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> vertex-transitive graph G:

Vu,v e V(G) Fpe Aut(G): ¢(u)=v

Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs



> vertex-transitive graph G:
Vu,v e V(G) dJpeAut(G): ¢(u)=v

» Cayley graph G: vertex-transitive graph that admits a
regular automorphism group

ar < Aut(G): Vu,ve V(G) Flpel: ¢(u)=v
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> vertex-transitive graph G:
Vu,v e V(G) dJpeAut(G): ¢(u)=v

» Cayley graph G: vertex-transitive graph that admits a
regular automorphism group

ar < Aut(G): Vu,ve V(G) Flpel: ¢(u)=v

> Cayley graphs G = C(I', X):
V(G)=T, E(G)={{a,ax}|aclxeX}

=

Cayley graphs exist for all orders n > 1
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Dragan Marusic:

Classify the orders n for which there
exists a non-Cayley vertex-transitive
graph (VTNCG) of order n; the
non-Cayley numbers.
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Theorem (Fron&ek, Rosa, éiréﬁ)

Let G = C(I',X) and p be an odd prime. Then the number of
closed oriented walks of length p based at any vertex of G is
congruent modulo p to the number of generators in X of order p.
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Theorem (Fron&ek, Rosa, éiréﬁ)

Let G = C(I', X) and p be an odd prime. Then the number of
closed oriented walks of length p based at any vertex of G is
congruent modulo p to the number of generators in X of order p.
Definition

The coset graph G = Cos(I',H,X), H< G, X C G, HN X =:

V(G)={aH|acTl}, aH adjacent bH iff a~*b € HXH.
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Theorem (Fron&ek, Rosa, éiréﬁ)

Let G = C(I', X) and p be an odd prime. Then the number of
closed oriented walks of length p based at any vertex of G is
congruent modulo p to the number of generators in X of order p.

Definition
The coset graph G = Cos(I',H,X), H< G, X C G, HN X =:

V(G)={aH|acTl}, aH adjacent bH iff a~*b € HXH.

Theorem

1. Cos(I', H, X) is vertex-transitive for all T, H, X
2. every vertex-transitive graph is Cos(I', H, X) for some ', H, X
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Theorem (RJ, Sirai)

Let G be a group, let H be a finite subgroup of G, and let X be a
finite symmetric unit-free subset of G such that XHX N H = {1¢}.
Further suppose that there are at least |X| + 1 distinct ordered
pairs (x, h) € X x H such that (xh)P = 1¢ for some fixed prime

p > |X| - |H|2. Then the coset graph T = Cos(G, H, X) is a
vertex-transitive non-Cayley graph.
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Theorem (RJ, Sirai)

Let G be a group, let H be a finite subgroup of G, and let X be a
finite symmetric unit-free subset of G such that XHX N H = {1¢}.
Further suppose that there are at least |X| + 1 distinct ordered
pairs (x, h) € X x H such that (xh)P = 1¢ for some fixed prime

p > |X| - |H|2. Then the coset graph T = Cos(G, H, X) is a
vertex-transitive non-Cayley graph.

No new non-Cayley numbers were discovered by this construction,
as the orders of the groups we used contained lots of powers.
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Prehistory

We needed to be able to count walks of different lengths:
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We needed to be able to count walks of different lengths:
Lemma (RJ, Sirait)

Let T = C(G, X) be a localy finite Cayley graph and p be a prime.
Then the number of closed oriented walks of length p”, n > 1,
based at any fixed vertex of I, is congruent (mod p) to the
number of elements in X for which xP" = 1¢.
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We needed to be able to count walks of different lengths:

Lemma (RJ, Sirait)

Let T = C(G, X) be a localy finite Cayley graph and p be a prime.
Then the number of closed oriented walks of length p”, n > 1,

based at any fixed vertex of I, is congruent (mod p) to the
number of elements in X for which xP" = 1¢.

Lemma (RJ, Sirai)

Let T = C(G, X) be a localy finite Cayley graph and p and q be
two distinct primes. Let n = pq and let j, be the number of
elements x € X for which x" = 1¢. Then the number of closed
oriented walks of length n, based at any fixed vertex of I', is
congruent (mod p) to j, + kq, where k is a non-negative integer.
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Theorem (RJ, Sirait)

Let G be a group, let H be a finite subgroup of G, and let X be a
finite symmetric unit-free subset of G such that XHX N H = {1¢}.
Let pfl, pgz, ..., pk be powers of distinct primes, and let Lo,

1 < i <'r, denote the number of distinct pairs (x, h) € X x H such

that (xh)”ikf = 1. Suppose that 37, L, > |X|, and, for all i,
pi > {p;|H|. Then the coset graph T = Cos(G, H, X) is a
vertex-transitive non-Cayley graph.
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Theorem (RJ, Sirai)

Let G be a group, let H be a finite subgroup of G, and let X be a

finite symmetric unit-free subset of G such that XHX N H = {1¢}.

Let pfl, pgz, ..., pk be powers of distinct primes, and let Lo,

1 < i <'r, denote the number of distinct pairs (x, h) € X x H such
K .

that (xh)Pi" = 1. Suppose that >, £, > |X|, and, for all i,

pi > {p;|H|. Then the coset graph T = Cos(G, H, X) is a

vertex-transitive non-Cayley graph.

This time we got some new non-Cayley numbers:
19,886, 5,666,226.
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The Dawn of History

e 5 i
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lce Hockey World Champions, May 2002

Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs



e Big Journey to the North, August 2002
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Cycles in Cayley graphs

Let C2(n) denote the number of oriented cycles of length n rooted
at b, and wx(n) denote the number of elements of order n in X.
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Cycles in Cayley graphs

Let C2(n) denote the number of oriented cycles of length n rooted
at b, and wx(n) denote the number of elements of order n in X.

Theorem (RJ, Malni¢, Marusi¥)

Let I = Cay(G, X) be a Cayley graph, and let b € V(I'). Then the
following statements hold.

(i) If n = p", where p is an odd prime and r > 1, or
n = 2", where r > 2, then

CP(n) = wx(n) (mod p).

(ii) If n = p - q, where p and q are distinct primes,
then
CE(n) = wx(n)+s-q (mod p),

where s is a nonnegative integer.
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Cycles and Walks in Cayley Graphs

Let WE(n) denote the number of oriented cycles of length n
rooted at b.
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Cycles and Walks in Cayley Graphs

Let WE(n) denote the number of oriented cycles of length n
rooted at b.

Corollary (RJ, Malni¢, Marusi¥)

Let T = Cay(G, X) be a Cayley graph, b € V(I') a base vertex,
and p a prime. Then the numbers Wl?(p) and C?(p) are congruent
modulo p.
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Cycles and Walks in Cayley Graphs

Let WE(n) denote the number of oriented cycles of length n
rooted at b.

Corollary (RJ, Malni¢, Marusi¥)

Let T = Cay(G, X) be a Cayley graph, b € V(I') a base vertex,
and p a prime. Then the numbers Wl?(p) and C?(p) are congruent
modulo p.

Corollary (RJ, Malni¢, Marusic)

Let T = Cay(G, X) be a Cayley graph, b € V(I') a base vertex,
and p a prime relatively prime to |G|. Then

We(p) =CP(p) =0 (mod p).
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Cycles and Walks in Vertex-Transitive Graphs

Lemma
1. Let I be any graph, and n be a positive integer. Then,

Z WE(n)  and Z CE(n

beV(I) beV/(I)

2. IfT is vertex-transitive, then W2(n) = We(n) and
C2(n) = CE(n), for all a,b € V(I).
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Cycles and Walks in Vertex-Transitive Graphs

Lemma

1. Let I be any graph, and n be a positive integer. Then,

Z WE(n)  and Z CE(n

beV(I) beV/(I)

2. IfTis vertex—tranSItlve then W2(n) = We(n) and
C2(n) = CE(n), for all a,b € V(I).

Corollary

Let I' be a vertex-transitive graph, and let n be a positive integer
relatively prime to |V/(I')|. Then,

1. n| WE(n), for all b e V(T),
2. n|CP(n), for all b e V(I).
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Oriented Walks in Vertex-Transitive Graphs

Theorem (RJ, Malni¢, Marusi¥)

Let T be a connected vertex-transitive graph, b € V(I'), let

G < Aut T act transitively on V(I'), m be the order of a
vertex-stabilizer in G, and let X = {g € G |g(b) € N(b)}. Then
the following statements hold.

(i) If p is an odd prime divisor of m and r > 1 or

p =2 divides m and r > 2, then ex(p") =0

(mod p), and for each prime q # p, there exists a
nonnegative integer s such that ex(pq) + sq =0
(mod p).

(ii) If p is an odd prime not dividing m and r > 1 or
p = 2 does not divide m and r > 2, then

ex(p”) = WE(p") (mod p), and, for each prime

q # p, there exists a nonnegative integer s such that
ex(pq) +sq = We(pq) (mod p).
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Walks and Cycles in Petersen

n
Ci(n) |12 | 12 24 | 36 | 0
WE(n) | 12 | 99 | 168 | 759 | 1764 | 6315

o
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Applications to Graphs of Given Degree, Diameter, and

Girth

> A (A, D)-graph is a (finite) graph of maximum degree A and
diameter D.
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Applications to Graphs of Given Degree, Diameter, and

Girth

> A (A, D)-graph is a (finite) graph of maximum degree A and
diameter D.

> A (k,g)-graph is a (finite) graph of degree k and girth g.

Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs



Moore Bound(s)

1+AB D A

n(A, D) < M(A, D) = L
2D +1, if A =2
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Moore Bound(s)

@y’
n(A,D)gM(A,D)_{HA , ifA>?2

2D +1 if A =2
—1)(e-1)/2_1
1+ kL, 2 odd
n(k,g) > M(k,g) = { e
25 g even
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Extremal Vertex-Transitive (A, D)- and (k, g)-graphs

Theorem (Biggs)

For each odd integer k > 3 there is an infinite sequence of values
of g such that the excess e of any vertex-transitive graph with
valency k and girth g satisfies e > g/k.
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Extremal Vertex-Transitive (A, D)- and (k, g)-graphs

Theorem (Biggs)

For each odd integer k > 3 there is an infinite sequence of values
of g such that the excess e of any vertex-transitive graph with
valency k and girth g satisfies e > g/k.

Theorem (Exoo, RJ, Mataj, Sirai)

For any fixed pair of degree A and defect §, the set of diameters D
for which there might exist a vertex-transitive (A, D)-graph of
defect not exceeding the defect ¢ is of measure 0 with respect to
the set of all positive integers.
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Cayley (k, g)-Graphs

Theorem (Exoo, RJ, giréﬁ)
For every k > 2, g > 3, there exists a Cayley (k, g)-graph.
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Cayley (k, g)-Graphs

Theorem (Exoo, RJ, giréﬁ)
For every k > 2, g > 3, there exists a Cayley (k, g)-graph.
Proof.
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Cayley (k, g)-Graphs

Theorem (Exoo, RJ, giréﬁ)
For every k > 2, g > 3, there exists a Cayley (k, g)-graph.
Proof.
> using (infinite) Cayley maps of Siagiovd and Watkins in
combination with the fact that automorphism groups of
Cayley maps are residually finite
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Cayley (k, g)-Graphs

Theorem (Exoo, RJ, giréﬁ)
For every k > 2, g > 3, there exists a Cayley (k, g)-graph.
Proof.
> using (infinite) Cayley maps of Siagiovd and Watkins in
combination with the fact that automorphism groups of
Cayley maps are residually finite

» adding a g-cycle to a graph of girth at least g constructed by
Biggs
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Cayley (k, g)-Graphs

Theorem (Exoo, RJ, éiréﬁ)
For every k > 2, g > 3, there exists a Cayley (k, g)-graph.
Proof.
> using (infinite) Cayley maps of Siagiovd and Watkins in
combination with the fact that automorphism groups of
Cayley maps are residually finite
» adding a g-cycle to a graph of girth at least g constructed by
Biggs
» constructing Cayley graphs from 1- and 2-factorizations of
(k, g)-graphs
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Graphs to Groups

Theorem (Exoo, RJ, éiréﬁ)

Let G be a k-regular graph of girth g whose edge set can be
partitioned into a family F of ky 1-factors, F;, 1 < i < ki, and kp
oriented 2-factors F;, ki1 +1 < i < ky + ko (where ki + 2k, = k).
If T £ is the finite permutation group acting on the set V(G)
generated by the set

X:{(spi|1§f§k1}U{0'Fi|k1+l§i§k1+k2}U
{U,?il|k1+1SiSk1+k2},

then the Cayley graph Cay(T x, X) is k-regular of girth at least g.
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Figure: Smallest (3,5)-graph
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Figure: Smallest Cayley (3,5)-graph
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Decompositions of Vertex-Transitive Graphs into Cycles

Observation 1.: Every Cayley graph C(G, X) decomposes into k;
1-factors and kp 2-factors (where the cycles in each of the 2-factors
are of the same length), where k; is the number of involutions in
X and ky is the number of non-involutions in X, ki + ko = | X]|.
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Decompositions of Vertex-Transitive Graphs into Cycles

Observation 1.: Every Cayley graph C(G, X) decomposes into k;
1-factors and kp 2-factors (where the cycles in each of the 2-factors
are of the same length), where k; is the number of involutions in
X and ky is the number of non-involutions in X, ki + ko = | X]|.

Theorem

A k-regular graph I is Cayley if and only if there exists a partition
of E(T') into 1- and 2-factors consisting of cycles of equal length
such that the corresponding vertex-transitive graph is of order
equal to the order of T.
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Decompositions of Vertex-Transitive Graphs into Cycles

Observation 1.: Every Cayley graph C(G, X) decomposes into k;
1-factors and kp 2-factors (where the cycles in each of the 2-factors
are of the same length), where k; is the number of involutions in
X and ky is the number of non-involutions in X, ki + ko = | X]|.

Theorem

A k-regular graph I is Cayley if and only if there exists a partition
of E(T') into 1- and 2-factors consisting of cycles of equal length
such that the corresponding vertex-transitive graph is of order
equal to the order of T.

Observation 2. The edges of these 1- and 2-factors are orbits of
right-multiplication automorphisms of the underlying Cayley graph;
ox(a) = ax, x € X.
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The Polycirculant Conjecture

Marusic:
Every vertex-transitive finite
graph has a regular
automorphism.
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The Polycirculant Conjecture

q -
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My List of Naive Questions

> |s the conjecture true for every vertex-transitive automorphism
group of a vertex-transitive graph?

» Is the conjecture true if we put a limit on the order of a
vertex-stabilizer in a vertex-transitive graph?

» |s the conjecture true for quasi-Cayley graphs?

Counting cycles in vertex-transitive graphs
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Happy

Dragan

Robert Jajcay, Indiana State University Comenius University Counting cycles in vertex-transitive graphs



