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ALGORITHMIC GRAPH PROBLEMS
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Algorithmic Graph Problems

Many algorithmic graph problems are of the following form:
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Martin Milani č Graph classes



Algorithmic Graph Problems

Many algorithmic graph problems are of the following form:

Given an input graph G = (V ,E), find a
“substructure” of G satisfying certain criteria

Martin Milani č Graph classes
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Martin Milani č Graph classes



Algorithmic Graph Problems

Many algorithmic graph problems are of the following form:

Given an input graph G = (V ,E), find a
“substructure” of G satisfying certain criteria
and/or optimizing a given objective function
(or determine that such a substructure does not exist).

Martin Milani č Graph classes
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Algorithmic Graph Problems

Many algorithmic graph problems are of the following form:

Given an input graph G = (V ,E), find a
“substructure” of G satisfying certain criteria
and/or optimizing a given objective function
(or determine that such a substructure does not exist).

“substructure” could be any of the following:

a subset of vertices,

a subset of edges,

a partition of the vertex set,

a partition of the edge set,

etc.

Typically, every search problem of the above form also has a
corresponding decision problem .
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Examples

CLIQUE

Input: Graph G = (V ,E), integer k
Question: Does G contain a clique of size k?

clique: a set of pairwise adjacent vertices
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Input: Graph G = (V ,E), integer k
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Examples

STABLE SET

Input: Graph G = (V ,E), integer k
Question: Does G contain a stable set of size k?

stable (independent) set: a set of pairwise non-adjacent
vertices

Martin Milani č Graph classes



Examples

STABLE SET

Input: Graph G = (V ,E), integer k
Question: Does G contain a stable set of size k?

stable (independent) set: a set of pairwise non-adjacent
vertices
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Examples

VERTEX COVER

Input: Graph G = (V ,E), integer k
Question: Does G contain a vertex cover of size k?

vertex cover: a set of vertices hitting all edges
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VERTEX COVER

Input: Graph G = (V ,E), integer k
Question: Does G contain a vertex cover of size k?
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Examples

DOMINATING SET

Input: Graph G = (V ,E), integer k
Question: Does G contain a dominating set of size k?

dominating set: a set of vertices such that every vertex not in
the set has a neighbor in it
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Examples

DOMINATING SET

Input: Graph G = (V ,E), integer k
Question: Does G contain a dominating set of size k?

dominating set: a set of vertices such that every vertex not in
the set has a neighbor in it
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Examples

COLORABILITY

Input: Graph G = (V ,E), integer k
Question: Does G admit a k-coloring?

k-coloring : a partition of V into k (pairwise disjoint, possibly
empty) stable sets
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Examples

COLORABILITY

Input: Graph G = (V ,E), integer k
Question: Does G admit a k-coloring?

k-coloring : a partition of V into k (pairwise disjoint, possibly
empty) stable sets
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Complexity

All these problems

CLIQUE

STABLE SET

VERTEX COVER

DOMINATING SET

COLORABILITY

(as well as hundreds of others) are NP-complete.
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Coping With Intractability

There are several approaches to coping with the intractability of
NP -hard problems:

polynomial algorithms for particular input instances,

approximation algorithms,

heuristics, local optimization,

“efficient” exponential algorithms (e.g., 1.5n instead of 2n),

randomized algorithms,

parameterized complexity
(fixed-parameter tractable (FPT) algorithms O(f (k)nO(1))),

etc.
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Martin Milani č Graph classes



Graph Classes

A graph class = a set of graphs closed under isomorphism.

Martin Milani č Graph classes



Graph Classes

A graph class = a set of graphs closed under isomorphism.

Examples:

Planar graphs

Connected graphs

Trees

Forests

Bipartite graphs

3-colorable graphs

Perfect graphs

Cayley graphs

vertex-transitive graphs
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Main Questions

In the study of graph classes the following questions are of
central interest:

Computational complexity of a given problem within a
particular class.
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Main Questions

In the study of graph classes the following questions are of
central interest:

Computational complexity of a given problem within a
particular class.

Typically either polynomial or NP-hard.
Development of algorithmic techniques.

Relationships between different graph classes.
If X ⊆ Y and a problem Π is NP -hard for graphs in X , then
Π is also NP -hard for graphs in Y .
If X ⊆ Y and a problem Π is polynomially solvable for
graphs in Y , then Π is also polynomially solvable for graphs
in X .

Characterizations of graphs in a given class.

Computational complexity of recognizing graphs in a
given class.
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Recognition Problems

For a given graph class X we can define the following problem:

RECOGNITION OF GRAPHS IN X
Input: Graph G.

Question: Is G ∈ X?

Martin Milani č Graph classes



Recognition Problems

For a given graph class X we can define the following problem:

RECOGNITION OF GRAPHS IN X
Input: Graph G.

Question: Is G ∈ X?

Examples:

If X = the class of all 3-colorable graphs, the recognition
problem is NP-complete.
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Recognition Problems

For a given graph class X we can define the following problem:

RECOGNITION OF GRAPHS IN X
Input: Graph G.

Question: Is G ∈ X?

Examples:

If X = the class of all 3-colorable graphs, the recognition
problem is NP-complete.

If X = the class of planar graphs, the recognition problem
is solvable in linear time.
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www.graphclasses.org

Source: http://www.graphclasses.org/
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PERFECT GRAPHS AND THEIR SUBCLASSES.
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χ and ω

χ(G): chromatic number of G = the smallest k such that G
admits a k-coloring
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χ and ω

χ(G): chromatic number of G = the smallest k such that G
admits a k-coloring

ω(G): clique number of G = the maximum size of a clique in G.
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Perfect Graphs

Trivially:
χ(G) ≥ ω(G) .
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Perfect Graphs

Trivially:
χ(G) ≥ ω(G) .

Definition
A graph G is perfect, if

χ(H) = ω(H)

holds for every induced subgraph H of G.
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Perfect Graphs

Trivially:
χ(G) ≥ ω(G) .

Definition
A graph G is perfect, if

χ(H) = ω(H)

holds for every induced subgraph H of G.

The class of perfect graphs is hereditary (closed under vertex
deletions).
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Perfect Graphs

Theorem (Lov ász 1972, Perfect Graph Theorem)

A graph G is perfect if and only if its complement G is perfect.
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Perfect Graphs

Theorem (Lov ász 1972, Perfect Graph Theorem)

A graph G is perfect if and only if its complement G is perfect.

Examples of non-perfect graphs:

odd cycles of order at least 5: C5,C7,C9, . . .
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Perfect Graphs

Theorem (Lov ász 1972, Perfect Graph Theorem)

A graph G is perfect if and only if its complement G is perfect.

Examples of non-perfect graphs:

odd cycles of order at least 5: C5,C7,C9, . . .

their complements: C5,C7,C9, . . .

Martin Milani č Graph classes



Berge Graphs

Berge graph: a {C5,C7,C7,C9,C9, . . .}-free graph.

Claude Berge, 1926–2002, a French mathematician
Source: http://www.ecp6.jussieu.fr/GT04/
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The Strong Perfect Graph Theorem

Berge graph: a {C5,C7,C7,C9,C9, . . .}-free graph.

Clearly, every perfect graph is Berge.
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Clearly, every perfect graph is Berge.

Conjecture (Berge 1963)

A graph G is perfect if and only if it is Berge.

Martin Milani č Graph classes



The Strong Perfect Graph Theorem

Berge graph: a {C5,C7,C7,C9,C9, . . .}-free graph.

Clearly, every perfect graph is Berge.
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Strong Perfect Graph Theorem (Chudnovsky, Robertson,
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The Strong Perfect Graph Theorem

Berge graph: a {C5,C7,C7,C9,C9, . . .}-free graph.

Clearly, every perfect graph is Berge.

Conjecture (Berge 1963)

A graph G is perfect if and only if it is Berge.

Strong Perfect Graph Theorem (Chudnovsky, Robertson,
Seymour, Thomas 2002)

A graph G is perfect if and only if it is Berge.

Total length of the proof ≈ 150 pages.

Martin Milani č Graph classes



Algorithmic Aspects of Perfect Graphs

The following problems are solvable in polynomial time for
perfect graphs:
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Algorithmic Aspects of Perfect Graphs

The following problems are solvable in polynomial time for
perfect graphs:

COLORABILITY,

STABLE SET,

CLIQUE.

These results are due to Grötschel-Lovász-Schrijver (1984)
and are not combinatorial.
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Algorithmic Aspects of Perfect Graphs

The following problems are solvable in polynomial time for
perfect graphs:

COLORABILITY,

STABLE SET,

CLIQUE.

These results are due to Grötschel-Lovász-Schrijver (1984)
and are not combinatorial.

Existence of combinatorial algorithms for the COLORABILITY,
STABLE SET and CLIQUE problems on perfect graphs is an
open problem.
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Recognizing Perfect Graphs

Theorem (Chudnovsky, Cornu éjols, Liu, Seymour,
Vuškovi ć 2005)

There is a polynomial-time algorithm for recognizing Berge
graphs.
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Hasse Diagram of Some Classes of Perfect Graphs

split

tree
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bipartite
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planar bipartite
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distance-
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perfect

bipartite graphs

permutation
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CHORDAL GRAPHS.
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Chordal Graphs

Definition
A graph is chordal if every cycle on at least 4 vertices contains
a chord.

chord : an edge connecting two non-consecutive vertices of the
cycle.

Figure: A cycle with four chords.
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Chordal Graphs

Example:

chordal not chordal
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Properties of Chordal Graphs

A graph is chordal if and only if it is {C4,C5, . . .}-free.

Theorem (Gavril, 1974)

Chordal graphs are precisely the vertex-intersection graphs of
subtrees in a tree.

Example:

T

T1

T2 T3

T5 T4

T6

T4

T5
T6

T1

T2

T3

T6

G
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Chordal Graphs: Structural Properties

A cutset: a set of vertices X ⊆ V such that the graph G − X is
disconnected.

Theorem (Dirac, 1961)

Every minimal cutset in a chordal graph is a clique.

cutset
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Chordal Graphs: Algorithmic Aspects

Theorem
Every chordal graph contains a simplicial vertex.

simplicial vertex: a vertex whose neighborhood is a clique
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Chordal Graphs: Algorithmic Aspects

Theorem
Every chordal graph contains a simplicial vertex.

simplicial vertex: a vertex whose neighborhood is a clique

If G is chordal and v ∈ V (G) then G − v is chordal.
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Chordal Graphs: Algorithmic Aspects

Theorem
Every chordal graph contains a simplicial vertex.

simplicial vertex: a vertex whose neighborhood is a clique

If G is chordal and v ∈ V (G) then G − v is chordal.

With iterative deletion of simplicial vertices, it is easy to develop
polynomial-time algorithms for the following problems on
chordal graphs:
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Chordal Graphs: Algorithmic Aspects

Theorem
Every chordal graph contains a simplicial vertex.

simplicial vertex: a vertex whose neighborhood is a clique

If G is chordal and v ∈ V (G) then G − v is chordal.

With iterative deletion of simplicial vertices, it is easy to develop
polynomial-time algorithms for the following problems on
chordal graphs:

CLIQUE,

COLORABILITY,

STABLE SET.
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Chordal Graphs: Algorithmic Aspects

Theorem
Every chordal graph contains a simplicial vertex.

simplicial vertex: a vertex whose neighborhood is a clique

If G is chordal and v ∈ V (G) then G − v is chordal.

With iterative deletion of simplicial vertices, it is easy to develop
polynomial-time algorithms for the following problems on
chordal graphs:

CLIQUE,

COLORABILITY,

STABLE SET.

On the other hand, the DOMINATING SET problem is
NP-complete on chordal graphs.
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INTERVAL GRAPHS.
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Definition

Definition
A graph is an interval graph if its vertices can be put into
one-to-one correspondence with a set of intervals on the real
line such that two vertices are connected by an edge if and only
if their corresponding intervals have nonempty intersection.

Source: http://en.wikipedia.org/wiki/Interval graph

Martin Milani č Graph classes



Algorithmic Aspects

Theorem (Booth and Lueker 1976)

Interval graphs can be recognized in linear time.
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Algorithmic Aspects

Theorem (Booth and Lueker 1976)

Interval graphs can be recognized in linear time.

Other algorithmic problems on interval graphs:

COLORABILITY: In P.

CLIQUE: In P.

STABLE SET: In P.

DOMINATING SET: In P.
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SPLIT GRAPHS.
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Definition

Definition
A graph is split if there exists a partition of its vertex set into a
clique and a stable set.

Source: http://en.wikipedia.org/wiki/Split graph
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Forbidden Induced Subgraphs

Theorem (F öldes and Hammer, 1977)

A graph is split if and only if it is {2K2,C4,C5}-free.

2K2 C4 C5
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Other Properties

Theorem
Split graphs are precisely the vertex-intersection graphs of
subtrees of a star.
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Other Properties

Theorem
Split graphs are precisely the vertex-intersection graphs of
subtrees of a star.

Theorem
Let d1 ≥ d2 ≥ . . . ≥ dn be the degree sequence of a graph G.
Also, let m = max{i : di ≥ i − 1}. Then, G is a split graph if
and only if

∑m
i=1 di = m(m − 1) +

∑n
i=m+1 di .
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Algorithmic Aspects

Split graphs can be recognized in linear time.
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Algorithmic Aspects

Split graphs can be recognized in linear time.

Other algorithmic problems on split graphs:

COLORABILITY: In P.

CLIQUE: In P.

STABLE SET: In P.
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Algorithmic Aspects

Split graphs can be recognized in linear time.

Other algorithmic problems on split graphs:

COLORABILITY: In P.

CLIQUE: In P.

STABLE SET: In P.

DOMINATING SET: NP-complete.
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THRESHOLD GRAPHS.
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Definition

Definition
A graph G = (V ,E) is threshold if
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Definition

Definition
A graph G = (V ,E) is threshold if there exist positive real
vertex weights w(v) for all v ∈ V and
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Definition

Definition
A graph G = (V ,E) is threshold if there exist positive real
vertex weights w(v) for all v ∈ V and a threshold t ∈ R such
that
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Definition

Definition
A graph G = (V ,E) is threshold if there exist positive real
vertex weights w(v) for all v ∈ V and a threshold t ∈ R such
that for every vertex set S ⊆ V ,
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Definition

Definition
A graph G = (V ,E) is threshold if there exist positive real
vertex weights w(v) for all v ∈ V and a threshold t ∈ R such
that for every vertex set S ⊆ V ,

S is stable if and only if w(S) :=
∑

v∈S

w(v) ≤ t .
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Martin Milani č Graph classes



Definition

Definition
A graph G = (V ,E) is threshold if there exist positive real
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that
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Definition

Definition
A graph G = (V ,E) is threshold if there exist positive real
vertex weights w(v) for all v ∈ V and a threshold t ∈ R such
that for every vertex set S ⊆ V ,
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Definition

Definition
A graph G = (V ,E) is threshold if there exist positive real
vertex weights w(v) for all v ∈ V and a threshold t ∈ R such
that for every vertex set S ⊆ V ,

S is stable if and only if w(S) :=
∑

v∈S

w(v) ≤ t .

4 2

6

7

t = 7

1
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Forbidden Induced Subgraphs

Theorem (Chv átal, Hammer 1977)

A graph is threshold if and only if it is {2K2,C4,P4}-free.

2K2 C4 P4
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Further Characterizations

Theorem
A graph G is threshold if and only if can be constructed from
the one-vertex graph by repeated applications of the following
two operations:

Addition of a single isolated vertex to the graph.

Addition of a single dominating vertex to the graph.

Martin Milani č Graph classes



Further Characterizations

Theorem
A graph G is threshold if and only if can be constructed from
the one-vertex graph by repeated applications of the following
two operations:

Addition of a single isolated vertex to the graph.

Addition of a single dominating vertex to the graph.

Threshold graphs can be recognized in linear time.
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Further Characterizations

Theorem
A graph G is threshold if and only if can be constructed from
the one-vertex graph by repeated applications of the following
two operations:

Addition of a single isolated vertex to the graph.

Addition of a single dominating vertex to the graph.

Threshold graphs can be recognized in linear time.

Other algorithmic problems on threshold graphs:

COLORABILITY: In P.

CLIQUE: In P.

STABLE SET: In P.

DOMINATING SET: In P.
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NUMERICALLY DEFINED GRAPH CLASSES.
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A General Framework
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A General Framework

Let P denote a property meaningful for vertex or edge subsets
of a graph.
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A General Framework

Let P denote a property meaningful for vertex or edge subsets
of a graph.
For example, P could be any of the following:

a matching,

a clique,

a stable set,

a dominating set,

a total dominating set,

etc.
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Total Dominating Sets

total dominating set: a set of vertices such that every vertex
has a neighbor in it
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Total Dominating Sets

total dominating set: a set of vertices such that every vertex
has a neighbor in it
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A General Framework

Problem
Given a graph G, does G admit
positive integer weights w on its vertices (or edges) and a set T
such that
P(S) holds if and only if w(S) ∈ T ?
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A General Framework

Problem
Given a graph G, does G admit
positive integer weights w on its vertices (or edges) and a set T
such that
P(S) holds if and only if w(S) ∈ T ?

Several graph classes can be defined with a suitable choice of
property P and restriction on the set T .

Martin Milani č Graph classes



A General Framework – Examples

Example:
P = a stable set; T = an interval unbounded from below:
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A General Framework – Examples

Example:
P = a stable set; T = an interval unbounded from below:
threshold graphs (Chvátal-Hammer 1977)
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Example:
P = a stable set; T = an interval unbounded from below:
threshold graphs (Chvátal-Hammer 1977)

P = a maximal stable set; T = a single number:
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Example:
P = a stable set; T = an interval unbounded from below:
threshold graphs (Chvátal-Hammer 1977)

P = a maximal stable set; T = a single number:
equistable graphs (Payan 1980)
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Example:
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A General Framework – Examples

Example:
P = a stable set; T = an interval unbounded from below:
threshold graphs (Chvátal-Hammer 1977)

P = a maximal stable set; T = a single number:
equistable graphs (Payan 1980)

P = a dominating set; T = an interval unbounded from above:
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P = a total dominating set; T = an interval unbounded from
above:
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A General Framework – Examples

Example:
P = a stable set; T = an interval unbounded from below:
threshold graphs (Chvátal-Hammer 1977)

P = a maximal stable set; T = a single number:
equistable graphs (Payan 1980)

P = a dominating set; T = an interval unbounded from above:
domishold graphs (Benzaken-Hammer 1978)

P = a total dominating set; T = an interval unbounded from
above:
total domishold graphs (Chiarelli-M. 2013)
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A General Framework – Examples

Example:
P = a stable set; T = an interval unbounded from below:
threshold graphs (Chvátal-Hammer 1977)

P = a maximal stable set; T = a single number:
equistable graphs (Payan 1980)

P = a dominating set; T = an interval unbounded from above:
domishold graphs (Benzaken-Hammer 1978)

P = a total dominating set; T = an interval unbounded from
above:
total domishold graphs (Chiarelli-M. 2013)

P = a perfect matching; T = a single number:
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A General Framework – Examples

Example:
P = a stable set; T = an interval unbounded from below:
threshold graphs (Chvátal-Hammer 1977)

P = a maximal stable set; T = a single number:
equistable graphs (Payan 1980)

P = a dominating set; T = an interval unbounded from above:
domishold graphs (Benzaken-Hammer 1978)

P = a total dominating set; T = an interval unbounded from
above:
total domishold graphs (Chiarelli-M. 2013)

P = a perfect matching; T = a single number:
all graphs
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EQUISTABLE GRAPHS.
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Equistable Graphs

Definition
A graph G = (V ,E) is equistable if there exists a weight
function w : V → N and a positive integer t ∈ N such that for
every S ⊆ V :

S is a maximal stable set in G ⇔ w(S) = t .
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Equistable graphs: example

The following graph is equistable:
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Equistable graphs: example

The following graph is equistable:

52

3

47

t = 9
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Equistable graphs: example

The following graph is equistable:

52

3

47
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Equistable graphs: example

The following graph is equistable:

52

3

47
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Equistable graphs: example

The following graph is equistable:

52

3

47
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Equistable graphs: example

The following graph is not equistable:
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Equistable graphs: example

The following graph is not equistable:

w1 w2 w3 w4

If

w1 + w3 = t

w2 + w4 = t

w1 + w4 = t
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Equistable graphs: example

The following graph is not equistable:

w1 w2 w3 w4

If

w1 + w3 = t

w2 + w4 = t

w1 + w4 = t

then

w2 + w3 = t .
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Algorithmic Aspects of Equistable Graphs

Complexity of algorithmic problems on equistable graphs:

Martin Milani č Graph classes



Algorithmic Aspects of Equistable Graphs

Complexity of algorithmic problems on equistable graphs:
RECOGNITION: OPEN.
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Algorithmic Aspects of Equistable Graphs

Complexity of algorithmic problems on equistable graphs:
RECOGNITION: OPEN.

In P if weights are in {1, . . . , k} for a fixed k (Levit-M.-Tankus 2012)
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Algorithmic Aspects of Equistable Graphs

Complexity of algorithmic problems on equistable graphs:
RECOGNITION: OPEN.

In P if weights are in {1, . . . , k} for a fixed k (Levit-M.-Tankus 2012)

COLORABILITY: NP-complete.

CLIQUE: NP-complete.

STABLE SET: NP-complete.

DOMINATING SET: NP-complete.
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DOMISHOLD GRAPHS.
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Domishold Graphs

Definition
A graph G = (V ,E) is domishold if there exists a weight
function w : V → N and a positive integer t ∈ N such that for
every S ⊆ V :

S is a dominating set in G ⇔ w(S) ≥ t .
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Characterizations of Domishold Graphs

Theorem (Benzaken and Hammer 1978)

A graph G is domishold if and only if G is
{2K2,P4,K3,3,K3,3 + e,K3,3 + 2e}-free.

2K2 P4 K3,3 K3,3 + e K3,3 + 2e
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Algorithmic Aspects of Domishold Graphs

Complexity of algorithmic problems on domishold graphs:

RECOGNITION: In P.

COLORABILITY: In P.

CLIQUE: In P.

STABLE SET: In P.

DOMINATING SET: In P.
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TOTAL DOMISHOLD GRAPHS.
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Total Domishold Graphs

Definition
A graph G = (V ,E) is total domishold if there exists a weight
function w : V → N and a positive integer t ∈ N such that for
every S ⊆ V :

S is a total dominating set in G ⇔ w(S) ≥ t .
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Algorithmic Aspects of Total Domishold Graphs

Complexity of algorithmic problems on total domishold graphs
(Chiarelli-M. 2013):

RECOGNITION: In P.
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Algorithmic Aspects of Total Domishold Graphs

Complexity of algorithmic problems on total domishold graphs
(Chiarelli-M. 2013):

RECOGNITION: In P.

COLORABILITY: NP-complete.

CLIQUE: NP-complete.

STABLE SET: NP-complete.
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Algorithmic Aspects of Total Domishold Graphs

Complexity of algorithmic problems on total domishold graphs
(Chiarelli-M. 2013):

RECOGNITION: In P.

COLORABILITY: NP-complete.

CLIQUE: NP-complete.

STABLE SET: NP-complete.

DOMINATING SET: OPEN.
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CIRCULANT GRAPHS.
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Circulants

A circulant is a Cayley graph over a cyclic group.

C9({1, 4, 5, 8})
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Circulants

A circulant is a Cayley graph over a cyclic group.

C9({3, 4, 5, 6})
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Some Graph-theoretic Properties of Circulants

Proposition

A circulant G = Cn(D) is
connected
if and only if
gcd(D ∪ {n}) = 1.
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Some Graph-theoretic Properties of Circulants

Proposition

A circulant G = Cn(D) is
connected
if and only if
gcd(D ∪ {n}) = 1.

Proposition

A connected circulant G = Cn(D) with at least two vertices is
bipartite
if and only if
n is even, while every d ∈ D is odd.
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Algorithmic Aspects

Theorem (Evdokimov and Ponomarenko 2004)

Circulant graphs can be recognized in polynomial time.
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Algorithmic Aspects

Theorem (Evdokimov and Ponomarenko 2004)

Circulant graphs can be recognized in polynomial time.

Other algorithmic problems on circulant graphs:

COLORABILITY: NP-complete. Codenotti–Gerace–Vigna 1998

CLIQUE: NP-complete. Codenotti–Gerace–Vigna 1998

STABLE SET: NP-complete. Codenotti–Gerace–Vigna 1998
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Algorithmic Aspects

Theorem (Evdokimov and Ponomarenko 2004)

Circulant graphs can be recognized in polynomial time.

Other algorithmic problems on circulant graphs:

COLORABILITY: NP-complete. Codenotti–Gerace–Vigna 1998

CLIQUE: NP-complete. Codenotti–Gerace–Vigna 1998

STABLE SET: NP-complete. Codenotti–Gerace–Vigna 1998

DOMINATING SET: OPEN.
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CONCLUSION.
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Conclusion

Graph classes form a rich field of research, with practical and
theoretical applications.
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Conclusion

Graph classes form a rich field of research, with practical and
theoretical applications.

Methods from different branches of mathematics and computer
science apply to the study of graph classes:

1 algebraic and Boolean methods,
2 combinatorial methods,
3 mathematical programming (linear programming,

polyhedral combinatorics, semidefinite programming),
4 algorithm design and computational complexity analysis,
5 etc.
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Questions?

Thank you!
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