyster card (London)
 - Smartrider (Australia)
 - EMT (Malaga)
- Personnel entrance to Schiphol Airport (Amsterdam)
- Access to Dutch military bases
- Popular payment system in Asia

Manufacturer response- freedom of publishing ?

Timeline	
Dec 2007	CCC presentation by Nohl and Plotz
March 2008	We recover CRYPTO1 and found attacks.
March 2008	We notified the manufacturer and other stakeholders (without disclosure).
Jun 2008	NXP tries to stop "irresponsible" publication, via injunction (court order).
July 2008	Judge refuses to prohibit, basically on freedom of expression. Also:
	"University acted with due care, warning stakeholders early on"
	"Damage is not result of publication, but of apparent deficiencies in the cards"
	NXP did not appeal

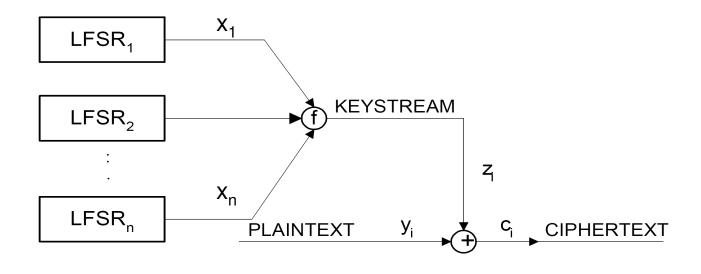
Crypto1 Cipher



 $f_a^4 = 0x9E98 = (a+b)(c+1)(a+d)+(b+1)c+a$ $f_b^4 = 0xB48E = (a+c)(a+b+d)+(a+b)cd+b$ Tag IV ⊕ Serial is loaded first, then Reader IV ⊕ NFSR

Attacking MIFARE (2 seconds on a laptop)

Nonlinear combiner (RFID applications)

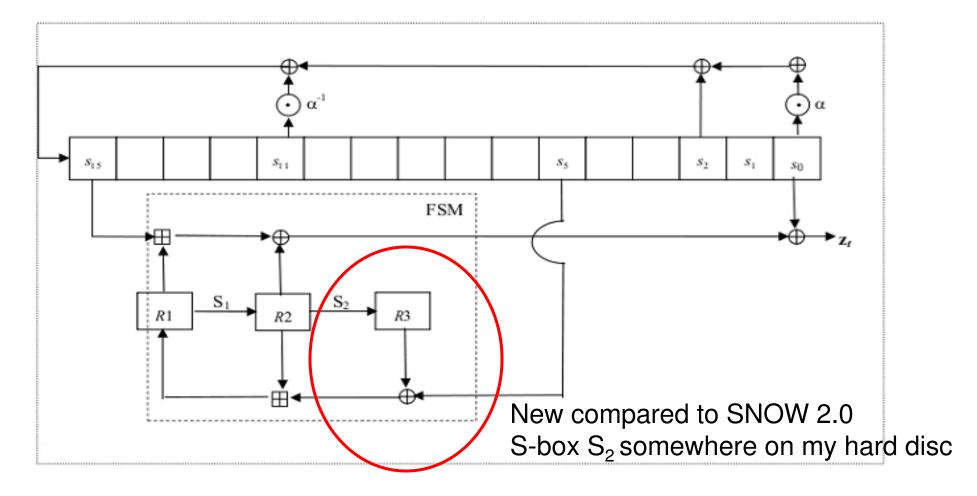


- Period of length $\prod_{i=1}^{n} (2^{L_i} 1)$.
- Linear complexity is evaluation of Boolean function over integers !
 Problem : Design secure Boolean function f !

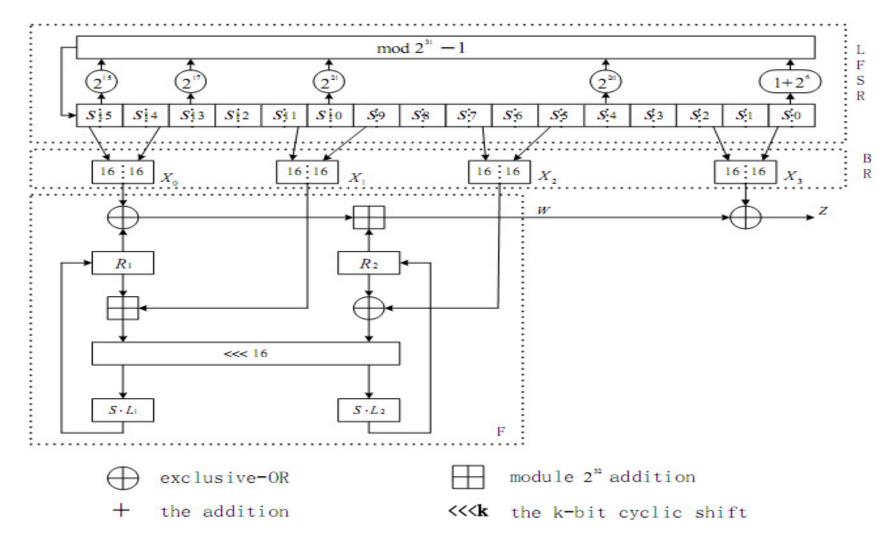
ZUC algorithm – SNOW variant

- SNOW 3.0 was developed for 3G using some nonlinear "secure" permutations over GF(2⁸) of mine (resistant to algebraic attacks)
- After a few more modifications SNOW 3.0 became ZUC very strong design comprehending all inteligent design strategies developed last 30 years

SNOW 3G - design



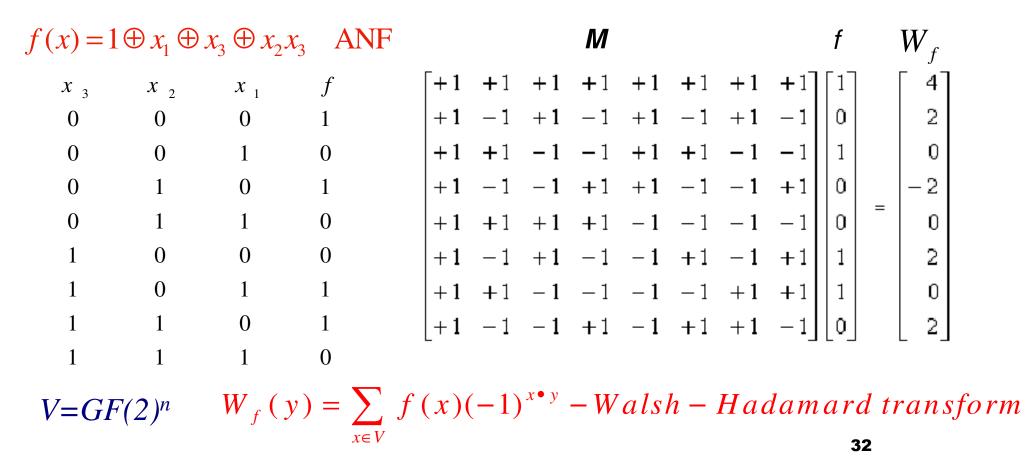
ZUC algorithm



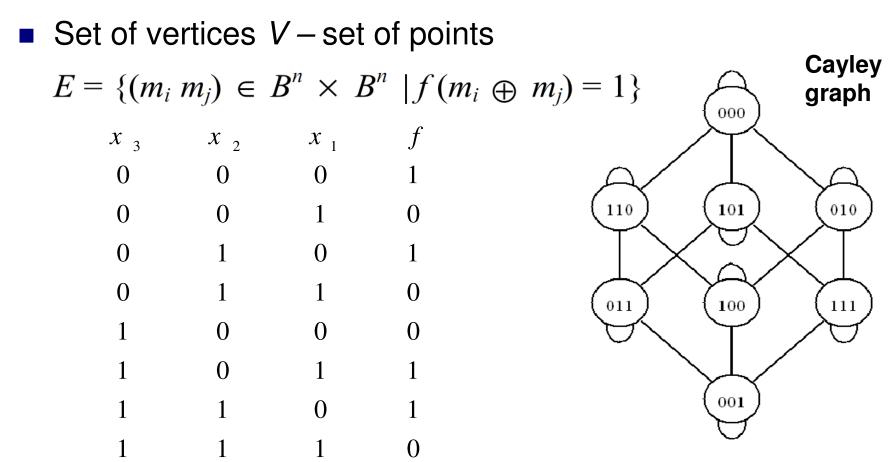
31

Useful transforms for cryptography

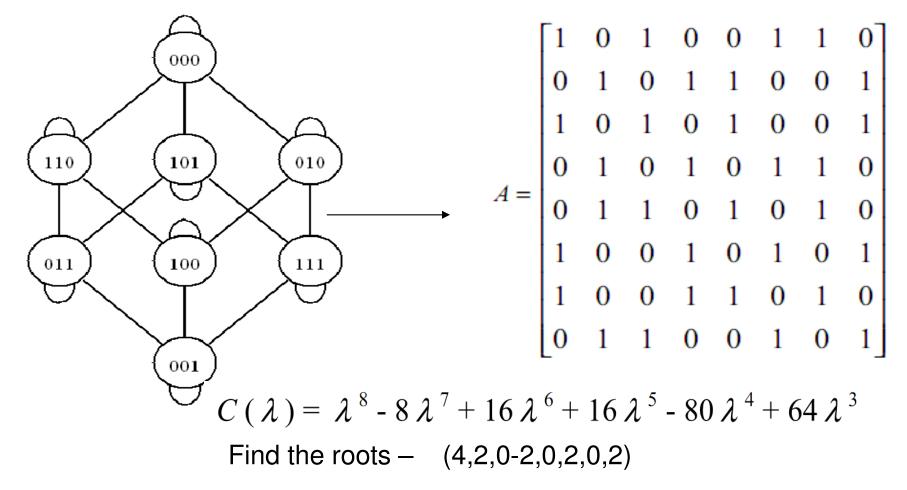
Main tool is Walsh-Hadamard spectra (graphs)



Cayley graph representation



Cayley graph - eigenvalues



34

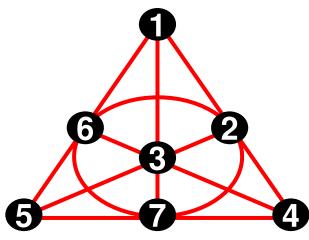
Some open problems

- How to find "good" functions through Cayley graphs ?
- What are "good" functions ?
 - □ high degree
 - □ **algebraic immunity** (no low degree function g such that fg = 0)
 - □ large distance to affine functions and other cryptographic criteria
- Algebraic representation currently seems to be more suitable than graph theoretical tools or ...
- **Research problem**: What is graph like if *f* is constant or affine on some

k – dimensional flat (*k* – normality) ? What is the graph of linear combinations of several functions ?

Hypergraphs

Hypergraph: A set (called "vertices") and a set of sets of vertices (called "edges" or sometimes "hyperedges").



- Example of a 3-uniform hypergraph: The "Fano Plane", V = {1,2,3,4,5,6,7} and
- $\blacksquare E = \{\{1,2,4\},\{2,3,5\},\{3,4,6\},\{4,5,7\},\{5,6,1\},\{6,7,2\},\{7,1,3\}\}.$

Transversals and annihilators

- Algebraic attacks commonly use annihilators of f i.e. existence of low degree g s.t. fg =0. (more variants)
- In 2008, Zhang, Pieprzyk and Zhang showed that transversal *T* - subset of *V* of a "Boolean hypergraph"

 $T \cap e_i \neq \emptyset \quad \forall e_i \in E$

correspond to **annihilator** of f !

- Problem : Transversals found by greedy algorithm not optimal (lowest degree) and
- No connection to fg = h for low degree g, h.

Bent functions - as a special class

- Favourite combinatorial objects (difference sets, coding, CDMA, ...).
- Fix a basis of GF(2ⁿ) to get isomorphism GF(2ⁿ) ≅ GF(2)ⁿ and define for f : GF(2ⁿ) → GF(2),

$$W_f(a) = \sum_{x \in GF(2^n)} (-1)^{f(x) + Tr(ax)},$$

If $|W_f(a)| = 2^{n/2}$ for all $a \in GF(2^n)$ then f is **bent**.

- Maximum distance (uniform) to affine functions, n even !!
- Many known classes, potentially for n = 2k one may consider: $f: GF(2^n) \rightarrow GF(2)$ $f(x) = Tr(ax^{2^k-1} + bx^{r(2^k-1)}); \quad a, b \in GF(2^n), r \in \mathbb{N}.$ 38

Multiple output bent and hyperbent functions

- Then you might get a BENT FUNCTION for some

 a, b ∈ GF(2ⁿ) and r positive number ... Take a = 1, r = 3
 and find b by computer ...
- Nyberg proved in 1992 that the maximum output bent space is n/2 in binary case !
- Meaning: One can find f₁,..., f_k, f_i : GF(2)ⁿ → GF(2) (multiple bent F : GF(2)ⁿ → GF(2)^k) such that

 $a_1f_1 + \ldots + a_kf_k$ is bent $\forall a \in GF(2)^n \setminus \{0\}$.

 Furthermore, define HYPERBENT function so that f(xⁱ) is bent for any i s.t. gcd(i, 2ⁿ − 1) = 1.

Finding bent++ functions

- How to find such classes ?
- Instead of absolute trace use relative trace:

$$Tr_k^n(x) = x + x^2 + x^{2^2} + \ldots + x^{2^{n-k}},$$

a function from $GF(2^n) \to GF(2^k)$.

Consider instead

$$F(x) = Tr_k^n(ax^{2^k-1} + bx^{r(2^k-1)})$$

 Our class with explicit calculation of a, b, r (Pasalic et al. 2012, 2013) is both bent, multiple bent, multiple hyperbent it cannot be more bent than that :)

All credits go to Dillon !

 The exponent 2^k – 1 is known as Dillon's exponent, and for n = 2k we have:

$$2^{n} - 1 = (2^{k} - 1)(2^{k} + 1).$$

- Note that #GF(2^k) \ 0 = 2^k − 1, and there is a cyclic group U of (2^k + 1)th roots of unity of size 2^k + 1 !!
- Simply take a primitive α ∈ GF(2ⁿ) and consider:

$$\{\alpha^{(2^k-1)i}: i=0,\ldots 2^k\} = U.$$

Meaning:

$$GF(2^n)^* = \bigcup_{u \in U} uGF(2^k)^*$$

Application of the unity circle

• We were interested in the functions of type

$$f_{a,r}(x) = Tr(x^{2^k-1} + ax^{r(2^k-1)})$$

Then, since $x \in GF(2^n)$ can be written (uniquely) as x = uy for $u \in U$, $y \in GF(2^k)$,

$$\begin{aligned} f_{a,r}(x) &= f_{a,r}(yu) \\ &= Tr_1^n(u^{2^k-1}y^{2^k-1} + au^{(2^k-1)r}y^{(2^k-1)r}) \\ &= Tr_1^n(u^{2^k-1} + au^{(2^k-1)r}) \\ &= f_{a,r}(u). \end{aligned}$$

Application of the unity circle II

Thus, when computing

$$W_f(a) = \sum_{x \in GF(2^n)} (-1)^{f(x) + Tr(ax)},$$

we end up with something like

$$\begin{split} W_{f}(\lambda) &= \sum_{x \in \mathbb{F}_{2^{n}}} (-1)^{f_{a,r}(x) + Tr_{1}^{n}(\lambda x)} \\ &= 1 + \sum_{u \in U} \sum_{y \in \mathbb{F}_{2^{k}}^{*}} (-1)^{f_{a,r}(yu) + Tr_{1}^{n}(\lambda yu)} \\ &= 1 + \sum_{u \in U} (-1)^{f_{a,r}(u)} \sum_{y \in \mathbb{F}_{2^{k}}^{*}} (-1)^{Tr_{1}^{n}(\lambda yu)} = \dots \end{split}$$

Planar mappings

- From quadratic planar mappings you get commutative semifields (not associative) and affine/projective planes !
- Definition:

$$F(x+a)-F(x),$$

a permutation for any nonzero $a \in \mathbb{F}_q$ and $F : \mathbb{F}_q \to \mathbb{F}_q$!

- Example : F(x) = x² is planar over any field of odd characteristic.
- PROOF: F(x + a) F(x) = x² + 2ax + a² x² = 2ax + a², permutation since any linear polynomial is permutation !
- What if the characteristic of \mathbb{F}_q is p = 2?
- NO planar mappings over GF(2ⁿ) since for any b if x₀ is a solution to F(x + a) + F(x) = b so is x₀ + a

Everything can be extended - Part II

 But planar functions only exist for p ≠ 2. Well, define (extend):

$$\mathcal{F}_f(a) = \sum_{x \in \mathbb{F}_p^n} \omega^{f(x) + a \cdot x}, \quad \omega = e^{\frac{2\pi i}{p}}.$$
 (2)

- Then f : GF(p)ⁿ → GF(p) is bent iff |F_f(a)| = p^{n/2} for any a ∈ GF(p)ⁿ.
- What this got to do with planar mappings ?
- $F: GF(p^n) \to GF(p^n)$ is planar iff

 $s_1f_1+\ldots+s_nf_n$,

is **bent** for all $(s_1, \ldots, s_n) \in GF(p)^{n^*}$!!!

Some final comments

Lots of quadratic planar mappings

$$F(x) = \sum_{0 \le k, j < n} \lambda_{k,j} x^{p^k + p^j}, \ \lambda_{k,j} \in \mathbb{F}_{p^n},$$

added an affine function $A(x) = \sum_{0 \le i < n} a_i x^{p^i}$

- Derivatives are linearized polynomials, easy to handle !
- Nontrivial interesting class of planar mappings is:

$$F(x) = x^{\frac{3^t+1}{2}}$$

over \mathbb{F}_{3^n} , where t is odd and gcd(t, n) = 1.

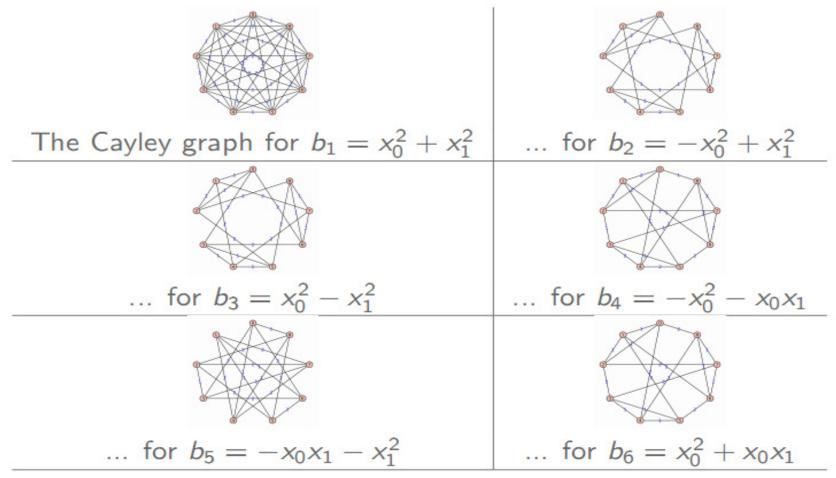
 The only example of nonquadratic planar mappings - hard to find !!!

Bent functions over GF(p)

There are exactly 18 even bent functions $GF(3)^2 \rightarrow GF(3)$ sending 0 to 0.

$GF(3)^{2}$	(0, 0)	(1, 0)	(2, 0)	(0, 1)	(1, 1)	(2, 1)	(0, 2)	(1, 2)	(2, 2)
<i>b</i> ₁	0	1	1	1	2	2	1	2	2
<i>b</i> ₂	0	2	2	1	0	0	1	0	0
b ₃	0	1	1	2	0	0	2	0	0
<i>b</i> ₄	0	2	2	0	1	0	0	0	1
<i>b</i> ₅	0	0	0	2	1	0	2	0	1
<i>b</i> ₆	0	1	1	0	2	0	0	0	2
<i>b</i> ₇	0	0	0	1	2	0	1	0	2
<i>b</i> 8	0	2	2	0	0	1	0	1	0
<i>b</i> 9	0	0	0	2	0	1	2	1	0
<i>b</i> ₁₀	0	2	2	2	1	1	2	1	1
<i>b</i> ₁₁	0	0	0	0	2	1	0	1	2
<i>b</i> ₁₂	0	2	2	1	2	1	1	1	2
<i>b</i> ₁₃	0	1	1	2	2	1	2	1	2
<i>b</i> ₁₄	0	1	1	0	0	2	0	2	0
<i>b</i> ₁₅	0	0	0	1	0	2	1	2	0
<i>b</i> ₁₆	0	0	0	0	1	2	0	2	1
<i>b</i> ₁₇	0	2	2	1	1	2	1	2	1
<i>b</i> ₁₈	0	1	1	2	1	2	2	2	1
							< 🗆 >	< 🗇 🕨	

Corresponding graphs



Thanks for your patience !