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motivation

I A G -symmetric graph Γ, which is not necessarily (G , 2)-arc
transitive, may admit a natural (G , 2)-arc transitive quotient
with respect to a G -invariant partition.

I When does this happen? (Iranmanesh, Praeger and Z, 2005)

I If there is such a quotient, what information does it give us
about the original graph? (Iranmanesh, Praeger and Z, 2005)

Observation
If Γ admits a (G , 2)-arc transitive quotient, then a natural 2-point
transitive and block transitive design D∗(B) arises and plays a
significant role in understanding the structure of Γ.
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known results

I Li, Praeger and Zhou (2000): k = v − 1

I Iranmanesh, Praeger and Zhou (2005): k = v − 2

I Li, Praeger and Zhou (2010): k = v − 2 and a natural
auxiliary graph is a cycle

I Lu and Zhou (2007): constructions were given when D∗(B) or
its complement is degenerate
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this talk

I We give necessary conditions for a natural quotient of Γ to be
(G , 2)-arc transitive when v − k is a prime.

I When v − k = 3 or 5, these necessary conditions are
essentially sufficient.

I At the end of this talk, I will mention briefly a result about
Hamiltonicity of vertex-transitive graphs.
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notation

I Γ: G -symmetric graph

I B: nontrivial G -invariant partition of V (Γ) with block size v

I ΓB: quotient with respect to B, with valency b

I k = |B ∩ Γ(C )|: where B,C ∈ B are adjacent blocks, and
Γ(C ) is the neighbourhood of C in Γ

I r : number of blocks containing neighbours of a fixed vertex

I ΓB(B): neighbourhood of B in ΓB
I D(B): incidence structure with point set B and block set

ΓB(B), in which α ∈ B and C ∈ ΓB(B) are incident if and
only if α ∈ Γ(C )

I D(B) is a 1-(v , k, r) design with b blocks (Gardiner and
Praeger 1995)
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2-arc transitive quotients

I We always assume ΓB is connected.

I ΓB is always G -symmetric, and sometimes (G , 2)-arc transitive
(even if Γ is not).

I D∗(B): dual of D(B) (swap ‘points’ and ‘blocks’)

I D∗(B): complementary of D∗(B) (swap ‘flags’ and ‘antiflags’)

I If ΓB is (G , 2)-arc transitive, then in general, for some λ,

D∗(B) is a 2-(b, r , λ) design with v blocks, and

D∗(B) is a 2-(b, b − r , λ) design, where λ = v − 2k + λ,

except in some ‘degenerate cases’.

I D∗(B) and D∗(B) admit GB as a group of automorphisms
acting 2-transitively on points and transitively on blocks.
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v − k = p an odd prime: necessary conditions

Theorem
[Xu and Zhou, 2011-12]
Suppose ΓB is (G , 2)-arc transitive and v − k = p ≥ 3 is a prime.
Then one of the following occurs:

Case D∗(B) (v, b, r, λ) Conditions
(a) (p + 1, p + 1, 1, 0)
(b) (2p, 2, 1, 0)

p = qn−1
q−1

, n ≥ 2

(c) PGn−1(n, q)

(
qn+1−1

q−1
, qn+1−1

q−1
, qn, qn − qn−1

)
q is a prime power

qn−1
q−1

is a prime

(d) 2-(11, 5, 2) (11, 11, 6, 3) p = 5
(e) (pa, a, a − 1, p(a − 2)) a ≥ 3

a ≥ 2, s ≥ 1
a is a divisor of ps + 1

(f)
(
pa, ps + 1,

(ps+1)(a−1)
a

, p(a − 2) + ps−a+1
as

)
s is a divisor of ps−a+1

a
a−1
p−a
≤ s ≤ a − 1 ≤ p − 2



Theorem
(cont’d)
Moreover, the following hold in each case:

(a) Γ ∼= (|V (Γ)|/2) · K2, and any connected (p + 1)-valent
(G , 2)-arc transitive graph can occur as ΓB in (a).

(b) Γ ∼= n · Γ[B,C ] and ΓB ∼= Cn.

(c) GB
B
∼= G

ΓB(B)
B ≤ PΓL(n + 1, q) (2-transitive subgroup).

(d) GB
B
∼= G

ΓB(B)
B

∼= PSL(2, 11).

(e) V (Γ) admits a G -invariant partition P with block size p that
is a refinement of B, such that ΓP can be ‘constructed’ from
ΓB by the 3-arc graph construction.

(f) if s = 1, 2, then all possibilities are given in the next two
tables, respectively.



G
ΓB(B)

B
D∗(B) (v, b, r, λ) Conditions

Ap+1 D∗(B) ∼= Kp+1 a = p+1
2

1 ≤ m ≤ n − 1
p = 2n − 1
a Mersenne prime

≤ AGL(n, 2)


2m(2n − 1)

2n

2n − 2n−m

(2m − 1)(2n − 2n−m − 1)

 r∗ = (2n − 1)(2m − 1)

≤ PGL(2, p) a − 1 a divisor of p − 1
Sp4(2) 2-(6, 3, 2) p = 5

p = 11
D∗(B) is a Hadamard

M11 2-(12, 6, 5) 3-subdesign of the
Witt design W12
(3-(12, 6, 2) design)

Table: Possibilities when s = 1 in case (f).



G
ΓB(B)

B
D∗(B) (v, b, r, λ) Conditions

n ≥ 3 odd

≤ AGL(n, 3)


(3n−1)3j

2
3n

3n−j (3j − 1)
(3n−1)(3j−2)

2
+ 3n−j−1

2

 p = 3n−1
2

1 ≤ j ≤ n − 1
a an odd divisor
of 2p + 1

≤ PGL(n, 2)


a(2n−1 − 1)

2n − 1
(2n−1)(a−1)

a

(2n−1 − 1)(a − 2) + 2n−1−a
2a

 3 ≤ a ≤ 2p+1
3

p = 2n−1 − 1
a Mersenne prime
(n − 1 ≥ 3 a prime)

A7 D∗(B) ∼= PG(3, 2) (35, 15, 12, 22)

Table: Possibilities when s = 2 in case (f).



remarks

1. Examples for case (e) can be constructed by first lifting a
(G , 2)-arc transitive graph to a G -symmetric 3-arc graph and
then lifting the latter to a G -symmetric graph by the standard
covering graph construction.

2. The condition (v , b, r , λ) = (pa, a, a− 1, p(a− 2)) in (e) is
sufficient for ΓB to be (G , 2)-arc transitive.

3. We have examples for the third row of the second table (due
to Yuqing Chen).

4. For general p, we do not know whether these necessary
conditions are sufficient.
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3-arc graph

Given a graph Γ, the 3-arc graph of Γ, X (Γ), is defined to have the
set of arcs of Γ as its vertex set, such that two arcs uv and xy are
adjacent if and only if (v , u, x , y) is a 3-arc of Γ.



outline of proof

1. vr = b(v − p), λ(b − 1) = (v − p)(r − 1)

2. λ = 0 ⇒ case (a) or (b). Assume λ > 0 in the following.

3. D∗(B) is a 2-(b, r , λ) design admitting GB as a 2-point
transitive group of automorphisms.

4. v is not a multiple of p ⇒ D∗(B) is a 2-transitive symmetric

2-
(
pa + 1, p(a− 1) + 1, p(a− 2) + p+a−1

a

)
design ⇒ D∗(B)

or D∗(B) is known (due to Kantor) ⇒ case (c) or (d)

5. v = pa is a multiple of p ⇒ case (e) or (f)

6. s = 1 or 2 in case (f): classification of 2-transitive symmetric
designs
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p = 3

Theorem
[Xu and Zhou, 2011-12]
Suppose that v − k = 3. Then ΓB is (G , 2)-arc transitive iff one of
the following holds:

(a) (v , b, r , λ) = (4, 4, 1, 0), GB
B
∼= A4 or S4;

(b) (v , b, r , λ) = (6, 2, 1, 0), ΓB ∼= Cn;

(c) (v , b, r , λ) = (7, 7, 4, 2), GB
B
∼= PSL(3, 2);

(d) (v , b, r , λ) = (3a, a, a− 1, 3a− 6) for some a ≥ 3;

(e) (v , b, r , λ) = (6, 4, 2, 1), G
ΓB(B)
B

∼= A4 or S4.



Theorem
(cont’d)
Moreover, in each case we have the following:

(a) Γ ∼= (|V (Γ)|/2) · K2, any connected 4-valent 2-arc transitive
graph can occur as ΓB.

(b) Γ ∼= 3n · K2, n · C6 or n · K3,3.

(c) D(B) ∼= PG(2, 2), G
ΓB(B)
B

∼= PSL(3, 2), and Γ[B,C ] ∼= 4 · K2,
K4,4 − 4 ·K2 or K4,4; in the first case Γ is (G , 2)-arc transitive.

(d) V (Γ) admits a G -invariant partition P with block size 3 that
is a refinement of B, such that ΓP can be ‘constructed’ from
ΓB by the 3-arc graph construction.

(e) Γ can be constructed from ΓB as a ‘2-path graph’, and every
connected 4-valent (G , 2)-arc transitive graph can occur as ΓB
in (e).



p = 5

Theorem
[Xu and Zhou, 2011-12]
Suppose that v − k = 5. Then ΓB is (G , 2)-arc transitive iff one of
the following holds:

(a) (v , b, r , λ) = (6, 6, 1, 0), GB
B
∼= G

ΓB(B)
B

∼= A6 or S6;

(b) (v , b, r , λ) = (10, 2, 1, 0), ΓB ∼= Cn and G/G(B) ≤ D2n, where
n = |V (Γ)|/10;

(c) (v , b, r , λ) = (21, 21, 16, 12), D∗(B) ∼= PG(2, 4),

GB
B
∼= G

ΓB(B)
B is isomorphic to a 2-transitive subgroup of

PΓL(3, 4), and G is faithful on B;

(d) (v , b, r , λ) = (11, 11, 6, 3), D∗(B) is isomorphic to the unique

2-(11, 5, 2) design and GB
B
∼= G

ΓB(B)
B

∼= PSL(2, 11);

(e) (v , b, r , λ) = (5a, a, a− 1, 5a− 10) for some a ≥ 3;



Theorem
(cont’d)

(f) one of the following occurs:

1. (v , b, r , λ) = (10, 6, 3, 2), D∗(B) is isomorphic to the unique

2-(6, 3, 2) design, and G
ΓB(B)
B

∼= Sp4(2) or PSL(2, 5);

2. (v , b, r , λ) = (15, 6, 4, 6), D∗(B) is isomorphic to the

complementary design of K6 and G
ΓB(B)
B

∼= A6;

3. (v , b, r , λ) = (20, 16, 12, 11), D∗(B) ∼= AG(2, 4) and G
ΓB(B)
B is

isomorphic to a 2-transitive subgroup of AΓL(2, 4).



Hamiltonicity of 3-arc graphs

Theorem
[Xu and Zhou, 2011-12]
Let Γ be a graph without isolated vertices. The 3-arc graph X (Γ)
of Γ is hamiltonian if and only if

(a) δ(Γ) ≥ 2;

(b) no two degree-two vertices of Γ are adjacent; and

(c) the subgraph obtained from Γ by deleting all degree-two
vertices is connected.

(Graphs and Combinatorics, to appear)

Corollary

[Xu and Zhou, 2011-12]
If a vertex-transitive graph is isomorphic to the 3-arc graph of a
connected arc-transitive graph of degree at least three, then it is
hamiltonian.
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