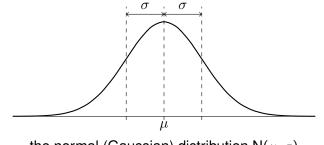
Central Limit Theorems in Stochastic Geometry

Martin Raič

Rogla 19 May 2013

Martin Raič CLT's in Stochastic Geometry

THIS TALK IS ABOUT



the normal (Gaussian) distribution $N(\mu, \sigma)$

$$\mathbb{P}(X \leq x) = \Phi\left(rac{x-\mu}{\sigma}
ight), \qquad \Phi(z) = rac{1}{\sqrt{2\pi}}\int_{-\infty}^{z} e^{-t^2/2} dt$$

Suppose that:

- X_1, X_2, \ldots are independent and identically distributed random variables.
- $\mathbb{E}(X_i^2) < \infty$
- $S_n := X_1 + X_2 + \cdots + X_n$

Then the distribution of the normalized sum:

$$\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{var}(S_n)}}$$

converges weakly to the standard normal N(0, 1) as $n \to \infty$.

ESTIMATION OF THE ERROR

Without loss of generality, $\mathbb{E}(X_1) = 0$ and $var(X_1) = 1$, so that $\mathbb{E}(S_n) = 0$ and $var(S_n) = n$.

Uniform bound (Berry (1941), Esséen (1942), ...):

$$\sup_{z \in \mathbb{R}} \left| \mathbb{P}\left(\frac{S_n}{\sqrt{n}} \leq z \right) - \Phi(z) \right| \leq 0.6 \frac{\mathbb{E} |X_1|^3}{\sqrt{n}}$$

Large deviations (Cramér (1938), Petrov (1953), Statulevičius (1965)):

If $\mathbb{E} e^{HX_1} < \infty$ for some H > 0, then, for all $0 \le x \le C_0 \sqrt{n}$,

$$\frac{\mathbb{P}(S_n/\sqrt{n} \ge x)}{1 - \Phi(x)} = \exp\left(\frac{x^3}{\sqrt{n}}\lambda\left(\frac{x}{\sqrt{n}}\right)\right)\left(1 + \frac{C_1\theta(1+x)}{\sqrt{n}}\right)$$

for some $\theta \in [-1, 1]$. C_0 and C_1 depend only on H and $\mathbb{E} e^{HX_1}$.

RELAXATION OF CONDITIONS

- The summands need not be identically distributed. The Berry–Esséen bound can be expressed in terms of ∑ⁿ_{i=1} ℝ |X_i|³. For large deviations, uniform boundedness of exponential moments satisfies, but can be relaxed.
- The summands may be indexed by an infinite, even random set *I*.
- The summands need not be independent. There are important extensions to *local dependence*. A *dependence graph* is a graph with vertex set *I*, such that for any disjoint *J*, *K* ⊆ *K*, such that there is no edge with one endpoint in *I* and the other in *J*, {*X_j* ; *j* ∈ *J*} and {*X_k* ; *k* ∈ *K*} are independent.

STABILIZING GEOMETRIC FUNCTIONALS

- A geometric functional is a measurable function ξ defined on pairs (x, X), where X ⊂ ℝ^d is a finite set and x ∈ X.
 For x ∉ X, set ξ(x, X) := ξ(x, X ∪ {x}).
- ξ stabilizes at x with respect to \mathcal{X} within radius R if $\xi(x, \mathcal{Y}) = \xi(x, \mathcal{X} \cap B_R(x))$ for all \mathcal{Y} with $\mathcal{Y} \cap B_R(x) = \mathcal{X} \cap B_R(x)$. Here, $B_R(x)$ denotes the closed ball with radius R centered at x.
- We also consider *marked Euclidean spaces* $\mathbb{R}^d \times \mathcal{M}$.
- Dependence graph for stabilizing functionals: if ξ stabilizes at x₁ within radius R₁ and at x₂ within radius R₂, x₁ and x₂ make up an edge if ||x₁ − x₂|| ≤ R₁ + R₂.

EXAMPLES OF STABILIZING FUNCTIONALS (1)

- *k*-nearest-neighbor graph: the directed edge from *x* to *y* is present if *y* is among the *k* nearest neighbors of *x*. Take $\xi(x, \mathcal{X}) := \sum_{y} f(x, y)$, where the sum runs over all *y* which are adjacent to *x*. We can consider adjacency in either direction.
- Voronoi tesselations: the Voronoi cell V(x, X) at x is the set of points which are closer to x than to any other point in X. The Delaunay graph on X is a graph with vertex set X, such that two points are adjacent if the intersection of the underlying Voronoi cells is not negligible. There are many other related graphs.

Packing: X̃ ⊂ ℝ^d × [0, 1]. For X̃ = (x, t) ∈ X̃, t is the time stamp. Assuming that all time stamps are distinct, order X̃ accordingly: X̃₁ < X̃₂ < ··· < X̃_n. Define a new set A := A(X, X̃) as follows: take x₁ ∈ A. Inductively, take x_k ∈ A if B_r(x_k) ∩ {x₁,...x_{k-1}} ∩ A = Ø. Then one might consider ξ(X, X̃) := 1(x ∈ A(X, X̃)) or related functionals.

CLT FOR STABILIZING FUNCTIONALS

Denote by \mathcal{P}_g a Poisson point process on \mathbb{R}^d with intensity function g. For simplicity, omit marks.

Take a probability density function $\kappa \colon \mathbb{R}^d \to [0, \infty)$ and another function $f \colon \mathbb{R}^d \to \mathbb{R}$.

Consider
$$S_{\lambda} := \sum_{x \in \mathcal{P}_{\lambda \kappa}} f(x) \xi (\lambda^{1/d} x, \lambda^{1/d} \mathcal{X}).$$

Under suitable conditions, the distribution of $\frac{S_{\lambda}}{\sigma\sqrt{\lambda}}$ converges to

N(0, 1) for some $\sigma > 0$ as $\lambda \to \infty$.

- Penrose, Yukich, Baryshnikov (2001, 2002, 2005): convergence
- Penrose, Yukich (2005, 2007): uniform bounds
- Baryshnikov, Eichelsbacher, Schreiber, Yukich (2008); Eichelsbacher, Raič, Schreiber (2013): large deviation results

IDEA OF PROOF (1)

Method of moments: if $\mathbb{E}(X^k) = \mathbb{E}(Y^k)$ for all $k \in \mathbb{N}$, then *X* and *Y* have the same distribution.

Instead of moments $m_k = \mathbb{E}(X^k)$, one can consider cumulants c_k .

Moment generating function: $\mathbb{E}(e^{tX}) = \sum_{k=0}^{\infty} m_k \frac{t^k}{k!}$ Moment generating function: $\log \mathbb{E}(e^{tX}) = \sum_{k=0}^{\infty} c_k \frac{t^k}{k!}$ For $X \sim N(\mu, \sigma)$, we have $\mathbb{E}(e^{tX}) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$, so that $c_1 = \mu$, $c_2 = \sigma^2$ and $c_k = 0$ for $k \ge 3$.

Rudzkis, Saulis, Statulevičius (1979): bounds on the cumulants \rightarrow bounds on the relative error in the normal approximation

IDEA OF PROOF (2)

The connection between moments and cumulants can be expressed in terms of *Faà di Bruno*'s formula:

$$f\left(\sum_{k=0}^{\infty} a_k \frac{x^k}{k!}\right) = \sum_{k=0}^{\infty} \left(\sum_{L_1,\dots,L_p} f^{(p)}(0) a_{|L_1|} \cdots a_{|L_p|}\right) \frac{x^k}{k!}$$

where the sum ranges over all unordered partitions of $\{1, \ldots k\}$. That is,

$$c_k = (-1)^{p-1}(p-1)! \sum_{L_1,...L_p} m_{|L_1|} \cdots m_{|L_p|}$$

It turns out that the cumulants of sums $\sum_{i \in I} X_i$ can be expressed in terms of the covariances:

$$\mathbb{E}(X_{i_1},\ldots X_{i_k}X_{j_1},\ldots X_{j_l})-\mathbb{E}(X_{i_1},\ldots X_{i_k})\mathbb{E}(X_{j_1},\ldots X_{j_l})$$

which vanish if $(X_{i_1}, \ldots, X_{i_k})$ and $(X_{j_1}, \ldots, X_{j_l})$ are independent.

THANK YOU FOR YOUR ATTENTION!

Martin Raič CLT's in Stochastic Geometry