Marko Orel

Rogla, 18.5.2013

- Preserver problems
- 2 Adjacency preservers
- Some techniques related to other mathematical areas
- Special theory of relativity
- 6 Hamiltonicity

- Preserver problems
- Adjacency preservers
- Some techniques related to other mathematical areas
- Special theory of relativity
- 6 Hamiltonicity

- Preserver problems
- Adjacency preservers
- Some techniques related to other mathematical areas
- Special theory of relativity
- 6 Hamiltonicity

- Preserver problems
- Adjacency preservers
- Some techniques related to other mathematical areas
- Special theory of relativity
- 6 Hamiltonicity

- Preserver problems
- Adjacency preservers
- Some techniques related to other mathematical areas
- Special theory of relativity
- 6 Hamiltonicity

- Preserver problems
- Adjacency preservers
- Some techniques related to other mathematical areas
- Special theory of relativity
- 6 Hamiltonicity

 M_n = the set of all $n \times n$ matrices

AIM: classification of all maps

$$\Phi:M_n\to M_n$$

- function
- 2 subset
- relation

M_n = the set of all $n \times n$ matrices

AIM: classification of all maps

$$\Phi:M_n\to M_n$$

- function
- 2 subset
- o relation

 M_n = the set of all $n \times n$ matrices

AIM: classification of all maps

$$\Phi: M_n \to M_n$$

- function
- 2 subset
- g relation

 M_n = the set of all $n \times n$ matrices

AIM: classification of all maps

$$\Phi: M_n \to M_n$$

- function
- 2 subset
- g relation

 M_n = the set of all $n \times n$ matrices

AIM: classification of all maps

$$\Phi: M_n \to M_n$$

- function
- subset
- relation

 M_n = the set of all $n \times n$ matrices

AIM: classification of all maps

$$\Phi: M_n \to M_n$$

- function
- subset
- relation

Example 1: Determinant preservers

Frobenius, 1897

A linear bijective map $\Phi: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ preserves determinant, that is, $\det \Phi(A) = \det A$ for all A, if and only if

$$\Phi(A) = PAQ$$
 or $\Phi(A) = PA^{\top}Q$,

where det(PQ) = 1.

Example 1: Determinant preservers

Frobenius, 1897

A linear bijective map $\Phi: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ preserves determinant, that is, $\det \Phi(A) = \det A$ for all A, if and only if

$$\Phi(A) = PAQ$$
 or $\Phi(A) = PA^{\top}Q$,

where det(PQ) = 1.

$$m = p_1 p_2 \cdots p_k$$
 product of distinct odd primes $\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$

$$e \in \mathbb{Z}_m$$
 is idempotent if $e^2 = e$
 $A \in M_n(\mathbb{Z}_m)$ is idempotent if $A^2 = A$.

A linear map $\Phi: M_n(\mathbb{Z}_m) \to M_n(\mathbb{Z}_m)$ preserves idempotents, that is, $\Phi(A)^2 = \Phi(A)$ whenever $A^2 = A$, if and only if

$$\Phi(A) = eP(fA + (1-f)A^{\top})P^{-1},$$

 $m = p_1 p_2 \cdots p_k$ product of distinct odd primes,

$$\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$$

 $e \in \mathbb{Z}_m$ is idempotent if $e^2 = e$ $A \in M_n(\mathbb{Z}_m)$ is idempotent if $A^2 = A$.

A linear map $\Phi: M_n(\mathbb{Z}_m) \to M_n(\mathbb{Z}_m)$ preserves idempotents, that is, $\Phi(A)^2 = \Phi(A)$ whenever $A^2 = A$, if and only if

$$\Phi(A) = eP(fA + (1-f)A^{\top})P^{-1},$$

$$m = p_1 p_2 \cdots p_k$$
 product of distinct odd primes, $\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$

 $e \in \mathbb{Z}_m$ is idempotent if $e^2 = e$ $A \in M_n(\mathbb{Z}_m)$ is idempotent if $A^2 = A$.

A linear map $\Phi: M_n(\mathbb{Z}_m) \to M_n(\mathbb{Z}_m)$ preserves idempotents, that is, $\Phi(A)^2 = \Phi(A)$ whenever $A^2 = A$, if and only if

$$\Phi(A) = eP(fA + (1-f)A^{\top})P^{-1},$$

$$m = p_1 p_2 \cdots p_k$$
 product of distinct odd primes, $\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$

 $e \in \mathbb{Z}_m$ is idempotent if $e^2 = e$ $A \in M_n(\mathbb{Z}_m)$ is idempotent if $A^2 = A$.

A linear map $\Phi: M_n(\mathbb{Z}_m) \to M_n(\mathbb{Z}_m)$ preserves idempotents, that is, $\Phi(A)^2 = \Phi(A)$ whenever $A^2 = A$, if and only if

$$\Phi(A) = eP(fA + (1-f)A^{\top})P^{-1},$$

$$m = p_1 p_2 \cdots p_k$$
 product of distinct odd primes, $\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$

 $e \in \mathbb{Z}_m$ is idempotent if $e^2 = e$ $A \in M_n(\mathbb{Z}_m)$ is idempotent if $A^2 = A$.

A linear map $\Phi: M_n(\mathbb{Z}_m) \to M_n(\mathbb{Z}_m)$ preserves idempotents, that is, $\Phi(A)^2 = \Phi(A)$ whenever $A^2 = A$, if and only if

$$\Phi(A) = eP(fA + (1 - f)A^{\top})P^{-1},$$

 $m = p_1 p_2 \cdots p_k$ product of distinct odd primes, $\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$

 $e \in \mathbb{Z}_m$ is idempotent if $e^2 = e$ $A \in M_n(\mathbb{Z}_m)$ is idempotent if $A^2 = A$.

A linear map $\Phi: M_n(\mathbb{Z}_m) \to M_n(\mathbb{Z}_m)$ preserves idempotents, that is, $\Phi(A)^2 = \Phi(A)$ whenever $A^2 = A$, if and only if

$$\Phi(A) = eP(fA + (1-f)A^{\top})P^{-1},$$

$$\mathcal{M} = a$$
 set of matrices

$$A, B \in \mathcal{M}$$
 are *adjacent* if $rk(A - B)$ is minimal and nonzero

$$\mathfrak{M} \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F})\} \Longrightarrow \mathrm{rk}(A-B) = 1$$

$$\mathcal{M} = A_n(\mathbb{F}) \Longrightarrow \operatorname{rk}(A - B) = 2$$

$\mathcal{M} = a$ set of matrices

$$\mathfrak{M} \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F})\} \Longrightarrow \operatorname{rk}(A - B) = 1$$

$$\mathcal{M} = A_n(\mathbb{F}) \Longrightarrow \operatorname{rk}(A - B) = 2$$

 $\mathcal{M} = a$ set of matrices

$$\mathfrak{M} \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F})\} \Longrightarrow \operatorname{rk}(A - B) = 1$$

$$\mathcal{M} = A_n(\mathbb{F}) \Longrightarrow \operatorname{rk}(A - B) = 2$$

 $\mathcal{M} = \mathsf{a}$ set of matrices

$$\mathfrak{M} \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F})\} \Longrightarrow \mathrm{rk}(A-B) = 1$$

$$\mathcal{M} = A_n(\mathbb{F}) \Longrightarrow \operatorname{rk}(A - B) = 2$$

 $\mathcal{M} = a$ set of matrices

$$\mathfrak{M} \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F})\} \Longrightarrow \mathrm{rk}(A-B) = 1$$

$$\mathcal{M} = A_n(\mathbb{F}) \Longrightarrow \operatorname{rk}(A - B) = 2$$

 $\mathcal{M} = a$ set of matrices

$$\mathfrak{M} \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F})\} \Longrightarrow \mathrm{rk}(A-B) = 1$$

$$\mathcal{M} = A_n(\mathbb{F}) \Longrightarrow \operatorname{rk}(A - B) = 2$$

 $\Phi: \mathcal{M} \rightarrow \mathcal{M}$ preserves adjacency in both directions, if

A,B are adjacent $\Longrightarrow \Phi(A),\Phi(B)$ are adjacent.

$$\Gamma = (V, E), V = M, E = \{\{A, B\} : A \text{ and } B \text{ are adjacent}\}$$

Bijective adj. preserves in both directions = automorphisms of Γ

 $\Phi: \mathcal{M} \rightarrow \mathcal{M}$ preserves adjacency in both directions, if

A,B are adjacent $\Longleftrightarrow \Phi(A),\Phi(B)$ are adjacent.

$$\Gamma = (V, E), V = M, E = \{\{A, B\} : A \text{ and } B \text{ are adjacent}\}$$

Bijective adj. preserves in both directions = automorphisms of Γ

 $\Phi: \mathcal{M} \to \mathcal{M}$ preserves adjacency in both directions, if A, B are adjacent $\Longleftrightarrow \Phi(A), \Phi(B)$ are adjacent.

$$\Gamma = (V, E)$$
, $V = M$, $E = \{\{A, B\} : A \text{ and } B \text{ are adjacent}\}$

Bijective adj. preserves in both directions = automorphisms of Γ

$$\Gamma = (V, E)$$
, $V = M$, $E = \{\{A, B\} : A \text{ and } B \text{ are adjacent}\}$

Bijective adj. preserves in both directions = automorphisms of Γ

$$\Gamma = (V,E), \ V = \mathfrak{M}, \ E = \{\{A,B\} \ : \ A \ \mathrm{and} \ B \ \mathrm{are \ adjacent}\}$$

Bijective adj. preserves in both directions = automorphisms of Γ

 $\Phi: \mathcal{M} \to \mathcal{M}$ preserves adjacency in both directions, if $A, B \text{ are adjacent} \Longleftrightarrow \Phi(A), \Phi(B) \text{ are adjacent}.$

$$\Gamma = (V, E), \ V = \mathcal{M}, \ E = \{\{A, B\} \ : \ A \ \mathrm{and} \ B \ \mathrm{are \ adjacent}\}$$

Bijective adj. preserves in both directions = automorphisms of Γ

Bijective maps that preserves adjacency in both directions or

$$\mathcal{M} \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F}), A_n(\mathbb{F})\}$$

are characterized by Hua's fundamental theorem of geometry of **** matrices.

$$\mathcal{M}=H_n(\mathbb{F})$$

$$\Phi(A) = \lambda P A^{\sigma} P^* + B$$

Bijective maps that preserves adjacency in both directions on

$$\mathcal{M} \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F}), A_n(\mathbb{F})\}$$

are characterized by Hua's fundamental theorem of geometry of **** matrices.

$$\mathfrak{M}=H_n(\mathbb{F})$$

$$\Phi(A) = \lambda P A^{\sigma} P^* + E$$

Bijective maps that preserves adjacency in both directions on

$$\mathcal{M} \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F}), A_n(\mathbb{F})\}$$

are characterized by Hua's fundamental theorem of geometry of **** matrices.

$$\mathfrak{M}=H_n(\mathbb{F})$$

$$\Phi(A) = \lambda P A^{\sigma} P^* + B$$

Some generalizations

- $H_n(\mathbb{C})$ (Huang, Šemrl 2008)
- $S_n(\mathbb{R})$ (Legiša 2011)
- $H_n(\mathbb{F}_{q^2})$ (Orel 2009)
- $S_n(\mathbb{F}_q)$, $n \geq 3$ (Orel 2012)
- $M_{m \times n}(\mathbb{D})$, some additional assumptions (Šemrl, accepted)
- $HGL(\mathbb{F}_{q^2})$, $q \ge 4$ (Orel)

Some generalizations

- $H_n(\mathbb{C})$ (Huang, Šemrl 2008)
- $S_n(\mathbb{R})$ (Legiša 2011)
- $H_n(\mathbb{F}_{q^2})$ (Orel 2009)
- $S_n(\mathbb{F}_q)$, $n \geq 3$ (Orel 2012)
- $M_{m \times n}(\mathbb{D})$, some additional assumptions (Šemrl, accepted)
- $HGL(\mathbb{F}_{q^2})$, $q \geq 4$ (Orel)

Some generalizations

- $H_n(\mathbb{C})$ (Huang, Šemrl 2008)
- $S_n(\mathbb{R})$ (Legiša 2011)
- $H_n(\mathbb{F}_{q^2})$ (Orel 2009)
- $S_n(\mathbb{F}_q)$, $n \geq 3$ (Orel 2012)
- $M_{m \times n}(\mathbb{D})$, some additional assumptions (Šemrl, accepted)
- $HGL(\mathbb{F}_{q^2})$, $q \ge 4$ (Orel)

Some generalizations

- $H_n(\mathbb{C})$ (Huang, Šemrl 2008)
- $S_n(\mathbb{R})$ (Legiša 2011)
- $H_n(\mathbb{F}_{q^2})$ (Orel 2009)
- $S_n(\mathbb{F}_q)$, $n \geq 3$ (Orel 2012)
- $M_{m \times n}(\mathbb{D})$, some additional assumptions (Šemrl, accepted)
- $HGL(\mathbb{F}_{q^2})$, $q \ge 4$ (Orel)

Some generalizations

- $H_n(\mathbb{C})$ (Huang, Šemrl 2008)
- $S_n(\mathbb{R})$ (Legiša 2011)
- $H_n(\mathbb{F}_{q^2})$ (Orel 2009)
- $S_n(\mathbb{F}_q)$, $n \geq 3$ (Orel 2012)
- $M_{m \times n}(\mathbb{D})$, some additional assumptions (Šemrl, accepted)
- $HGL(\mathbb{F}_{q^2})$, $q \ge 4$ (Orel)

Some generalizations

- $H_n(\mathbb{C})$ (Huang, Šemrl 2008)
- $S_n(\mathbb{R})$ (Legiša 2011)
- $H_n(\mathbb{F}_{q^2})$ (Orel 2009)
- $S_n(\mathbb{F}_q)$, $n \geq 3$ (Orel 2012)
- $M_{m \times n}(\mathbb{D})$, some additional assumptions (Šemrl, accepted)
- $HGL(\mathbb{F}_{q^2})$, $q \geq 4$ (Orel)

Some generalizations

- $H_n(\mathbb{C})$ (Huang, Šemrl 2008)
- $S_n(\mathbb{R})$ (Legiša 2011)
- $H_n(\mathbb{F}_{q^2})$ (Orel 2009)
- $S_n(\mathbb{F}_q)$, $n \geq 3$ (Orel 2012)
- $M_{m \times n}(\mathbb{D})$, some additional assumptions (Šemrl, accepted)
- $\mathit{HGL}(\mathbb{F}_{q^2})$, $q \geq 4$ (Orel)

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a *core* if $\operatorname{Aut}(\Gamma) = \operatorname{End}(\Gamma)$

$$H_n(\mathbb{F}_{q^2})$$

 $S_n(\mathbb{F}_q), n \ge 3$
 $HGL_n(\mathbb{F}_{q^2}), q \ge 4, q = 2$

Godsil, Royle, 2011

If Γ connected regular, $\operatorname{Aut}(\Gamma)$ acts transitively on pairs of vertices at distance 2, then Γ is a core or $\chi(\Gamma) = \omega(\Gamma)$

$$\chi(\Gamma) \ge 1 + \frac{\lambda_{\mathsf{max}}}{-\lambda_{\mathsf{min}}}$$

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a *core* if $\operatorname{Aut}(\Gamma) = \operatorname{End}(\Gamma)$.

$$H_n(\mathbb{F}_{q^2})$$

 $S_n(\mathbb{F}_q), n \ge 3$
 $HGL_n(\mathbb{F}_{q^2}), q \ge 4, q = 2$

Godsil, Royle, 2011

If Γ connected regular, $\operatorname{Aut}(\Gamma)$ acts transitively on pairs of vertices at distance 2, then Γ is a core or $\chi(\Gamma) = \omega(\Gamma)$

$$\chi(\Gamma) \ge 1 + \frac{\lambda_{\mathsf{max}}}{-\lambda_{\mathsf{min}}}$$

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a *core* if $\operatorname{Aut}(\Gamma) = \operatorname{End}(\Gamma)$.

$$H_n(\mathbb{F}_{q^2})$$

 $S_n(\mathbb{F}_q), n \ge 3$
 $HGL_n(\mathbb{F}_{q^2}), q \ge 4, q = 2$

Godsil, Royle, 2011

If Γ connected regular, $\operatorname{Aut}(\Gamma)$ acts transitively on pairs of vertices at distance 2, then Γ is a core or $\chi(\Gamma) = \omega(\Gamma)$

$$\chi(\Gamma) \ge 1 + \frac{\lambda_{\max}}{-\lambda_{\min}}$$

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a *core* if $\operatorname{Aut}(\Gamma) = \operatorname{End}(\Gamma)$.

$$H_n(\mathbb{F}_{q^2})$$

 $S_n(\mathbb{F}_q), n \ge 3$
 $HGL_n(\mathbb{F}_{q^2}), q \ge 4, q = 2$

Godsil, Royle, 2011

If Γ connected regular, $\operatorname{Aut}(\Gamma)$ acts transitively on pairs of vertices at distance 2, then Γ is a core or $\chi(\Gamma) = \omega(\Gamma)$

$$\chi(\Gamma) \geq 1 + rac{\lambda_{\mathsf{max}}}{-\lambda_{\mathsf{min}}}$$

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a *core* if $\operatorname{Aut}(\Gamma) = \operatorname{End}(\Gamma)$.

$$H_n(\mathbb{F}_{q^2})$$

 $S_n(\mathbb{F}_q), n \ge 3$
 $HGL_n(\mathbb{F}_{q^2}), q \ge 4, q = 2$

Godsil, Royle, 2011

If Γ connected regular, $\operatorname{Aut}(\Gamma)$ acts transitively on pairs of vertices at distance 2, then Γ is a core or $\chi(\Gamma) = \omega(\Gamma)$

$$\chi(\Gamma) \ge 1 + \frac{\lambda_{\mathsf{max}}}{-\lambda_{\mathsf{min}}}$$

- Graph theory (eigenvalues, chromatic number)
- Geometry ((non)existence of ovoids/spreads in hermitian polar spaces)

Graph Γ is a *core* if $\operatorname{Aut}(\Gamma) = \operatorname{End}(\Gamma)$.

$$H_n(\mathbb{F}_{q^2})$$

 $S_n(\mathbb{F}_q), n \ge 3$
 $HGL_n(\mathbb{F}_{q^2}), q \ge 4, q = 2$

Godsil, Royle, 2011

If Γ connected regular, $\operatorname{Aut}(\Gamma)$ acts transitively on pairs of vertices at distance 2, then Γ is a core or $\chi(\Gamma) = \omega(\Gamma)$

$$\chi(\Gamma) \ge 1 + \frac{\lambda_{\mathsf{max}}}{-\lambda_{\mathsf{min}}}$$

Special theory of relativity

A Minkowski space-time M_4 is \mathbb{R}^4 equipped with a product

$$(\mathbf{r}_1, \mathbf{r}_2) = -x_1x_2 - y_1y_2 - z_1z_2 + c^2t_1t_2$$

between events $\mathbf{r}_1 := (x_1, y_1, z_1, ct_1)$ and $\mathbf{r}_2 := (x_2, y_2, z_2, ct_2)$.

A map $\phi: M_4 \to M_4$ preserves the speed of light if

$$(\phi(\mathbf{r}_1) - \phi(\mathbf{r}_2), \phi(\mathbf{r}_1) - \phi(\mathbf{r}_2)) = 0$$
 whenever $(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{r}_1 - \mathbf{r}_2) = 0$.

These maps are closely related to adjacency preservers on 2×2 hermitian matrices.

There are only 5 known connected vertex transitive graphs that are not hamiltonian: K_2 , Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph

$$HGL_2(\mathbb{F}_4)$$
 =Petersen graph $SGL_3(\mathbb{F}_2)$ =Coxeter graph

 $HGL_n(\mathbb{F}_4)$ vertex transitive $SGL_n(\mathbb{F}_2)$ vertex transitive for odd n

Problem

There are only 5 known connected vertex transitive graphs that are not hamiltonian: K_2 , Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph

$$HGL_2(\mathbb{F}_4)$$
 =Petersen graph $SGL_3(\mathbb{F}_2)$ =Coxeter graph

 $HGL_n(\mathbb{F}_4)$ vertex transitive $SGL_n(\mathbb{F}_2)$ vertex transitive for odd n

Problem

There are only 5 known connected vertex transitive graphs that are not hamiltonian: K_2 , Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph

$$HGL_2(\mathbb{F}_4)$$
 =Petersen graph $SGL_3(\mathbb{F}_2)$ =Coxeter graph

 $HGL_n(\mathbb{F}_4)$ vertex transitive $SGL_n(\mathbb{F}_2)$ vertex transitive for odd n

Problem

There are only 5 known connected vertex transitive graphs that are not hamiltonian: K_2 , Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph

$$HGL_2(\mathbb{F}_4)$$
 =Petersen graph $SGL_3(\mathbb{F}_2)$ =Coxeter graph

 $HGL_n(\mathbb{F}_4)$ vertex transitive $SGL_n(\mathbb{F}_2)$ vertex transitive for odd n

Problem

There are only 5 known connected vertex transitive graphs that are not hamiltonian: K_2 , Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph

$$HGL_2(\mathbb{F}_4)$$
 =Petersen graph $SGL_3(\mathbb{F}_2)$ =Coxeter graph

 $HGL_n(\mathbb{F}_4)$ vertex transitive $SGL_n(\mathbb{F}_2)$ vertex transitive for odd n

Problem