

Robert Jajcay, Indiana State University Comenius University

17

The only picture of me and Dragan

Robert Jajcay, Indiana State University Comenius University

Prehistory

- vertex-transitive graph G :

$$
\forall u, v \in V(G) \quad \exists \varphi \in \operatorname{Aut}(G): \quad \varphi(u)=v
$$

Prehistory

- vertex-transitive graph G :

$$
\forall u, v \in V(G) \quad \exists \varphi \in \operatorname{Aut}(G): \quad \varphi(u)=v
$$

- Cayley graph G: vertex-transitive graph that admits a regular automorphism group

$$
\exists \Gamma \leq \operatorname{Aut}(G): \quad \forall u, v \in V(G) \quad \exists!\varphi \in \Gamma: \varphi(u)=v
$$

Prehistory

- vertex-transitive graph G :

$$
\forall u, v \in V(G) \quad \exists \varphi \in \operatorname{Aut}(G): \quad \varphi(u)=v
$$

- Cayley graph G: vertex-transitive graph that admits a regular automorphism group

$$
\exists \Gamma \leq \operatorname{Aut}(G): \quad \forall u, v \in V(G) \quad \exists!\varphi \in \Gamma: \varphi(u)=v
$$

- Cayley graphs $G=C(\Gamma, X)$:

$$
V(G)=\Gamma, \quad E(G)=\{\{a, a x\} \mid a \in \Gamma, x \in X\}
$$

$$
\Rightarrow
$$

Cayley graphs exist for all orders $n \geq 1$

Dragan Marušič:

Classify the orders n for which there exists a non-Cayley vertex-transitive graph (VTNCG) of order n; the non-Cayley numbers.

Prehistory

Theorem (Fronček, Rosa, Širáň)
Let $G=C(\Gamma, X)$ and p be an odd prime. Then the number of closed oriented walks of length p based at any vertex of G is congruent modulo p to the number of generators in X of order p.

Prehistory

Theorem (Fronček, Rosa, Širáň)
Let $G=C(\Gamma, X)$ and p be an odd prime. Then the number of closed oriented walks of length p based at any vertex of G is congruent modulo p to the number of generators in X of order p.

Definition

The coset graph $G=\operatorname{Cos}(\Gamma, H, X), H \leq G, X \subseteq G, H \cap X=$:

$$
V(G)=\{a H \mid a \in \Gamma\}, \quad a H \text { adjacent } b H \text { iff } a^{-1} b \in H X H .
$$

Prehistory

Theorem (Fronček, Rosa, Širáň)
Let $G=C(\Gamma, X)$ and p be an odd prime. Then the number of closed oriented walks of length p based at any vertex of G is congruent modulo p to the number of generators in X of order p.

Definition

The coset graph $G=\operatorname{Cos}(\Gamma, H, X), H \leq G, X \subseteq G, H \cap X=$:

$$
V(G)=\{a H \mid a \in \Gamma\}, \quad a H \text { adjacent } b H \text { iff } a^{-1} b \in H X H .
$$

Theorem

1. $\operatorname{Cos}(\Gamma, H, X)$ is vertex-transitive for all Γ, H, X
2. every vertex-transitive graph is $\operatorname{Cos}(\Gamma, H, X)$ for some Γ, H, X

Prehistory

Theorem (RJ, Širáň)

Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $X H X \cap H=\left\{1_{G}\right\}$. Further suppose that there are at least $|X|+1$ distinct ordered pairs $(x, h) \in X \times H$ such that $(x h)^{p}=1_{G}$ for some fixed prime $p>|X| \cdot|H|^{2}$. Then the coset graph $\Gamma=\operatorname{Cos}(G, H, X)$ is a vertex-transitive non-Cayley graph.

Prehistory

Theorem (RJ, Širáň)

Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $X H X \cap H=\left\{1_{G}\right\}$. Further suppose that there are at least $|X|+1$ distinct ordered pairs $(x, h) \in X \times H$ such that $(x h)^{p}=1_{G}$ for some fixed prime $p>|X| \cdot|H|^{2}$. Then the coset graph $\Gamma=\operatorname{Cos}(G, H, X)$ is a vertex-transitive non-Cayley graph.

No new non-Cayley numbers were discovered by this construction, as the orders of the groups we used contained lots of powers.

Prehistory

We needed to be able to count walks of different lengths:

Prehistory

We needed to be able to count walks of different lengths:
Lemma (RJ, Širáň)
Let $\Gamma=C(G, X)$ be a localy finite Cayley graph and p be a prime. Then the number of closed oriented walks of length $p^{n}, n \geq 1$, based at any fixed vertex of Γ, is congruent $(\bmod p)$ to the number of elements in X for which $x^{p^{n}}=1_{G}$.

Prehistory

We needed to be able to count walks of different lengths:
Lemma (RJ, Širáñ)
Let $\Gamma=C(G, X)$ be a localy finite Cayley graph and p be a prime.
Then the number of closed oriented walks of length $p^{n}, n \geq 1$, based at any fixed vertex of Γ, is congruent $(\bmod p)$ to the number of elements in X for which $x^{p^{n}}=1_{G}$.
Lemma (RJ, Širáñ)
Let $\Gamma=C(G, X)$ be a localy finite Cayley graph and p and q be two distinct primes. Let $n=p q$ and let j_{n} be the number of elements $x \in X$ for which $x^{n}=1_{G}$. Then the number of closed oriented walks of length n, based at any fixed vertex of Γ, is congruent $(\bmod p)$ to $j_{n}+k q$, where k is a non-negative integer.

Prehistory

Theorem (RJ, Širáň)

Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $X H X \cap H=\left\{1_{G}\right\}$. Let $p_{1}^{k_{1}}, p_{2}^{k_{2}}, \ldots, p_{r}^{k_{r}}$ be powers of distinct primes, and let $\ell_{p_{i}}$, $1 \leq i \leq r$, denote the number of distinct pairs $(x, h) \in X \times H$ such that $(x h)^{p_{i}^{k_{i}}}=1_{G}$. Suppose that $\sum_{i=1}^{r} \ell_{p_{i}}>|X|$, and, for all i, $p_{i}>\ell_{p_{i}}|H|$. Then the coset graph $\Gamma=\operatorname{Cos}(G, H, X)$ is a vertex-transitive non-Cayley graph.

Prehistory

Theorem (RJ, Širáň)

Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $X H X \cap H=\left\{1_{G}\right\}$. Let $p_{1}^{k_{1}}, p_{2}^{k_{2}}, \ldots, p_{r}^{k_{r}}$ be powers of distinct primes, and let $\ell_{p_{i}}$, $1 \leq i \leq r$, denote the number of distinct pairs $(x, h) \in X \times H$ such that $(x h)^{p_{i}^{k_{i}}}=1_{G}$. Suppose that $\sum_{i=1}^{r} \ell_{p_{i}}>|X|$, and, for all i, $p_{i}>\ell_{p_{i}}|H|$. Then the coset graph $\Gamma=\operatorname{Cos}(G, H, X)$ is a vertex-transitive non-Cayley graph.

This time we got some new non-Cayley numbers:
19,886, 5,666,226.

The Dawn of History

Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs

Ice Hockey World Champions, May 2002

Robert Jajcay, Indiana State University Comenius University \quad Counting cycles in vertex-transitive graphs

The Big Journey to the North, August 2002

[^0]
Cycles in Cayley graphs

Let $\mathcal{C}_{\Gamma}^{b}(n)$ denote the number of oriented cycles of length n rooted at b, and $\omega_{X}(n)$ denote the number of elements of order n in X.

Cycles in Cayley graphs

Let $\mathcal{C}_{\Gamma}^{b}(n)$ denote the number of oriented cycles of length n rooted at b, and $\omega_{X}(n)$ denote the number of elements of order n in X.
Theorem (RJ, Malnič, Marušič)
Let $\Gamma=\operatorname{Cay}(G, X)$ be a Cayley graph, and let $b \in V(\Gamma)$. Then the following statements hold.
(i) If $n=p^{r}$, where p is an odd prime and $r \geq 1$, or $n=2^{r}$, where $r \geq 2$, then

$$
\mathcal{C}_{\Gamma}^{b}(n) \equiv \omega_{X}(n) \quad(\bmod p)
$$

(ii) If $n=p \cdot q$, where p and q are distinct primes, then

$$
\mathcal{C}_{\Gamma}^{b}(n) \equiv \omega_{X}(n)+s \cdot q \quad(\bmod p)
$$

where s is a nonnegative integer.

Cycles and Walks in Cayley Graphs

Let $\mathcal{W}_{\Gamma}^{b}(n)$ denote the number of oriented cycles of length n rooted at b.

Cycles and Walks in Cayley Graphs

Let $\mathcal{W}_{\Gamma}^{b}(n)$ denote the number of oriented cycles of length n rooted at b.

Corollary (RJ, Malnič, Marušič)
Let $\Gamma=\operatorname{Cay}(G, X)$ be a Cayley graph, $b \in V(\Gamma)$ a base vertex, and p a prime. Then the numbers $\mathcal{W}_{\Gamma}^{b}(p)$ and $\mathcal{C}_{\Gamma}^{b}(p)$ are congruent modulo p.

Cycles and Walks in Cayley Graphs

Let $\mathcal{W}_{\Gamma}^{b}(n)$ denote the number of oriented cycles of length n rooted at b.

Corollary (RJ, Malnič, Marušič)
Let $\Gamma=\operatorname{Cay}(G, X)$ be a Cayley graph, $b \in V(\Gamma)$ a base vertex, and p a prime. Then the numbers $\mathcal{W}_{\Gamma}^{b}(p)$ and $\mathcal{C}_{\Gamma}^{b}(p)$ are congruent modulo p.

Corollary (RJ, Malnič, Marušič)
Let $\Gamma=\operatorname{Cay}(G, X)$ be a Cayley graph, $b \in V(\Gamma)$ a base vertex, and p a prime relatively prime to $|G|$. Then

$$
\mathcal{W}_{\Gamma}^{b}(p) \equiv \mathcal{C}_{\Gamma}^{b}(p) \equiv 0 \quad(\bmod p)
$$

Cycles and Walks in Vertex-Transitive Graphs

Lemma

1. Let Γ be any graph, and n be a positive integer. Then,

$$
n \mid \sum_{b \in V(\Gamma)} \mathcal{W}_{\Gamma}^{b}(n) \quad \text { and } \quad n \mid \sum_{b \in V(\Gamma)} \mathcal{C}_{\Gamma}^{b}(n)
$$

2. If Γ is vertex-transitive, then $\mathcal{W}_{\Gamma}^{a}(n)=\mathcal{W}_{\Gamma}^{b}(n)$ and $\mathcal{C}_{\Gamma}^{a}(n)=\mathcal{C}_{\Gamma}^{b}(n)$, for all $a, b \in V(\Gamma)$.

Cycles and Walks in Vertex-Transitive Graphs

Lemma

1. Let Γ be any graph, and n be a positive integer. Then,

$$
n \mid \sum_{b \in V(\Gamma)} \mathcal{W}_{\Gamma}^{b}(n) \quad \text { and } \quad n \mid \sum_{b \in V(\Gamma)} \mathcal{C}_{\Gamma}^{b}(n)
$$

2. If Γ is vertex-transitive, then $\mathcal{W}_{\Gamma}^{a}(n)=\mathcal{W}_{\Gamma}^{b}(n)$ and $\mathcal{C}_{\Gamma}^{a}(n)=\mathcal{C}_{\Gamma}^{b}(n)$, for all $a, b \in V(\Gamma)$.

Corollary

Let Γ be a vertex-transitive graph, and let n be a positive integer relatively prime to $|V(\Gamma)|$. Then,

1. $n \mid \mathcal{W}_{\Gamma}^{b}(n)$, for all $b \in V(\Gamma)$,
2. $n \mid \mathcal{C}_{\Gamma}^{b}(n)$, for all $b \in V(\Gamma)$.

Oriented Walks in Vertex-Transitive Graphs

Theorem (RJ, Malnič, Marušič)

Let Γ be a connected vertex-transitive graph, $b \in V(\Gamma)$, let $G \leq A u t \Gamma$ act transitively on $V(\Gamma), m$ be the order of a vertex-stabilizer in G, and let $X=\{g \in G \mid g(b) \in N(b)\}$. Then the following statements hold.
(i) If p is an odd prime divisor of m and $r \geq 1$ or $p=2$ divides m and $r \geq 2$, then $\varepsilon_{X}\left(p^{r}\right) \equiv 0$ $(\bmod p)$, and for each prime $q \neq p$, there exists a nonnegative integer s such that $\varepsilon_{X}(p q)+s q \equiv 0$ $(\bmod p)$.
(ii) If p is an odd prime not dividing m and $r \geq 1$ or $p=2$ does not divide m and $r \geq 2$, then $\varepsilon_{X}\left(p^{r}\right) \equiv \mathcal{W}_{\Gamma}^{b}\left(p^{r}\right)(\bmod p)$, and, for each prime $q \neq p$, there exists a nonnegative integer s such that $\varepsilon_{X}(p q)+s q \equiv \mathcal{W}_{\Gamma}^{b}(p q)(\bmod p)$.

Walks and Cycles in Petersen

n	5	6	7	8	9	10
$\mathcal{C}_{\mathcal{P}}^{b}(n)$	12	12	0	24	36	0
$\mathcal{W}_{\mathcal{P}}^{b}(n)$	12	99	168	759	1764	6315

Applications to Graphs of Given Degree, Diameter, and Girth

- A (Δ, D)-graph is a (finite) graph of maximum degree Δ and diameter D.

Applications to Graphs of Given Degree, Diameter, and Girth

- A (Δ, D)-graph is a (finite) graph of maximum degree Δ and diameter D.
- A (k, g)-graph is a (finite) graph of degree k and girth g.

Moore Bound(s)

$$
n(\Delta, D) \leq M(\Delta, D)= \begin{cases}1+\Delta \frac{(\Delta-1)^{D}-1}{\Delta-2}, & \text { if } \Delta>2 \\ 2 D+1, & \text { if } \Delta=2\end{cases}
$$

Moore Bound(s)

$$
\begin{aligned}
& n(\Delta, D) \leq M(\Delta, D)= \begin{cases}1+\Delta \frac{(\Delta-1)^{D}-1}{\Delta-2}, & \text { if } \Delta>2 \\
2 D+1, & \text { if } \Delta=2\end{cases} \\
& n(k, g) \geq M(k, g)= \begin{cases}1+k)^{(k-1)^{(g-1) / 2}-1}, & g \text { odd } \\
2 \frac{(k-1)^{s / 2}-1}{k-2}, & g \text { even }\end{cases}
\end{aligned}
$$

Extremal Vertex-Transitive (Δ, D) - and (k, g)-graphs

Theorem (Biggs)

For each odd integer $k \geq 3$ there is an infinite sequence of values of g such that the excess e of any vertex-transitive graph with valency k and girth g satisfies $e>g / k$.

Extremal Vertex-Transitive (Δ, D) - and (k, g)-graphs

Theorem (Biggs)

For each odd integer $k \geq 3$ there is an infinite sequence of values of g such that the excess e of any vertex-transitive graph with valency k and girth g satisfies $e>g / k$.

Theorem (Exoo, RJ, Mačaj, Širáň)
For any fixed pair of degree Δ and defect δ, the set of diameters D for which there might exist a vertex-transitive (Δ, D)-graph of defect not exceeding the defect δ is of measure 0 with respect to the set of all positive integers.

Cayley (k,g)-Graphs

Theorem (Exoo, RJ, Širáň)
For every $k \geq 2, g \geq 3$, there exists a Cayley (k, g)-graph.

Cayley (k,g)-Graphs

Theorem (Exoo, RJ, Širáň)
For every $k \geq 2, g \geq 3$, there exists a Cayley (k, g)-graph. Proof.

Cayley (k,g)-Graphs

Theorem (Exoo, RJ, Širáň)
For every $k \geq 2, g \geq 3$, there exists a Cayley (k, g)-graph.

Proof.

- using (infinite) Cayley maps of Šiagiová and Watkins in combination with the fact that automorphism groups of Cayley maps are residually finite

Cayley (k,g)-Graphs

Theorem (Exoo, RJ, Širáň)
For every $k \geq 2, g \geq 3$, there exists a Cayley (k, g)-graph.

Proof.

- using (infinite) Cayley maps of Šiagiová and Watkins in combination with the fact that automorphism groups of Cayley maps are residually finite
- adding a g-cycle to a graph of girth at least g constructed by Biggs

Cayley (k,g)-Graphs

Theorem (Exoo, RJ, Širáň)
For every $k \geq 2, g \geq 3$, there exists a Cayley (k, g)-graph.

Proof.

- using (infinite) Cayley maps of Šiagiová and Watkins in combination with the fact that automorphism groups of Cayley maps are residually finite
- adding a g-cycle to a graph of girth at least g constructed by Biggs
- constructing Cayley graphs from 1- and 2-factorizations of (k, g)-graphs

Graphs to Groups

Theorem (Exoo, RJ, Širáň)

Let G be a k-regular graph of girth g whose edge set can be partitioned into a family \mathcal{F} of $k_{1} 1$-factors, $F_{i}, 1 \leq i \leq k_{1}$, and k_{2} oriented 2-factors $F_{i}, k_{1}+1 \leq i \leq k_{1}+k_{2}$ (where $k_{1}+2 k_{2}=k$). If $\Gamma_{\mathcal{F}}$ is the finite permutation group acting on the set $V(G)$ generated by the set

$$
\begin{array}{r}
X=\left\{\delta_{F_{i}} \mid 1 \leq i \leq k_{1}\right\} \cup\left\{\sigma_{F_{i}} \mid k_{1}+1 \leq i \leq k_{1}+k_{2}\right\} \cup \\
\left\{\sigma_{F_{i}}^{-1} \mid k_{1}+1 \leq i \leq k_{1}+k_{2}\right\},
\end{array}
$$

then the Cayley graph Cay $\left(\Gamma_{\mathcal{F}}, X\right)$ is k-regular of girth at least g.

Figure: Smallest (3, 5)-graph

Figure: Smallest Cayley (3, 5)-graph

Decompositions of Vertex-Transitive Graphs into Cycles

Observation 1.: Every Cayley graph $C(G, X)$ decomposes into k_{1} 1 -factors and $k_{2} 2$-factors (where the cycles in each of the 2 -factors are of the same length), where k_{1} is the number of involutions in X and k_{2} is the number of non-involutions in $X, k_{1}+k_{2}=|X|$.

Decompositions of Vertex-Transitive Graphs into Cycles

Observation 1.: Every Cayley graph $C(G, X)$ decomposes into k_{1} 1 -factors and $k_{2} 2$-factors (where the cycles in each of the 2 -factors are of the same length), where k_{1} is the number of involutions in X and k_{2} is the number of non-involutions in $X, k_{1}+k_{2}=|X|$.
Theorem
A k-regular graph 「 is Cayley if and only if there exists a partition of $E(\Gamma)$ into 1- and 2-factors consisting of cycles of equal length such that the corresponding vertex-transitive graph is of order equal to the order of Γ.

Decompositions of Vertex-Transitive Graphs into Cycles

Observation 1.: Every Cayley graph $C(G, X)$ decomposes into k_{1} 1 -factors and $k_{2} 2$-factors (where the cycles in each of the 2 -factors are of the same length), where k_{1} is the number of involutions in X and k_{2} is the number of non-involutions in $X, k_{1}+k_{2}=|X|$.
Theorem
A k-regular graph 「 is Cayley if and only if there exists a partition of $E(\Gamma)$ into 1- and 2-factors consisting of cycles of equal length such that the corresponding vertex-transitive graph is of order equal to the order of Γ.
Observation 2. The edges of these 1- and 2-factors are orbits of right-multiplication automorphisms of the underlying Cayley graph; $\varphi_{x}(a)=a x, x \in X$.

The Polycirculant Conjecture

Marušič:

Every vertex-transitive finite graph has a regular automorphism.

The Polycirculant Conjecture

Robert Jajcay, Indiana State University Comenius University
Counting cycles in vertex-transitive graphs

My List of Naive Questions

- Is the conjecture true for every vertex-transitive automorphism group of a vertex-transitive graph?
- Is the conjecture true if we put a limit on the order of a vertex-stabilizer in a vertex-transitive graph?
- Is the conjecture true for quasi-Cayley graphs?

Happy
 $\left(2^{2} \cdot 3 \cdot 5\right)$ - Birthday!!!!
 Dragan

[^0]: Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs

