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Form of a typical preserver problem

Mn = the set of all n × n matrices

AIM: classification of all maps

Φ : Mn → Mn

that preserve some:

1 function

2 subset

3 relation
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Example 1: Determinant preservers

Frobenius, 1897

A linear bijective map Φ : Mn(C)→ Mn(C) preserves determinant,
that is, det Φ(A) = detA for all A, if and only if

Φ(A) = PAQ or Φ(A) = PA>Q,

where det(PQ) = 1.
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Example 2: Idempotent preservers

m = p1p2 · · · pk product of distinct odd primes,
Zm = {0, 1, 2, . . . ,m − 1}

e ∈ Zm is idempotent if e2 = e
A ∈ Mn(Zm) is idempotent if A2 = A.

A linear map Φ : Mn(Zm)→ Mn(Zm) preserves idempotents, that
is, Φ(A)2 = Φ(A) whenever A2 = A, if and only if

Φ(A) = eP
(
fA + (1− f )A>

)
P−1,

where e, f ∈ Zm are idempotents.
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Example 3: Adjacency preservers

M = a set of matrices

A,B ∈M are adjacent if rk(A− B) is minimal and nonzero

M ∈ {Mm×n(F),Sn(F),Hn(F)} =⇒ rk(A− B) = 1

M = An(F) =⇒ rk(A− B) = 2
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Adjacency preservers

Φ : M→M preserves adjacency in both directions, if

A,B are adjacent =⇒ Φ(A),Φ(B) are adjacent.

Γ = (V ,E ), V = M, E = {{A,B} : A and B are adjacent}

Bijective adj. preserves in both directions = automorphisms of Γ

Adjacency preservers = endomorphisms of Γ
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Adjacency preservers

Bijective maps that preserves adjacency in both directions on

M ∈ {Mm×n(F),Sn(F),Hn(F),An(F)}

are characterized by Hua’s fundamental theorem of geometry of
**** matrices.

M = Hn(F)

Φ(A) = λPAσP∗ + B
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Adjacency preservers

Some generalizations
(bijectivity and ‘both directions’ are not assumed)

Hn(C) (Huang, Šemrl 2008)

Sn(R) (Legǐsa 2011)

Hn(Fq2) (Orel 2009)

Sn(Fq), n ≥ 3 (Orel 2012)

Mm×n(D), some additional assumptions (Šemrl, accepted)

HGL(Fq2), q ≥ 4 (Orel)
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Sn(R) (Legǐsa 2011)
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Some techniques from other math areas

Graph theory (eigenvalues, chromatic number)

Geometry ((non)existence of ovoids/spreads in hermitian polar
spaces)

Graph Γ is a core if Aut(Γ) = End(Γ).

Hn(Fq2)
Sn(Fq), n ≥ 3
HGLn(Fq2), q ≥ 4, q = 2

Godsil, Royle, 2011

If Γ connected regular, Aut(Γ) acts transitively on pairs of vertices
at distance 2, then Γ is a core or χ(Γ) = ω(Γ)

χ(Γ) ≥ 1 + λmax
−λmin

Hn(Fq2) distance regular
Sn(Fq) Cayley graph over abelian group



Some techniques from other math areas

Graph theory (eigenvalues, chromatic number)

Geometry ((non)existence of ovoids/spreads in hermitian polar
spaces)

Graph Γ is a core if Aut(Γ) = End(Γ).

Hn(Fq2)
Sn(Fq), n ≥ 3
HGLn(Fq2), q ≥ 4, q = 2

Godsil, Royle, 2011

If Γ connected regular, Aut(Γ) acts transitively on pairs of vertices
at distance 2, then Γ is a core or χ(Γ) = ω(Γ)

χ(Γ) ≥ 1 + λmax
−λmin

Hn(Fq2) distance regular
Sn(Fq) Cayley graph over abelian group



Some techniques from other math areas

Graph theory (eigenvalues, chromatic number)

Geometry ((non)existence of ovoids/spreads in hermitian polar
spaces)

Graph Γ is a core if Aut(Γ) = End(Γ).

Hn(Fq2)
Sn(Fq), n ≥ 3
HGLn(Fq2), q ≥ 4, q = 2

Godsil, Royle, 2011

If Γ connected regular, Aut(Γ) acts transitively on pairs of vertices
at distance 2, then Γ is a core or χ(Γ) = ω(Γ)

χ(Γ) ≥ 1 + λmax
−λmin

Hn(Fq2) distance regular
Sn(Fq) Cayley graph over abelian group



Some techniques from other math areas

Graph theory (eigenvalues, chromatic number)

Geometry ((non)existence of ovoids/spreads in hermitian polar
spaces)

Graph Γ is a core if Aut(Γ) = End(Γ).

Hn(Fq2)
Sn(Fq), n ≥ 3
HGLn(Fq2), q ≥ 4, q = 2

Godsil, Royle, 2011

If Γ connected regular, Aut(Γ) acts transitively on pairs of vertices
at distance 2, then Γ is a core or χ(Γ) = ω(Γ)

χ(Γ) ≥ 1 + λmax
−λmin

Hn(Fq2) distance regular
Sn(Fq) Cayley graph over abelian group



Some techniques from other math areas

Graph theory (eigenvalues, chromatic number)

Geometry ((non)existence of ovoids/spreads in hermitian polar
spaces)

Graph Γ is a core if Aut(Γ) = End(Γ).

Hn(Fq2)
Sn(Fq), n ≥ 3
HGLn(Fq2), q ≥ 4, q = 2

Godsil, Royle, 2011

If Γ connected regular, Aut(Γ) acts transitively on pairs of vertices
at distance 2, then Γ is a core or χ(Γ) = ω(Γ)

χ(Γ) ≥ 1 + λmax
−λmin

Hn(Fq2) distance regular
Sn(Fq) Cayley graph over abelian group



Some techniques from other math areas

Graph theory (eigenvalues, chromatic number)

Geometry ((non)existence of ovoids/spreads in hermitian polar
spaces)

Graph Γ is a core if Aut(Γ) = End(Γ).

Hn(Fq2)
Sn(Fq), n ≥ 3
HGLn(Fq2), q ≥ 4, q = 2

Godsil, Royle, 2011

If Γ connected regular, Aut(Γ) acts transitively on pairs of vertices
at distance 2, then Γ is a core or χ(Γ) = ω(Γ)

χ(Γ) ≥ 1 + λmax
−λmin

Hn(Fq2) distance regular
Sn(Fq) Cayley graph over abelian group



Special theory of relativity

A Minkowski space-time M4 is R4 equipped with a product(
r1, r2

)
= −x1x2 − y1y2 − z1z2 + c2t1t2

between events r1 := (x1, y1, z1, ct1) and r2 := (x2, y2, z2, ct2).

A map φ : M4 → M4 preserves the speed of light if(
φ(r1)− φ(r2), φ(r1)− φ(r2)

)
= 0 whenever (r1 − r2, r1 − r2) = 0.

These maps are closely related to adjacency preservers on 2× 2
hermitian matrices.



Problem on hamiltonicity

There are only 5 known connected vertex transitive graphs that are
not hamiltonian: K2, Petersen graph, Coxeter graph, two graphs
derived from Petersen/Coxeter graph

HGL2(F4) =Petersen graph
SGL3(F2) =Coxeter graph

HGLn(F4) vertex transitive
SGLn(F2) vertex transitive for odd n

Problem

Are graphs HGLn(F4) and SGLm(F2) hamiltonian for n ≥ 3 and
m ≥ 4? How to construct a hamiltonian cycle if it exists?
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