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Applications of cryptography

Transportation

ATM/CAT/UPT

e-purse e-ticket

e-commerce (Contactless)

Payment Services
Authentication
Storage Government

Personal Info.

Telephone

"l DA TV Set-Top Box

Mobile
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Cryptography in a nutshell

m Talking about cryptography — not hacking !!
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Missusing protocols

Bank server



Why standard primitives are secure ?

m Because thousands of academics are designing and cryptanalyzing
these primitives

m Do you really care when using public key crypto based on :
- Factoring problem — RSA

- Discrete log problem — EIGammal

- or using finite nonabelian (e.g. Braid) groups, based on solving
equations in noncommutative groups, polycyclic groups ...

m As long as the primitive has undergone public scrutiny you are doing fine



" A
BLAKE hash function YES or NOT ?

m BLAKE entered the final phase of NIST competition (5 left) —
probably a hash standard

/ G4 Qmi MD4
NG5 S 6\ HAMQL RIPDEID

-----------------------------------------------

equipment cost 700 000$
in 2015to find collision !

RIPEMD-128 RIPEMD-160

SHA-224 || SHA-256 || SHA-384 || SHA-512
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BLAKE is secure even though ...

m Janos Vidali, Peter Nose, Enes Pasalic. Collisions for
variants of the BLAKE hash function, IPL, 2010

m Attacks on simplified version, BLAKE not compromized !
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Loose "Guidelines” - secure implementation

» Use well-analyzed primitives, AES, RSA, SHA - xx, unless you
come from military (black box scenario :)

» Update your primitives, check if still using MD5 © (even SHA-1 will need
an update soon)

» Implement all the steps of protocols (try not to speed up algorithm by
cheating !)

» How do you generate the keys ? Where do you store them ?

» Open source usage ? IV vector is reset to 0 when you lose elektricity ?
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Copyright, PKC, homomorphic encryption ...

m Imagine that all encryption algorithms are copyrighted, | would be doing
fine how about you ?

m Only possibility seems to be pattent applications (possibly on stand-
alone basis or with some support) ...

m Cloud computing and homomorphic encryption seem to be very hot
topic, though probably not for ARRS

m + 30 year open problem to embed fully homomorphic encryption
scheme



One-way functions

A one-way function f : X — Y has the properties that
O it is computationally “easy” to compute f(x) for any x € X.

Q it is computationally “difficult” to invert f, i.e. given y € Y, to find an
x € X such that f(x) = y.

Of course, this is vague and needs to be more precisely defined, but the
iIdea is to use such an f as encryption function.

This makes life difficult for the Adversary, (GOOD)
but also for the intended receiver! (BAD)
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Trapdoor one-way function

A trapdoor one-way function is a one-way function f with the further
property that if you know some secret extra information, inverting f
becomes “easy’.

Refined idea: For encryption, we use a trapdoor one-way function for
which only the receiver knows the secret (the trapdoor).

We need not only one trapdoor one-way function E : M — C but a whole
family of such functions, indexed by keys.

m  The public key cryptography realizes these ideas. Based on some old
number theoretical problems.
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RSA — Public key cryptosystem

Key generation:
» Generate two large primes p and g of at least 512 bits.
» Compute N=p-qgand ¢(N)=(p—1)(g—1).
» Select a random integer e, 1 < e < ¢(N), such that

ged(e, (p—1)(g—1)) =1.

» Using the XGCD compute the unique integer d, 1 < d < ¢(N)
with
e-d=1 (mod o(N)).

Public key = (N, e) which can be published.
Private key = (d. p, g) which needs to be kept secret.
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RSA encryption/decryption

RSA key setup

Alice chooses secret primes p and g, computes N = pg and
chooses an e such that ged (e. ®(N)) = 1. She then computes

d=1/ein Z‘;[N]. Her public key is (N, e) and her private key is d.

RSA encryption

Bob wants to encrypt m € Z3, for Alice. He computes
C = m®® mod N.

RSA decryption

Alice computes m = C? mod N.



Decryption - proof

Assume that m € Zj,. Alice computes

C?mod N =m® mod N = m' ™% W) = (m®*WNNhk.m = 1" m=m.

What if m & Z},?

@ This means that m is a multiple of p or g, a very unlikely case
that can be ignored in practice.

@ The equality m®® mod N = m holds also in this case, but
requires another proof, based on the Chinese Remainder
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Proving that decryption works

m We have to show that m¢?=m. Recall that |ed =1+k¢(n)=1+k(p—1)(g—1)

» If gcd(m, p) = 1:

» By Fermat’s Little Theorem we have mP~' =1 (mod p).
» Taking k(g — 1)-th power and multiplying with m yields
miThP=1@=1) = m  (mod p) ()

» If gcd(m, p) = p,then m=0 (mod p) and (x) is valid again.
Hence, in all cases m®? = m (mod p) and by a similar argument
we have m®? =m (mod q).

Since p and g are distinct primes, the CRT leads to

c? = (m®)? = me? = mP=1@" D+ — m (mod N).
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Homomorphic property of RSA (multiplicative)

Essentially RSA is malleable owing to the

Given the encryption of my and m, we can determine the encryption
c3 of mqy - mo.

Letc1 = m1® (mod N) and ¢; = m>® (mod N)

C3=Cy-Co=m° -m¥®=(my-my)® (mod N).

We did this without knowing m4 or m-.

Research problem: To increase speed of encryption/decryption
binary weight of e and d should be small. Can we derive a
lower bound on wt(e ) + wi( d) !

Pw.S
1o
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Pallier E-voting — additive homomorphism

m Suppose Alice, Bob and Oscar are running in an election. Only 6 people
voted in the election.

00 00 01 — 1 Vote Oscar Bob Alice
1 O
00 01 00 = 4
2 O
00 01 00 = 4 ; o
00 00 01 = 1 4 ®
010000 =16 5 o
00 0001 = 1 6 ©
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Short mathematical description

e Decisional composite residuosity assumption
* Given composite n and integer z, it is hard to determine if y exists such that

I}

z=y" (mod n°)

Definition
Pick two large primes p and g and let n = pqg. Let A denote the Carmichael
function, that is, A(n) =Ilcm(p— 1. g — 1). Pick random g € Z*, such that L(g*
mod n?) is invertible modulo n (where L(u) = ”—;1). n and g are public; p and
g (or A) are private. For plaintext x and resulting ciphertext y, select a random
re Zy. Then, y
ex(x.r) =g r" mod n?

L(y* mod n?)

dk(y) = L(g* mod r7) mod n

18



N
Pallier voting - counting

m letp=5and g=7. Then n=2385, n> =1225. gis chosen to be 141 (so that
n | ord(g) ). For the first vote x1 = 1, ris randomly chosen as 4.

m [hen,

‘eK (x1,r) = e, (1,4) = g * rin= 1411 * 4% = 359 mod 1225

x1 | r | eg(xLr)
1] 4 | 350
4 17 173
4 26 486
1 12 1088
16| 11 541
1 32 163
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Encryption/decryption

In order to sum the votes, we multiply the encrypted data modulo n?:
359-173-486- 1088 541 - 163 mod 1225 = 983

We then decrypt:

L(y* mod n®) = L(983" mod 1225) = 353; LA
L(g* mod n?) = L(141'2 mod 1225) — 4525_ 1 _13

dk(y) = (L(y* mod n?))(L(g* mod n?))~" mod n
=1-.13"" mod 35
=27

We convert 27 to (01 02 03) for the final results.
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Cryptography and graph theory
(a few words)
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RFID Technology

ey e, S Sl

Trarsistor
omadensatar

| * ' | | ' | * | * | | '

LT e C T

Reader to tag signal Tag to reader signal
* Dropping field * Modulating field
« Modified Miller Encoding * Manchester Encoding
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RFID Applications

|dentify friend
or foe (1942)

= Electronic
py/ passport

ublic trans
tisketing

RFID Powder

-

Anti-theft

Event ticketing

Supply chain
management
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MIFARE

MIFARE product family from NXP

@ Ultralight
@ Classic or Standard (320B, 1KB and 4KB)
@ DESFire
@ SmartMX

MIFARE dominance

@ Qver 1 billion MIFARE cards sold

@ Over 200 million MIFARE Classic cards in use covering
85% of the contactless smart card market
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MIFARE Classic

@ Used in many office and official buildings

@ Public transport systems

o OV-Chipkaart (Netherlands)
o Qyster card (London)
o Smartrider (Australia)

o EMT (Malaga) =
@ Personnel entrance to Schiphol Airport (Amsterdam)
@ Access to Dutch military bases
@ Popular payment system in Asia
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Manufacturer response- freedom of publishing ?

Timeline

Dec 2007 CCC presentation by Nohl and Plotz
March 2008 We recover CRYPTO1 and found attacks.

March 2008 We notified the manufacturer and other
stakeholders (without disclosure).

Jun 2008 NXP tries to stop “irresponsible” publication, via
injunction (court order).

July 2008 Judge refuses to prohibit, basically on freedom of
expression. Also:

“University acted with due care, warning
stakeholders early on”

“Damage is not result of publication, but of
apparent deficiencies in the cards”

NXP did not appeal

26



——

Cryptol Cipher

Key Tag/Reader IV
L
[o] [47) 3] _--- o]
B R
[ 1 1
[o]s]9 |10|11|12|13|14|15|17|18|19l21|23|24|25|27|29|31| |33|35|:37|39|41|42|43|45|47|

01 23 123||0123||0123||0 123|

% wwww

f5 = 0XEC57ES80A

I I [ 1
[B11s[13[12[10] 0 |=—CF S B --- |0 |_,,| }
] Reader IV?

Tag IV Response? Serzal

Challenge?

out

f2=0x9E98 = (a+b)(c+1)(a+d)+(b+1)c+a ;I‘ag IV @ Serial is
oaded first, then

_]%4 = 0xB4 8E = (a+c)(a+b+d)+(a+b)cd+b Reader IV ® NFSR

(2 seconds on a laptop)
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Nonlinear combiner (RFID applications)

X,

LFSR,
LFSR, t KEYSTREAM
4
Xn
LFSR, PLAINTEXT Yi A G CIPHERTEXT
N g

e Period of length [, (2% — 1).

e Linear complexity is evaluation of Boolean function over integers !

Problem : Design secure Boolean function f/

28
Stream ciphers
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ZUC algorithm — SNOW variant

m SNOW 1.0 and 2.0 were developed in Lund in early 2000 (while | was
developing better primitives Thomas and Patrik were designing a cipher
Q)

m SNOW 3.0 was developed for 3G using some nonlinear "secure”
permutations over GF(2"8) of mine (resistant to algebraic attacks)

m After a few more modifications SNOW 3.0 became ZUC — very strong
design comprehending all inteligent design strategies developed last 30
years

29
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SNOW 3G - design

FSM |

A

New compared to SNOW 2.0
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ZUC algorithm

- 2 i .
- )
L
< L6
. L &.La
I | | I [

E}B exc lusive—0OR

_|_

the addition

module 2® addition

<<<k +the k—-bit cvclic shift

31
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Useful transforms for cryptography

m Main tool is Walsh-Hadamard spectra (graphs)

f()=10x ®x,®x,x;, ANF m W,
X, X, X, f +1 +1 +1 +1 +1 +1 +1 +1|[1] [ 4]
0 0 0 1 +1 -1 +1 -1 +1 -1 +1 —1}||0 2
0 0 1 0 +1 +1 -1 -1 +1 +1 -1 =1}|1 [
0 1 0 1 +1 -1 -1 41 +1 -1 -1 +1}|/|0 -2
0 1 1 0 +1 41 +1 +1 -1 -1 —1 —1{la| ~ | ©
1 0 0 0 +1 -1 +1 -1 -1 +1 -1 +1]]1 2
1 0 1 1 +1 +1 -1 -1 -1 =1 +1 +1||1 0
1 1 0 1 +1 -1 -1 +1 -1 +1 +1 -1]|0 2
1 1 1 0 ) S

V=GF(2)" W, (y) = Z f(x)(=1D)*"" —=Walsh— Hadamard transform

xeV 32
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Cayley graph representation

m Set of vertices V — set of points
E={(mm) e B"x B"|f(m @ m)=1}

X3 X X f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
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Cayley graph - eigenvalues

1

0 0 1
1 0 0O
0 0O

0

1

0

1
1

|
|

0

1

1
|

0 0O
0 0O
1

1
|

0

0 0 1

1

~ C(A)= A -8A7T+161°+16A4°-801%+642°

(4,2,0-2,0,2,0,2)

Find the roots —
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Some open problems

m How to find "good” functions through Cayley graphs ?

m What are "good” functions ?
high degree
algebraic immunity (no low degree function g such that fg =0)
large distance to affine functions and other cryptographic criteria

m Algebraic representation currently seems to be more suitable than graph
theoretical tools or ...

m Research problem: What is graph like if fis constant or affine on some

k —dimensional flat (k — normality) ? What is the graph of linear
combinations of several functions ? .....
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Hypergraphs

Hypergraph: A set (called “vertices”) and a set of sets of
vertices (called “edges” or sometimes “hyperedges”).

m Example of a 3-uniform hypergraph: The “Fano Plane”, V
={1,2,3,4,5,6,7} and

m E={{1,2,4},{2,3,5},{3,4,6},{4,5,7},{5,6,1},{6,7,2},{7,1,3}}.
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Transversals and annihilators

m Algebraic attacks commonly use annihilators of f i.e.
existence of low degree g s.t. fg =0. (more variants)

m In 2008, Zhang, Pieprzyk and Zhang showed that
transversal T - subset of V' of a "Boolean hypergraph”

Tmej;t@ Ve e E

correspond to annihilator of f !

m Problem : Transversals found by greedy algorithm not
optimal (lowest degree) and

m No connectionto fg=/ forlow degree g, h.
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Bent functions - as a special class

e Favourite combinatorial objects (difference sets, coding,

CDMA, ...).

e Fix a basis of GF(2") to get isomorphism GF(2") = GF(2)"
and define for f : GF(2") — GF(2),

Wf(a) _ Z (_1]1"’[}:'}4—7}(3;{}?
xe GF(27)

If |We(a)| =272 for all a € GF(2") then f is bent.

e Maximum distance (uniform) to affine functions, n even !!
e Many known classes, potentially for n = 2k one may consider:
f: GF(2") — GF(2)
f(x) = Tr[axzk_l 4 bx"{zk_l}]; a,be GF(2"),r € N.
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Multiple output bent and hyperbent functions

e Then you might get a BENT FUNCTION for some
a,b e GF(2") and r positive number ... Take a=1, r =3
and find b by computer ...

e Nyberg proved in 1992 that the maximum output bent space
is n/2 in binary case |

e Meaning: One can find fi,.. ., fi, fi - GF(2)" — GF(2)

(multiple bent F : GF(2)" — GF(2)*) such that
aifi +...+ axf is bent Vae GF(2)" "\ {0}.
e Furthermore, define HYPERBENT function so that f(x') is

bent for any i s.t. gcd(i,2" — 1) = 1.
39
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Finding bent++4 functions

e How to find such classes 7

e |nstead of absolute trace use relative trace:

En—.ﬁ:

Trg(x]:x+x2—|—x22+...+x

a function from GF(2") — GF(2¥).

e (Consider instead

F(x) = Trﬁ(axzk_l + bx"{zk_l}]

e Qur class with explicit calculation of a, b, r (Pasalic et al.
2012, 2013) is both bent, multiple bent, multiple hyperbent -
it cannot be more bent than that :)
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All credits go to Dillon |

e The exponent 2¥ — 1 is known as Dillon’s exponent, and for
n = 2k we have:

2" — 1 = (2K = 1)(2F + 1).

e Note that #GF(2%)\ 0 = 2X — 1, and there is a cyclic group
U of (2X + 1)th roots of unity of size 2% 41 11

e Simply take a primitive a € GF(2") and consider:
{r}.':zk_l}" i =0,...25} = U.

e Meaning:
GF(2")* = UueyuGF(2%)*
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Application of the unity circle

e We were interested in the functions of type

far(x) = Tr(xzk_l + axrfz#_”)

Then, since x € GF(2") can be written (uniquely) as x = uy
for ue U, y € GF(2%),

f;-_.r(x) Fagr(yu)
Trln(uE*—IyE*—l + au{?*—l}ry{zk—l}r)
Trf(ugk_l -+ au{gk_l}r)

= far(u).
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Application of the unity circle ||

e Thus, when computing

W,r(a] _ Z (_1}:"’{}:'}—#7?{3;{}?
xeGF(27)

we end up with something like

Wf()\.} — Z (_1:}farr{}f}—|—Tr{’{}.x}
XE:FE::I
= 14+ > S (1) FTHCw)
uEUyEF;k

= 1+ Z(_ljfa[u] Z (_1}Trf{}.yu} ——
usU

yEF;k
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Planar mappings

e From quadratic planar mappings you get commutative
semifields (not associative) and affine/projective planes !

e Definition:
F(x +a) — F(x),

a permutation for any nonzero a € F, and F : F;, — F, |

e Example :F(x) = x?

characteristic.

is planar over any field of odd

e PROOF: F(x + a) — F(x) = x® + 2ax + a% — x? = 2ax + a°,
permutation since any linear polynomial is permutation !

e What if the characteristicof g is p=27

e NO planar mappings over GF(2") since for any b if xg is a
solution to F(x + a) + F(x) = b so is xg + a
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Everything can be extended - Part Il

e But planar functions only exist for p = 2. Well, define
(extend):

Fr(a) = S wfeatax = % (2)

xEFE

e Then f: GF(p)" — GF(p) is bent iff |Fr(a)| = p"/? for any
ac GF(p)".

e VWhat this got to do with planar mappings 7

e F: GF(p") — GF(p") is planar iff
51ﬁ_+'***+'5nﬁ1

is bent for all (sq..... sn) € GF(p)n™ Il
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Some final comments

m Lots of quadratic planar mappings

"I{ - i
F(J{'}I — Z )\kdxp +‘DJ? )"lk,jE-jp”g
0<k.j<n

added an affine function A(x) = zﬂif{n a;xpj

e Derivatives are linearized polynomials, easy to handle |

e Nontrivial interesting class of planar mappings is:

-

3 +1

F(x) = x"2

over [F3n, where t is odd and gcd(t, n) = 1.

e The only example of nonquadratic planar mappings - hard to

find 111
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Bent functions over GF(p)

There are exactly 18 even bent functions GF(3)? — GF(3)

sending O to O.

(0, 2) (1, 2) (2, 2)

(2, 1)

(1, 1)

(0. 1)

(2, 0)

(1. 0)
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OO0 O0O0 A A0 000N

SHMNONOAONNOAMNO A0 A0

NOOOO0O0O0 A A0 G0 GO0

OO AN OOAMMNMOO A A A

AANOMNOAO0O0NMNOAMNO A0 AR

A ANOAO0OMNONON A OO0 A

S ANOHOMONON A OO0 N A

_
o
D.DUGDDDDDDDDDD.UDUDD
[}
\%123&.56?890123.&.56?8
Ce 88888 885558555588
0
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Corresponding graphs
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Thanks for your
patience !



