Counting cycles in vertex-transitive graphs

Robert Jajcay, Indiana State University Comenius University robert.jajcay@indstate.edu robert.jajcay@fmph.uniba.sk

May 1, 2013.

Robert Jajcay, Indiana State University Comenius University

Robert Jajcay, Indiana State University Comenius University

The only picture of me and Dragan

Robert Jajcay, Indiana State University Comenius University Counting

1

vertex-transitive graph G:

 $\forall u, v \in V(G) \quad \exists \varphi \in Aut(G): \quad \varphi(u) = v$

1

vertex-transitive graph G:

$$\forall u, v \in V(G) \quad \exists \varphi \in Aut(G): \quad \varphi(u) = v$$

Cayley graph G: vertex-transitive graph that admits a regular automorphism group

$$\exists \Gamma \leq Aut(G): \quad \forall u, v \in V(G) \quad \exists ! \varphi \in \Gamma: \quad \varphi(u) = v$$

vertex-transitive graph G:

$$\forall u, v \in V(G) \quad \exists \varphi \in Aut(G): \quad \varphi(u) = v$$

Cayley graph G: vertex-transitive graph that admits a regular automorphism group

$$\exists \Gamma \leq Aut(G): \quad \forall u, v \in V(G) \quad \exists ! \varphi \in \Gamma: \quad \varphi(u) = v$$

Cayley graphs
$$G = C(\Gamma, X)$$
:
 $V(G) = \Gamma$, $E(G) = \{ \{a, ax\} \mid a \in \Gamma, x \in X \}$

 \Rightarrow

Cayley graphs exist for all orders $n \ge 1$

Dragan Marušič:

Classify the orders *n* for which there exists a non-Cayley vertex-transitive graph (VTNCG) of order *n*; the non-Cayley numbers.

Prehistory

Theorem (Fronček, Rosa, Širáň)

Let $G = C(\Gamma, X)$ and p be an odd prime. Then the number of closed oriented walks of length p based at any vertex of G is congruent modulo p to the number of generators in X of order p.

Theorem (Fronček, Rosa, Širáň)

Let $G = C(\Gamma, X)$ and p be an odd prime. Then the number of closed oriented walks of length p based at any vertex of G is congruent modulo p to the number of generators in X of order p.

Definition

The coset graph $G = Cos(\Gamma, H, X)$, $H \leq G$, $X \subseteq G$, $H \cap X =$:

 $V(G) = \{ aH \mid a \in \Gamma \}, aH \text{ adjacent } bH \text{ iff } a^{-1}b \in HXH.$

Theorem (Fronček, Rosa, Širáň)

Let $G = C(\Gamma, X)$ and p be an odd prime. Then the number of closed oriented walks of length p based at any vertex of G is congruent modulo p to the number of generators in X of order p.

Definition

The coset graph $G = Cos(\Gamma, H, X)$, $H \leq G$, $X \subseteq G$, $H \cap X =$:

 $V(G) = \{ aH \mid a \in \Gamma \}, aH \text{ adjacent } bH \text{ iff } a^{-1}b \in HXH.$

Theorem

- 1. $Cos(\Gamma, H, X)$ is vertex-transitive for all Γ, H, X
- 2. every vertex-transitive graph is $Cos(\Gamma, H, X)$ for some Γ, H, X

Theorem (RJ, Širáň)

Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $XHX \cap H = \{1_G\}$. Further suppose that there are at least |X| + 1 distinct ordered pairs $(x, h) \in X \times H$ such that $(xh)^p = 1_G$ for some fixed prime $p > |X| \cdot |H|^2$. Then the coset graph $\Gamma = Cos(G, H, X)$ is a vertex-transitive non-Cayley graph.

Theorem (RJ, Širáň)

Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $XHX \cap H = \{1_G\}$. Further suppose that there are at least |X| + 1 distinct ordered pairs $(x, h) \in X \times H$ such that $(xh)^p = 1_G$ for some fixed prime $p > |X| \cdot |H|^2$. Then the coset graph $\Gamma = Cos(G, H, X)$ is a vertex-transitive non-Cayley graph.

No new non-Cayley numbers were discovered by this construction, as the orders of the groups we used contained lots of powers.

We needed to be able to count walks of different lengths:

We needed to be able to count walks of different lengths:

Lemma (RJ, Širáň)

Let $\Gamma = C(G, X)$ be a localy finite Cayley graph and p be a prime. Then the number of closed oriented walks of length p^n , $n \ge 1$, based at any fixed vertex of Γ , is congruent (mod p) to the number of elements in X for which $x^{p^n} = 1_G$. We needed to be able to count walks of different lengths:

Lemma (RJ, Širáň)

Let $\Gamma = C(G, X)$ be a localy finite Cayley graph and p be a prime. Then the number of closed oriented walks of length p^n , $n \ge 1$, based at any fixed vertex of Γ , is congruent (mod p) to the number of elements in X for which $x^{p^n} = 1_G$.

Lemma (RJ, Širáň)

Let $\Gamma = C(G, X)$ be a localy finite Cayley graph and p and q be two distinct primes. Let n = pq and let j_n be the number of elements $x \in X$ for which $x^n = 1_G$. Then the number of closed oriented walks of length n, based at any fixed vertex of Γ , is congruent (mod p) to $j_n + kq$, where k is a non-negative integer.

Theorem (RJ, Širáň)

Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $XHX \cap H = \{1_G\}$. Let $p_1^{k_1}, p_2^{k_2}, \ldots, p_r^{k_r}$ be powers of distinct primes, and let ℓ_{p_i} , $1 \le i \le r$, denote the number of distinct pairs $(x, h) \in X \times H$ such that $(xh)^{p_i^{k_i}} = 1_G$. Suppose that $\sum_{i=1}^r \ell_{p_i} > |X|$, and, for all i, $p_i > \ell_{p_i}|H|$. Then the coset graph $\Gamma = Cos(G, H, X)$ is a vertex-transitive non-Cayley graph.

Theorem (RJ, Širáň)

Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $XHX \cap H = \{1_G\}$. Let $p_1^{k_1}, p_2^{k_2}, \ldots, p_r^{k_r}$ be powers of distinct primes, and let ℓ_{p_i} , $1 \le i \le r$, denote the number of distinct pairs $(x, h) \in X \times H$ such that $(xh)^{p_i^{k_i}} = 1_G$. Suppose that $\sum_{i=1}^r \ell_{p_i} > |X|$, and, for all i, $p_i > \ell_{p_i}|H|$. Then the coset graph $\Gamma = Cos(G, H, X)$ is a vertex-transitive non-Cayley graph.

This time we got some new non-Cayley numbers: **19,886**, **5,666,226**.

The Dawn of History

Robert Jajcay, Indiana State University Comenius University

Ice Hockey World Champions, May 2002

Robert Jajcay, Indiana State University Comenius University

The Big Journey to the North, August 2002

Robert Jajcay, Indiana State University Comenius University

Cycles in Cayley graphs

Let $C^b_{\Gamma}(n)$ denote the number of oriented cycles of length *n* rooted at *b*, and $\omega_X(n)$ denote the number of elements of order *n* in *X*.

Cycles in Cayley graphs

Let $C^b_{\Gamma}(n)$ denote the number of oriented cycles of length *n* rooted at *b*, and $\omega_X(n)$ denote the number of elements of order *n* in *X*.

Theorem (RJ, Malnič, Marušič)

Let $\Gamma = Cay(G, X)$ be a Cayley graph, and let $b \in V(\Gamma)$. Then the following statements hold.

(i) If $n = p^r$, where p is an odd prime and $r \ge 1$, or $n = 2^r$, where $r \ge 2$, then

$$\mathcal{C}^b_{\Gamma}(n) \equiv \omega_X(n) \pmod{p}.$$

(ii) If $n = p \cdot q$, where p and q are distinct primes, then

$${\mathcal C}^b_\Gamma(n)\equiv \omega_X(n)+s\cdot q \pmod{p},$$

where s is a nonnegative integer.

Cycles and Walks in Cayley Graphs

Let $\mathcal{W}^{b}_{\Gamma}(n)$ denote the number of oriented cycles of length n rooted at b.

Let $\mathcal{W}^{b}_{\Gamma}(n)$ denote the number of oriented cycles of length n rooted at b.

Corollary (RJ, Malnič, Marušič)

Let $\Gamma = Cay(G, X)$ be a Cayley graph, $b \in V(\Gamma)$ a base vertex, and p a prime. Then the numbers $W^b_{\Gamma}(p)$ and $C^b_{\Gamma}(p)$ are congruent modulo p. Let $\mathcal{W}^{b}_{\Gamma}(n)$ denote the number of oriented cycles of length n rooted at b.

Corollary (RJ, Malnič, Marušič)

Let $\Gamma = Cay(G, X)$ be a Cayley graph, $b \in V(\Gamma)$ a base vertex, and p a prime. Then the numbers $W^b_{\Gamma}(p)$ and $C^b_{\Gamma}(p)$ are congruent modulo p.

Corollary (RJ, Malnič, Marušič)

Let $\Gamma = Cay(G, X)$ be a Cayley graph, $b \in V(\Gamma)$ a base vertex, and p a prime relatively prime to |G|. Then

$$\mathcal{W}^b_{\Gamma}(p) \equiv \mathcal{C}^b_{\Gamma}(p) \equiv 0 \pmod{p}.$$

Cycles and Walks in Vertex-Transitive Graphs

Lemma

1. Let Γ be any graph, and n be a positive integer. Then,

$$n \mid \sum_{b \in V(\Gamma)} \mathcal{W}^b_{\Gamma}(n)$$
 and $n \mid \sum_{b \in V(\Gamma)} \mathcal{C}^b_{\Gamma}(n).$

2. If Γ is vertex-transitive, then $\mathcal{W}_{\Gamma}^{a}(n) = \mathcal{W}_{\Gamma}^{b}(n)$ and $\mathcal{C}_{\Gamma}^{a}(n) = \mathcal{C}_{\Gamma}^{b}(n)$, for all $a, b \in V(\Gamma)$.

Cycles and Walks in Vertex-Transitive Graphs

Lemma

1. Let Γ be any graph, and n be a positive integer. Then,

$$n \mid \sum_{b \in V(\Gamma)} \mathcal{W}^b_{\Gamma}(n)$$
 and $n \mid \sum_{b \in V(\Gamma)} \mathcal{C}^b_{\Gamma}(n).$

2. If Γ is vertex-transitive, then $\mathcal{W}_{\Gamma}^{a}(n) = \mathcal{W}_{\Gamma}^{b}(n)$ and $\mathcal{C}_{\Gamma}^{a}(n) = \mathcal{C}_{\Gamma}^{b}(n)$, for all $a, b \in V(\Gamma)$.

Corollary

Let Γ be a vertex-transitive graph, and let n be a positive integer relatively prime to $|V(\Gamma)|$. Then,

1.
$$n \mid \mathcal{W}_{\Gamma}^{b}(n)$$
, for all $b \in V(\Gamma)$,
2. $n \mid C_{\Gamma}^{b}(n)$, for all $b \in V(\Gamma)$.

Theorem (RJ, Malnič, Marušič)

Let Γ be a connected vertex-transitive graph, $b \in V(\Gamma)$, let $G \leq Aut \ \Gamma$ act transitively on $V(\Gamma)$, m be the order of a vertex-stabilizer in G, and let $X = \{g \in G | g(b) \in N(b)\}$. Then the following statements hold.

(i) If p is an odd prime divisor of m and $r \ge 1$ or p = 2 divides m and $r \ge 2$, then $\varepsilon_X(p^r) \equiv 0$ (mod p), and for each prime $q \ne p$, there exists a nonnegative integer s such that $\varepsilon_X(pq) + sq \equiv 0$ (mod p).

(ii) If p is an odd prime not dividing m and $r \ge 1$ or p = 2 does not divide m and $r \ge 2$, then $\varepsilon_X(p^r) \equiv W^b_{\Gamma}(p^r) \pmod{p}$, and, for each prime $q \ne p$, there exists a nonnegative integer s such that $\varepsilon_X(pq) + sq \equiv W^b_{\Gamma}(pq) \pmod{p}$.

Walks and Cycles in Petersen

n	5	6	7	8	9	10
$\mathcal{C}^b_{\mathcal{P}}(n)$	12	12	0	24	36	0
$\mathcal{W}^b_{\mathcal{P}}(n)$	12	99	168	759	1764	6315

Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs

Applications to Graphs of Given Degree, Diameter, and Girth

A (Δ, D)-graph is a (finite) graph of maximum degree Δ and diameter D.

Applications to Graphs of Given Degree, Diameter, and Girth

- A (Δ, D)-graph is a (finite) graph of maximum degree Δ and diameter D.
- A (k,g)-graph is a (finite) graph of degree k and girth g.

$$n(\Delta, D) \le M(\Delta, D) = \begin{cases} 1 + \Delta \frac{(\Delta - 1)^D - 1}{\Delta - 2}, & \text{if } \Delta > 2\\ 2D + 1, & \text{if } \Delta = 2 \end{cases}$$

Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs

19

$$n(\Delta, D) \leq M(\Delta, D) = \begin{cases} 1 + \Delta \frac{(\Delta-1)^D - 1}{\Delta - 2}, & \text{if } \Delta > 2\\ 2D + 1, & \text{if } \Delta = 2 \end{cases}$$

$$n(k,g) \ge M(k,g) = \left\{ egin{array}{cc} 1+krac{(k-1)^{(g-1)/2}-1}{k-2}, & g \ ext{odd} \ 2rac{(k-1)^{g/2}-1}{k-2}, & g \ ext{even} \end{array}
ight.$$

Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs

1

Theorem (Biggs)

For each odd integer $k \ge 3$ there is an infinite sequence of values of g such that the excess e of any vertex-transitive graph with valency k and girth g satisfies e > g/k.

Theorem (Biggs)

For each odd integer $k \ge 3$ there is an infinite sequence of values of g such that the excess e of any vertex-transitive graph with valency k and girth g satisfies e > g/k.

Theorem (Exoo, RJ, Mačaj, Širáň)

For any fixed pair of degree Δ and defect δ , the set of diameters D for which there might exist a vertex-transitive (Δ, D) -graph of defect not exceeding the defect δ is of measure 0 with respect to the set of all positive integers.

Theorem (Exoo, RJ, Širáň) For every $k \ge 2, g \ge 3$, there exists a Cayley (k, g)-graph.

Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs

Theorem (Exoo, RJ, Širáň) For every $k \ge 2, g \ge 3$, there exists a Cayley (k, g)-graph. **Proof.**

For every $k \ge 2, g \ge 3$, there exists a **Cayley** (k, g)-graph.

Proof.

 using (infinite) Cayley maps of Šiagiová and Watkins in combination with the fact that automorphism groups of Cayley maps are residually finite

For every $k \ge 2, g \ge 3$, there exists a **Cayley** (k, g)-graph.

Proof.

- using (infinite) Cayley maps of Šiagiová and Watkins in combination with the fact that automorphism groups of Cayley maps are residually finite
- adding a g-cycle to a graph of girth at least g constructed by Biggs

For every $k \ge 2, g \ge 3$, there exists a **Cayley** (k, g)-graph.

Proof.

- using (infinite) Cayley maps of Šiagiová and Watkins in combination with the fact that automorphism groups of Cayley maps are residually finite
- adding a g-cycle to a graph of girth at least g constructed by Biggs
- constructing Cayley graphs from 1- and 2-factorizations of (k, g)-graphs

Let G be a k-regular graph of girth g whose edge set can be partitioned into a family \mathcal{F} of k_1 1-factors, F_i , $1 \le i \le k_1$, and k_2 oriented 2-factors F_i , $k_1 + 1 \le i \le k_1 + k_2$ (where $k_1 + 2k_2 = k$). If $\Gamma_{\mathcal{F}}$ is the finite permutation group acting on the set V(G) generated by the set

$$X = \{\delta_{F_i} \mid 1 \le i \le k_1\} \cup \{\sigma_{F_i} \mid k_1 + 1 \le i \le k_1 + k_2\} \cup \\ \{\sigma_{F_i}^{-1} \mid k_1 + 1 \le i \le k_1 + k_2\},\$$

then the Cayley graph $Cay(\Gamma_{\mathcal{F}}, X)$ is k-regular of girth at least g.

Figure: Smallest Cayley (3,5)-graph

1

Observation 1.: Every Cayley graph C(G, X) decomposes into k_1 1-factors and k_2 2-factors (where the cycles in each of the 2-factors are of the same length), where k_1 is the number of involutions in X and k_2 is the number of non-involutions in X, $k_1 + k_2 = |X|$.

Observation 1.: Every Cayley graph C(G, X) decomposes into k_1 1-factors and k_2 2-factors (where the cycles in each of the 2-factors are of the same length), where k_1 is the number of involutions in X and k_2 is the number of non-involutions in X, $k_1 + k_2 = |X|$.

Theorem

A k-regular graph Γ is Cayley if and only if there exists a partition of $E(\Gamma)$ into 1- and 2-factors consisting of cycles of equal length such that the corresponding vertex-transitive graph is of order equal to the order of Γ .

Observation 1.: Every Cayley graph C(G, X) decomposes into k_1 1-factors and k_2 2-factors (where the cycles in each of the 2-factors are of the same length), where k_1 is the number of involutions in X and k_2 is the number of non-involutions in X, $k_1 + k_2 = |X|$.

Theorem

A k-regular graph Γ is Cayley if and only if there exists a partition of $E(\Gamma)$ into 1- and 2-factors consisting of cycles of equal length such that the corresponding vertex-transitive graph is of order equal to the order of Γ .

Observation 2. The edges of these 1- and 2-factors are orbits of right-multiplication automorphisms of the underlying Cayley graph; $\varphi_x(a) = ax, x \in X$.

Marušič: Every vertex-transitive finite graph has a regular automorphism.

The Polycirculant Conjecture

Robert Jajcay, Indiana State University Comenius University

- Is the conjecture true for every vertex-transitive automorphism group of a vertex-transitive graph?
- Is the conjecture true if we put a limit on the order of a vertex-stabilizer in a vertex-transitive graph?
- Is the conjecture true for quasi-Cayley graphs?

Happy (2² · 3 · 5) - Birthday!!!! Dragan

۹,

Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs