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M,, = the set of all n x n matrices

AIM: classification of all maps
oM, — M,

that preserve some:
@ function
@ subset

@ relation
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Example 1: Determinant preservers

Frobenius, 1897
A linear bijective map ® : M,(C) — M,(C) preserves determinant,
that is, det ®(A) = det A for all A, if and only if

®(A) = PAQ or ®(A)=PA'Q,
where det(PQ) = 1.
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m = p1po - - - px product of distinct odd primes,
Zm=1{0,1,2,...,m—1}

e € Zm is idempotent if €2 = e
A € My(Zp,) is idempotent if A2 = A.

A linear map ® : M,(Zm) — Mp(Z.,) preserves idempotents, that
is, ®(A)?> = ®(A) whenever A?> = A, if and only if

O(A) =eP(fA+ (1—F)AT)PT,

where e, f € Z,, are idempotents.
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Adjacency preservers

® : M — M preserves adjacency in both directions, if

A, B are adjacent<=®(A), ®(B) are adjacent.

r=(V,E), V=M, E={{A B} : Aand B are adjacent}
Bijective adj. preserves in both directions = automorphisms of I

Adjacency preservers = endomorphisms of I
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Adjacency preservers

Bijective maps that preserves adjacency in both directions on
M € {Mmxn(F), Sn(F), Ha(F), Ap(F)}

are characterized by Hua's fundamental theorem of geometry of
**XX matrices.

M = Hy(F)

®(A) = A\PA’P* + B




Adjacency preservers

Some generalizations
(bijectivity and ‘both directions’ are not assumed)



Adjacency preservers

Some generalizations
(bijectivity and ‘both directions’ are not assumed)

o H,(C) (Huang, Semrl 2008)



Adjacency preservers

Some generalizations
(bijectivity and ‘both directions’ are not assumed)

o H,(C) (Huang, Semrl 2008)
o Sp(R) (Legisa 2011)



Adjacency preservers

Some generalizations
(bijectivity and ‘both directions’ are not assumed)

o H,(C) (Huang, Semrl 2008)
o Sp(R) (Legisa 2011)
o Hy(F,2) (Orel 2009)



Adjacency preservers

Some generalizations
(bijectivity and ‘both directions’ are not assumed)

o H,(C) (Huang, Semrl 2008)
o Sp(R) (Legisa 2011)

o Hy(F,2) (Orel 2009)

e S5,(Fg), n> 3 (Orel 2012)



Adjacency preservers

Some generalizations
(bijectivity and ‘both directions’ are not assumed)

o H,(C) (Huang, Semrl 2008)
o Sp(R) (Legisa 2011)

o Hy(F,2) (Orel 2009)

e S5,(Fg), n> 3 (Orel 2012)

@ My n(D), some additional assumptions (éemrl, accepted)



Adjacency preservers

Some generalizations
(bijectivity and ‘both directions’ are not assumed)

o H,(C) (Huang, Semrl 2008)

o Sp(R) (Legisa 2011)

Hn(F42) (Orel 2000)

Sn(Fq), n > 3 (Orel 2012)

M5 n(ID), some additional assumptions (Semrl, accepted)
HGL(F,2), g > 4 (Orel)
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Some techniques from other math areas

@ Graph theory (eigenvalues, chromatic number)
@ Geometry ((non)existence of ovoids/spreads in hermitian polar
spaces)

Graph I is a core if Aut(l') = End(I').
Hq(Fg2)

Sn(Fq), n>3
HGL,,(Iqu), g>4,g=2

Godsil, Royle, 2011

If T connected regular, Aut(I') acts transitively on pairs of vertices
at distance 2, then I is a core or x(I') = w(I")

ArT'Ia)(
X(M) > 14 g

min

Hn(F,2) distance regular
Sn(F4) Cayley graph over abelian group



Special theory of relativity

A Minkowski space-time My is R* equipped with a product
(l’1, l‘2) = —x1X — Y1y2 — 2122 + C*tity
between events r; := (x1, y1, 21, ct1) and ry := (x2, y2, 22, ctp).
A map ¢ : My — M, preserves the speed of light if
(¢(r1) — d(r2), #(r1) — ¢(r2)) = 0 whenever (r; — rp,r; —rp) = 0.

These maps are closely related to adjacency preservers on 2 X 2
hermitian matrices.
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Problem on hamiltonicity

There are only 5 known connected vertex transitive graphs that are
not hamiltonian: K5, Petersen graph, Coxeter graph, two graphs
derived from Petersen/Coxeter graph

HGL,(FF4) =Petersen graph
SGL3(Fy) =Coxeter graph

HGL,(F4) vertex transitive
SGL,(IF2) vertex transitive for odd n

Problem

Are graphs HGL,(F4) and SGL,(F2) hamiltonian for n > 3 and
m > 47 How to construct a hamiltonian cycle if it exists?




