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THIS TALK IS ABOUT ...

the normal (Gaussian) distribution N(x, o)

P(ng):cp(’(;“) , d)(z):\/%/_;e_fz/?dt
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CENTRAL LIMIT THEOREM (CLASSICAL)

Suppose that:

@ Xi, Xo, ... are independent and identically distributed
random variables.

° E(X?) < oo
S, =Xi+Xo+--+ Xy
Then the distribution of the normalized sum:
Sn—E(Sp)
var(Sp)

converges weakly to the standard normal N(0,1) as n — oc.
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ESTIMATION OF THE ERROR

Without loss of generality, E(X;) = 0 and var(X;) = 1, so that
E(Sn) = 0 and var(S,) = n.

Uniform bound (Berry (1941), Esséen (1942), ...):

E|X|3
7

sup
zeR

NG

P <S” < z> - d)(z)‘ <0.6

Large deviations (Cramér (1938), Petrov (1953),
StatuleviCius (1965)):
If E eM%1 < oo for some H > 0, then, for all 0 < x < Co\/n,

SNEE o (1 (5)) (1 9)

for some 6 € [—1,1].
Co and Cy depend only on H and E e,
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RELAXATION OF CONDITIONS

@ The summands need not be identically distributed.
The Berry—Esséen bound can be expressed in terms of
i EIX.
For large deviations, uniform boundedness of exponential
moments satisfies, but can be relaxed.

@ The summands may be indexed by an infinite, even
random set /.

@ The summands need not be independent.
There are important extensions to local dependence.
A dependence graph is a graph with vertex set /, such that
for any disjoint J, K C K, such that there is no edge with
one endpoint in / and the otherin J, {X; ; j € J} and
{Xx ; k € K} are independent.
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STABILIZING GEOMETRIC FUNCTIONALS

@ A geometric functional is a measurable function ¢ defined
on pairs (x, X'), where X C R is a finite set and x € X.
For x ¢ X, set &(x, X) := &(x, XY U {x}).

o ¢ stabilizes at x with respect to X’ within radius R if
E(x,Y) = &(x, X N Bg(x)) for all Y with
Y N Bg(x) = X N Bg(x). Here, Br(x) denotes the closed
ball with radius R centered at x.

@ We also consider marked Euclidean spaces RY x M.

@ Dependence graph for stabilizing functionals: if ¢ stabilizes
at xy within radius Ry and at x, within radius R, Xy and xo
make up an edge if || x; — x2|| < Ry + Ro.
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EXAMPLES OF STABILIZING FUNCTIONALS (1)

@ k-nearest-neighbor graph: the directed edge from x to y
is present if y is among the k nearest neighbors of x. Take
£(x, X) :==>_, f(x,y), where the sum runs over all y which
are adjacent to x. We can consider adjacency in either
direction.

@ Voronoi tesselations: the Voronoi cell V(x, X) at x is the
set of points which are closer to x than to any other point in
X. The Delaunay graph on X is a graph with vertex set X,
such that two points are adjacent if the intersection of the
underlying Voronoi cells is not negligible. There are many
other related graphs.
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EXAMPLES OF STABILIZING FUNCTIONALS (2)

@ Packing: X c R? x [0,1]. For X = (x, t) € X, tis the time
stamp. Assuming that all time stamps are distinct, order X
accordingly: X; < X» < --- < X,. Define a new set
A= A(X, X) as follows: take x4 € A. Inductively, take
Xk € Aif Br(xk) N {X1,...Xk_1} N A= 0. Then one might
consider £(X, X) := 1(x € A(X, X)) or related functionals.
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CLT FOR STABILIZING FUNCTIONALS

Denote by P4 a Poisson point process on RY with intensity
function g. For simplicity, omit marks.

Take a probability density function x: R? — [0, c0) and another
function f: R? — R.

Consider Sy := > f(x) (A9, A1),

XEPAK

. . . S
Under suitable conditions, the distribution of —A/\ converges to
g

N(O, 1) forsome o > 0 as A\ — oc.

@ Penrose, Yukich, Baryshnikov (2001, 2002, 2005):
convergence

@ Penrose, Yukich (2005, 2007): uniform bounds

@ Baryshnikov, Eichelsbacher, Schreiber, Yukich (2008);
Eichelsbacher, Rai¢, Schreiber (2013):
large deviation results
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IDEA OF PROOF (1)

Method of moments: if E(X*) = E(Y*) for all k € N, then X
and Y have the same distribution.

Instead of moments m, = E(X¥), one can consider cumulants
Ck.

Moment generating function: E(e Z m"kl

Moment generating function: log E(e”X) = Z CkF

For X ~ N(u, o), we have E(eX) = exp (ut + #) so that
¢ =, ¢ =0 and ¢, = 0 for k > 3.

Rudzkis, Saulis, StatuleviCius (1979): bounds on the cumulants
— bounds on the relative error in the normal approximation
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IDEA OF PROOF (2)

The connection between moments and cumulants can be
expressed in terms of Faa di Bruno's formula:

o X () X"
f(;akId):Z(Z f aIL1|"'a|Lp|>,d
=0

k=0

where the sum ranges over all unordered partitions of {1, ... k}.
That is,

c= (1P =1 Y my,-omy,
Lilp

It turns out that the cumulants of sums >, X; can be
expressed in terms of the covariances:

E(X,... X; X, ... X)) —E(Xi, ... X ) E(X,, ... X)
which vanish if (X, ... X, ) and (Xj,, ... X]) are independent.
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THANK YOU FOR YOUR ATTENTION!
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