Reachability relations, transitive digraphs and groups

A. Malnič, P. Potočnik, N. Seifter, P. Šparl

May 2, 2013

A. Malnič, P. Potočnik, <u>N. Seifter</u>, P. Šparl (Reachability relations, transitive digraphs and

May 2, 2013 1 / 13

P. J. Cameron, C. E. Praeger, N. C. Wormald, Infinite highly arc transitive digraphs and universal covering digraphs, Combinatorica 13 (4) (1993), 377–396.

Reachability relation on edges: e is *reachable* from f if there exists an alternating walk containing e and f.

Reachability relation on vertices:

 $W = (v_0, \epsilon_1, v_1, \epsilon_2, v_2, \dots, \epsilon_n, v_n)$ from v_0 to v_n is a sequence of n + 1 vertices and n indicators $\epsilon_1, \dots, \epsilon_n$ such that

$$arepsilon_j = 1 \; \Rightarrow \; (v_{j-1}, v_j) \in E(W),$$

 $arepsilon_j = -1 \; \Rightarrow \; (v_j, v_{j-1}) \in E(W).$

Weight $\omega(W) = \sum_{i=1}^{i=n} \epsilon_i$

Introduction

 R_{ι}^{-}

 uR_k^+v

if there exists a walk W from u to v with $\omega(W) = 0$ and $\omega(_0W_j) \in [0, k]$ for every $0 \le j \le |W|$. Analogously $uR_k^- v$.

$$R_{k}^{+}(v) = \{u \in V(D) | vR_{k}^{+}u\}$$
$$R_{k}^{-}(v) = \{u \in V(D) | vR_{k}^{-}u\}$$
$$^{+} \subseteq R_{k+1}^{+}, R_{k}^{-} \subseteq R_{k+1}^{-}$$
$$R^{+} = \bigcup_{k \in \mathbb{Z}^{+}} R_{k}^{+}, \qquad R^{-} = \bigcup_{k \in \mathbb{Z}^{+}} R_{k}^{-}$$

 $(R_k^+)_{k \in \mathbb{Z}^+}, (R_k^-)_{k \in \mathbb{Z}^+}$ exponent $\exp^+(D)$ is the smallest nonnegative integer k such that $R_k^+ = R^+$. Analogously $\exp^-(D)$.

A. Malnič, P. Potočnik, <u>N. Seifter</u>, P. Šparl (Reachability relations, transitive digraphs and

May 2, 2013 3 / 13

D . . . connected, vertex-transitive, infinite, locally finite Structure of $D/R^+\colon$

- a finite cycle
- directed infinite line
- ullet regular tree with indegree 1 and outdegree > 1

A. Malnič, D. Marušič, N.S., P. Šparl, B. Zgrablič, Reachability relations in digraphs, European J. Combin. 29 (2008), 1566 - 1581.

Are there connections between R_k^+ (R_k^-) and the end structure of D?

D has property **Z** if there exists a homomorphism from D onto the directed infinite line.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- If D has infinitely many ends, then it has property Z if and only if at least one of the sequences (R⁺_k)_{k∈Z⁺} and (R⁻_k)_{k∈Z⁺} is infinite.
- If D has property Z and the sequences $(R_k^+)_{k\in\mathbb{Z}^+}$ and $(R_k^-)_{k\in\mathbb{Z}^+}$ are both finite and there exists an integer $k \ge 1$ such that R_k^+ (and hence R_k^-) has infinite equivalence classes, then D has one end.
- If D has two ends, then it has property Z if and only if for each integer $k \ge 1$ at least one (and hence both) of the relations R_k^+ and R_k^- have finite equivalence classes.

Connections between R_k^+ (R_k^-) and growth properties?

$$f_D(v, n) = |\{u \in V(D) | dist_D(v, u) \le n\}|$$

- polynomial growth: $f_D(n) \leq cn^d$ for all $n \geq 1$
- exponential growth: $f_D \ge c^n$ for all $n \ge 1$
- intermediate growth: E. g. $2^{\sqrt{n}} < f_D(n) < 2^{n^{\log_{32} 31}}$

If at least one of the sequences $(R_k^+)_{k\in\mathbb{Z}^+}$ and $(R_k^-)_{k\in\mathbb{Z}^+}$ is infinite, then D has exponential growth.

▲冊 ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ○ ○ ○

Both sequences finite \Rightarrow polynomial or intermediate growth

- A. Malnič, P. Potocnik, N.S., P. Šparl
 - Is it possible to find conditions for R⁺_k (R⁻_k) which imply polynomial or intermediate growth?
 - Do there exist bounds for exp⁺(D) (exp⁻(D)) in the case of polynomial growth?

• If an abelian group acts transitively on D, then $\exp^+(D) = \exp^-(D) = 1$.

Nilpotent groups?

$$G^0 = G, \; G^{i+1} = [G^0, G^i], i \ge 0$$

$$G = G^0 \triangleright G^1 \triangleright \ldots \triangleright G^k \triangleright G^{k+1} = 1$$

nilpotent of class k.

• Let G be a nilpotent group of class $k \ge 0$ acting transitively on D. Then $\exp^+(D) \le k+1$ and $\exp^-(D) \le k+1$.

・何・ ・ヨ・ ・ヨ・ ・ヨ

This bound is tight! \rightarrow D_8

Infinite family of nilpotent groups:

 G_n semidirect product of the elementary abelian group \mathbb{Z}_2^n by the cyclic group $\mathbb{Z}_{2^{n-1}}$ generated by $G_n = \langle f, a_1, a_2, \ldots, a_n \rangle$. f cyclic of order 2^{n-1} , a_i involutions. $fa_i f^{-1} = a_i a_{i+1}, 1 \leq i \leq n-1$. $a_i a_j = a_j a_i, fa_n = a_n f$. $S = \{f, fa_1\}, \langle S^{-i}S^i \rangle = \langle a_1, a_2, \ldots, a_i \rangle, 1 \leq i \leq n$. \Rightarrow $\exp^{-}(Cay(G_n, S)) = n$. G_n is nilpotent of class n - 1. $G^{(i)} = \langle a_{i+1}, a_{i+2}, \ldots, a_n \rangle$ holds for each i, $1 \leq i \leq n - 1$. Also $G^{(n)} = 1$.

(日) (過) (王) (王) (王)

No bound for solvable groups! \to lamplighter group. L is the wreath product $\mathbb{Z}_2\wr\mathbb{Z}$

$$L = \langle a, t | a^2, [t^m a t^{-m}, t^n a t^{-n}], m, n \in \mathbb{Z} \rangle.$$

 $S = \{t, at\}, Cay(L, S)$ horocyclic product of two trees with indegree 1, outdegree 2.

G finitely generated with polynomial growth \Rightarrow *G* contains a normal nilpotent subgroup *N* of finite index.

• Let the finitely generated group G act transitively on the connected digraph D such that a normal nilpotent subgroup N of G, where N is nilpotent of class $k \ge 0$, acts with $m, 1 \le m < \infty$, orbits on D. Then $\exp^+(D) \le m(k+1) + m - 1$ and $\exp^-(D) \le m(k+1) + m - 1$.

All examples we know satisfy $\exp^+(D) \le m(k+1)$ and $\exp^-(D) \le m(k+1)$.

• Let the finitely generated group G act transitively on the connected digraph D such that a normal abelian subgroup N of G acts with m, $1 \le m < \infty$, orbits on D. Then $\exp^+(D) \le m$ and $\exp^-(D) \le m$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- The orders of the finite subgroups of GL(n, Z) are bounded by some function g(n) alone.
- Let G be a finitely generated torsion-free group with polynomial growth of degree d. Then G contains a normal nilpotent subgroup of class $<\sqrt{2d}$ and index at most g(d), where g(d) is the above function.
- Let G be a finitely generated torsion-free group with polynomial growth of degree d. Then for any Cayley graph D of G, $\exp^+(D) \le g(d)(\sqrt{2d}+1) + g(d) - 1$ and $\exp^-(D) \le g(d)(\sqrt{2d}+1) + g(d) - 1$.

Is it true that every finitely generated infinite simple group has exponential growth? (Grigorchuk)

- If a finitely generated infinite simple group G does not have exponential growth, then for every finite generating set S of G there is a finite integer $k_S \ge 1$, such that $R_{k_s}^+ = R_{k_s}^-$ is universal in C(G, S).
- Let G be a finitely generated infinite simple group and let S denote a finite generating set. Furthermore, let H ⊆ G denote the set of all those h ∈ G which leave invariant at least one equivalence class of R₁⁺ on C(G, S). Then ⟨H⟩ = G.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ