Symmetric graphs with 2-arc transitive quotients

Guangjun Xu and Sanming Zhou

Department of Mathematics and Statistics The University of Melbourne Australia

dedicated to Dragan on his 60th birthday

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

motivation

 A G-symmetric graph Γ, which is not necessarily (G, 2)-arc transitive, may admit a natural (G, 2)-arc transitive quotient with respect to a G-invariant partition.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

motivation

- A G-symmetric graph Γ, which is not necessarily (G, 2)-arc transitive, may admit a natural (G, 2)-arc transitive quotient with respect to a G-invariant partition.
- ▶ When does this happen? (Iranmanesh, Praeger and Z, 2005)

motivation

- A G-symmetric graph Γ, which is not necessarily (G, 2)-arc transitive, may admit a natural (G, 2)-arc transitive quotient with respect to a G-invariant partition.
- When does this happen? (Iranmanesh, Praeger and Z, 2005)
- If there is such a quotient, what information does it give us about the original graph? (Iranmanesh, Praeger and Z, 2005)

Observation

If Γ admits a (G, 2)-arc transitive quotient, then a natural 2-point transitive and block transitive design $\mathcal{D}^*(B)$ arises and plays a significant role in understanding the structure of Γ .

• Li, Praeger and Zhou (2000): k = v - 1

- Li, Praeger and Zhou (2000): k = v 1
- ▶ Iranmanesh, Praeger and Zhou (2005): k = v 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

known results

- Li, Praeger and Zhou (2000): k = v 1
- ▶ Iranmanesh, Praeger and Zhou (2005): k = v 2
- ► Li, Praeger and Zhou (2010): k = v − 2 and a natural auxiliary graph is a cycle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

known results

- Li, Praeger and Zhou (2000): k = v 1
- ▶ Iranmanesh, Praeger and Zhou (2005): k = v 2
- ► Li, Praeger and Zhou (2010): k = v − 2 and a natural auxiliary graph is a cycle
- Lu and Zhou (2007): constructions were given when D*(B) or its complement is degenerate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

this talk

We give necessary conditions for a natural quotient of Γ to be (G,2)-arc transitive when v – k is a prime.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

this talk

We give necessary conditions for a natural quotient of Γ to be (G, 2)-arc transitive when v – k is a prime.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

When v − k = 3 or 5, these necessary conditions are essentially sufficient.

this talk

- We give necessary conditions for a natural quotient of Γ to be (G,2)-arc transitive when v – k is a prime.
- When v − k = 3 or 5, these necessary conditions are essentially sufficient.
- At the end of this talk, I will mention briefly a result about Hamiltonicity of vertex-transitive graphs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Γ: *G*-symmetric graph

- **Γ**: *G*-symmetric graph
- **b** \mathcal{B} : nontrivial *G*-invariant partition of *V*(Γ) with block size *v*

(ロ)、(型)、(E)、(E)、 E) の(の)

- **Γ**: *G*-symmetric graph
- **b** \mathcal{B} : nontrivial *G*-invariant partition of *V*(Γ) with block size *v*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B} , with valency b

- Γ: G-symmetric graph
- **b** \mathcal{B} : nontrivial *G*-invariant partition of *V*(Γ) with block size *v*
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B} , with valency b
- ▶ $k = |B \cap \Gamma(C)|$: where $B, C \in B$ are adjacent blocks, and $\Gamma(C)$ is the neighbourhood of C in Γ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Γ: G-symmetric graph
- **b** \mathcal{B} : nontrivial *G*-invariant partition of *V*(Γ) with block size *v*
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B} , with valency b
- ▶ $k = |B \cap \Gamma(C)|$: where $B, C \in B$ are adjacent blocks, and $\Gamma(C)$ is the neighbourhood of C in Γ
- r: number of blocks containing neighbours of a fixed vertex

- Γ: G-symmetric graph
- \mathcal{B} : nontrivial *G*-invariant partition of $V(\Gamma)$ with block size *v*
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B} , with valency b
- ▶ $k = |B \cap \Gamma(C)|$: where $B, C \in B$ are adjacent blocks, and $\Gamma(C)$ is the neighbourhood of C in Γ
- r: number of blocks containing neighbours of a fixed vertex

• $\Gamma_{\mathcal{B}}(B)$: neighbourhood of *B* in $\Gamma_{\mathcal{B}}$

- Γ: G-symmetric graph
- **•** \mathcal{B} : nontrivial *G*-invariant partition of *V*(Γ) with block size *v*
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B} , with valency b
- ▶ $k = |B \cap \Gamma(C)|$: where $B, C \in \mathcal{B}$ are adjacent blocks, and $\Gamma(C)$ is the neighbourhood of C in Γ
- r: number of blocks containing neighbours of a fixed vertex
- $\Gamma_{\mathcal{B}}(B)$: neighbourhood of *B* in $\Gamma_{\mathcal{B}}$
- D(B): incidence structure with point set B and block set Γ_B(B), in which α ∈ B and C ∈ Γ_B(B) are incident if and only if α ∈ Γ(C)

- Γ: G-symmetric graph
- **•** \mathcal{B} : nontrivial *G*-invariant partition of *V*(Γ) with block size *v*
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B} , with valency b
- ▶ $k = |B \cap \Gamma(C)|$: where $B, C \in B$ are adjacent blocks, and $\Gamma(C)$ is the neighbourhood of C in Γ
- r: number of blocks containing neighbours of a fixed vertex
- $\Gamma_{\mathcal{B}}(B)$: neighbourhood of *B* in $\Gamma_{\mathcal{B}}$
- D(B): incidence structure with point set B and block set Γ_B(B), in which α ∈ B and C ∈ Γ_B(B) are incident if and only if α ∈ Γ(C)
- D(B) is a 1-(v, k, r) design with b blocks (Gardiner and Praeger 1995)

• We always assume $\Gamma_{\mathcal{B}}$ is connected.

- We always assume $\Gamma_{\mathcal{B}}$ is connected.
- Γ_B is always G-symmetric, and sometimes (G, 2)-arc transitive (even if Γ is not).

- We always assume $\Gamma_{\mathcal{B}}$ is connected.
- Γ_B is always G-symmetric, and sometimes (G, 2)-arc transitive (even if Γ is not).

• $\mathcal{D}^*(B)$: dual of $\mathcal{D}(B)$ (swap 'points' and 'blocks')

- We always assume $\Gamma_{\mathcal{B}}$ is connected.
- Γ_B is always G-symmetric, and sometimes (G, 2)-arc transitive (even if Γ is not).
- $\mathcal{D}^*(B)$: dual of $\mathcal{D}(B)$ (swap 'points' and 'blocks')
- ▶ $\overline{\mathcal{D}^*}(B)$: complementary of $\mathcal{D}^*(B)$ (swap 'flags' and 'antiflags')

- We always assume $\Gamma_{\mathcal{B}}$ is connected.
- Γ_B is always G-symmetric, and sometimes (G, 2)-arc transitive (even if Γ is not).
- $\mathcal{D}^*(B)$: dual of $\mathcal{D}(B)$ (swap 'points' and 'blocks')
- ▶ $\overline{\mathcal{D}^*}(B)$: complementary of $\mathcal{D}^*(B)$ (swap 'flags' and 'antiflags')
- If Γ_B is (G,2)-arc transitive, then in general, for some λ,
 D^{*}(B) is a 2-(b, r, λ) design with v blocks, and
 D^{*}(B) is a 2-(b, b − r, λ̄) design, where λ̄ = v − 2k + λ,
 except in some 'degenerate cases'.
- ▶ D^{*}(B) and D^{*}(B) admit G_B as a group of automorphisms acting 2-transitively on points and transitively on blocks.

v - k = p an odd prime: necessary conditions

Theorem

[Xu and Zhou, 2011-12] Suppose $\Gamma_{\mathcal{B}}$ is (*G*, 2)-arc transitive and $v - k = p \ge 3$ is a prime. Then one of the following occurs:

Case	$\overline{\mathcal{D}^*}(B)$	(v, b, r, λ)	Conditions
(a)		(p+1, p+1, 1, 0)	
(b)		(2p, 2, 1, 0)	
(c)	$\mathrm{PG}_{n-1}(n,q)$	$\left(rac{q^{n+1}-1}{q-1},rac{q^{n+1}-1}{q-1},q^n,q^n-q^{n-1} ight)$	$p=rac{q^n-1}{q-1},n\geq 2$ q is a prime power
-(1)	2 (11 5 2)	(11, 11, 6, 2)	$\frac{q^n-1}{q-1}$ is a prime
(a)	2-(11, 5, 2)	(11, 11, 0, 5)	p = 5
(e)		(pa, a, a − 1, p(a − 2))	$a \ge 3$
(f)		$\left(pa, ps+1, \frac{(ps+1)(a-1)}{a}, p(a-2) + \frac{ps-a+1}{as}\right)$	$\begin{array}{l} a \geq 2, s \geq 1 \\ a \text{ is a divisor of } ps + 1 \\ s \text{ is a divisor of } \frac{ps - a + 1}{a} \\ \frac{a - 1}{p - a} \leq s \leq a - 1 \leq p - 2 \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Theorem

(cont'd)

Moreover, the following hold in each case:

(a) $\Gamma \cong (|V(\Gamma)|/2) \cdot K_2$, and any connected (p + 1)-valent (G, 2)-arc transitive graph can occur as Γ_B in (a).

- (e) $V(\Gamma)$ admits a *G*-invariant partition \mathcal{P} with block size *p* that is a refinement of \mathcal{B} , such that $\Gamma_{\mathcal{P}}$ can be 'constructed' from $\Gamma_{\mathcal{B}}$ by the 3-arc graph construction.
- (f) if s = 1, 2, then all possibilities are given in the next two tables, respectively.

$G_B^{\Gamma_{\mathcal{B}}(B)}$	$\mathcal{D}^*(B)$	(v, b, r, λ)	Conditions
A_{p+1}	$\overline{\mathcal{D}^*}(B) \cong K_{p+1}$		$a = \frac{p+1}{2}$
			$1 \le m \le n - 1$ $p = 2^n - 1$
$\leq \operatorname{AGL}(n,2)$		$\begin{pmatrix} 2^{m}(2^{n}-1)\\ 2^{n}\\ 2^{n}-2^{n-m}\\ (2^{m}-1)(2^{n}-2^{n-m}-1) \end{pmatrix}$	$r^* = (2^n - 1)(2^m - 1)$
$\leq \mathrm{PGL}(2, p)$			a-1 a divisor of $p-1$
Sp ₄ (2)	2-(6, 3, 2)		p = 5
M ₁₁	2-(12, 6, 5)		p = 11 $\mathcal{D}^*(B) \text{ is a Hadamard}$ 3-subdesign of the Witt design W_{12} (3-(12, 6, 2) design)

Table: Possibilities when s = 1 in case (f).

<□ > < @ > < E > < E > E のQ @

$G_B^{\Gamma_{\mathcal{B}}(B)}$	$\mathcal{D}^*(B)$	(v, b, r, λ)	Conditions
$\leq \operatorname{AGL}(n,3)$		$\begin{pmatrix} \frac{(3^n-1)3^j}{2} \\ 3^n \\ 3^{n-j}(3^j-1) \\ \frac{(3^n-1)(3^j-2)}{2} + \frac{3^{n-j}-1}{2} \end{pmatrix}$	$n \ge 3 \text{ odd}$ $p = \frac{3^n - 1}{2}$
			$1 \le j \le n-1$ a an odd divisor of 2n+1
$\leq \operatorname{PGL}(n,2)$		$\begin{pmatrix} a(2^{n-1}-1)\\ 2^n-1\\ (2^{n-1}-1)(a-1)\\ a\\ (2^{n-1}-1)(a-2) + \frac{2^n-1-a}{2} \end{pmatrix}$	$3 \le a \le \frac{2p+1}{3}$
		· · · · · 2a /	$p = 2^{n-1} - 1$ a Mersenne prime $(n-1 \ge 3$ a prime)
A ₇	$\overline{\mathcal{D}^*}(B) \cong \mathrm{PG}(3,2)$	(35, 15, 12, 22)	

Table: Possibilities when s = 2 in case (f).

1. Examples for case (e) can be constructed by first lifting a (G,2)-arc transitive graph to a *G*-symmetric 3-arc graph and then lifting the latter to a *G*-symmetric graph by the standard covering graph construction.

- 1. Examples for case (e) can be constructed by first lifting a (G, 2)-arc transitive graph to a *G*-symmetric 3-arc graph and then lifting the latter to a *G*-symmetric graph by the standard covering graph construction.
- The condition (v, b, r, λ) = (pa, a, a 1, p(a 2)) in (e) is sufficient for Γ_B to be (G, 2)-arc transitive.

- 1. Examples for case (e) can be constructed by first lifting a (G, 2)-arc transitive graph to a *G*-symmetric 3-arc graph and then lifting the latter to a *G*-symmetric graph by the standard covering graph construction.
- The condition (v, b, r, λ) = (pa, a, a 1, p(a 2)) in (e) is sufficient for Γ_B to be (G, 2)-arc transitive.
- 3. We have examples for the third row of the second table (due to Yuqing Chen).

- 1. Examples for case (e) can be constructed by first lifting a (G, 2)-arc transitive graph to a *G*-symmetric 3-arc graph and then lifting the latter to a *G*-symmetric graph by the standard covering graph construction.
- The condition (v, b, r, λ) = (pa, a, a 1, p(a 2)) in (e) is sufficient for Γ_B to be (G, 2)-arc transitive.
- 3. We have examples for the third row of the second table (due to Yuqing Chen).

4. For general *p*, we do not know whether these necessary conditions are sufficient.

3-arc graph

Given a graph Γ , the 3-arc graph of Γ , $X(\Gamma)$, is defined to have the set of arcs of Γ as its vertex set, such that two arcs uv and xy are adjacent if and only if (v, u, x, y) is a 3-arc of Γ .

1.
$$vr = b(v - p), \quad \lambda(b - 1) = (v - p)(r - 1)$$

1.
$$vr = b(v - p)$$
, $\lambda(b - 1) = (v - p)(r - 1)$
2. $\lambda = 0 \Rightarrow$ case (a) or (b). Assume $\lambda > 0$ in the following.

1.
$$vr = b(v - p), \quad \lambda(b - 1) = (v - p)(r - 1)$$

2. $\lambda = 0 \Rightarrow$ case (a) or (b). Assume $\lambda > 0$ in the following.

3. $\mathcal{D}^*(B)$ is a 2- (b, r, λ) design admitting G_B as a 2-point transitive group of automorphisms.

1.
$$vr = b(v - p), \quad \lambda(b - 1) = (v - p)(r - 1)$$

2. $\lambda = 0 \Rightarrow$ case (a) or (b). Assume $\lambda > 0$ in the following.

- 3. $\mathcal{D}^*(B)$ is a 2- (b, r, λ) design admitting G_B as a 2-point transitive group of automorphisms.
- 4. v is not a multiple of $p \Rightarrow \mathcal{D}^*(B)$ is a 2-transitive symmetric $2 \cdot \left(pa + 1, p(a - 1) + 1, p(a - 2) + \frac{p+a-1}{a}\right)$ design $\Rightarrow \mathcal{D}^*(B)$ or $\overline{\mathcal{D}^*}(B)$ is known (due to Kantor) \Rightarrow case (c) or (d)

1.
$$vr = b(v - p), \quad \lambda(b - 1) = (v - p)(r - 1)$$

2. $\lambda = 0 \Rightarrow$ case (a) or (b). Assume $\lambda > 0$ in the following.

- 3. $\mathcal{D}^*(B)$ is a 2- (b, r, λ) design admitting G_B as a 2-point transitive group of automorphisms.
- 4. v is not a multiple of p ⇒ D*(B) is a 2-transitive symmetric 2-(pa+1, p(a-1)+1, p(a-2) + p(a-1)/a) design ⇒ D*(B) or D*(B) is known (due to Kantor) ⇒ case (c) or (d)
 5. v = pa is a multiple of p ⇒ case (e) or (f)

1.
$$vr = b(v - p), \quad \lambda(b - 1) = (v - p)(r - 1)$$

2. $\lambda = 0 \Rightarrow$ case (a) or (b). Assume $\lambda > 0$ in the following.

- 3. $\mathcal{D}^*(B)$ is a 2- (b, r, λ) design admitting G_B as a 2-point transitive group of automorphisms.
- 4. v is not a multiple of p ⇒ D*(B) is a 2-transitive symmetric 2-(pa+1, p(a-1)+1, p(a-2) + p+a-1/a) design ⇒ D*(B) or D*(B) is known (due to Kantor) ⇒ case (c) or (d)
 5. v = pa is a multiple of p ⇒ case (e) or (f)
 6. s = 1 or 2 in case (f): classification of 2-transitive symmetric.
- s = 1 or 2 in case (f): classification of 2-transitive symmetric designs

p = 3

Theorem

[Xu and Zhou, 2011-12] Suppose that v - k = 3. Then $\Gamma_{\mathcal{B}}$ is (*G*, 2)-arc transitive iff one of the following holds:

(a)
$$(v, b, r, \lambda) = (4, 4, 1, 0), \ G_B^B \cong A_4 \text{ or } S_4;$$

(b) $(v, b, r, \lambda) = (6, 2, 1, 0), \ \Gamma_B \cong C_n;$
(c) $(v, b, r, \lambda) = (7, 7, 4, 2), \ G_B^B \cong PSL(3, 2);$
(d) $(v, b, r, \lambda) = (3a, a, a - 1, 3a - 6) \text{ for some } a \ge 3;$
(e) $(v, b, r, \lambda) = (6, 4, 2, 1), \ G_B^{\Gamma_B(B)} \cong A_4 \text{ or } S_4.$

Theorem

(cont'd)

Moreover, in each case we have the following:

(a) $\Gamma \cong (|V(\Gamma)|/2) \cdot K_2$, any connected 4-valent 2-arc transitive graph can occur as $\Gamma_{\mathcal{B}}$.

(b)
$$\Gamma \cong 3n \cdot K_2, n \cdot C_6 \text{ or } n \cdot K_{3,3}$$
.

- (c) $\overline{\mathcal{D}}(B) \cong \mathrm{PG}(2,2)$, $G_B^{\Gamma_B(B)} \cong \mathrm{PSL}(3,2)$, and $\Gamma[B, C] \cong 4 \cdot K_2$, $K_{4,4} 4 \cdot K_2$ or $K_{4,4}$; in the first case Γ is (G, 2)-arc transitive.
- (d) $V(\Gamma)$ admits a *G*-invariant partition \mathcal{P} with block size 3 that is a refinement of \mathcal{B} , such that $\Gamma_{\mathcal{P}}$ can be 'constructed' from $\Gamma_{\mathcal{B}}$ by the 3-arc graph construction.
- (e) Γ can be constructed from Γ_B as a '2-path graph', and every connected 4-valent (G, 2)-arc transitive graph can occur as Γ_B in (e).

p = 5

Theorem

[Xu and Zhou, 2011-12]

Suppose that v - k = 5. Then $\Gamma_{\mathcal{B}}$ is (*G*, 2)-arc transitive iff one of the following holds:

(a)
$$(v, b, r, \lambda) = (6, 6, 1, 0), \ G_B^B \cong G_B^{\Gamma_B(B)} \cong A_6 \text{ or } S_6;$$

(b) $(v, b, r, \lambda) = (10, 2, 1, 0), \ \Gamma_B \cong C, \ \text{and} \ C/C(m) \le D_6$

(b)
$$(v, b, r, \lambda) = (10, 2, 1, 0), \Gamma_{\mathcal{B}} \cong C_n \text{ and } G/G_{(\mathcal{B})} \le D_{2n}$$
, where $n = |V(\Gamma)|/10$;

(c)
$$(v, b, r, \lambda) = (21, 21, 16, 12), \overline{\mathcal{D}^*}(B) \cong PG(2, 4),$$

 $G_B^B \cong G_B^{\Gamma_B(B)}$ is isomorphic to a 2-transitive subgroup of $P\Gamma L(3, 4)$, and G is faithful on \mathcal{B} ;

Theorem

(cont'd)

(f) one of the following occurs:

- 1. $(v, b, r, \lambda) = (10, 6, 3, 2), \mathcal{D}^*(B)$ is isomorphic to the unique 2-(6, 3, 2) design, and $G_B^{\Gamma_{\mathcal{B}}(B)} \cong \text{Sp}_4(2)$ or PSL(2, 5);
- 2. $(v, b, r, \lambda) = (15, 6, 4, 6), \mathcal{D}^*(B)$ is isomorphic to the complementary design of K_6 and $G_B^{\Gamma_B(B)} \cong A_6$;
- 3. $(v, b, r, \lambda) = (20, 16, 12, 11), \overline{\mathcal{D}^*}(B) \cong AG(2, 4)$ and $G_B^{\Gamma_B(B)}$ is isomorphic to a 2-transitive subgroup of $A\Gamma L(2, 4)$.

Hamiltonicity of 3-arc graphs

Theorem

[Xu and Zhou, 2011-12]

Let Γ be a graph without isolated vertices. The 3-arc graph $X(\Gamma)$ of Γ is hamiltonian if and only if

(a) $\delta(\Gamma) \geq 2;$

(b) no two degree-two vertices of Γ are adjacent; and

(c) the subgraph obtained from Γ by deleting all degree-two vertices is connected.

(Graphs and Combinatorics, to appear)

Hamiltonicity of 3-arc graphs

Theorem

[Xu and Zhou, 2011-12]

Let Γ be a graph without isolated vertices. The 3-arc graph $X(\Gamma)$ of Γ is hamiltonian if and only if

(a) $\delta(\Gamma) \geq 2;$

(b) no two degree-two vertices of Γ are adjacent; and

(c) the subgraph obtained from Γ by deleting all degree-two vertices is connected.

(Graphs and Combinatorics, to appear)

Corollary

[Xu and Zhou, 2011-12]

If a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is hamiltonian.