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Definition
Let X be a graph (without multiple edges, loops or semi-edges)
with vertex set V (X ), edge set E (X ) and arc set A(X ). X is said
to be vertex-transitive (VT), edge-transitive (ET) and
arc-transitive (AT) if the automorphism group Aut(X ) is transitive
on V (X ), E (X ) and A(X ) respectively.

Definition
A graph X is said to be half-arc-transitive (HAT) if it is VT and
ET but not AT.



Weak metacirculants

Definition
Let m ≥ 1 and n ≥ 2 be integers. An automorphism of a graph is
called (m, n)-semiregular if it has m orbits of size n and no other
orbits on the vertices of the graph.

Definition
We call a graph X weak (m, n)-metacirculant if

1. there exists a (m, n)-semiregular automorphism ρ of X ;

2. ∃σ ∈ Aut(X ) : σ−1ρσ = ρr for some r ∈ Z∗n which cyclically
permutes all of the the orbits of ρ.

Definition
We say that X is a weak metacirculant if it is a weak
(m, n)-metacirculant for some positive integers m and n.
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Weak metacirculant

Example
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Figure: Petersen graph as a weak (2, 5)-metacirculant

.



Quartic Weak metacirculants - classes

Proposition (Marušič, Šparl, 2008)

Let X be a connected HAT weak metacirculant relative to (ρ, σ).
Then X belongs to one (or more) of the following four classes of
graphs according to its quotient (multi)graph relative to ρ:

Class I Class II
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2

2

22

2

2

Class III Class IV



Weak metacirculants - Xo(m, n; r)

Example

For each m ≥ 3, n ≥ 3 odd, r ∈ Z∗n, where rm = ±1 let Xo(m, n; r)

be the graph with vertex set V =
{
uji | i ∈ Zm, j ∈ Zn

}
and edges

defined by the following adjacencies

uji ∼ uj±r
i

i+1 i ∈ Zn, j ∈ Zm. (1)

Figure: Doyle-Holt graph as a metacirculant Xo(3, 9; 2)

.



Weak metacirculants - Xe(m, n; r , t)

Example

For integers m, n ≥ 4, n even, r ∈ Z∗n, t ∈ Zn satisfying rm = 1,
t(r − 1) = 0 let Xe(m, n; r , t) be the graph with vertex set

V =
{
uji | i ∈ Zm, j ∈ Zn

}
and edges defined by adjacencies

uji ∼

{
uji+1, u

j+r i

i+1 ; i ∈ Zm \ {m − 1} , j ∈ Zn

uj+t
0 , uj+rm−1+t

0 ; i = m − 1, j ∈ Zn.
(2)

Figure: Xe(4, 20; 3, 10)



Weak metacirculants - Class IV

Let X be any connected HAT weak (m, n)-metacirculant of Class
IV. Then X is completely determined by integers m ≥ 5, n ≥ 3,
r ∈ Z∗n, t ∈ Zn, p < q ∈ Zm \ {0}, a, b ∈ Zn, thus we can denote
X = XIV (m, n; r , t, p, a, q, b).
The vertex set is V = {uji ; i ∈ Zm, j ∈ Zn} and the edges of X are
defined by the following adjacency:

uji ∼


uj+ar i

i+p , uj+br i

i+q 0 ≤ i < m − q, j ∈ Zn

uj+ar i

i+p , uj+br i+t
i+q m − q ≤ i < m − p, j ∈ Zn

uj+ar i+t
i+p , uj+br i+t

i+q m − p ≤ i < m, j ∈ Zn

(3)



Weak metacirculants - Class IV

Let X be any connected HAT weak (m, n)-metacirculant of Class
IV. Then X is completely determined by integers m ≥ 5, n ≥ 3,
r ∈ Z∗n, t ∈ Zn, p < q ∈ Zm \ {0}, a, b ∈ Zn, thus we can denote
X = XIV (m, n; r , t, p, a, q, b).
The vertex set is V = {uji ; i ∈ Zm, j ∈ Zn} and the edges of X are
defined by the following adjacency:

uji ∼


uj+ar i

i+p , uj+br i

i+q 0 ≤ i < m − q, j ∈ Zn

uj+ar i

i+p , uj+br i+t
i+q m − q ≤ i < m − p, j ∈ Zn

uj+ar i+t
i+p , uj+br i+t

i+q m − p ≤ i < m, j ∈ Zn

(3)



Weak metacirculants - T (m, n; r)

Example

Let m, n be such integers that 4|m and let r ∈ Z∗n be such that
rm = 1. Then the graph XIV (m, n; r , −1− r

m
2 , 1, 0, m

2 − 1, 1) is
denoted by T (m, n; r). Graph T (m, n; r) has girth 4.

Figure: T (20; 5, 2)

.



HAT tetravalent weak metacirculants of girth 4

Theorem (A., Šparl; 201?)

Let m ≥, n ≥ 3 and r ∈ Z∗n be integers. A connected graph X is a
half-arc-transitive weak (m, n)-metacirculant of valency 4 and girth
4 if and only if one of the following holds:

I X ∼= Xo(4, n; r) for n odd, r4 = 1, r2 6= ±1 and either
1 + r + r2 + r3 = 0 or 1− r + r2 − r3 = 0.

I X ∼= Xe(4, n; r , t) for n even, r4 = 1, r2 6= ±1, t(r − 1) = 0,
1 + r + r2 + r3 + 2t = 0 and t ∈

{
0, −1− r2

}
.

I X ∼= T (m, n; r) for m ≥ 5, m ≡ 4 (mod 8), r4 = 1, r2 6= ±1
and 1− r + r2 − r3 = 0.



HAT graphs of Class IV and girth 4

Theorem (A.,Šparl; 201?)

Let m ≥ 5, n ≥ 3 be integers. A connected quartic graph X of
girth 4 is a half-arc-transitive weak (m, n)-metacirculant of Class
IV if and only if X ∼= T (m, n; r), where the following conditions
are satisfied:

(i) m ≡ 4 (mod 8),

(ii) r4 = 1 and r2 6= 1,

(iii) 1− r + r2 − r3 = 0.



On a HAT graph of valency 4 and girth 4

Theorem (Marušič, Nedela; 2002)

Let X be a half-arc-transitive graph of valency 4 and girth 4. Then
the set of 4-cycles of X decomposes the edge set E (X ) and
furthermore, either

(i) every 4-cycle is alternating or

(ii) every 4-cycle is directed.

Moreover, in case (ii) the vertex stabilizer (Aut(X ))v , is
isomorphic to Z2.



Idea of the proof

⇒
Let X = XIV (m, n; r , t, p, a, q, b) be a HAT graph of Class IV.

1. X is a Cayley graph ⇒ r 6= 1.

2. All 4-cycles of X are directed ⇒ (Aut(X ))v ∼= Z2.

3. Every 4-cycle of X consists of two p-edges and two q-edges
where p- and q-edges alternate ⇒ 2p + 2q = 0.

4. Some computation gives that X ∼= T (m, n; r) with r4 = 1
and m ≡ 4 (mod 8).

5. If r2 = 1 we can find an automorphism that interchanges two
adjacent vertices ⇒ r2 6= 1.

6. Definition of T (m, n; r) with rt = t gives 1− r + r2 − r3 = 0.
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Idea of the proof

⇐
Let X = T (m, n; r), where m ≡ 4 (mod 8), 1 = r4 6= r2 and
1− r + r2 − r3 = 0.

1. X is of girth 4.

2. 〈ρ, σ〉 ≤ Aut(X ).

3.

τ(uji ) =


u−j0 ; j ∈ Zn

u
1+rq+r2q+···+r (i−1)q−j+d i−2

2
et

iq ; i ≤ m
2 , j ∈ Zn

u
1+rq+r2q+···+r (i−1)q−j+d i−3

2
et

iq ; i > m
2 , j ∈ Zn.

is an automorphism of X .

4. Inspecting the structure of X with emphesis on the 4-cycles it
can be shown that any automorphism of X that fixes a 4-cycle
setwise and fixes one of its vertices is the identity.
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Isomorphism classes

Xo(m, n; r)

Let X = Xo(m, n; r) and X ′ = Xo(m′, n′; r ′) be HAT. Then
X ∼= X ′ iff m = m′, n = n′ and r ′ ∈

{
r , −r , r−1, −r−1

}

Xe(m, n; r , t)

Let X = Xe(m, n; r) and X ′ = Xe(m′, n′; r ′) be HAT. Then
X ∼= X ′ iff m = m′, n = n′ and

I r ′ = r and t ′ = t or

I r ′ = −r and t ′ = t + r + r3 + · · ·+ rm−1 or

I r ′ = r−1 and t ′ = t or

I r ′ = −r−1 and t ′ = t + r + r3 + · · ·+ rm−1.



Isomorphism classes

Xo(m, n; r)

Let X = Xo(m, n; r) and X ′ = Xo(m′, n′; r ′) be HAT. Then
X ∼= X ′ iff m = m′, n = n′ and r ′ ∈

{
r , −r , r−1, −r−1

}
Xe(m, n; r , t)

Let X = Xe(m, n; r) and X ′ = Xe(m′, n′; r ′) be HAT. Then
X ∼= X ′ iff m = m′, n = n′ and

I r ′ = r and t ′ = t or

I r ′ = −r and t ′ = t + r + r3 + · · ·+ rm−1 or

I r ′ = r−1 and t ′ = t or

I r ′ = −r−1 and t ′ = t + r + r3 + · · ·+ rm−1.



Isomorphism classes

Let X = T (m, n; r) be HAT. Then there exists such
X ′ = T (M, N; r ′) that and X ′ ∼= X and M is the largest possible.

Let X = T (m, n; r) and X ′ = T (m, n; r ′) be HAT. Then X ∼= X ′

if and only if r ′ ∈
{
r , r−1

}
.

T (m, n; r)

Two quartic HAT weak (m, n)-metacirculants of girth 4 of Class
IV are isomorphic if and only if they are isomorphic to the same
graph T (M, N; r).
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Thank you!


