A classification of tetravalent half-arc-transitive weak metacirculants of girth 4

Iva Antončič
UP FAMNIT
May 18. 2013

This is joint work with Primož Šparl.

Definition

Let X be a graph (without multiple edges, loops or semi-edges) with vertex set $V(X)$, edge set $E(X)$ and arc set $A(X)$. X is said to be vertex-transitive (VT), edge-transitive (ET) and arc-transitive (AT) if the automorphism group $\operatorname{Aut}(X)$ is transitive on $V(X), E(X)$ and $A(X)$ respectively.

Definition
A graph X is said to be half-arc-transitive (HAT) if it is VT and ET but not AT.

Weak metacirculants

Weak metacirculants

Definition

Let $m \geq 1$ and $n \geq 2$ be integers. An automorphism of a graph is called (m, n)-semiregular if it has m orbits of size n and no other orbits on the vertices of the graph.

Weak metacirculants

Definition

Let $m \geq 1$ and $n \geq 2$ be integers. An automorphism of a graph is called (m, n)-semiregular if it has m orbits of size n and no other orbits on the vertices of the graph.

Definition
We call a graph X weak (m, n)-metacirculant if

1. there exists a (m, n)-semiregular automorphism ρ of X;
2. $\exists \sigma \in \operatorname{Aut}(X): \sigma^{-1} \rho \sigma=\rho^{r}$ for some $r \in \mathbb{Z}_{n}^{*}$ which cyclically permutes all of the the orbits of ρ.

Definition

We say that X is a weak metacirculant if it is a weak (m, n)-metacirculant for some positive integers m and n.

Weak metacirculant

Example

Figure: Petersen graph as a weak $(2,5)$-metacirculant

Quartic Weak metacirculants - classes

Proposition (Marušič, Šparl, 2008)

Let X be a connected HAT weak metacirculant relative to (ρ, σ). Then X belongs to one (or more) of the following four classes of graphs according to its quotient (multi)graph relative to ρ :

Weak metacirculants - $\mathcal{X}_{o}(m, n ; r)$

Example

For each $m \geq 3, n \geq 3$ odd, $r \in \mathbb{Z}_{n}^{*}$, where $r^{m}= \pm 1$ let $\mathcal{X}_{o}(m, n ; r)$ be the graph with vertex set $V=\left\{u_{i}^{j} \mid i \in \mathbb{Z}_{m}, j \in \mathbb{Z}_{n}\right\}$ and edges defined by the following adjacencies

$$
\begin{equation*}
u_{i}^{j} \sim u_{i+1}^{j \pm r^{i}} \quad i \in \mathbb{Z}_{n}, j \in \mathbb{Z}_{m} . \tag{1}
\end{equation*}
$$

Figure: Doyle-Holt graph as a metacirculant $\mathcal{X}_{o}(3,9 ; 2)$

Weak metacirculants $-\mathcal{X}_{e}(m, n ; r, t)$

Example

For integers $m, n \geq 4$, n even, $r \in \mathbb{Z}_{n}^{*}, t \in \mathbb{Z}_{n}$ satisfying $r^{m}=1$, $t(r-1)=0$ let $\mathcal{X}_{e}(m, n ; r, t)$ be the graph with vertex set $V=\left\{u_{i}^{j} \mid i \in \mathbb{Z}_{m}, j \in \mathbb{Z}_{n}\right\}$ and edges defined by adjacencies

$$
u_{i}^{j} \sim \begin{cases}u_{i+1}^{j}, u_{i+1}^{j+r^{i}} & ; i \in \mathbb{Z}_{m} \backslash\{m-1\}, j \in \mathbb{Z}_{n} \tag{2}\\ u_{0}^{j+t}, u_{0}^{j+r^{m-1}+t} & ; i=m-1, j \in \mathbb{Z}_{n} .\end{cases}
$$

Figure: $\mathcal{X}_{e}(4,20 ; 3,10)$

Weak metacirculants - Class IV

Weak metacirculants - Class IV

Let X be any connected HAT weak (m, n)-metacirculant of Class IV. Then X is completely determined by integers $m \geq 5, n \geq 3$, $r \in \mathbb{Z}_{n}^{*}, t \in \mathbb{Z}_{n}, p<q \in \mathbb{Z}_{m} \backslash\{0\}$, $a, b \in \mathbb{Z}_{n}$, thus we can denote $X=\mathcal{X}_{I V}(m, n ; r, t, p, a, q, b)$.
The vertex set is $V=\left\{u_{i}^{j} ; i \in \mathbb{Z}_{m}, j \in \mathbb{Z}_{n}\right\}$ and the edges of X are defined by the following adjacency:

$$
u_{i}^{j} \sim \begin{cases}u_{i+p}^{j+a r^{i}}, u_{i+q}^{j+b r^{i}} & 0 \leq i<m-q, j \in \mathbb{Z}_{n} \tag{3}\\ u_{i+p r^{i}}^{j+a)^{i}, u_{i+q}^{j+b r^{i}+t}} & m-q \leq i<m-p, j \in \mathbb{Z}_{n} \\ u_{i+p}^{j+a r^{i}+t}, u_{i+q}^{j+b r^{i}+t} & m-p \leq i<m, j \in \mathbb{Z}_{n}\end{cases}
$$

Weak metacirculants - $\mathcal{T}(m, n ; r)$

Example

Let m, n be such integers that $4 \mid m$ and let $r \in \mathbb{Z}_{n}^{*}$ be such that $r^{m}=1$. Then the graph $\mathcal{X}_{I V}\left(m, n ; r,-1-r^{\frac{m}{2}}, 1,0, \frac{m}{2}-1,1\right)$ is denoted by $\mathcal{T}(m, n ; r)$. Graph $\mathcal{T}(m, n ; r)$ has girth 4 .

Figure: $\mathcal{T}(20 ; 5,2)$

HAT tetravalent weak metacirculants of girth 4

Theorem (A., Šparl; 201?)
Let $m \geq, n \geq 3$ and $r \in \mathbb{Z}_{n}^{*}$ be integers. A connected graph X is a half-arc-transitive weak (m, n)-metacirculant of valency 4 and girth 4 if and only if one of the following holds:

- $X \cong \mathcal{X}_{o}(4, n ; r)$ for n odd, $r^{4}=1, r^{2} \neq \pm 1$ and either $1+r+r^{2}+r^{3}=0$ or $1-r+r^{2}-r^{3}=0$.
- $X \cong \mathcal{X}_{e}(4, n ; r, t)$ for n even, $r^{4}=1, r^{2} \neq \pm 1, t(r-1)=0$, $1+r+r^{2}+r^{3}+2 t=0$ and $t \in\left\{0,-1-r^{2}\right\}$.
- $X \cong \mathcal{T}(m, n ; r)$ for $m \geq 5, m \equiv 4(\bmod 8), r^{4}=1, r^{2} \neq \pm 1$ and $1-r+r^{2}-r^{3}=0$.

HAT graphs of Class IV and girth 4

Theorem (A.,Šparl; 201?)
Let $m \geq 5, n \geq 3$ be integers. A connected quartic graph X of girth 4 is a half-arc-transitive weak (m, n)-metacirculant of Class IV if and only if $X \cong \mathcal{T}(m, n ; r)$, where the following conditions are satisfied:
(i) $m \equiv 4(\bmod 8)$,
(ii) $r^{4}=1$ and $r^{2} \neq 1$,
(iii) $1-r+r^{2}-r^{3}=0$.

On a HAT graph of valency 4 and girth 4

Theorem (Marušič, Nedela; 2002)
Let X be a half-arc-transitive graph of valency 4 and girth 4 . Then the set of 4-cycles of X decomposes the edge set $E(X)$ and furthermore, either
(i) every 4-cycle is alternating or
(ii) every 4-cycle is directed.

Moreover, in case (ii) the vertex stabilizer $(\operatorname{Aut}(X))_{v}$, is isomorphic to \mathbb{Z}_{2}.

Idea of the proof

Let $X=\mathcal{X}_{I V}(m, n ; r, t, p, a, q, b)$ be a HAT graph of Class IV. 1. X is a Cayley graph $\Rightarrow r \neq 1$.

Idea of the proof

Let $X=\mathcal{X}_{I V}(m, n ; r, t, p, a, q, b)$ be a HAT graph of Class IV.

1. X is a Cayley graph $\Rightarrow r \neq 1$.
2. All 4-cycles of X are directed $\Rightarrow(\operatorname{Aut}(X))_{v} \cong \mathbb{Z}_{2}$.

Idea of the proof

Let $X=\mathcal{X}_{I V}(m, n ; r, t, p, a, q, b)$ be a HAT graph of Class IV.

1. X is a Cayley graph $\Rightarrow r \neq 1$.
2. All 4-cycles of X are directed $\Rightarrow(\operatorname{Aut}(X))_{v} \cong \mathbb{Z}_{2}$.
3. Every 4 -cycle of X consists of two p-edges and two q-edges where p - and q-edges alternate $\Rightarrow 2 p+2 q=0$.

Idea of the proof

Let $X=\mathcal{X}_{I V}(m, n ; r, t, p, a, q, b)$ be a HAT graph of Class IV.

1. X is a Cayley graph $\Rightarrow r \neq 1$.
2. All 4-cycles of X are directed $\Rightarrow(\operatorname{Aut}(X))_{v} \cong \mathbb{Z}_{2}$.
3. Every 4 -cycle of X consists of two p-edges and two q-edges where p - and q-edges alternate $\Rightarrow 2 p+2 q=0$.
4. Some computation gives that $X \cong \mathcal{T}(m, n ; r)$ with $r^{4}=1$ and $m \equiv 4(\bmod 8)$.

Idea of the proof

Let $X=\mathcal{X}_{I V}(m, n ; r, t, p, a, q, b)$ be a HAT graph of Class IV.

1. X is a Cayley graph $\Rightarrow r \neq 1$.
2. All 4-cycles of X are directed $\Rightarrow(\operatorname{Aut}(X))_{v} \cong \mathbb{Z}_{2}$.
3. Every 4 -cycle of X consists of two p-edges and two q-edges where p - and q-edges alternate $\Rightarrow 2 p+2 q=0$.
4. Some computation gives that $X \cong \mathcal{T}(m, n ; r)$ with $r^{4}=1$ and $m \equiv 4(\bmod 8)$.
5. If $r^{2}=1$ we can find an automorphism that interchanges two adjacent vertices $\Rightarrow r^{2} \neq 1$.

Idea of the proof

\Rightarrow
Let $X=\mathcal{X}_{I V}(m, n ; r, t, p, a, q, b)$ be a HAT graph of Class IV.

1. X is a Cayley graph $\Rightarrow r \neq 1$.
2. All 4-cycles of X are directed $\Rightarrow(\operatorname{Aut}(X))_{v} \cong \mathbb{Z}_{2}$.
3. Every 4 -cycle of X consists of two p-edges and two q-edges where p - and q-edges alternate $\Rightarrow 2 p+2 q=0$.
4. Some computation gives that $X \cong \mathcal{T}(m, n ; r)$ with $r^{4}=1$ and $m \equiv 4(\bmod 8)$.
5. If $r^{2}=1$ we can find an automorphism that interchanges two adjacent vertices $\Rightarrow r^{2} \neq 1$.
6. Definition of $\mathcal{T}(m, n ; r)$ with $r t=t$ gives $1-r+r^{2}-r^{3}=0$.

Idea of the proof

$$
\begin{aligned}
& \Leftarrow \\
& \text { Let } X=\mathcal{T}(m, n ; r) \text {, where } m \equiv 4(\bmod 8), 1=r^{4} \neq r^{2} \text { and } \\
& 1-r+r^{2}-r^{3}=0 \text {. }
\end{aligned}
$$

Idea of the proof

$$
\begin{aligned}
& \Leftarrow \\
& \text { Let } X=\mathcal{T}(m, n ; r) \text {, where } m \equiv 4(\bmod 8), 1=r^{4} \neq r^{2} \text { and } \\
& 1-r+r^{2}-r^{3}=0 \text {. }
\end{aligned}
$$

1. X is of girth 4 .

Idea of the proof

$$
\begin{aligned}
& \Leftarrow \\
& \text { Let } X=\mathcal{T}(m, n ; r) \text {, where } m \equiv 4(\bmod 8), 1=r^{4} \neq r^{2} \text { and } \\
& 1-r+r^{2}-r^{3}=0 \text {. }
\end{aligned}
$$

1. X is of girth 4.
2. $\langle\rho, \sigma\rangle \leq \operatorname{Aut}(X)$.

Idea of the proof

> Let $X=\mathcal{T}(m, n ; r)$, where $m \equiv 4(\bmod 8), 1=r^{4} \neq r^{2}$ and $1-r+r^{2}-r^{3}=0$.

1. X is of girth 4.
2. $\langle\rho, \sigma\rangle \leq \operatorname{Aut}(X)$.
3.

$$
\tau\left(u_{i}^{j}\right)= \begin{cases}u_{0}^{-j} & ; j \in \mathbb{Z}_{n} \\ u_{i q}^{1+r^{q}+r^{2 q}+\cdots+r^{(i-1) q}-j+\left\lceil\frac{i-2}{2}\right\rceil t} & ; i \leq \frac{m}{2}, j \in \mathbb{Z}_{n} \\ u_{i q}^{1+r^{q}+r^{2 q}+\cdots+r^{(i-1) q}-j+\left\lceil\frac{i-3}{2}\right\rceil t} & ; i>\frac{m}{2}, j \in \mathbb{Z}_{n}\end{cases}
$$

is an automorphism of X.

Idea of the proof

Let $X=\mathcal{T}(m, n ; r)$, where $m \equiv 4(\bmod 8), 1=r^{4} \neq r^{2}$ and $1-r+r^{2}-r^{3}=0$.

1. X is of girth 4.
2. $\langle\rho, \sigma\rangle \leq \operatorname{Aut}(X)$.
3.

$$
\tau\left(u_{i}^{j}\right)= \begin{cases}u_{0}^{-j} & ; j \in \mathbb{Z}_{n} \\ u_{i q}^{1+r^{q}+r^{2 q}+\cdots+r^{(i-1) q}-j+\left\lceil\frac{i-2}{2}\right\rceil t} & ; i \leq \frac{m}{2}, j \in \mathbb{Z}_{n} \\ u_{i q}^{1+r^{q}+r^{2 q}+\cdots+r^{(i-1) q}-j+\left\lceil\frac{i-3}{2}\right\rceil t} & ; i>\frac{m}{2}, j \in \mathbb{Z}_{n}\end{cases}
$$

is an automorphism of X.
4. Inspecting the structure of X with emphesis on the 4 -cycles it can be shown that any automorphism of X that fixes a 4 -cycle setwise and fixes one of its vertices is the identity.

Isomorphism classes

$\mathcal{X}_{0}(m, n ; r)$
Let $X=\mathcal{X}_{o}(m, n ; r)$ and $X^{\prime}=\mathcal{X}_{o}\left(m^{\prime}, n^{\prime} ; r^{\prime}\right)$ be HAT. Then $X \cong X^{\prime}$ iff $m=m^{\prime}, n=n^{\prime}$ and $r^{\prime} \in\left\{r,-r, r^{-1},-r^{-1}\right\}$

Isomorphism classes

$\mathcal{X}_{o}(m, n ; r)$
Let $X=\mathcal{X}_{o}(m, n ; r)$ and $X^{\prime}=\mathcal{X}_{o}\left(m^{\prime}, n^{\prime} ; r^{\prime}\right)$ be HAT. Then $X \cong X^{\prime}$ iff $m=m^{\prime}, n=n^{\prime}$ and $r^{\prime} \in\left\{r,-r, r^{-1},-r^{-1}\right\}$
$\mathcal{X}_{e}(m, n ; r, t)$
Let $X=\mathcal{X}_{e}(m, n ; r)$ and $X^{\prime}=\mathcal{X}_{e}\left(m^{\prime}, n^{\prime} ; r^{\prime}\right)$ be HAT. Then $X \cong X^{\prime}$ iff $m=m^{\prime}, n=n^{\prime}$ and

- $r^{\prime}=r$ and $t^{\prime}=t$ or
- $r^{\prime}=-r$ and $t^{\prime}=t+r+r^{3}+\cdots+r^{m-1}$ or
- $r^{\prime}=r^{-1}$ and $t^{\prime}=t$ or
- $r^{\prime}=-r^{-1}$ and $t^{\prime}=t+r+r^{3}+\cdots+r^{m-1}$.

Isomorphism classes

Let $X=\mathcal{T}(m, n ; r)$ be HAT. Then there exists such $X^{\prime}=\mathcal{T}\left(M, N ; r^{\prime}\right)$ that and $X^{\prime} \cong X$ and M is the largest possible.

Isomorphism classes

Let $X=\mathcal{T}(m, n ; r)$ be HAT. Then there exists such $X^{\prime}=\mathcal{T}\left(M, N ; r^{\prime}\right)$ that and $X^{\prime} \cong X$ and M is the largest possible.

Let $X=\mathcal{T}(m, n ; r)$ and $X^{\prime}=\mathcal{T}\left(m, n ; r^{\prime}\right)$ be HAT. Then $X \cong X^{\prime}$ if and only if $r^{\prime} \in\left\{r, r^{-1}\right\}$.

Isomorphism classes

Let $X=\mathcal{T}(m, n ; r)$ be HAT. Then there exists such $X^{\prime}=\mathcal{T}\left(M, N ; r^{\prime}\right)$ that and $X^{\prime} \cong X$ and M is the largest possible.

Let $X=\mathcal{T}(m, n ; r)$ and $X^{\prime}=\mathcal{T}\left(m, n ; r^{\prime}\right)$ be HAT. Then $X \cong X^{\prime}$ if and only if $r^{\prime} \in\left\{r, r^{-1}\right\}$.
$\mathcal{T}(m, n ; r)$
Two quartic HAT weak (m, n)-metacirculants of girth 4 of Class IV are isomorphic if and only if they are isomorphic to the same graph $\mathcal{T}(M, N ; r)$.

Thank you!

