Adjacency preservers

Marko Orel

Rogla, 18.5.2013

Overview of the talk

(1) Preserver problems
(2) Adjacency preservers
(3) Some techniques related to other mathematical areas

- Special theory of relativity
(6) Hamiltonicity

Overview of the talk

(1) Preserver problems
(2) Adjacency preservers
(3) Some techniques related to other mathematical areas
a Snecial theory of relativity
© Hamiltonicity

Overview of the talk

(1) Preserver problems
(2) Adjacency preservers
(3) Some techniques related to other mathematical areas
(- Special theory of relativity
(6) Hamiltonicity

Overview of the talk

(1) Preserver problems
(2) Adjacency preservers
(3) Some techniques related to other mathematical areas

- Special theory of relativity
(6) Hamiltonicity

Overview of the talk

（1）Preserver problems
（2）Adjacency preservers
（3）Some techniques related to other mathematical areas
（1）Special theory of relativity
© Hamiltonicity

Overview of the talk

(1) Preserver problems
(2) Adjacency preservers
(3) Some techniques related to other mathematical areas
(1) Special theory of relativity
(5) Hamiltonicity

Form of a typical preserver problem
$M_{n}=$ the set of all $n \times n$ matrices
AIM: classification of all maps
$\Phi: M_{n} \rightarrow M_{n}$
that preserve some:
(1) function
(3) subset
(3) relation

Form of a typical preserver problem

$M_{n}=$ the set of all $n \times n$ matrices

AIM: classification of all maps

$\phi: M_{n} \rightarrow M_{n}$
that preserve some:
(1) function
(2) subset
(3) relation
$M_{n}=$ the set of all $n \times n$ matrices
AIM: classification of all maps

$$
\Phi: M_{n} \rightarrow M_{n}
$$

that preserve some:
© function
(2) subset
(3) relation
$M_{n}=$ the set of all $n \times n$ matrices
AIM: classification of all maps

$$
\Phi: M_{n} \rightarrow M_{n}
$$

that preserve some:
(1) function
(2) subset
(3) relation
$M_{n}=$ the set of all $n \times n$ matrices
AIM: classification of all maps

$$
\Phi: M_{n} \rightarrow M_{n}
$$

that preserve some:
(1) function
(2) subset
(3) relation
$M_{n}=$ the set of all $n \times n$ matrices
AIM: classification of all maps

$$
\Phi: M_{n} \rightarrow M_{n}
$$

that preserve some:
(1) function
(2) subset
(3) relation

Example 1: Determinant preservers

Frobenius, 1897

A linear biiective map $\Phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ preserves determinant, that is, $\operatorname{det} \Phi(A)=\operatorname{det} A$ for all A, if and only if

$$
\Phi(A)=P A Q \quad \text { or } \quad \Phi(A)=P A^{\top} Q,
$$

where $\operatorname{det}(P Q)=1$.

Example 1：Determinant preservers

Frobenius， 1897

A linear bijective map $\Phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ preserves determinant， that is， $\operatorname{det} \Phi(A)=\operatorname{det} A$ for all A ，if and only if

$$
\Phi(A)=P A Q \quad \text { or } \quad \Phi(A)=P A^{\top} Q,
$$

where $\operatorname{det}(P Q)=1$ ．

Example 2: Idempotent preservers

```
m= p
Z}\mp@subsup{\mathbb{Z}}{m}{}={0,1,2,\ldots,m-1
e\in\mp@subsup{\mathbb{Z}}{m}{}}\mathrm{ is idempotent if }\mp@subsup{e}{}{2}=
A\in M
```

A linear map $\Phi: M_{n}\left(\mathbb{Z}_{m}\right) \rightarrow M_{n}\left(\mathbb{Z}_{m}\right)$ preserves idempotents, that
is, $\Phi(A)^{2}=\Phi(A)$ whenever $A^{2}=A$, if and only if

$$
\Phi(A)=e P\left(f A+(1-f) A^{\top}\right) P^{-1}
$$

where e, $f \in \mathbb{Z}_{m}$ are idempotents.

Example 2：Idempotent preservers

$m=p_{1} p_{2} \cdots p_{k}$ product of distinct odd primes，
$\mathbb{Z}_{m}=\{0,1,2, \ldots, m-1\}$
$e \in \mathbb{Z}_{m}$ is idempotent if $e^{2}=e$
$A \in M_{n}\left(\mathbb{Z}_{m}\right)$ is idempotent if $A^{2}=A$ ．
A linear map $\Phi: M_{n}\left(\mathbb{Z}_{m}\right) \rightarrow M_{n}\left(\mathbb{Z}_{m}\right)$ preserves idempotents，that is，$\Phi(A)^{2}=\Phi(A)$ whenever $A^{2}=A$ ，if and only if

$$
\Phi(A)=e P\left(f A+(1-f) A^{\top}\right) P^{-1},
$$

where $e, f \in \mathbb{Z}_{m}$ are idempotents．

Example 2: Idempotent preservers

$m=p_{1} p_{2} \cdots p_{k}$ product of distinct odd primes,
$\mathbb{Z}_{m}=\{0,1,2, \ldots, m-1\}$
$e \in \mathbb{Z}_{m}$ is idempotent if $e^{2}=e$
$A \in M_{n}\left(\mathbb{Z}_{m}\right)$ is idempotent if $A^{2}=A$.
A linear map $\Phi: M_{n}\left(\mathbb{Z}_{m}\right) \rightarrow M_{n}\left(\mathbb{Z}_{m}\right)$ preserves idempotents, that is, $\Phi(A)^{2}=\Phi(A)$ whenever $A^{2}=A$, if and only if

where $e, f \in \mathbb{Z}_{m}$ are idempotents.

Example 2: Idempotent preservers

$m=p_{1} p_{2} \cdots p_{k}$ product of distinct odd primes,
$\mathbb{Z}_{m}=\{0,1,2, \ldots, m-1\}$
$e \in \mathbb{Z}_{m}$ is idempotent if $e^{2}=e$
$A \in M_{n}\left(\mathbb{Z}_{m}\right)$ is idempotent if $A^{2}=A$.
A linear map $\Phi: M_{n}\left(\mathbb{Z}_{m}\right) \rightarrow M_{n}\left(\mathbb{Z}_{m}\right)$ preserves idempotents, that is, $\Phi(A)^{2}=\Phi(A)$ whenever $A^{2}=A$, if and only if

where $e, f \in \mathbb{Z}_{m}$ are idempotents.

Example 2: Idempotent preservers

$m=p_{1} p_{2} \cdots p_{k}$ product of distinct odd primes,
$\mathbb{Z}_{m}=\{0,1,2, \ldots, m-1\}$
$e \in \mathbb{Z}_{m}$ is idempotent if $e^{2}=e$
$A \in M_{n}\left(\mathbb{Z}_{m}\right)$ is idempotent if $A^{2}=A$.
A linear $\operatorname{map} \Phi: M_{n}\left(\mathbb{Z}_{m}\right) \rightarrow M_{n}\left(\mathbb{Z}_{m}\right)$ preserves idempotents, that is, $\Phi(A)^{2}=\Phi(A)$ whenever $A^{2}=A$, if and only if

where $e, f \in \mathbb{Z}_{m}$ are idempotents.

Example 2: Idempotent preservers

$m=p_{1} p_{2} \cdots p_{k}$ product of distinct odd primes,
$\mathbb{Z}_{m}=\{0,1,2, \ldots, m-1\}$
$e \in \mathbb{Z}_{m}$ is idempotent if $e^{2}=e$
$A \in M_{n}\left(\mathbb{Z}_{m}\right)$ is idempotent if $A^{2}=A$.
A linear map $\Phi: M_{n}\left(\mathbb{Z}_{m}\right) \rightarrow M_{n}\left(\mathbb{Z}_{m}\right)$ preserves idempotents, that is, $\Phi(A)^{2}=\Phi(A)$ whenever $A^{2}=A$, if and only if

$$
\Phi(A)=e P\left(f A+(1-f) A^{\top}\right) P^{-1}
$$

where $e, f \in \mathbb{Z}_{m}$ are idempotents.

Example 3: Adjacency preservers

$\mathcal{M}=$ a set of matrices
$A, B \in \mathcal{M}$ are adjacent if $\operatorname{rk}(A-B)$ is minimal and nonzero
$\mathcal{M} \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$

$$
\mathcal{M}=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2
$$

Example 3: Adjacency preservers

$\mathcal{M}=$ a set of matrices
$A, B \in \mathcal{M}$ are adjacent if $\operatorname{rk}(A-B)$ is minimal and nonzero
$\mathcal{N} \in\left\{M_{m \times n}(\mathbb{T}), S_{n}(\mathbb{T}), H_{n}(\mathbb{T})\right\} \Longrightarrow \operatorname{Mk}(A-B)=1$
$\mathcal{M}=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$

Example 3: Adjacency preservers

$\mathcal{M}=$ a set of matrices
$A, B \in \mathcal{M}$ are adjacent if $\operatorname{rk}(A-B)$ is minimal and nonzero
$\mathcal{M} \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$\mathcal{M}=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$

Example 3: Adjacency preservers

$\mathcal{M}=$ a set of matrices
$A, B \in \mathcal{M}$ are adjacent if $\operatorname{rk}(A-B)$ is minimal and nonzero
$\mathcal{M} \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$\mathcal{M}=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$

Example 3: Adjacency preservers

$\mathcal{M}=$ a set of matrices
$A, B \in \mathcal{M}$ are adjacent if $\operatorname{rk}(A-B)$ is minimal and nonzero
$\mathcal{M} \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$\mathcal{M}=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$

Example 3: Adjacency preservers

$\mathcal{M}=$ a set of matrices
$A, B \in \mathcal{M}$ are adjacent if $\operatorname{rk}(A-B)$ is minimal and nonzero
$\mathcal{M} \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$\mathcal{M}=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$

Adjacency preservers

$\Phi: \mathcal{M} \rightarrow \mathcal{M}$ preserves adjacency in both directions, if
A, B are adjacent $\Longrightarrow \Phi(A), \Phi(B)$ are adjacent.
$\Gamma=(V, E), V=\mathcal{M}, E=\{\{A, B\}: A$ and B are adjacent $\}$
Bijective adj. preserves in both directions $=$ automorphisms of Γ
Adjacency preservers $=$ endomorphisms of Γ

Adjacency preservers

$\Phi: \mathcal{M} \rightarrow \mathcal{M}$ preserves adjacency in both directions, if
A, B are adjacent $\Longleftrightarrow \Phi(A), \Phi(B)$ are adjacent.
$\Gamma=(V, E), V=\mathcal{M}, E=\{\{A, B\}: A$ and B are adjacent $\}$
Bijective adj. preserves in both directions $=$ automorphisms of Γ
Adjacency preservers $=$ endomorphisms of Γ

Adjacency preservers

$\Phi: \mathcal{M} \rightarrow \mathcal{M}$ preserves adjacency in both directions, if
A, B are adjacent $\Longleftrightarrow \Phi(A), \Phi(B)$ are adjacent.
$\Gamma=(V, E), V=\mathcal{M}, E=\{\{A, B\}: A$ and B are adjacent $\}$ Bijective adj. preserves in both directions $=$ automorphisms of Γ Adjacency preservers $=$ endomorphisms of Γ

Adjacency preservers

$\Phi: \mathcal{M} \rightarrow \mathcal{M}$ preserves adjacency in both directions, if
A, B are adjacent $\Longleftrightarrow \Phi(A), \Phi(B)$ are adjacent.
$\Gamma=(V, E), V=\mathcal{M}, E=\{\{A, B\}: A$ and B are adjacent $\}$ Bijective adj. preserves in both directions $=$ automorphisms of Γ Adjacency preservers $=$ endomorphisms of Γ

Adjacency preservers

$\Phi: \mathcal{M} \rightarrow \mathcal{M}$ preserves adjacency in both directions, if
A, B are adjacent $\Longleftrightarrow \Phi(A), \Phi(B)$ are adjacent.
$\Gamma=(V, E), V=\mathcal{M}, E=\{\{A, B\}: A$ and B are adjacent $\}$
Bijective adj. preserves in both directions $=$ automorphisms of Γ
Adjacency preservers $=$ endomorphisms of Γ

Adjacency preservers

$\Phi: \mathcal{M} \rightarrow \mathcal{M}$ preserves adjacency in both directions, if
A, B are adjacent $\Longleftrightarrow \Phi(A), \Phi(B)$ are adjacent.
$\Gamma=(V, E), V=\mathcal{M}, E=\{\{A, B\}: A$ and B are adjacent $\}$
Bijective adj. preserves in both directions $=$ automorphisms of Γ
Adjacency preservers $=$ endomorphisms of Γ

Adjacency preservers

Bijective maps that preserves adjacency in both directions on

$$
\mathcal{M} \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F}), A_{n}(\mathbb{F})\right\}
$$

are characterized by Hua's fundamental theorem of geometry of **** matrices.
$\mathcal{M}=H_{n}(\mathbb{F})$

$$
\Phi(A)=\lambda P A^{\sigma} P^{*}+B
$$

Adjacency preservers

Bijective maps that preserves adjacency in both directions on

$$
\mathcal{M} \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F}), A_{n}(\mathbb{F})\right\}
$$

are characterized by Hua's fundamental theorem of geometry of **** matrices.
$\mathcal{M}=H_{n}(\mathbb{F})$

Adjacency preservers

Bijective maps that preserves adjacency in both directions on

$$
\mathcal{M} \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F}), A_{n}(\mathbb{F})\right\}
$$

are characterized by Hua's fundamental theorem of geometry of **** matrices.
$\mathcal{M}=H_{n}(\mathbb{F})$

$$
\Phi(A)=\lambda P A^{\sigma} P^{*}+B
$$

Adjacency preservers

Some generalizations
（bijectivity and＇both directions＇are not assumed）
－$H_{n}(\mathbb{C})$（Huang，Šemrl 2008）
－$S_{n}(\mathbb{R})($ Legiša 2011）
－$H_{n}\left(\mathbb{F}_{q^{2}}\right)($ Orel 2009）
－$S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$（Orel 2012）
－$M_{m \times n}(\mathbb{D})$ ，some additional assumptions（Šemrl，accepted）
－$H G L\left(\mathbb{F}_{q^{2}}\right), a \geq 4$（Orel）

Adjacency preservers

Some generalizations
（bijectivity and＇both directions＇are not assumed）
－$H_{n}(\mathbb{C})$（Huang，Šemrl 2008）
－$S_{n}(\mathbb{R})($ Legiša 2011）
－$H_{n}\left(\mathbb{F}_{q^{2}}\right)($ Orel 2009）
－$S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$（Orel 20：12）
－$M_{m \times n}(\mathbb{D})$ ，some additional assumptions（Šemrl，accepted）
－$H G L\left(\mathbb{F}_{q^{2}}\right), q \geq 4$（Orel）

Adjacency preservers

Some generalizations
（bijectivity and＇both directions＇are not assumed）
－$H_{n}(\mathbb{C})$（Huang，Šemrl 2008）
－$S_{n}(\mathbb{R})($ Legiša 2011）
－$H_{n}\left(\mathbb{F}_{q^{2}}\right)($ Orel 2009）
－$S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$（Orel 2012）
－$M_{m \times n}(\mathbb{D})$ ，some additional assumptions（Šemrl，accepted）
－$H G L\left(\mathbb{F}_{q^{2}}\right), q \geq 4$（Orel）

Adjacency preservers

Some generalizations
（bijectivity and＇both directions＇are not assumed）
－$H_{n}(\mathbb{C})$（Huang，Šemrl 2008）
－$S_{n}(\mathbb{R})($ Legiša 2011）
－$H_{n}\left(\mathbb{F}_{q^{2}}\right)($ Orel 2009）
－$S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$（Orel 2012）
－$M_{m \times n}(\mathbb{D})$ ，some additional assumptions（Šemrl，accepted）
－ $\operatorname{HGL}\left(\mathbb{F}_{q^{2}}\right), a \geq 4$（Orel）

Adjacency preservers

Some generalizations
（bijectivity and＇both directions＇are not assumed）
－$H_{n}(\mathbb{C})$（Huang，Šemrl 2008）
－$S_{n}(\mathbb{R})($ Legiša 2011）
－$H_{n}\left(\mathbb{F}_{q^{2}}\right)($ Orel 2009）
－$S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$（Orel 2012）
－$M_{m \times n}(\mathbb{D})$ ，some additional assumptions（Semrl，accepted）
－$H G L\left(\mathbb{F}_{q^{2}}\right), q \geq 4$（Orel）

Adjacency preservers

Some generalizations
(bijectivity and 'both directions' are not assumed)

- $H_{n}(\mathbb{C})$ (Huang, Šemrl 2008)
- $S_{n}(\mathbb{R})($ Legiša 2011)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)($ Orel 2009)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012)
- $M_{m \times n}(\mathbb{D})$, some additional assumptions (Šemrl, accepted)
- $H G L\left(\mathbb{F}_{q^{2}}\right), q \geq 4$ (Orel)

Adjacency preservers

Some generalizations
(bijectivity and 'both directions' are not assumed)

- $H_{n}(\mathbb{C})$ (Huang, Šemrl 2008)
- $S_{n}(\mathbb{R})($ Legiša 2011)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)($ Orel 2009)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012)
- $M_{m \times n}(\mathbb{D})$, some additional assumptions (Šemrl, accepted)
- $H G L\left(\mathbb{F}_{q^{2}}\right), q \geq 4$ (Orel)
- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a core if $\operatorname{Aut}(\Gamma)=\operatorname{End}(\Gamma)$.

Godsil, Royle, 2011
If Γ connected regular, Aut (Γ) acts transitively on pairs of vertices at distance 2, then Γ is a core or $\chi(\Gamma)=\omega(\Gamma)$

$H_{n}\left(\mathbb{F}_{q^{2}}\right)$ distance regular
$S_{n}\left(\mathbb{F}_{q}\right)$ Cayley graph over abelian group
\qquad

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a core if $\operatorname{Aut}(\Gamma)=\operatorname{End}(\Gamma)$.

Godsil, Royle, 2011
If Γ connected regular, Aut (Γ) acts transitively on pairs of vertices at distance 2, then Γ is a core or $\chi(\Gamma)=\omega(\Gamma)$

$H_{n}\left(\mathbb{F}_{q^{2}}\right)$ distance regular
$S_{n}\left(\mathbb{F}_{q}\right)$ Cayley graph over abelian group
\qquad

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a core if $\operatorname{Aut}(\Gamma)=\operatorname{End}(\Gamma)$.
$H_{n}\left(\mathbb{F}_{q^{2}}\right)$
$S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$
$H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4, q=2$
Godsil, Royle, 2011
If Γ connected regular, $\operatorname{Aut}(\Gamma)$ acts transitively on pairs of vertices
at distance 2 , then Γ is a core or $\chi(\Gamma)=\omega(\Gamma)$

$H_{n}\left(\mathbb{F}_{q^{2}}\right)$ distance regular
$S_{n}\left(\mathbb{F}_{q}\right)$ Cayley graph over abelian group

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a core if $\operatorname{Aut}(\Gamma)=\operatorname{End}(\Gamma)$.
$H_{n}\left(\mathbb{F}_{q^{2}}\right)$
$S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$
$H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4, q=2$

Godsil, Royle, 2011

If Γ connected regular, $\operatorname{Aut}(\Gamma)$ acts transitively on pairs of vertices at distance 2 , then Γ is a core or $\chi(\Gamma)=\omega(\Gamma)$

$H_{n}\left(\mathbb{F}_{q^{2}}\right)$ distance regular
$S_{n}\left(\mathbb{F}_{q}\right)$ Cayley graph over abelian group

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a core if $\operatorname{Aut}(\Gamma)=\operatorname{End}(\Gamma)$.
$H_{n}\left(\mathbb{F}_{q^{2}}\right)$
$S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$
$H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4, q=2$

Godsil, Royle, 2011

If Γ connected regular, $\operatorname{Aut}(\Gamma)$ acts transitively on pairs of vertices at distance 2 , then Γ is a core or $\chi(\Gamma)=\omega(\Gamma)$
$\chi(\Gamma) \geq 1+\frac{\lambda_{\text {max }}}{-\lambda_{\text {min }}}$
$H_{n}\left(\mathbb{F}_{q^{2}}\right)$ distance regular
$S_{n}\left(\mathbb{F}_{q}\right)$ Cayley graph over abelian group

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a core if $\operatorname{Aut}(\Gamma)=\operatorname{End}(\Gamma)$.
$H_{n}\left(\mathbb{F}_{q^{2}}\right)$
$S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$
$H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4, q=2$

Godsil, Royle, 2011

If Γ connected regular, $\operatorname{Aut}(\Gamma)$ acts transitively on pairs of vertices at distance 2 , then Γ is a core or $\chi(\Gamma)=\omega(\Gamma)$
$\chi(\Gamma) \geq 1+\frac{\lambda_{\text {max }}}{-\lambda_{\text {min }}}$
$H_{n}\left(\mathbb{F}_{q^{2}}\right)$ distance regular
$S_{n}\left(\mathbb{F}_{q}\right)$ Cayley graph over abelian group

A Minkowski space-time M_{4} is \mathbb{R}^{4} equipped with a product

$$
\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=-x_{1} x_{2}-y_{1} y_{2}-z_{1} z_{2}+c^{2} t_{1} t_{2}
$$

between events $\mathbf{r}_{1}:=\left(x_{1}, y_{1}, z_{1}, c t_{1}\right)$ and $\mathbf{r}_{2}:=\left(x_{2}, y_{2}, z_{2}, c t_{2}\right)$.
A map $\phi: M_{4} \rightarrow M_{4}$ preserves the speed of light if

$$
\left(\phi\left(\mathbf{r}_{1}\right)-\phi\left(\mathbf{r}_{2}\right), \phi\left(\mathbf{r}_{1}\right)-\phi\left(\mathbf{r}_{2}\right)\right)=0 \text { whenever }\left(\mathbf{r}_{1}-\mathbf{r}_{2}, \mathbf{r}_{1}-\mathbf{r}_{2}\right)=0
$$

These maps are closely related to adjacency preservers on 2×2 hermitian matrices.

There are only 5 known connected vertex transitive graphs that are not hamiltonian: K_{2}, Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph

$H G L_{n}\left(\mathbb{F}_{4}\right)$
vertex transitive
$S G L_{n}\left(\mathbb{F}_{2}\right)$ vertex transitive for odd n

Problem

Are graphs $H G L_{n}\left(\mathbb{F}_{4}\right)$ and $S G L_{m}\left(\mathbb{F}_{2}\right)$ hamiltonian for $n \geq 3$ and $m \geq 4$? How to construct a hamiltonian cycle if it exists?

There are only 5 known connected vertex transitive graphs that are not hamiltonian: K_{2}, Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph
$H G L_{2}\left(\mathbb{F}_{4}\right)=$ Petersen graph
$H G L_{n}\left(\mathbb{F}_{4}\right)$ vertex transitive
$S G L_{n}\left(\mathbb{F}_{2}\right)$ vertex transitive for odd n

Problem

Are graphs $H G L_{n}\left(\mathbb{F}_{4}\right)$ and $S G L_{m}\left(\mathbb{F}_{2}\right)$ hamiltonian for $n \geq 3$ and $m \geq 4$? How to construct a hamiltonian cycle if it exists?

There are only 5 known connected vertex transitive graphs that are not hamiltonian: K_{2}, Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph
$H G L_{2}\left(\mathbb{F}_{4}\right)=$ Petersen graph
$S G L_{3}\left(\mathbb{F}_{2}\right)=$ Coxeter graph
$H G L_{n}\left(\mathbb{F}_{4}\right)$ vertex transitive
$S G L_{n}\left(\mathbb{F}_{2}\right)$ vertex transitive for odd n

Droblem
 Are graphs $H G L_{n}\left(\mathbb{F}_{4}\right)$ and $S G L_{m}\left(\mathbb{F}_{2}\right)$ hamiltonian for $n \geq 3$ and $m \geq 4$? How to construct a hamiltonian cycle if it exists?

There are only 5 known connected vertex transitive graphs that are not hamiltonian: K_{2}, Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph
$H G L_{2}\left(\mathbb{F}_{4}\right)=$ Petersen graph
$S G L_{3}\left(\mathbb{F}_{2}\right)=$ Coxeter graph
$H G L_{n}\left(\mathbb{F}_{4}\right)$ vertex transitive
$S G L_{n}\left(\mathbb{F}_{2}\right)$ vertex transitive for odd n

There are only 5 known connected vertex transitive graphs that are not hamiltonian: K_{2}, Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph
$H G L_{2}\left(\mathbb{F}_{4}\right)=$ Petersen graph
$S G L_{3}\left(\mathbb{F}_{2}\right)=$ Coxeter graph
$H G L_{n}\left(\mathbb{F}_{4}\right)$ vertex transitive
$S G L_{n}\left(\mathbb{F}_{2}\right)$ vertex transitive for odd n

Problem

Are graphs $H G L_{n}\left(\mathbb{F}_{4}\right)$ and $S G L_{m}\left(\mathbb{F}_{2}\right)$ hamiltonian for $n \geq 3$ and $m \geq 4$? How to construct a hamiltonian cycle if it exists?

