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P. J. Cameron, C. E. Praeger, N. C. Wormald, Infinite highly arc transitive
digraphs and universal covering digraphs, Combinatorica 13 (4) (1993),
377–396.

Reachability relation on edges: e is reachable from f if there exists an
alternating walk containing e and f .

Reachability relation on vertices:
W = (v0, ε1, v1, ε2, v2, . . . , εn, vn) from v0 to vn is a sequence of n + 1
vertices and n indicators ε1, . . . , εn such that

εj = 1 ⇒ (vj−1, vj) ∈ E (W ),

εj = −1 ⇒ (vj , vj−1) ∈ E (W ).

Weight ω(W ) = Σi=n
i=1εi
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uR+
k v

if there exists a walk W from u to v with ω(W ) = 0 and ω(0Wj) ∈ [0, k]
for every 0 ≤ j ≤ |W |. Analogously uR−k v .

R+
k (v) = {u ∈ V (D)|vR+

k u}

R−k (v) = {u ∈ V (D)|vR−k u}

R+
k ⊆ R+

k+1, R−k ⊆ R−k+1

R+ =
⋃

k∈Z+

R+
k , R− =

⋃
k∈Z+

R−k

(R+
k )k∈Z+ , (R−k )k∈Z+

exponent exp+(D) is the smallest nonnegative integer k such that
R+
k = R+. Analogously exp−(D).
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D . . . connected, vertex-transitive, infinite, locally finite

Structure of D/R+:

a finite cycle

directed infinite line

regular tree with indegree 1 and outdegree > 1

A. Malnič, D. Marušič, N.S., P. Šparl, B. Zgrablič, Reachability relations in
digraphs, European J. Combin. 29 (2008), 1566 - 1581.

Are there connections between R+
k (R−k ) and the end structure of D?

D has property Z if there exists a homomorphism from D onto the
directed infinite line.
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If D has infinitely many ends, then it has property Z if and only if at
least one of the sequences (R+

k )k∈Z+ and (R−k )k∈Z+ is infinite.

If D has property Z and the sequences (R+
k )k∈Z+ and (R−k )k∈Z+ are

both finite and there exists an integer k ≥ 1 such that R+
k (and hence

R−k ) has infinite equivalence classes, then D has one end.

If D has two ends, then it has property Z if and only if for each
integer k ≥ 1 at least one (and hence both) of the relations R+

k and
R−k have finite equivalence classes.
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Connections between R+
k (R−k ) and growth properties?

fD(v , n) = |{u ∈ V (D)|distD(v , u) ≤ n}|

polynomial growth: fD(n) ≤ cnd for all n ≥ 1

exponential growth: fD ≥ cn for all n ≥ 1

intermediate growth: E. g. 2
√
n < fD(n) < 2n

log3231

If at least one of the sequences (R+
k )k∈Z+ and (R−k )k∈Z+ is infinite, then

D has exponential growth.
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R+
k (R−k ) and growth of groups

Both sequences finite ⇒ polynomial or intermediate growth

A. Malnič, P. Potocnik, N.S., P. Šparl

Is it possible to find conditions for R+
k (R−k ) which imply polynomial

or intermediate growth?

Do there exist bounds for exp+(D) (exp−(D)) in the case of
polynomial growth?
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R+
k (R−k ) and growth of groups

If an abelian group acts transitively on D, then
exp+(D) = exp−(D) = 1.

Nilpotent groups?

G 0 = G , G i+1 = [G 0,G i ], i ≥ 0

G = G 0 . G 1 . . . . . G k . G k+1 = 1

nilpotent of class k .

Let G be a nilpotent group of class k ≥ 0 acting transitively on D.
Then exp+(D) ≤ k + 1 and exp−(D) ≤ k + 1.
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k (R−k ) and growth of groups

This bound is tight! → D8

Infinite family of nilpotent groups:
Gn semidirect product of the elementary abelian group Zn

2 by the cyclic
group Z2n−1 generated by Gn = 〈f , a1, a2, . . . , an〉. f cyclic of order 2n−1,
ai involutions. fai f

−1 = aiai+1, 1 ≤ i ≤ n − 1. aiaj = ajai , fan = anf .

S = {f , fa1}, 〈S−iS i 〉 = 〈a1, a2, . . . , ai 〉, 1 ≤ i ≤ n. ⇒
exp−(Cay(Gn,S)) = n.

Gn is nilpotent of class n − 1. G (i) = 〈ai+1, ai+2, . . . , an〉 holds for each i ,
1 ≤ i ≤ n − 1. Also G (n) = 1.
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No bound for solvable groups! → lamplighter group. L is the wreath
product Z2 o Z

L = 〈a, t|a2, [tmat−m, tnat−n],m, n ∈ Z〉.

S = {t, at}, Cay(L, S) horocyclic product of two trees with indegree 1,
outdegree 2.
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G finitely generated with polynomial growth ⇒ G contains a normal
nilpotent subgroup N of finite index.

Let the finitely generated group G act transitively on the connected
digraph D such that a normal nilpotent subgroup N of G , where N is
nilpotent of class k ≥ 0, acts with m, 1 ≤ m <∞, orbits on D. Then
exp+(D) ≤ m(k + 1) + m − 1 and exp−(D) ≤ m(k + 1) + m − 1.

All examples we know satisfy exp+(D) ≤ m(k + 1) and
exp−(D) ≤ m(k + 1).

Let the finitely generated group G act transitively on the connected
digraph D such that a normal abelian subgroup N of G acts with m,
1 ≤ m <∞, orbits on D. Then exp+(D) ≤ m and exp−(D) ≤ m.
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The orders of the finite subgroups of GL(n,Z) are bounded by some
function g(n) alone.

Let G be a finitely generated torsion-free group with polynomial
growth of degree d . Then G contains a normal nilpotent subgroup of
class <

√
2d and index at most g(d), where g(d) is the above

function.

Let G be a finitely generated torsion-free group with polynomial
growth of degree d . Then for any Cayley graph D of G ,
exp+(D) ≤ g(d)(

√
2d + 1) + g(d)− 1 and

exp−(D) ≤ g(d)(
√

2d + 1) + g(d)− 1.
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Is it true that every finitely generated infinite simple group has exponential
growth? (Grigorchuk)

If a finitely generated infinite simple group G does not have
exponential growth, then for every finite generating set S of G there
is a finite integer kS ≥ 1, such that R+

kS
= R−kS is universal in C (G ,S).

Let G be a finitely generated infinite simple group and let S denote a
finite generating set. Furthermore, let H ⊆ G denote the set of all
those h ∈ G which leave invariant at least one equivalence class of
R+

1 on C (G , S). Then 〈H〉 = G .
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