On regular Cayley maps over dihedral groups

M. Muzychuk,

Netanya Academic College, Israel
|DM|=60 Conference, May 1-3, 2013, Koper, Slovenia joint work with Dragan Marušič and István Kovács

Dihedrants and circulants

Definition
A Cayley (di)graph over the cyclic/dihedral group is called a circulant/dihedrant.

Dihedrants and circulants

Definition

A Cayley (di)graph over the cyclic/dihedral group is called a circulant/dihedrant.

A graph Γ is called G-arc-transitive/ G-arc-regular if the group $G \leq \operatorname{Aut}(\Gamma)$ acts transitively/regularly on the arc set of Γ. An Aut (Γ)-arc-transitive/regular graph is called arc-transitive/arc-regular.

Dihedrants and circulants

Definition

A Cayley (di)graph over the cyclic/dihedral group is called a circulant/dihedrant.

A graph Γ is called G-arc-transitive/ G-arc-regular if the group $G \leq \operatorname{Aut}(\Gamma)$ acts transitively/regularly on the arc set of Γ. An Aut (Γ)-arc-transitive/regular graph is called arc-transitive/arc-regular.
A classification of connected arc-transitive circulants was done by I.Kovacs (2004) and C.H. Li (2005, CFSG).

Dihedrants and circulants

Definition

A Cayley (di)graph over the cyclic/dihedral group is called a circulant/dihedrant.

A graph Γ is called G-arc-transitive/ G-arc-regular if the group
$G \leq$ Aut (Γ) acts transitively/regularly on the arc set of Γ. An Aut (Γ)-arc-transitive/regular graph is called arc-transitive/arc-regular.
A classification of connected arc-transitive circulants was done by I.Kovacs (2004) and C.H. Li (2005, CFSG).

Problem (Marušič)

Classify connected arc-transitive (arc-regular) dihedrants.

Known results

2-arc-transitive dihedrants were classified by S.F. Du, A. Malnič and D. Marus̆ič (2008).
Arc-transitive dihedrants of degrees 4, 6 were studied by Y.H Kwak, Y.M Oh, C.Q. Wang, M. Xu and Z.Y. Zhou (2006) and I. Kovacs, B. Kuzman, A. Malnič.
D. Kim, Y.S. Kwon and J. Lee proved that an arc-regular dihedrants of prime degree are normal Y.H. Kwak, Y.S. Kwon and Y.-M. Oh constructed arc-regular dihedrants of any prescribed valency (2008).
I. Kovács classified arc-transitive dihedrants of order $2 p^{e}, p$ an odd prime (2012).

Dihedrants and circulants. Doubling of circulants

Let $\Gamma=(V, E)$ be a digraph. It's canonical double cover (CDC) $\tilde{\Gamma}$ is the undirected bipartite graph with vertex set $V \times \mathbb{Z}_{2}$ where two vertices $(x, 0),(y, 1)$ are connected by an edge whenever (x, y) is an arc of Γ.
A CDC of a circulant Cay $\left(\mathbb{Z}_{n}, S\right)$ produces a bipartite graph with vertex set $\mathbb{Z}_{n} \times\{0,1\}$ where the vertices $(x, 0)$ and $(y, 1)$ are connected iff $x-y \in S$.
Another presentation of the same graph may be obtained if we connect two vertices $(x, 0),(y, 1)$ whenever $x+y \in S$. An isomorphism between two graphs is given by $(x, i) \mapsto\left((-1)^{i} x, i\right)$.

Doubling of circulants

A permutation $s:(x, i) \mapsto(-x, i+1)$ is an order two automorphism of a CDC of $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$. Together with the permutation $c:(x, i) \mapsto(x+1, i)$ it generates a dihedral group of order $2 n$ which acts regularly on the point set $\mathbb{Z}_{n} \times \mathbb{Z}_{2}$. Notice that every dihedrant $\operatorname{Cay}\left(D_{2 n}, S\right)$ where S is a set of reflections may be obtained in this way.

Proposition

If Γ is a CDC of a G-arc-transitive circulant, then $\widetilde{\Gamma}$ is a $\langle\widetilde{G}, s\rangle$-arc-transitive dihedrant.

Dihedrants and circulants. Lexicographic product.

Definition

Let $\Gamma=(V, E)$ and $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs. Their lexicographic product has a vertex set $V \times V^{\prime}$, two vertices $\left(v, v^{\prime}\right)$ and $\left(w, w^{\prime}\right)$ are connected in $G\left[G^{\prime}\right]$ iff

$$
v v^{\prime} \in E \text { or } v=v^{\prime} \wedge w w^{\prime} \in E^{\prime}
$$

Proposition

If $\Gamma=(V, E)$ is an arc-transitive circulant, then $\Gamma\left[\overline{K_{2}}\right]$ is an arc-transitive dihedrant.

Dihedrants as Cayley graphs over $\mathbb{Z}_{n} \times \mathbb{Z}_{2}$

Let $S \subseteq \mathbb{Z}_{n} \times \mathbb{Z}_{2}$ be a symmetric subset. Then the map

$$
s:(x, y) \mapsto(-x, 1-y)
$$

is an automorphism of the Cayley graph $\Gamma:=\operatorname{Cay}\left(\mathbb{Z}_{n} \times \mathbb{Z}_{2}, S\right)$.
Together with the automorphism $c:(x, y) \mapsto(x+1, y)$ it generates a dihedral regular group of automorphisms of Γ.

Proposition

If Γ is a G-arc-transitive/regular and $s \in G$, then Γ is a G-arc-transitive/regular dihedrant. In particular, if Γ is arc-transitive/regular, then Γ is an arc-transitive/regular dihedrant.

Arc-regular dihedrant with a trivial cyclic core

Definition

A core of a subgroup $H \in G$ in G is the maximal normal subgroup of G contained in H.

Arc-regular dihedrant with a trivial cyclic core

Definition

A core of a subgroup $H \in G$ in G is the maximal normal subgroup of G contained in H.

Theorem

Let 「 be a G-arc-regular connected dihedrant of order $2 n$. Let
$D \leq G$ be a regular dihedral subgroup and C a cyclic subgroup of D of index 2. If the core of C in G is trivial, then

■ $n=1, \Gamma \cong K_{2}, G=S_{2}$;
■ $n=2, \Gamma \cong K_{4}, G=A_{4}$;
■ $n=3, \Gamma \cong K_{2,2,2}, G=S_{4}$;

- $n=4, \Gamma \cong Q_{3}, G=S_{4}$;
- $n=2 m, m$ odd, $\Gamma \cong K_{n, n}, G=\left(D_{n} \times D_{n}\right) \rtimes S_{2}$

Dihedral subgroups of small index

Proposition

If H is a subgroup of index n, then $\left[G: \operatorname{Core}_{G}(H)\right] \leq n!$.

Dihedral subgroups of small index

Proposition

If H is a subgroup of index n, then $\left[G: \operatorname{Core}_{G}(H)\right] \leq n!$.

Theorem (Lucchini 1998)

If H is a cyclic subgroup of G of index n, then

$$
\left[G: \operatorname{Core}_{G}(H)\right] \leq n(n-1) .
$$

In the case of equality n is a prime power and $G \cong A G L_{1}(n)$.

Dihedral subgroups of small index

Proposition

If H is a subgroup of index n, then $\left[G: \operatorname{Core}_{G}(H)\right] \leq n!$.

Theorem (Lucchini 1998)

If H is a cyclic subgroup of G of index n, then

$$
\left[G: \operatorname{Core}_{G}(H)\right] \leq n(n-1)
$$

In the case of equality n is a prime power and $G \cong A G L_{1}(n)$.

Theorem

Let H be a dihedral subgroup of G of index n, then

$$
\left[G: \operatorname{Core}_{G}(H)\right] \leq 2 n^{2}
$$

In the case of equality $G \cong\left(D_{n} \times D_{n}\right) \rtimes S_{2}, n=2 m, m$ is odd.

Quotients of arc-transitive dihedrants

Theorem (Wielandt)

If a primitive permutation group $G \leq \operatorname{Sym}(\Omega)$ contains a regular dihedral subgroup, then it's 2-transitive.

Quotients of arc-transitive dihedrants

Theorem (Wielandt)

If a primitive permutation group $G \leq \operatorname{Sym}(\Omega)$ contains a regular dihedral subgroup, then it's 2-transitive.

Corollary

If Γ is a connected non-complete G-arc-transitive dihedrant, then G is imprimitive.

If \mathcal{B} is an imprimitivity system of G, then its block $\mathcal{B}(1)$ is a subgroup of D and all blocks of \mathcal{B} are the right cosets of $\mathcal{B}(1)$. In what follows C is an index two cyclic subgroup of D (it's unique if $|D| \neq 4)$.

Quotients of arc-transitive dihedrants

Definition

An imprimitivity system \mathcal{B} is called cyclic if $\mathcal{B}(1) \leq C$. Otherwise, it's called dihedral.

Proposition

If Γ is G-arc-transitive dihedrant and \mathcal{B} is an imprimitivity system of G. Then the quotient graph Γ / \mathcal{B} is dihedrant if \mathcal{B} is cyclic and circulant otherwise. In both cases it is $G^{\mathcal{B}}$-arc-transitive.

Proposition

Let Γ be G-arc-transitive dihedrant. Then there exists a unique (possibly trivial) maximal cyclic imprimitivity system \mathcal{C} of G. If Core $_{G}(C)$ is non-trivial, then \mathcal{C} is non-trivial too.

Quotients of arc-transitive dihedrants

One can always factor out by a maximal cyclic imprimitivity system and obtain an arc-transitive dihedrant with a trivial maximal cyclic imprimitivity system.

Problem

Classify G-arc-transitive dihedrants with trivial maximal cyclic imprimtivity system.

Quotients of arc-regular dihedrants

In general, a quotient of an arc-regular graph may be not arc-regular.

Proposition

Let Γ be a G-arc-regular vertex transitive graph. Assume that a point stabilizer of G is a Hamiltonian group. Then the quotiemt graph Γ / \mathcal{B} is $G^{\mathcal{B}}$-arc-regular provided that \mathcal{B} is a normal imprimtivity system of G.

In particular, this statement works when a point stabilizer is an abelian group.

Cayley maps

Definition

Let H be a finite group, $S \subseteq H$ an inverse closed subset s.t. $1 \notin H, p$ a cyclic permutation on S. Then Cayley map $\mathrm{CM}(H, S, p)$ over H is a map with underlying graph Cay (H, S) with vertex rotation $(x, s x) \mapsto(x, p(s) x)$.

Cayley maps

Definition

Let H be a finite group, $S \subseteq H$ an inverse closed subset s.t. $1 \notin H, p$ a cyclic permutation on S. Then Cayley map $\mathrm{CM}(H, S, p)$ over H is a map with underlying graph Cay (H, S) with vertex rotation $(x, s x) \mapsto(x, p(s) x)$.

Two Cayley maps $\mathrm{CM}(H, S, p)$ and $\mathrm{CM}\left(H^{\prime}, S^{\prime}, p^{\prime}\right)$ are isomorphic if there exists a graph isomorphism $\varphi: H \rightarrow H^{\prime}$ which preserves the arc orientation at each vertex, that is
$\{(s x, x, p(s) x) \mid x \in H, s \in S\}^{\varphi}=\left\{\left(s^{\prime} y, y, p^{\prime}\left(s^{\prime}\right) y\right) \mid y \in H, s^{\prime} \in S^{\prime}\right\}$.
A map automorphism is defined in a natural way. The maps are called Cayley isomorphic if there exists a group isomorphism which induces a map isomorphism.

Regular Cayley maps

Definition

A Cayley map $\mathcal{M}=\mathrm{CM}(H, S, p)$ is called regular if $\operatorname{Aut}(\mathcal{M})$ acts transitively on the arc set of the underlying Cayley graph.

Theorem

Let G be the automorphism group of a regular Cayley map $\mathcal{M}=\mathrm{CM}(H, S, p)$. Then

Regular Cayley maps

Definition

A Cayley map $\mathcal{M}=\mathrm{CM}(H, S, p)$ is called regular if $\operatorname{Aut}(\mathcal{M})$ acts transitively on the arc set of the underlying Cayley graph.

Theorem

Let G be the automorphism group of a regular Cayley map $\mathcal{M}=\mathrm{CM}(H, S, p)$. Then
1 Cay (H, S) is a G-arc-regular graph;

Regular Cayley maps

Definition

A Cayley map $\mathcal{M}=\mathrm{CM}(H, S, p)$ is called regular if $\operatorname{Aut}(\mathcal{M})$ acts transitively on the arc set of the underlying Cayley graph.

Theorem

Let G be the automorphism group of a regular Cayley map $\mathcal{M}=\mathrm{CM}(H, S, p)$. Then
1 Cay (H, S) is a G-arc-regular graph;
2 a point stabilizer $Y=G_{1}$ is cyclic;

Regular Cayley maps

Definition

A Cayley map $\mathcal{M}=\operatorname{CM}(H, S, p)$ is called regular if $\operatorname{Aut}(\mathcal{M})$ acts transitively on the arc set of the underlying Cayley graph.

Theorem

Let G be the automorphism group of a regular Cayley map $\mathcal{M}=\mathrm{CM}(H, S, p)$. Then
1 Cay (H, S) is a G-arc-regular graph;
2 a point stabilizer $Y=G_{1}$ is cyclic;
3 if \mathcal{B} is normal imprimitivity system of G, then the quotient graph is G / N-arc-regular, where $N=G_{\mathcal{B}}$.

Regular Cayley maps

Definition

A Cayley map $\mathcal{M}=\mathrm{CM}(H, S, p)$ is called balanced if $H \unlhd \operatorname{Aut}(\mathcal{M})$.

For balanced maps a rotation permutation p extends to an automorphism of H.

Regular Cayley maps

Definition

A Cayley map $\mathcal{M}=\mathrm{CM}(H, S, p)$ is called balanced if $H \unlhd \operatorname{Aut}(\mathcal{M})$.

For balanced maps a rotation permutation p extends to an automorphism of H.

Problem

Given a finite group H. Find all regular non-balanced maps over H.

Regular Cayley maps

Definition

A Cayley map $\mathcal{M}=\mathrm{CM}(H, S, p)$ is called balanced if $H \unlhd \operatorname{Aut}(\mathcal{M})$.

For balanced maps a rotation permutation p extends to an automorphism of H.

Problem

Given a finite group H. Find all regular non-balanced maps over H.

Problem

Given a finite group H. Find all skew morphisms of H.

Regular non-balanced dihedral Cayley maps

- $\left.D=\langle r, c| c^{n}=r^{2}=(r c)^{2}=1\right\}, n$ is odd and $n \equiv 0(\bmod 3)$;

Regular non-balanced dihedral Cayley maps

- $\left.D=\langle r, c| c^{n}=r^{2}=(r c)^{2}=1\right\}, n$ is odd and $n \equiv 0(\bmod 3)$;
- $D_{*}:=\left\{d_{*} \mid d \in D\right\}$ where $d_{*} \in \operatorname{Sym}(D)$ is a right translation by d, i.e. $x^{d_{*}}:=x d, x, d \in D$;

Regular non-balanced dihedral Cayley maps

- $\left.D=\langle r, c| c^{n}=r^{2}=(r c)^{2}=1\right\}, n$ is odd and $n \equiv 0(\bmod 3)$;

■ $D_{*}:=\left\{d_{*} \mid d \in D\right\}$ where $d_{*} \in \operatorname{Sym}(D)$ is a right translation by d, i.e. $x^{d_{*}}:=x d, x, d \in D$;
$■ \ell \in \mathbb{Z}_{n}^{*}, o(\ell)=m$ is odd;

Regular non-balanced dihedral Cayley maps

- $\left.D=\langle r, c| c^{n}=r^{2}=(r c)^{2}=1\right\}, n$ is odd and $n \equiv 0(\bmod 3)$;

■ $D_{*}:=\left\{d_{*} \mid d \in D\right\}$ where $d_{*} \in \operatorname{Sym}(D)$ is a right translation by d, i.e. $x^{d_{*}}:=x d, x, d \in D$;
$\square \ell \in \mathbb{Z}_{n}^{*}, o(\ell)=m$ is odd;

- define an automorphism σ of D as follows

$$
c^{\sigma}=c^{\ell}, r^{\sigma}=r ;
$$

Regular non-balanced dihedral Cayley maps

- $\left.D=\langle r, c| c^{n}=r^{2}=(r c)^{2}=1\right\}, n$ is odd and $n \equiv 0(\bmod 3)$;
- $D_{*}:=\left\{d_{*} \mid d \in D\right\}$ where $d_{*} \in \operatorname{Sym}(D)$ is a right translation by d, i.e. $x^{d_{*}}:=x d, x, d \in D$;
$\square \ell \in \mathbb{Z}_{n}^{*}, o(\ell)=m$ is odd;
- define an automorphism σ of D as follows

$$
c^{\sigma}=c^{\ell}, r^{\sigma}=r ;
$$

■ $\left\langle D_{*}, \sigma\right\rangle$ is a subgroup of $\operatorname{Sym}(D)$ isomorphic to $D \rtimes \mathbb{Z}_{m}$.

Regular non-balanced dihedral Cayley maps

- Define $\mu \in \operatorname{Sym}(D)$ as follows $x^{\mu}=r x, x \in D$;

Regular non-balanced dihedral Cayley maps

- Define $\mu \in \operatorname{Sym}(D)$ as follows $x^{\mu}=r x, x \in D$;

■ Notice that μ centralizes $\left\langle D_{*}, \sigma\right\rangle$;

Regular non-balanced dihedral Cayley maps

- Define $\mu \in \operatorname{Sym}(D)$ as follows $x^{\mu}=r x, x \in D$;

■ Notice that μ centralizes $\left\langle D_{*}, \sigma\right\rangle$;

- The subgroup $B=\left\langle r, c^{n / 3}\right\rangle$ has index three in D and $D=B \cup B c \cup B c^{2}$;

Regular non-balanced dihedral Cayley maps

- Define $\mu \in \operatorname{Sym}(D)$ as follows $x^{\mu}=r x, x \in D$;

■ Notice that μ centralizes $\left\langle D_{*}, \sigma\right\rangle$;

- The subgroup $B=\left\langle r, c^{n / 3}\right\rangle$ has index three in D and $D=B \cup B c \cup B c^{2}$;
- D acts on $\{0,1,2\}$ via $B c^{i} d=B c^{i^{d}}$;

Regular non-balanced dihedral Cayley maps

- Define $\mu \in \operatorname{Sym}(D)$ as follows $x^{\mu}=r x, x \in D$;

■ Notice that μ centralizes $\left\langle D_{*}, \sigma\right\rangle$;

- The subgroup $B=\left\langle r, c^{n / 3}\right\rangle$ has index three in D and $D=B \cup B c \cup B c^{2}$;
- D acts on $\{0,1,2\}$ via $B c^{i} d=B c^{i^{d}}$;
- Define $\mu_{i} \in \operatorname{Sym}(D)$ as follows:

$$
x^{\mu_{i}}:=\left\{\begin{aligned}
x, & x \in B c^{i}, \\
x^{\mu}, & x \notin B c^{i}
\end{aligned}\right.
$$

Regular non-balanced dihedral Cayley maps

- Define $\mu \in \operatorname{Sym}(D)$ as follows $x^{\mu}=r x, x \in D$;

■ Notice that μ centralizes $\left\langle D_{*}, \sigma\right\rangle$;

- The subgroup $B=\left\langle r, c^{n / 3}\right\rangle$ has index three in D and $D=B \cup B c \cup B c^{2}$;
- D acts on $\{0,1,2\}$ via $B c^{i} d=B c^{i^{d}}$;
- Define $\mu_{i} \in \operatorname{Sym}(D)$ as follows:

$$
x^{\mu_{i}}:=\left\{\begin{aligned}
x, & x \in B c^{i}, \\
x^{\mu}, & x \notin B c^{i}
\end{aligned}\right.
$$

■ $N:=\left\{i d, \mu_{0}, \mu_{1}, \mu_{2}\right\} \leq \operatorname{Sym}(D)$ and $N \cong \mathbb{Z}_{2}^{2} ;$

Regular non-balanced dihedral Cayley maps

- Define $\mu \in \operatorname{Sym}(D)$ as follows $x^{\mu}=r x, x \in D$;

■ Notice that μ centralizes $\left\langle D_{*}, \sigma\right\rangle$;

- The subgroup $B=\left\langle r, c^{n / 3}\right\rangle$ has index three in D and $D=B \cup B c \cup B c^{2}$;
- D acts on $\{0,1,2\}$ via $B c^{i} d=B c^{i^{d}}$;
- Define $\mu_{i} \in \operatorname{Sym}(D)$ as follows:

$$
x^{\mu_{i}}:=\left\{\begin{aligned}
x, & x \in B c^{i}, \\
x^{\mu}, & x \notin B c^{i}
\end{aligned}\right.
$$

■ $N:=\left\{i d, \mu_{0}, \mu_{1}, \mu_{2}\right\} \leq \operatorname{Sym}(D)$ and $N \cong \mathbb{Z}_{2}^{2}$;
■ $d_{*}^{-1} \mu_{i} d_{*}=\mu_{i d}$ for any $d \in D \Longrightarrow\left[N, D_{*}\right] \leq N$;

Regular non-balanced dihedral Cayley maps

- Define $\mu \in \operatorname{Sym}(D)$ as follows $x^{\mu}=r x, x \in D$;

■ Notice that μ centralizes $\left\langle D_{*}, \sigma\right\rangle$;

- The subgroup $B=\left\langle r, c^{n / 3}\right\rangle$ has index three in D and $D=B \cup B c \cup B c^{2}$;
- D acts on $\{0,1,2\}$ via $B c^{i} d=B c^{i^{d}}$;
- Define $\mu_{i} \in \operatorname{Sym}(D)$ as follows:

$$
x^{\mu_{i}}:=\left\{\begin{aligned}
x, & x \in B c^{i}, \\
x^{\mu}, & x \notin B c^{i}
\end{aligned}\right.
$$

■ $N:=\left\{i d, \mu_{0}, \mu_{1}, \mu_{2}\right\} \leq \operatorname{Sym}(D)$ and $N \cong \mathbb{Z}_{2}^{2}$;

- $d_{*}^{-1} \mu_{i} d_{*}=\mu_{i d}$ for any $d \in D \Longrightarrow\left[N, D_{*}\right] \leq N$;

■ $G:=N\left\langle D_{*}, \sigma\right\rangle$ is a subgroup of $\operatorname{Sym}(D)$ which normalizes N

Regular non-balanced dihedral Cayley maps

Theorem

- The point stabilizer G_{1} is a cyclic group of order $4 m$ generated by $\mu_{1} r_{*} \sigma$;
- The permutation $\mu_{1} r_{*} \sigma$ is a skew-morphism of D whose action on the $r^{G_{1}}$ has the following form:

$$
\left(c, r c^{-\ell}, r c^{\ell^{2}}, c^{-\ell^{3}}, \cdots c^{\ell^{4 m-4}}, r c^{-\ell^{4 m-3}}, r c^{\ell^{4 m-2}}, c^{-\ell^{4 m-1}}\right)
$$

- G is an automorphism group of a regular Cayley map CM (n, ℓ) over D;
- Any non-balanced regular Cayley map over D is isomorphic to CM (n, ℓ).

