Graph Classes: Interrelations, Structure, and Algorithmic Issues

Martin Milanič

UP IAM and UP FAMNIT

Rogla, 19 May 2013

- Algorithmic Graph Problems and Graph Classes
- Perfect Graphs and Their Subclasses
- Numerically Defined Graph Classes

ALGORITHMIC GRAPH PROBLEMS AND GRAPH CLASSES.

Many algorithmic graph problems are of the following form:

Many algorithmic graph problems are of the following form:

• Given an input graph G = (V, E), find a

Many algorithmic graph problems are of the following form:

Given an input graph G = (V, E), find a
 "substructure" of G satisfying certain criteria

Many algorithmic graph problems are of the following form:

• Given an input graph G = (V, E), find a "**substructure**" of *G* satisfying certain criteria and/or optimizing a given objective function

Many algorithmic graph problems are of the following form:

 Given an input graph G = (V, E), find a
 "substructure" of G satisfying certain criteria and/or optimizing a given objective function (or determine that such a substructure does not exist).

Many algorithmic graph problems are of the following form:

 Given an input graph G = (V, E), find a
 "substructure" of G satisfying certain criteria and/or optimizing a given objective function (or determine that such a substructure does not exist).

"substructure" could be any of the following:

- a subset of vertices,
- a subset of edges,
- a partition of the vertex set,
- a partition of the edge set,
- etc.

Many algorithmic graph problems are of the following form:

 Given an input graph G = (V, E), find a
 "substructure" of G satisfying certain criteria and/or optimizing a given objective function (or determine that such a substructure does not exist).

"substructure" could be any of the following:

- a subset of vertices,
- a subset of edges,
- a partition of the vertex set,
- a partition of the edge set,
- etc.

Typically, every **search problem** of the above form also has a corresponding **decision problem**.

CLIQUE **Input:** Graph G = (V, E), integer k **Question:** Does G contain a clique of size k?

clique: a set of pairwise adjacent vertices

CLIQUE **Input:** Graph G = (V, E), integer k **Question:** Does G contain a clique of size k?

clique: a set of pairwise adjacent vertices

STABLE SET

Input: Graph G = (V, E), integer k Question: Does G contain a stable set of size k?

stable (independent) set: a set of pairwise non-adjacent vertices

STABLE SET

Input: Graph G = (V, E), integer k Question: Does G contain a stable set of size k?

stable (independent) set: a set of pairwise non-adjacent vertices

Vertex Cover

Input: Graph G = (V, E), integer k Question: Does G contain a vertex cover of size k?

vertex cover: a set of vertices hitting all edges

VERTEX COVER **Input:** Graph G = (V, E), integer k **Question:** Does G contain a vertex cover of size k?

vertex cover: a set of vertices hitting all edges

DOMINATING SET

Input: Graph G = (V, E), integer k

Question: Does *G* contain a dominating set of size *k*?

dominating set: a set of vertices such that every vertex not in the set has a neighbor in it

DOMINATING SET

Input: Graph G = (V, E), integer k Question: Does G contain a dominating set of size k?

dominating set: a set of vertices such that every vertex not in the set has a neighbor in it

COLORABILITY

Input: Graph G = (V, E), integer k Question: Does G admit a k-coloring?

k-coloring: a partition of V into k (pairwise disjoint, possibly empty) stable sets

COLORABILITY

Input: Graph G = (V, E), integer k Question: Does G admit a k-coloring?

k-coloring: a partition of V into k (pairwise disjoint, possibly empty) stable sets

All these problems

- CLIQUE
- STABLE SET
- VERTEX COVER
- DOMINATING SET
- COLORABILITY

(as well as hundreds of others) are NP-complete.

There are several approaches to coping with the intractability of NP -hard problems:

- polynomial algorithms for particular input instances,
- approximation algorithms,
- heuristics, local optimization,
- "efficient" exponential algorithms (e.g., 1.5ⁿ instead of 2ⁿ),
- randomized algorithms,
- parameterized complexity (fixed-parameter tractable (FPT) algorithms O(f(k)n^{O(1)})),

• etc.

There are several approaches to coping with the intractability of NP -hard problems:

- polynomial algorithms for particular input instances,
- approximation algorithms,
- heuristics, local optimization,
- "efficient" exponential algorithms (e.g., 1.5ⁿ instead of 2ⁿ),
- randomized algorithms,
- parameterized complexity (fixed-parameter tractable (FPT) algorithms O(f(k)n^{O(1)})),

• etc.

Graph Classes

A **graph class** = a set of graphs closed under isomorphism.

A graph class = a set of graphs closed under isomorphism.

Examples:

- Planar graphs
- Connected graphs
- Trees
- Forests
- Bipartite graphs
- 3-colorable graphs
- Perfect graphs
- Cayley graphs
- vertex-transitive graphs

• Computational complexity of a given problem within a particular class.

- Computational complexity of a given problem within a particular class.
 - Typically either polynomial or NP-hard.

- Computational complexity of a given problem within a particular class.
 - Typically either polynomial or NP-hard.
 - Development of algorithmic techniques.

- Computational complexity of a given problem within a particular class.
 - Typically either polynomial or NP-hard.
 - Development of algorithmic techniques.
- **Relationships** between different graph classes.

- Computational complexity of a given problem within a particular class.
 - Typically either polynomial or NP-hard.
 - Development of algorithmic techniques.
- **Relationships** between different graph classes.
 - If $X \subseteq Y$ and a problem Π is NP -hard for graphs in X,

- Computational complexity of a given problem within a particular class.
 - Typically either polynomial or NP-hard.
 - Development of algorithmic techniques.
- **Relationships** between different graph classes.
 - If X ⊆ Y and a problem Π is NP -hard for graphs in X, then Π is also NP -hard for graphs in Y.

- Computational complexity of a given problem within a particular class.
 - Typically either polynomial or NP-hard.
 - Development of algorithmic techniques.
- **Relationships** between different graph classes.
 - If $X \subseteq Y$ and a problem Π is NP -hard for graphs in X, then Π is also NP -hard for graphs in Y.
 - If X ⊆ Y and a problem Π is polynomially solvable for graphs in Y,

- Computational complexity of a given problem within a particular class.
 - Typically either polynomial or NP-hard.
 - Development of algorithmic techniques.
- **Relationships** between different graph classes.
 - If $X \subseteq Y$ and a problem Π is NP -hard for graphs in X, then Π is also NP -hard for graphs in Y.
 - If X ⊆ Y and a problem Π is polynomially solvable for graphs in Y, then Π is also polynomially solvable for graphs in X.

- Computational complexity of a given problem within a particular class.
 - Typically either polynomial or NP-hard.
 - Development of algorithmic techniques.
- **Relationships** between different graph classes.
 - If $X \subseteq Y$ and a problem Π is NP -hard for graphs in X, then Π is also NP -hard for graphs in Y.
 - If X ⊆ Y and a problem Π is polynomially solvable for graphs in Y, then Π is also polynomially solvable for graphs in X.
- Characterizations of graphs in a given class.

- Computational complexity of a given problem within a particular class.
 - Typically either polynomial or NP-hard.
 - Development of algorithmic techniques.
- **Relationships** between different graph classes.
 - If $X \subseteq Y$ and a problem Π is NP -hard for graphs in X, then Π is also NP -hard for graphs in Y.
 - If X ⊆ Y and a problem Π is polynomially solvable for graphs in Y, then Π is also polynomially solvable for graphs in X.
- Characterizations of graphs in a given class.
- Computational complexity of recognizing graphs in a given class.

For a given graph class *X* we can define the following problem:

RECOGNITION OF GRAPHS IN X	
Input:	Graph G.
Question:	Is $G \in X$?

For a given graph class *X* we can define the following problem:

RECOGNITION OF GRAPHS IN X	
Input:	Graph G.
Question:	Is G ∈ X?

Examples:

 If X = the class of all 3-colorable graphs, the recognition problem is NP-complete. For a given graph class X we can define the following problem:

RECOGNITION OF GRAPHS IN X	
Input:	Graph G.
Question:	Is <i>G</i> ∈ <i>X</i> ?

Examples:

- If X = the class of all 3-colorable graphs, the recognition problem is NP-complete.
- If X = the class of planar graphs, the recognition problem is solvable in linear time.

www.graphclasses.org

Source: http://www.graphclasses.org/

PERFECT GRAPHS AND THEIR SUBCLASSES.

$\chi(G)$: chromatic number of G = the smallest k such that G admits a k-coloring

$\chi(G)$: chromatic number of G = the smallest k such that G admits a k-coloring

 $\omega(G)$: clique number of G = the maximum size of a clique in G.

Trivially:

 $\chi(\mathbf{G}) \geq \omega(\mathbf{G})$.

Trivially:

$$\chi(\mathbf{G}) \geq \omega(\mathbf{G})$$
.

Definition

A graph G is perfect, if

$$\chi(H) = \omega(H)$$

holds for every induced subgraph H of G.

Trivially:

$$\chi(\mathbf{G}) \geq \omega(\mathbf{G})$$
.

Definition

A graph G is perfect, if

$$\chi(H) = \omega(H)$$

holds for every induced subgraph H of G.

The class of perfect graphs is hereditary (closed under vertex deletions).

Theorem (Lovász 1972, Perfect Graph Theorem)

A graph G is perfect if and only if its complement \overline{G} is perfect.

Theorem (Lovász 1972, Perfect Graph Theorem)

A graph G is perfect if and only if its complement \overline{G} is perfect.

Examples of non-perfect graphs:

• odd cycles of order at least 5: C_5, C_7, C_9, \ldots

Theorem (Lovász 1972, Perfect Graph Theorem)

A graph G is perfect if and only if its complement \overline{G} is perfect.

Examples of non-perfect graphs:

- odd cycles of order at least 5: C_5, C_7, C_9, \ldots
- their complements: $\overline{C_5}, \overline{C_7}, \overline{C_9}, \ldots$

Berge Graphs

Berge graph: a $\{C_5, C_7, \overline{C_7}, C_9, \overline{C_9}, \ldots\}$ -free graph.

Claude Berge, 1926–2002, a French mathematician

Source: http://www.ecp6.jussieu.fr/GT04/

Berge graph: a $\{C_5, C_7, \overline{C_7}, C_9, \overline{C_9}, \ldots\}$ -free graph.

Clearly, every perfect graph is Berge.

Berge graph: a $\{C_5, C_7, \overline{C_7}, C_9, \overline{C_9}, \ldots\}$ -free graph.

Clearly, every perfect graph is Berge.

Conjecture (Berge 1963)

A graph G is perfect if and only if it is Berge.

Berge graph: a $\{C_5, C_7, \overline{C_7}, C_9, \overline{C_9}, \ldots\}$ -free graph.

Clearly, every perfect graph is Berge.

Conjecture (Berge 1963)

A graph G is perfect if and only if it is Berge.

Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour, Thomas 2002)

A graph G is perfect if and only if it is Berge.

Berge graph: a $\{C_5, C_7, \overline{C_7}, C_9, \overline{C_9}, \ldots\}$ -free graph.

Clearly, every perfect graph is Berge.

Conjecture (Berge 1963)

A graph G is perfect if and only if it is Berge.

Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour, Thomas 2002)

A graph G is perfect if and only if it is Berge.

Total length of the proof \approx 150 pages.

• COLORABILITY,

- COLORABILITY,
- STABLE SET,

- COLORABILITY,
- STABLE SET,
- CLIQUE.

- COLORABILITY,
- STABLE SET,
- CLIQUE.

These results are due to Grötschel-Lovász-Schrijver (1984) and are not combinatorial.

- COLORABILITY,
- STABLE SET,
- CLIQUE.

These results are due to Grötschel-Lovász-Schrijver (1984) and are not combinatorial.

Existence of combinatorial algorithms for the COLORABILITY, STABLE SET and CLIQUE problems on perfect graphs is an open problem.

Theorem (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković 2005)

There is a polynomial-time algorithm for recognizing Berge graphs.

Hasse Diagram of Some Classes of Perfect Graphs

CHORDAL GRAPHS.

Chordal Graphs

Definition

A graph is chordal if every cycle on at least 4 vertices contains a chord.

chord: an edge connecting two non-consecutive vertices of the cycle.

Figure: A cycle with four chords.

Chordal Graphs

Example:

Properties of Chordal Graphs

A graph is chordal if and only if it is $\{C_4, C_5, \ldots\}$ -free.

Theorem (Gavril, 1974)

Chordal graphs are precisely the vertex-intersection graphs of subtrees in a tree.

Example:

Chordal Graphs: Structural Properties

A cutset: a set of vertices $X \subseteq V$ such that the graph G - X is disconnected.

Theorem (Dirac, 1961)

Every minimal cutset in a chordal graph is a clique.

Theorem

Every chordal graph contains a simplicial vertex.

simplicial vertex: a vertex whose neighborhood is a clique

Theorem

Every chordal graph contains a simplicial vertex.

simplicial vertex: a vertex whose neighborhood is a clique

If G is chordal and $v \in V(G)$ then G - v is chordal.

Theorem

Every chordal graph contains a simplicial vertex.

simplicial vertex: a vertex whose neighborhood is a clique

If G is chordal and $v \in V(G)$ then G - v is chordal.

With iterative deletion of simplicial vertices, it is easy to develop polynomial-time algorithms for the following problems on chordal graphs:

Theorem

Every chordal graph contains a simplicial vertex.

simplicial vertex: a vertex whose neighborhood is a clique

If G is chordal and $v \in V(G)$ then G - v is chordal.

With iterative deletion of simplicial vertices, it is easy to develop polynomial-time algorithms for the following problems on chordal graphs:

- CLIQUE,
- COLORABILITY,
- STABLE SET.

Theorem

Every chordal graph contains a simplicial vertex.

simplicial vertex: a vertex whose neighborhood is a clique

If G is chordal and $v \in V(G)$ then G - v is chordal.

With iterative deletion of simplicial vertices, it is easy to develop polynomial-time algorithms for the following problems on chordal graphs:

- CLIQUE,
- COLORABILITY,
- STABLE SET.

On the other hand, the DOMINATING SET problem is NP-complete on chordal graphs.

INTERVAL GRAPHS.

Definition

A graph is an interval graph if its vertices can be put into one-to-one correspondence with a set of intervals on the real line such that two vertices are connected by an edge if and only if their corresponding intervals have nonempty intersection.

Source: http://en.wikipedia.org/wiki/Interval.graph

Theorem (Booth and Lueker 1976)

Interval graphs can be recognized in linear time.

Theorem (Booth and Lueker 1976)

Interval graphs can be recognized in linear time.

Other algorithmic problems on interval graphs:

- COLORABILITY: In P.
- CLIQUE: In P.
- STABLE SET: In P.
- DOMINATING SET: In P.

SPLIT GRAPHS.

Definition

A graph is split if there exists a partition of its vertex set into a clique and a stable set.

Source: http://en.wikipedia.org/wiki/Split_graph

Theorem (Földes and Hammer, 1977)

A graph is split if and only if it is $\{2K_2, C_4, C_5\}$ -free.

Split graphs are precisely the vertex-intersection graphs of subtrees of a star.

Split graphs are precisely the vertex-intersection graphs of subtrees of a star.

Theorem

Let $d_1 \ge d_2 \ge \ldots \ge d_n$ be the degree sequence of a graph G. Also, let $m = \max\{i : d_i \ge i - 1\}$. Then, G is a split graph if and only if $\sum_{i=1}^{m} d_i = m(m-1) + \sum_{i=m+1}^{n} d_i$. Split graphs can be recognized in linear time.

Split graphs can be recognized in linear time.

Other algorithmic problems on split graphs:

- COLORABILITY: In P.
- CLIQUE: In P.
- STABLE SET: In P.

Split graphs can be recognized in linear time.

Other algorithmic problems on split graphs:

- COLORABILITY: In P.
- CLIQUE: In P.
- STABLE SET: In P.
- DOMINATING SET: NP-complete.

THRESHOLD GRAPHS.

Definition

A graph G = (V, E) is threshold if

A graph G = (V, E) is threshold if there exist positive real vertex weights w(v) for all $v \in V$ and

A graph G = (V, E) is threshold if there exist positive real vertex weights w(v) for all $v \in V$ and a threshold $t \in \mathbb{R}$ such that

A graph G = (V, E) is threshold if there exist positive real vertex weights w(v) for all $v \in V$ and a threshold $t \in \mathbb{R}$ such that for every vertex set $S \subseteq V$,

A graph G = (V, E) is threshold if there exist positive real vertex weights w(v) for all $v \in V$ and a threshold $t \in \mathbb{R}$ such that for every vertex set $S \subseteq V$,

S is stable if and only if
$$w(S) := \sum_{v \in S} w(v) \le t$$
.

Definition

A graph G = (V, E) is threshold if

Definition

A graph G = (V, E) is threshold if there exist positive real vertex weights w(v) for all $v \in V$ and

Definition

A graph G = (V, E) is threshold if there exist positive real vertex weights w(v) for all $v \in V$ and a threshold $t \in \mathbb{R}$ such that

Definition

A graph G = (V, E) is threshold if there exist positive real vertex weights w(v) for all $v \in V$ and a threshold $t \in \mathbb{R}$ such that for every vertex set $S \subseteq V$,

Definition

A graph G = (V, E) is threshold if there exist positive real vertex weights w(v) for all $v \in V$ and a threshold $t \in \mathbb{R}$ such that for every vertex set $S \subseteq V$,

S is stable if and only if
$$w(S) := \sum_{v \in S} w(v) \le t$$
.

Theorem (Chvátal, Hammer 1977)

A graph is threshold if and only if it is $\{2K_2, C_4, P_4\}$ -free.

A graph G is threshold if and only if can be constructed from the one-vertex graph by repeated applications of the following two operations:

- Addition of a single isolated vertex to the graph.
- Addition of a single dominating vertex to the graph.

A graph G is threshold if and only if can be constructed from the one-vertex graph by repeated applications of the following two operations:

- Addition of a single isolated vertex to the graph.
- Addition of a single dominating vertex to the graph.

Threshold graphs can be recognized in linear time.

A graph G is threshold if and only if can be constructed from the one-vertex graph by repeated applications of the following two operations:

- Addition of a single isolated vertex to the graph.
- Addition of a single dominating vertex to the graph.

Threshold graphs can be recognized in linear time.

Other algorithmic problems on threshold graphs:

- COLORABILITY: In P.
- CLIQUE: In P.
- STABLE SET: In P.
- DOMINATING SET: In P.

NUMERICALLY DEFINED GRAPH CLASSES.

A General Framework

Let $\ensuremath{\mathcal{P}}$ denote a **property** meaningful for vertex or edge subsets of a graph.

Let \mathcal{P} denote a **property** meaningful for vertex or edge subsets of a graph.

For example, \mathcal{P} could be any of the following:

- a matching,
- a clique,
- a stable set,
- a dominating set,
- a total dominating set,
- etc.

total dominating set: a set of vertices such that every vertex has a neighbor in it

total dominating set: a set of vertices such that every vertex has a neighbor in it

Problem

Given a graph G, does G admit positive integer weights **w** on its vertices (or edges) and a set T such that $\mathcal{P}(S)$ holds if and only if $w(S) \in T$?

Problem

Given a graph G, does G admit positive integer weights **w** on its vertices (or edges) and a set T such that $\mathcal{P}(S)$ holds if and only if $w(S) \in T$?

Several graph classes can be defined with a suitable choice of property \mathcal{P} and restriction on the set \mathcal{T} .

A General Framework – Examples

Example:

 \mathcal{P} = a stable set; T = an interval unbounded from below:

A General Framework – Examples

Example:

 \mathcal{P} = a stable set; T = an interval unbounded from below: threshold graphs (Chvátal-Hammer 1977)

A General Framework – Examples

Example:

 \mathcal{P} = a stable set; T = an interval unbounded from below: threshold graphs (Chvátal-Hammer 1977)

 \mathcal{P} = a maximal stable set; T = a single number:

P = a stable set; T = an interval unbounded from below: threshold graphs (Chvátal-Hammer 1977)

 \mathcal{P} = a maximal stable set; T = a single number: equistable graphs (Payan 1980)

 \mathcal{P} = a stable set; T = an interval unbounded from below: threshold graphs (Chvátal-Hammer 1977)

P = a maximal stable set; T = a single number: equistable graphs (Payan 1980)

 \mathcal{P} = a dominating set; T = an interval unbounded from above:

 \mathcal{P} = a stable set; T = an interval unbounded from below: threshold graphs (Chvátal-Hammer 1977)

P = a maximal stable set; T = a single number: equistable graphs (Payan 1980)

 \mathcal{P} = a dominating set; T = an interval unbounded from above: **domishold graphs** (Benzaken-Hammer 1978)

P = a stable set; T = an interval unbounded from below: threshold graphs (Chvátal-Hammer 1977)

 \mathcal{P} = a maximal stable set; T = a single number: equistable graphs (Payan 1980)

P = a dominating set; T = an interval unbounded from above: domishold graphs (Benzaken-Hammer 1978)

 \mathcal{P} = a total dominating set; T = an interval unbounded from above:

P = a stable set; T = an interval unbounded from below: threshold graphs (Chvátal-Hammer 1977)

 \mathcal{P} = a maximal stable set; T = a single number: equistable graphs (Payan 1980)

P = a dominating set; T = an interval unbounded from above: domishold graphs (Benzaken-Hammer 1978)

 \mathcal{P} = a total dominating set; T = an interval unbounded from above:

total domishold graphs (Chiarelli-M. 2013)

P = a stable set; T = an interval unbounded from below: threshold graphs (Chvátal-Hammer 1977)

P = a maximal stable set; T = a single number: equistable graphs (Payan 1980)

P = a dominating set; T = an interval unbounded from above: domishold graphs (Benzaken-Hammer 1978)

 \mathcal{P} = a total dominating set; T = an interval unbounded from above:

total domishold graphs (Chiarelli-M. 2013)

 \mathcal{P} = a perfect matching; T = a single number:

P = a stable set; T = an interval unbounded from below: threshold graphs (Chvátal-Hammer 1977)

 \mathcal{P} = a maximal stable set; T = a single number: equistable graphs (Payan 1980)

P = a dominating set; T = an interval unbounded from above: domishold graphs (Benzaken-Hammer 1978)

 \mathcal{P} = a total dominating set; T = an interval unbounded from above:

total domishold graphs (Chiarelli-M. 2013)

 \mathcal{P} = a perfect matching; \mathcal{T} = a single number: all graphs

EQUISTABLE GRAPHS.

Definition

A graph G = (V, E) is **equistable** if there exists a weight function $w : V \to \mathbb{N}$ and a positive integer $t \in \mathbb{N}$ such that for every $S \subseteq V$:

S is a maximal stable set in $G \Leftrightarrow w(S) = t$.

The following graph is not equistable:

lf

$$w_1 + w_3 = t$$

 $w_2 + w_4 = t$
 $w_1 + w_4 = t$

The following graph is not equistable:

then

lf

$$W_2 + W_3 = t$$
.

Complexity of algorithmic problems on equistable graphs:

Complexity of algorithmic problems on equistable graphs:RECOGNITION: OPEN.

Complexity of algorithmic problems on equistable graphs:

- RECOGNITION: OPEN.
 - In P if weights are in $\{1, ..., k\}$ for a fixed k (Levit-M.-Tankus 2012)

Complexity of algorithmic problems on equistable graphs:

- RECOGNITION: OPEN.
 - In P if weights are in $\{1, \ldots, k\}$ for a fixed k (Levit-M.-Tankus 2012)
- COLORABILITY: NP-complete.
- CLIQUE: NP-complete.
- STABLE SET: NP-complete.
- DOMINATING SET: NP-complete.

DOMISHOLD GRAPHS.

Definition

A graph G = (V, E) is **domishold** if there exists a weight function $w : V \to \mathbb{N}$ and a positive integer $t \in \mathbb{N}$ such that for every $S \subseteq V$:

S is a dominating set in $G \Leftrightarrow w(S) \ge t$.

Theorem (Benzaken and Hammer 1978)

A graph G is domishold if and only if G is $\{2K_2, P_4, K_{3,3}, K_{3,3} + e, K_{3,3} + 2e\}$ -free.

Complexity of algorithmic problems on domishold graphs:

- RECOGNITION: In P.
- COLORABILITY: In P.
- CLIQUE: In P.
- STABLE SET: In P.
- DOMINATING SET: In P.

TOTAL DOMISHOLD GRAPHS.

Definition

A graph G = (V, E) is **total domishold** if there exists a weight function $w : V \to \mathbb{N}$ and a positive integer $t \in \mathbb{N}$ such that for every $S \subseteq V$:

S is a total dominating set in **G** \Leftrightarrow $w(S) \ge t$.

Complexity of algorithmic problems on total domishold graphs (Chiarelli-M. 2013):

• RECOGNITION: In P.

Complexity of algorithmic problems on total domishold graphs (Chiarelli-M. 2013):

- RECOGNITION: In P.
- COLORABILITY: NP-complete.
- CLIQUE: NP-complete.
- STABLE SET: NP-complete.

Complexity of algorithmic problems on total domishold graphs (Chiarelli-M. 2013):

- RECOGNITION: In P.
- COLORABILITY: NP-complete.
- CLIQUE: NP-complete.
- STABLE SET: NP-complete.
- DOMINATING SET: OPEN.

CIRCULANT GRAPHS.

A circulant is a Cayley graph over a cyclic group.

A circulant is a Cayley graph over a cyclic group.

Proposition

A circulant $G = C_n(D)$ is connected if and only if $gcd(D \cup \{n\}) = 1.$

Proposition

A circulant $G = C_n(D)$ is connected if and only if $gcd(D \cup \{n\}) = 1.$

Proposition

A connected circulant $G = C_n(D)$ with at least two vertices is bipartite if and only if n is even, while every $d \in D$ is odd.

Theorem (Evdokimov and Ponomarenko 2004)

Circulant graphs can be recognized in polynomial time.

Theorem (Evdokimov and Ponomarenko 2004)

Circulant graphs can be recognized in polynomial time.

Other algorithmic problems on circulant graphs:

- COLORABILITY: NP-complete. Codenotti–Gerace–Vigna 1998
- CLIQUE: NP-complete. Codenotti–Gerace–Vigna 1998
- STABLE SET: NP-complete. Codenotti–Gerace–Vigna 1998

Theorem (Evdokimov and Ponomarenko 2004)

Circulant graphs can be recognized in polynomial time.

Other algorithmic problems on circulant graphs:

- COLORABILITY: NP-complete. Codenotti–Gerace–Vigna 1998
- CLIQUE: NP-complete. Codenotti–Gerace–Vigna 1998
- STABLE SET: NP-complete. Codenotti–Gerace–Vigna 1998
- DOMINATING SET: OPEN.

CONCLUSION.

Graph classes form a rich field of research, with practical and theoretical applications.

Graph classes form a rich field of research, with practical and theoretical applications.

Methods from different branches of mathematics and computer science apply to the study of graph classes:

- algebraic and Boolean methods,
- combinatorial methods,
- mathematical programming (linear programming, polyhedral combinatorics, semidefinite programming),
- algorithm design and computational complexity analysis,
- o etc.

Thank you!