A classification of tetravalent half-arc-transitive weak metacirculants of girth 4

Iva Antončič

UP FAMNIT

May 18. 2013

This is joint work with Primož Šparl.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Definition

Let X be a graph (without multiple edges, loops or semi-edges) with vertex set V(X), edge set E(X) and arc set A(X). X is said to be vertex-transitive (VT), edge-transitive (ET) and arc-transitive (AT) if the automorphism group Aut(X) is transitive on V(X), E(X) and A(X) respectively.

Definition

A graph X is said to be half-arc-transitive (HAT) if it is VT and ET but not AT.

(日) (同) (三) (三) (三) (○) (○)

Weak metacirculants

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Weak metacirculants

Definition

Let $m \ge 1$ and $n \ge 2$ be integers. An automorphism of a graph is called (m, n)-semiregular if it has m orbits of size n and no other orbits on the vertices of the graph.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Weak metacirculants

Definition

Let $m \ge 1$ and $n \ge 2$ be integers. An automorphism of a graph is called (m, n)-semiregular if it has m orbits of size n and no other orbits on the vertices of the graph.

Definition

We call a graph X weak (m, n)-metacirculant if

- 1. there exists a (m, n)-semiregular automorphism ρ of X;
- 2. $\exists \sigma \in Aut(X) : \sigma^{-1}\rho\sigma = \rho^r$ for some $r \in \mathbb{Z}_n^*$ which cyclically permutes all of the the orbits of ρ .

Definition

We say that X is a *weak metacirculant* if it is a weak (m, n)-metacirculant for some positive integers m and n.

Weak metacirculant

Example

Figure: Petersen graph as a weak (2, 5)-metacirculant

.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quartic Weak metacirculants - classes

Proposition (Marušič, Šparl, 2008)

Let X be a connected HAT weak metacirculant relative to (ρ, σ) . Then X belongs to one (or more) of the following four classes of graphs according to its quotient (multi)graph relative to ρ :

Weak metacirculants - $\mathcal{X}_o(m, n; r)$

Example

For each $m \ge 3$, $n \ge 3$ odd, $r \in \mathbb{Z}_n^*$, where $r^m = \pm 1$ let $\mathcal{X}_o(m, n; r)$ be the graph with vertex set $V = \left\{ u_i^j \mid i \in \mathbb{Z}_m, j \in \mathbb{Z}_n \right\}$ and edges defined by the following adjacencies

$$u_i^j \sim u_{i+1}^{j\pm r^i} \quad i \in \mathbb{Z}_n, \, j \in \mathbb{Z}_m. \tag{1}$$

Figure: Doyle-Holt graph as a metacirculant $\mathcal{X}_o(3, 9; 2)$

Weak metacirculants - $\mathcal{X}_e(m, n; r, t)$

Example

For integers $m, n \ge 4$, n even, $r \in \mathbb{Z}_n^*$, $t \in \mathbb{Z}_n$ satisfying $r^m = 1$, t(r-1) = 0 let $\mathcal{X}_e(m, n; r, t)$ be the graph with vertex set $V = \left\{ u_i^j \mid i \in \mathbb{Z}_m, j \in \mathbb{Z}_n \right\}$ and edges defined by adjacencies

$$u_{i}^{j} \sim \begin{cases} u_{i+1}^{j}, u_{i+1}^{j+r'} & ; i \in \mathbb{Z}_{m} \setminus \{m-1\}, j \in \mathbb{Z}_{n} \\ u_{0}^{j+t}, u_{0}^{j+r^{m-1}+t} & ; i = m-1, j \in \mathbb{Z}_{n}. \end{cases}$$
(2)

Figure: $X_e(4, 20; 3, 10)$

(日) (同) (三) (三) (三) (○) (○)

Weak metacirculants - Class IV

<ロト (個) (目) (目) (目) (0) (0)</p>

Weak metacirculants - Class IV

Let X be any connected HAT weak (m, n)-metacirculant of Class IV. Then X is completely determined by integers $m \ge 5$, $n \ge 3$, $r \in \mathbb{Z}_n^*$, $t \in \mathbb{Z}_n$, $p < q \in \mathbb{Z}_m \setminus \{0\}$, $a, b \in \mathbb{Z}_n$, thus we can denote $X = \mathcal{X}_{IV}(m, n; r, t, p, a, q, b)$. The vertex set is $V = \{u_i^j; i \in \mathbb{Z}_m, j \in \mathbb{Z}_n\}$ and the edges of X are defined by the following adjacency:

$$u_{i}^{j} \sim \begin{cases} u_{i+p}^{j+ar^{i}}, u_{i+q}^{j+br^{i}} & 0 \leq i < m-q, j \in \mathbb{Z}_{n} \\ u_{i+p}^{j+ar^{i}}, u_{i+q}^{j+br^{i}+t} & m-q \leq i < m-p, j \in \mathbb{Z}_{n} \\ u_{i+p}^{j+ar^{i}+t}, u_{i+q}^{j+br^{i}+t} & m-p \leq i < m, j \in \mathbb{Z}_{n} \end{cases}$$
(3)

・ロト・(部)・・(目)・・(目)・ のへで

Weak metacirculants - $\mathcal{T}(m, n; r)$

Example

Let m, n be such integers that 4|m and let $r \in \mathbb{Z}_n^*$ be such that $r^m = 1$. Then the graph $\mathcal{X}_{IV}(m, n; r, -1 - r^{\frac{m}{2}}, 1, 0, \frac{m}{2} - 1, 1)$ is denoted by $\mathcal{T}(m, n; r)$. Graph $\mathcal{T}(m, n; r)$ has girth 4.

Figure: T(20; 5, 2)

HAT tetravalent weak metacirculants of girth 4

Theorem (A., Šparl; 201?)

Let $m \ge n \ge 3$ and $r \in \mathbb{Z}_n^*$ be integers. A connected graph X is a half-arc-transitive weak (m, n)-metacirculant of valency 4 and girth 4 if and only if one of the following holds:

- ► $X \cong \mathcal{X}_o(4, n; r)$ for n odd, $r^4 = 1$, $r^2 \neq \pm 1$ and either $1 + r + r^2 + r^3 = 0$ or $1 r + r^2 r^3 = 0$.
- ► $X \cong \mathcal{X}_e(4, n; r, t)$ for n even, $r^4 = 1$, $r^2 \neq \pm 1$, t(r-1) = 0, $1 + r + r^2 + r^3 + 2t = 0$ and $t \in \{0, -1 - r^2\}$.
- ▶ $X \cong \mathcal{T}(m, n; r)$ for $m \ge 5$, $m \equiv 4 \pmod{8}$, $r^4 = 1$, $r^2 \ne \pm 1$ and $1 - r + r^2 - r^3 = 0$.

HAT graphs of Class IV and girth 4

Theorem (A.,Šparl; 201?)

Let $m \ge 5$, $n \ge 3$ be integers. A connected quartic graph X of girth 4 is a half-arc-transitive weak (m, n)-metacirculant of Class IV if and only if $X \cong \mathcal{T}(m, n; r)$, where the following conditions are satisfied:

(i)
$$m \equiv 4 \pmod{8}$$
,
(ii) $r^4 = 1$ and $r^2 \neq 1$,
(iii) $1 - r + r^2 - r^3 = 0$.

On a HAT graph of valency 4 and girth 4

Theorem (Marušič, Nedela; 2002)

Let X be a half-arc-transitive graph of valency 4 and girth 4. Then the set of 4-cycles of X decomposes the edge set E(X) and furthermore, either

- (i) every 4-cycle is alternating or
- (ii) every 4-cycle is directed.

Moreover, in case (ii) the vertex stabilizer $(Aut(X))_v$, is isomorphic to \mathbb{Z}_2 .

\Rightarrow Let $X = \mathcal{X}_{IV}(m, n; r, t, p, a, q, b)$ be a HAT graph of Class IV. 1. X is a Cayley graph $\Rightarrow r \neq 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

⇒ Let X = X_{IV}(m, n; r, t, p, a, q, b) be a HAT graph of Class IV. 1. X is a Cayley graph ⇒ r ≠ 1. 2. All 4-cycles of X are directed ⇒ (Aut(X))_v ≃ Z₂.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

\Rightarrow

Let $X = \mathcal{X}_{IV}(m, n; r, t, p, a, q, b)$ be a HAT graph of Class IV.

- 1. X is a Cayley graph $\Rightarrow r \neq 1$.
- 2. All 4-cycles of X are directed $\Rightarrow (Aut(X))_{v} \cong \mathbb{Z}_{2}$.
- 3. Every 4-cycle of X consists of two *p*-edges and two *q*-edges where *p* and *q*-edges alternate $\Rightarrow 2p + 2q = 0$.

 \Rightarrow

Let $X = \mathcal{X}_{IV}(m, n; r, t, p, a, q, b)$ be a HAT graph of Class IV.

- 1. X is a Cayley graph $\Rightarrow r \neq 1$.
- 2. All 4-cycles of X are directed $\Rightarrow (Aut(X))_v \cong \mathbb{Z}_2$.
- 3. Every 4-cycle of X consists of two p-edges and two q-edges where p- and q-edges alternate $\Rightarrow 2p + 2q = 0$.
- 4. Some computation gives that $X \cong \mathcal{T}(m, n; r)$ with $r^4 = 1$ and $m \equiv 4 \pmod{8}$.

 \Rightarrow

Let $X = \mathcal{X}_{IV}(m, n; r, t, p, a, q, b)$ be a HAT graph of Class IV.

- 1. X is a Cayley graph $\Rightarrow r \neq 1$.
- 2. All 4-cycles of X are directed $\Rightarrow (Aut(X))_v \cong \mathbb{Z}_2$.
- 3. Every 4-cycle of X consists of two p-edges and two q-edges where p- and q-edges alternate $\Rightarrow 2p + 2q = 0$.
- 4. Some computation gives that $X \cong \mathcal{T}(m, n; r)$ with $r^4 = 1$ and $m \equiv 4 \pmod{8}$.
- 5. If $r^2 = 1$ we can find an automorphism that interchanges two adjacent vertices $\Rightarrow r^2 \neq 1$.

 \Rightarrow

Let $X = \mathcal{X}_{IV}(m, n; r, t, p, a, q, b)$ be a HAT graph of Class IV.

- 1. X is a Cayley graph $\Rightarrow r \neq 1$.
- 2. All 4-cycles of X are directed $\Rightarrow (Aut(X))_v \cong \mathbb{Z}_2$.
- 3. Every 4-cycle of X consists of two p-edges and two q-edges where p- and q-edges alternate $\Rightarrow 2p + 2q = 0$.
- 4. Some computation gives that $X \cong \mathcal{T}(m, n; r)$ with $r^4 = 1$ and $m \equiv 4 \pmod{8}$.
- 5. If $r^2 = 1$ we can find an automorphism that interchanges two adjacent vertices $\Rightarrow r^2 \neq 1$.
- 6. Definition of $\mathcal{T}(m, n; r)$ with rt = t gives $1 r + r^2 r^3 = 0$.

\leftarrow Let $X = \mathcal{T}(m, n; r)$, where $m \equiv 4 \pmod{8}$, $1 = r^4 \neq r^2$ and $1 - r + r^2 - r^3 = 0$.

\leftarrow Let $X = \mathcal{T}(m, n; r)$, where $m \equiv 4 \pmod{8}$, $1 = r^4 \neq r^2$ and $1 - r + r^2 - r^3 = 0$.

1. X is of girth 4.

\leftarrow Let $X = \mathcal{T}(m, n; r)$, where $m \equiv 4 \pmod{8}$, $1 = r^4 \neq r^2$ and $1 - r + r^2 - r^3 = 0$.

1. X is of girth 4.

2. $\langle \rho, \sigma \rangle \leq Aut(X)$.

$$\leftarrow$$
Let $X = \mathcal{T}(m, n; r)$, where $m \equiv 4 \pmod{8}$, $1 = r^4 \neq r^2$ and $1 - r + r^2 - r^3 = 0$.
1. X is of girth 4.
2. $\langle \rho, \sigma \rangle \leq Aut(X)$.
3.

$$\tau(u_{i}^{j}) = \begin{cases} u_{0}^{-j} & ; j \in \mathbb{Z}_{n} \\ u_{iq}^{1+r^{q}+r^{2q}+\dots+r^{(i-1)q}-j+\lceil \frac{i-2}{2} \rceil t} & ; i \leq \frac{m}{2}, j \in \mathbb{Z}_{n} \\ u_{iq}^{1+r^{q}+r^{2q}+\dots+r^{(i-1)q}-j+\lceil \frac{i-3}{2} \rceil t} & ; i > \frac{m}{2}, j \in \mathbb{Z}_{n}. \end{cases}$$

is an automorphism of X.

$$\leftarrow$$
Let $X = \mathcal{T}(m, n; r)$, where $m \equiv 4 \pmod{8}$, $1 = r^4 \neq r^2$ and $1 - r + r^2 - r^3 = 0$.

1. X is of girth 4.

2. $\langle \rho, \sigma \rangle \leq Aut(X)$.

3.

$$\tau(u_{i}^{j}) = \begin{cases} u_{0}^{-j} & ; j \in \mathbb{Z}_{n} \\ u_{iq}^{1+r^{q}+r^{2q}+\dots+r^{(i-1)q}-j+\lceil \frac{i-2}{2} \rceil t} & ; i \leq \frac{m}{2}, j \in \mathbb{Z}_{n} \\ u_{iq}^{1+r^{q}+r^{2q}+\dots+r^{(i-1)q}-j+\lceil \frac{i-3}{2} \rceil t} & ; i > \frac{m}{2}, j \in \mathbb{Z}_{n}. \end{cases}$$

is an automorphism of X.

4. Inspecting the structure of X with emphesis on the 4-cycles it can be shown that any automorphism of X that fixes a 4-cycle setwise and fixes one of its vertices is the identity.

 $\begin{aligned} &\mathcal{X}_o(m,n;r) \\ &\text{Let } X = \mathcal{X}_o(m,n;r) \text{ and } X' = \mathcal{X}_o(m',n';r') \text{ be HAT. Then} \\ &X \cong X' \text{ iff } m = m', \ n = n' \text{ and } r' \in \{r, -r, r^{-1}, -r^{-1}\} \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $\mathcal{X}_{o}(m, n; r)$ Let $X = \mathcal{X}_{o}(m, n; r)$ and $X' = \mathcal{X}_{o}(m', n'; r')$ be HAT. Then $X \cong X'$ iff m = m', n = n' and $r' \in \{r, -r, r^{-1}, -r^{-1}\}$ $\mathcal{X}_{e}(m, n; r, t)$ Let $X = \mathcal{X}_e(m, n; r)$ and $X' = \mathcal{X}_e(m', n'; r')$ be HAT. Then $X \cong X'$ iff m = m'. n = n' and r' = r and t' = t or • r' = -r and $t' = t + r + r^3 + \cdots + r^{m-1}$ or $r' = r^{-1}$ and t' = t or • $r' = -r^{-1}$ and $t' = t + r + r^3 + \cdots + r^{m-1}$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Let $X = \mathcal{T}(m, n; r)$ be HAT. Then there exists such $X' = \mathcal{T}(M, N; r')$ that and $X' \cong X$ and M is the largest possible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $X = \mathcal{T}(m, n; r)$ be HAT. Then there exists such $X' = \mathcal{T}(M, N; r')$ that and $X' \cong X$ and M is the largest possible.

Let $X = \mathcal{T}(m, n; r)$ and $X' = \mathcal{T}(m, n; r')$ be HAT. Then $X \cong X'$ if and only if $r' \in \{r, r^{-1}\}$.

Let $X = \mathcal{T}(m, n; r)$ be HAT. Then there exists such $X' = \mathcal{T}(M, N; r')$ that and $X' \cong X$ and M is the largest possible.

Let $X = \mathcal{T}(m, n; r)$ and $X' = \mathcal{T}(m, n; r')$ be HAT. Then $X \cong X'$ if and only if $r' \in \{r, r^{-1}\}$.

$\mathcal{T}(m, n; r)$

Two quartic HAT weak (m, n)-metacirculants of girth 4 of Class IV are isomorphic if and only if they are isomorphic to the same graph $\mathcal{T}(M, N; r)$.

Thank you!

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●