Symmetric graphs with 2-arc transitive quotients

Guangjun Xu and Sanming Zhou
Department of Mathematics and Statistics
The University of Melbourne
Australia
dedicated to Dragan on his 60th birthday

motivation

- A G-symmetric graph Γ, which is not necessarily $(G, 2)$-arc transitive, may admit a natural ($G, 2$)-arc transitive quotient with respect to a G-invariant partition.

motivation

- A G-symmetric graph Γ, which is not necessarily $(G, 2)$-arc transitive, may admit a natural ($G, 2$)-arc transitive quotient with respect to a G-invariant partition.
- When does this happen? (Iranmanesh, Praeger and Z, 2005)

motivation

- A G-symmetric graph Γ, which is not necessarily $(G, 2)$-arc transitive, may admit a natural ($G, 2$)-arc transitive quotient with respect to a G-invariant partition.
- When does this happen? (Iranmanesh, Praeger and Z, 2005)
- If there is such a quotient, what information does it give us about the original graph? (Iranmanesh, Praeger and Z, 2005)

Observation
If Γ admits a ($G, 2$)-arc transitive quotient, then a natural 2-point transitive and block transitive design $\mathcal{D}^{*}(B)$ arises and plays a significant role in understanding the structure of Γ.

known results

- Li, Praeger and Zhou (2000): $k=v-1$

known results

- Li, Praeger and Zhou (2000): $k=v-1$
- Iranmanesh, Praeger and Zhou (2005): $k=v-2$

known results

- Li, Praeger and Zhou (2000): $k=v-1$
- Iranmanesh, Praeger and Zhou (2005): $k=v-2$
- Li, Praeger and Zhou (2010): $k=v-2$ and a natural auxiliary graph is a cycle

known results

- Li, Praeger and Zhou (2000): $k=v-1$
- Iranmanesh, Praeger and Zhou (2005): $k=v-2$
- Li, Praeger and Zhou (2010): $k=v-2$ and a natural auxiliary graph is a cycle
- Lu and Zhou (2007): constructions were given when $\mathcal{D}^{*}(B)$ or its complement is degenerate

this talk

- We give necessary conditions for a natural quotient of Γ to be ($G, 2$)-arc transitive when $v-k$ is a prime.

this talk

- We give necessary conditions for a natural quotient of Γ to be ($G, 2$)-arc transitive when $v-k$ is a prime.
- When $v-k=3$ or 5 , these necessary conditions are essentially sufficient.

this talk

- We give necessary conditions for a natural quotient of Γ to be $(G, 2)$-arc transitive when $v-k$ is a prime.
- When $v-k=3$ or 5 , these necessary conditions are essentially sufficient.
- At the end of this talk, I will mention briefly a result about Hamiltonicity of vertex-transitive graphs.

notation

- Г: G-symmetric graph

notation

- 「: G-symmetric graph
- \mathcal{B} : nontrivial G-invariant partition of $V(\Gamma)$ with block size v

notation

- 「: G-symmetric graph
- \mathcal{B} : nontrivial G-invariant partition of $V(\Gamma)$ with block size v
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B}, with valency b

notation

- 「: G-symmetric graph
- \mathcal{B} : nontrivial G-invariant partition of $V(\Gamma)$ with block size v
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B}, with valency b
- $k=|B \cap \Gamma(C)|$: where $B, C \in \mathcal{B}$ are adjacent blocks, and $\Gamma(C)$ is the neighbourhood of C in Γ

notation

- Г: G-symmetric graph
- \mathcal{B} : nontrivial G-invariant partition of $V(\Gamma)$ with block size v
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B}, with valency b
- $k=|B \cap \Gamma(C)|$: where $B, C \in \mathcal{B}$ are adjacent blocks, and $\Gamma(C)$ is the neighbourhood of C in Γ
- r : number of blocks containing neighbours of a fixed vertex

notation

- Г: G-symmetric graph
- \mathcal{B} : nontrivial G-invariant partition of $V(\Gamma)$ with block size v
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B}, with valency b
- $k=|B \cap \Gamma(C)|$: where $B, C \in \mathcal{B}$ are adjacent blocks, and $\Gamma(C)$ is the neighbourhood of C in Γ
- r : number of blocks containing neighbours of a fixed vertex
- $\Gamma_{\mathcal{B}}(B)$: neighbourhood of B in $\Gamma_{\mathcal{B}}$

notation

- Г: G-symmetric graph
- \mathcal{B} : nontrivial G-invariant partition of $V(\Gamma)$ with block size v
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B}, with valency b
- $k=|B \cap \Gamma(C)|$: where $B, C \in \mathcal{B}$ are adjacent blocks, and $\Gamma(C)$ is the neighbourhood of C in Γ
- r : number of blocks containing neighbours of a fixed vertex
- $\Gamma_{\mathcal{B}}(B)$: neighbourhood of B in $\Gamma_{\mathcal{B}}$
- $\mathcal{D}(B)$: incidence structure with point set B and block set $\Gamma_{\mathcal{B}}(B)$, in which $\alpha \in B$ and $C \in \Gamma_{\mathcal{B}}(B)$ are incident if and only if $\alpha \in \Gamma(C)$

notation

- Г: G-symmetric graph
- \mathcal{B} : nontrivial G-invariant partition of $V(\Gamma)$ with block size v
- $\Gamma_{\mathcal{B}}$: quotient with respect to \mathcal{B}, with valency b
- $k=|B \cap \Gamma(C)|$: where $B, C \in \mathcal{B}$ are adjacent blocks, and $\Gamma(C)$ is the neighbourhood of C in Γ
- r : number of blocks containing neighbours of a fixed vertex
- $\Gamma_{\mathcal{B}}(B)$: neighbourhood of B in $\Gamma_{\mathcal{B}}$
- $\mathcal{D}(B)$: incidence structure with point set B and block set $\Gamma_{\mathcal{B}}(B)$, in which $\alpha \in B$ and $C \in \Gamma_{\mathcal{B}}(B)$ are incident if and only if $\alpha \in \Gamma(C)$
- $\mathcal{D}(B)$ is a 1-($v, k, r)$ design with b blocks (Gardiner and Praeger 1995)

2-arc transitive quotients

- We always assume $\Gamma_{\mathcal{B}}$ is connected.

2-arc transitive quotients

- We always assume $\Gamma_{\mathcal{B}}$ is connected.
- $\Gamma_{\mathcal{B}}$ is always G-symmetric, and sometimes ($G, 2$)-arc transitive (even if Γ is not).

2-arc transitive quotients

- We always assume $\Gamma_{\mathcal{B}}$ is connected.
- $\Gamma_{\mathcal{B}}$ is always G-symmetric, and sometimes ($G, 2$)-arc transitive (even if Γ is not).
- $\mathcal{D}^{*}(B)$: dual of $\mathcal{D}(B)$ (swap 'points' and 'blocks')

2-arc transitive quotients

- We always assume $\Gamma_{\mathcal{B}}$ is connected.
- $\Gamma_{\mathcal{B}}$ is always G-symmetric, and sometimes ($G, 2$)-arc transitive (even if Γ is not).
- $\mathcal{D}^{*}(B)$: dual of $\mathcal{D}(B)$ (swap 'points' and 'blocks')
- $\overline{\mathcal{D}^{*}}(B)$: complementary of $\mathcal{D}^{*}(B)$ (swap 'flags' and 'antiflags')

2-arc transitive quotients

- We always assume $\Gamma_{\mathcal{B}}$ is connected.
- $\Gamma_{\mathcal{B}}$ is always G-symmetric, and sometimes ($G, 2$)-arc transitive (even if Γ is not).
- $\mathcal{D}^{*}(B)$: dual of $\mathcal{D}(B)$ (swap 'points' and 'blocks')
- $\overline{\mathcal{D}^{*}}(B)$: complementary of $\mathcal{D}^{*}(B)$ (swap 'flags' and 'antiflags')
- If $\Gamma_{\mathcal{B}}$ is $(G, 2)$-arc transitive, then in general, for some λ, $\mathcal{D}^{*}(B)$ is a $2-(b, r, \lambda)$ design with v blocks, and $\overline{\mathcal{D}^{*}}(B)$ is a $2-(b, b-r, \bar{\lambda})$ design, where $\bar{\lambda}=v-2 k+\lambda$, except in some 'degenerate cases'.
- $\mathcal{D}^{*}(B)$ and $\overline{\mathcal{D}^{*}}(B)$ admit G_{B} as a group of automorphisms acting 2-transitively on points and transitively on blocks.

$v-k=p$ an odd prime: necessary conditions

Theorem
[Xu and Zhou, 2011-12]
Suppose $\Gamma_{\mathcal{B}}$ is ($G, 2$)-arc transitive and $v-k=p \geq 3$ is a prime. Then one of the following occurs:

Case	$\overline{\mathcal{D}^{*}}(B)$	(v, b, r, λ)	Conditions
(a)		$(p+1, p+1,1,0)$	
(b)		$(2 p, 2,1,0)$	$p=\frac{q^{n}-1}{q-1}, n \geq 2$ q is a prime power $\frac{q^{n}-1}{q-1}$ is a prime
(c)	$\mathrm{PG}_{n-1}(n, q)$	$\left(\frac{q^{n+1}-1}{q-1}, \frac{q^{n+1}-1}{q-1}, q^{n}, q^{n}-q^{n-1}\right)$	$p=5$
(d)	$2-(11,5,2)$	$(11,11,6,3)$	$a \geq 3$
(e)		$(p a, a, a-1, p(a-2))$	$a \geq 2, s \geq 1$ a is a divisor of $p s+1$ s i a divisor of $\frac{p s-a+1}{a}$ $\frac{a-1}{p-a} \leq s \leq a-1 \leq p-2$
(f)		$\left(p a, p s+1, \frac{(p s+1)(a-1)}{a}, p(a-2)+\frac{p s-a+1}{a s}\right)$	

Theorem

(cont'd)
Moreover, the following hold in each case:
(a) $\Gamma \cong(|V(\Gamma)| / 2) \cdot K_{2}$, and any connected $(p+1)$-valent $(G, 2)$-arc transitive graph can occur as $\Gamma_{\mathcal{B}}$ in (a).
(b) $\Gamma \cong n \cdot \Gamma[B, C]$ and $\Gamma_{\mathcal{B}} \cong C_{n}$.
(c) $G_{B}^{B} \cong G_{B}^{\Gamma_{\mathcal{B}}(B)} \leq \operatorname{P\Gamma L}(n+1, q)$ (2-transitive subgroup).
(d) $G_{B}^{B} \cong G_{B}^{\Gamma_{\mathcal{B}}(B)} \cong \operatorname{PSL}(2,11)$.
(e) $V(\Gamma)$ admits a G-invariant partition \mathcal{P} with block size p that is a refinement of \mathcal{B}, such that $\Gamma_{\mathcal{P}}$ can be 'constructed' from $\Gamma_{\mathcal{B}}$ by the 3-arc graph construction.
(f) if $s=1,2$, then all possibilities are given in the next two tables, respectively.

$G_{B}^{\Gamma^{(}{ }^{(B)}}$	$\mathcal{D}^{*}(B)$	(v, b, r, λ)	Conditions
A_{p+1}	$\overline{\mathcal{D}^{*}}(B) \cong K_{p+1}$		$a=\frac{p+1}{2}$
			$\begin{aligned} & 1 \leq m \leq n-1 \\ & p=2^{n}-1 \\ & \text { a Mersenne prime } \end{aligned}$
$\leq \operatorname{AGL}(n, 2)$		$\left(\begin{array}{c}2^{m}\left(2^{n}-1\right) \\ 2^{n} \\ 2^{n}-2^{n-m} \\ \left(2^{m}-1\right)\left(2^{n}-2^{n-m}-1\right)\end{array}\right)$	$r^{*}=\left(2^{n}-1\right)\left(2^{m}-1\right)$
$\leq \mathrm{PGL}(2, p)$			$a-1$ a divisor of $p-1$
$\mathrm{Sp}_{4}(2)$	2-(6, 3, 2)		$p=5$
M_{11}	2-(12, 6, 5)		$p=11$ $\mathcal{D}^{*}(B)$ is a Hadamard 3 -subdesign of the Witt design W_{12} (3-(12, 6, 2) design)

Table: Possibilities when $s=1$ in case (f).

$G_{B}^{\Gamma^{\mathcal{B}}}{ }^{(B)}$	$\mathcal{D}^{*}(B)$	(v, b, r, λ)	Conditions
$\leq \operatorname{AGL}(n, 3)$		$\left(\begin{array}{c}\frac{\left(3^{n}-1\right) 3^{j}}{2} \\ 3^{n} \\ 3^{n-j}\left(3^{j}-1\right) \\ \frac{\left(3^{n}-1\right)\left(3^{j}-2\right)}{2}+\frac{3^{n-j}-1}{2}\end{array}\right)$	$\begin{aligned} & n \geq 3 \text { odd } \\ & p=\frac{3^{n}-1}{2} \\ & 1 \leq j \leq n-1 \end{aligned}$
$\leq \operatorname{PGL}(n, 2)$		$\left(\begin{array}{c}a\left(2^{n-1}-1\right) \\ 2^{n}-1 \\ \frac{\left(2^{n}-1\right)(a-1)}{a} \\ \left(2^{n-1}-1\right)(a-2)+\frac{2^{n}-1-a}{2 a}\end{array}\right)$	a an odd divisor of $2 p+1$ $3 \leq a \leq \frac{2 p+1}{3}$ $p=2^{n-1}-1$ a Mersenne prime $\text { (} n-1 \geq 3 \text { a prime })$
A_{7}	$\overline{\mathcal{D}^{*}}(B) \cong \mathrm{PG}(3,2)$	(35, 15, 12, 22)	

Table: Possibilities when $s=2$ in case (f).

remarks

1. Examples for case (e) can be constructed by first lifting a $(G, 2)$-arc transitive graph to a G-symmetric 3 -arc graph and then lifting the latter to a G-symmetric graph by the standard covering graph construction.

remarks

1. Examples for case (e) can be constructed by first lifting a $(G, 2)$-arc transitive graph to a G-symmetric 3 -arc graph and then lifting the latter to a G-symmetric graph by the standard covering graph construction.
2. The condition $(v, b, r, \lambda)=(p a, a, a-1, p(a-2))$ in (e) is sufficient for $\Gamma_{\mathcal{B}}$ to be ($G, 2$)-arc transitive.

remarks

1. Examples for case (e) can be constructed by first lifting a ($G, 2$)-arc transitive graph to a G-symmetric 3 -arc graph and then lifting the latter to a G-symmetric graph by the standard covering graph construction.
2. The condition $(v, b, r, \lambda)=(p a, a, a-1, p(a-2))$ in (e) is sufficient for $\Gamma_{\mathcal{B}}$ to be ($G, 2$)-arc transitive.
3. We have examples for the third row of the second table (due to Yuqing Chen).

remarks

1. Examples for case (e) can be constructed by first lifting a $(G, 2)$-arc transitive graph to a G-symmetric 3 -arc graph and then lifting the latter to a G-symmetric graph by the standard covering graph construction.
2. The condition $(v, b, r, \lambda)=(p a, a, a-1, p(a-2))$ in (e) is sufficient for $\Gamma_{\mathcal{B}}$ to be ($G, 2$)-arc transitive.
3. We have examples for the third row of the second table (due to Yuqing Chen).
4. For general p, we do not know whether these necessary conditions are sufficient.

3-arc graph

Given a graph Γ, the 3-arc graph of $\Gamma, X(\Gamma)$, is defined to have the set of arcs of Γ as its vertex set, such that two arcs $u v$ and $x y$ are adjacent if and only if (v, u, x, y) is a 3 -arc of Γ.

outline of proof

$$
\text { 1. } v r=b(v-p), \quad \lambda(b-1)=(v-p)(r-1)
$$

outline of proof

1. $v r=b(v-p), \quad \lambda(b-1)=(v-p)(r-1)$
2. $\lambda=0 \Rightarrow$ case (a) or (b). Assume $\lambda>0$ in the following.

outline of proof

1. $v r=b(v-p), \quad \lambda(b-1)=(v-p)(r-1)$
2. $\lambda=0 \Rightarrow$ case (a) or (b). Assume $\lambda>0$ in the following.
3. $\mathcal{D}^{*}(B)$ is a 2-($\left.b, r, \lambda\right)$ design admitting G_{B} as a 2-point transitive group of automorphisms.

outline of proof

1. $v r=b(v-p), \quad \lambda(b-1)=(v-p)(r-1)$
2. $\lambda=0 \Rightarrow$ case (a) or (b). Assume $\lambda>0$ in the following.
3. $\mathcal{D}^{*}(B)$ is a 2-($\left.b, r, \lambda\right)$ design admitting G_{B} as a 2-point transitive group of automorphisms.
4. v is not a multiple of $p \Rightarrow \mathcal{D}^{*}(B)$ is a 2-transitive symmetric $2-\left(p a+1, p(a-1)+1, p(a-2)+\frac{p+a-1}{a}\right)$ design $\Rightarrow \mathcal{D}^{*}(B)$ or $\overline{\mathcal{D}^{*}}(B)$ is known (due to Kantor) \Rightarrow case (c) or (d)

outline of proof

1. $v r=b(v-p), \quad \lambda(b-1)=(v-p)(r-1)$
2. $\lambda=0 \Rightarrow$ case (a) or (b). Assume $\lambda>0$ in the following.
3. $\mathcal{D}^{*}(B)$ is a 2-($\left.b, r, \lambda\right)$ design admitting G_{B} as a 2-point transitive group of automorphisms.
4. v is not a multiple of $p \Rightarrow \mathcal{D}^{*}(B)$ is a 2-transitive symmetric $2-\left(p a+1, p(a-1)+1, p(a-2)+\frac{p+a-1}{a}\right)$ design $\Rightarrow \mathcal{D}^{*}(B)$ or $\overline{\mathcal{D}^{*}}(B)$ is known (due to Kantor) \Rightarrow case (c) or (d)
5. $v=p a$ is a multiple of $p \Rightarrow$ case (e) or (f)

outline of proof

1. $v r=b(v-p), \quad \lambda(b-1)=(v-p)(r-1)$
2. $\lambda=0 \Rightarrow$ case (a) or (b). Assume $\lambda>0$ in the following.
3. $\mathcal{D}^{*}(B)$ is a 2-($\left.b, r, \lambda\right)$ design admitting G_{B} as a 2-point transitive group of automorphisms.
4. v is not a multiple of $p \Rightarrow \mathcal{D}^{*}(B)$ is a 2-transitive symmetric $2-\left(p a+1, p(a-1)+1, p(a-2)+\frac{p+a-1}{a}\right)$ design $\Rightarrow \mathcal{D}^{*}(B)$ or $\overline{\mathcal{D}^{*}}(B)$ is known (due to Kantor) \Rightarrow case (c) or (d)
5. $v=p a$ is a multiple of $p \Rightarrow$ case (e) or (f)
6. $s=1$ or 2 in case (f): classification of 2-transitive symmetric designs

$p=3$

Theorem
[Xu and Zhou, 2011-12]
Suppose that $v-k=3$. Then $\Gamma_{\mathcal{B}}$ is $(G, 2)$-arc transitive iff one of the following holds:
(a) $(v, b, r, \lambda)=(4,4,1,0), G_{B}^{B} \cong A_{4}$ or S_{4};
(b) $(v, b, r, \lambda)=(6,2,1,0), \Gamma_{\mathcal{B}} \cong C_{n}$;
(c) $(v, b, r, \lambda)=(7,7,4,2), G_{B}^{B} \cong \operatorname{PSL}(3,2)$;
(d) $(v, b, r, \lambda)=(3 a, a, a-1,3 a-6)$ for some $a \geq 3$;
(e) $(v, b, r, \lambda)=(6,4,2,1), G_{B}^{\Gamma_{\mathcal{B}}(B)} \cong A_{4}$ or S_{4}.

Theorem
(cont'd)
Moreover, in each case we have the following:
(a) $\Gamma \cong(|V(\Gamma)| / 2) \cdot K_{2}$, any connected 4-valent 2 -arc transitive graph can occur as $\Gamma_{\mathcal{B}}$.
(b) $\Gamma \cong 3 n \cdot K_{2}, n \cdot C_{6}$ or $n \cdot K_{3,3}$.
(c) $\overline{\mathcal{D}}(B) \cong \operatorname{PG}(2,2), G_{B}^{\Gamma_{\mathcal{B}}(B)} \cong \operatorname{PSL}(3,2)$, and $\Gamma[B, C] \cong 4 \cdot K_{2}$, $K_{4,4}-4 \cdot K_{2}$ or $K_{4,4}$; in the first case Γ is ($G, 2$)-arc transitive.
(d) $V(\Gamma)$ admits a G-invariant partition \mathcal{P} with block size 3 that is a refinement of \mathcal{B}, such that $\Gamma_{\mathcal{P}}$ can be 'constructed' from $\Gamma_{\mathcal{B}}$ by the 3-arc graph construction.
(e) Γ can be constructed from $\Gamma_{\mathcal{B}}$ as a '2-path graph', and every connected 4 -valent ($G, 2$)-arc transitive graph can occur as $\Gamma_{\mathcal{B}}$ in (e).

$p=5$

Theorem

[Xu and Zhou, 2011-12]
Suppose that $v-k=5$. Then $\Gamma_{\mathcal{B}}$ is $(G, 2)$-arc transitive iff one of the following holds:
(a) $(v, b, r, \lambda)=(6,6,1,0), G_{B}^{B} \cong G_{B}^{\Gamma_{\mathcal{B}}(B)} \cong A_{6}$ or S_{6};
(b) $(v, b, r, \lambda)=(10,2,1,0), \Gamma_{\mathcal{B}} \cong C_{n}$ and $G / G_{(\mathcal{B})} \leq D_{2 n}$, where $n=|V(\Gamma)| / 10$;
(c) $(v, b, r, \lambda)=(21,21,16,12), \overline{\mathcal{D}^{*}}(B) \cong \operatorname{PG}(2,4)$,
$G_{B}^{B} \cong G_{B}^{\Gamma_{B}(B)}$ is isomorphic to a 2 -transitive subgroup of $\operatorname{P\Gamma L}(3,4)$, and G is faithful on \mathcal{B};
(d) $(v, b, r, \lambda)=(11,11,6,3), \overline{\mathcal{D}^{*}}(B)$ is isomorphic to the unique $2-(11,5,2)$ design and $G_{B}^{B} \cong G_{B}^{\Gamma_{\mathcal{B}}(B)} \cong \operatorname{PSL}(2,11)$;
(e) $(v, b, r, \lambda)=(5 a, a, a-1,5 a-10)$ for some $a \geq 3$;

Theorem

(cont'd)
(f) one of the following occurs:

1. $(v, b, r, \lambda)=(10,6,3,2), \mathcal{D}^{*}(B)$ is isomorphic to the unique 2-($6,3,2$) design, and $G_{B}^{\Gamma_{\mathcal{B}}(B)} \cong \operatorname{Sp}_{4}(2)$ or $\operatorname{PSL}(2,5)$;
2. $(v, b, r, \lambda)=(15,6,4,6), \mathcal{D}^{*}(B)$ is isomorphic to the complementary design of K_{6} and $G_{B}^{\Gamma_{\mathcal{B}}(B)} \cong A_{6}$;
3. $(v, b, r, \lambda)=(20,16,12,11), \overline{\mathcal{D}^{*}}(B) \cong \mathrm{AG}(2,4)$ and $G_{B}^{\Gamma_{\mathcal{B}}(B)}$ is isomorphic to a 2-transitive subgroup of $A \Gamma L(2,4)$.

Hamiltonicity of 3-arc graphs

Theorem
[Xu and Zhou, 2011-12]
Let Γ be a graph without isolated vertices. The 3-arc graph $X(\Gamma)$ of Γ is hamiltonian if and only if
(a) $\delta(\Gamma) \geq 2$;
(b) no two degree-two vertices of Γ are adjacent; and
(c) the subgraph obtained from Γ by deleting all degree-two vertices is connected.
(Graphs and Combinatorics, to appear)

Hamiltonicity of 3-arc graphs

Theorem
[Xu and Zhou, 2011-12]
Let Γ be a graph without isolated vertices. The 3-arc graph $X(\Gamma)$ of Γ is hamiltonian if and only if
(a) $\delta(\Gamma) \geq 2$;
(b) no two degree-two vertices of Γ are adjacent; and
(c) the subgraph obtained from Γ by deleting all degree-two vertices is connected.
(Graphs and Combinatorics, to appear)
Corollary
[Xu and Zhou, 2011-12]
If a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is hamiltonian.

