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Dihedrants and circulants

Definition

A Cayley (di)graph over the cyclic/dihedral group is called a
circulant/dihedrant.

A graph Γ is called G-arc-transitive/G-arc-regular if the group
G ≤ Aut(Γ) acts transitively/regularly on the arc set of Γ. An
Aut(Γ)-arc-transitive/regular graph is called
arc-transitive/arc-regular.
A classification of connected arc-transitive circulants was done by
I.Kovacs (2004) and C.H. Li (2005, CFSG).

Problem (Marus̆ic̆)

Classify connected arc-transitive (arc-regular) dihedrants.
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Known results

2-arc-transitive dihedrants were classified by S.F. Du, A. Malnic̆
and D. Marus̆ic̆ (2008).
Arc-transitive dihedrants of degrees 4, 6 were studied by Y.H
Kwak, Y.M Oh, C.Q. Wang, M. Xu and Z.Y. Zhou (2006) and I.
Kovacs, B. Kuzman, A. Malnic̆.
D. Kim, Y.S. Kwon and J. Lee proved that an arc-regular
dihedrants of prime degree are normal
Y.H. Kwak, Y.S. Kwon and Y.-M. Oh constructed arc-regular
dihedrants of any prescribed valency (2008).
I. Kovács classified arc-transitive dihedrants of order 2pe , p an odd
prime (2012).



Dihedrants and circulants. Doubling of circulants

Let Γ = (V ,E ) be a digraph. It’s canonical double cover (CDC) Γ̃
is the undirected bipartite graph with vertex set V × Z2 where two
vertices (x , 0), (y , 1) are connected by an edge whenever (x , y) is
an arc of Γ.
A CDC of a circulant Cay(Zn, S) produces a bipartite graph with
vertex set Zn × {0, 1} where the vertices (x , 0) and (y , 1) are
connected iff x − y ∈ S .
Another presentation of the same graph may be obtained if we
connect two vertices (x , 0), (y , 1) whenever x + y ∈ S . An
isomorphism between two graphs is given by (x , i) 7→ ((−1)ix , i).



Doubling of circulants

A permutation s : (x , i) 7→ (−x , i + 1) is an order two
automorphism of a CDC of Cay(Zn,S). Together with the
permutation c : (x , i) 7→ (x + 1, i) it generates a dihedral group of
order 2n which acts regularly on the point set Zn × Z2. Notice
that every dihedrant Cay(D2n,S) where S is a set of reflections
may be obtained in this way.

Proposition

If Γ is a CDC of a G -arc-transitive circulant, then Γ̃ is a
〈G̃ , s〉-arc-transitive dihedrant.



Dihedrants and circulants. Lexicographic product.

Definition

Let Γ = (V ,E ) and Γ′ = (V ′,E ′) be two graphs. Their
lexicographic product has a vertex set V × V ′, two vertices (v , v ′)
and (w ,w ′) are connected in G [G ′] iff

vv ′ ∈ E or v = v ′ ∧ ww ′ ∈ E ′

Proposition

If Γ = (V ,E ) is an arc-transitive circulant, then Γ[K2] is an
arc-transitive dihedrant.



Dihedrants as Cayley graphs over Zn × Z2

Let S ⊆ Zn × Z2 be a symmetric subset. Then the map

s : (x , y) 7→ (−x , 1− y)

is an automorphism of the Cayley graph Γ := Cay(Zn × Z2, S).
Together with the automorphism c : (x , y) 7→ (x + 1, y) it
generates a dihedral regular group of automorphisms of Γ.

Proposition

If Γ is a G -arc-transitive/regular and s ∈ G , then Γ is a
G -arc-transitive/regular dihedrant. In particular, if Γ is
arc-transitive/regular, then Γ is an arc-transitive/regular dihedrant.



Arc-regular dihedrant with a trivial cyclic core

Definition

A core of a subgroup H ∈ G in G is the maximal normal subgroup
of G contained in H.

Theorem

Let Γ be a G -arc-regular connected dihedrant of order 2n. Let
D ≤ G be a regular dihedral subgroup and C a cyclic subgroup of
D of index 2. If the core of C in G is trivial, then

n = 1, Γ ∼= K2,G = S2;

n = 2, Γ ∼= K4,G = A4;

n = 3, Γ ∼= K2,2,2,G = S4;

n = 4, Γ ∼= Q3,G = S4;

n = 2m,m odd, Γ ∼= Kn,n,G = (Dn × Dn) o S2
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Dihedral subgroups of small index

Proposition

If H is a subgroup of index n, then [G : CoreG (H)] ≤ n!.

Theorem (Lucchini 1998)

If H is a cyclic subgroup of G of index n, then

[G : CoreG (H)] ≤ n(n − 1).

In the case of equality n is a prime power and G ∼= AGL1(n).

Theorem

Let H be a dihedral subgroup of G of index n, then

[G : CoreG (H)] ≤ 2n2.

In the case of equality G ∼= (Dn × Dn) o S2, n = 2m,m is odd.
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Quotients of arc-transitive dihedrants

Theorem (Wielandt)

If a primitive permutation group G ≤ Sym(Ω) contains a regular
dihedral subgroup, then it’s 2-transitive.

Corollary

If Γ is a connected non-complete G -arc-transitive dihedrant, then
G is imprimitive.

If B is an imprimitivity system of G , then its block B(1) is a
subgroup of D and all blocks of B are the right cosets of B(1).
In what follows C is an index two cyclic subgroup of D (it’s unique
if |D| 6= 4).
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Quotients of arc-transitive dihedrants

Definition

An imprimitivity system B is called cyclic if B(1) ≤ C . Otherwise,
it’s called dihedral.

Proposition

If Γ is G -arc-transitive dihedrant and B is an imprimitivity system
of G . Then the quotient graph Γ/B is dihedrant if B is cyclic and
circulant otherwise. In both cases it is GB-arc-transitive.

Proposition

Let Γ be G -arc-transitive dihedrant. Then there exists a unique
(possibly trivial) maximal cyclic imprimitivity system C of G . If
CoreG (C ) is non-trivial, then C is non-trivial too.



Quotients of arc-transitive dihedrants

One can always factor out by a maximal cyclic imprimitivity system
and obtain an arc-transitive dihedrant with a trivial maximal cyclic
imprimitivity system.

Problem

Classify G -arc-transitive dihedrants with trivial maximal cyclic
imprimtivity system.



Quotients of arc-regular dihedrants

In general, a quotient of an arc-regular graph may be not
arc-regular.

Proposition

Let Γ be a G -arc-regular vertex transitive graph. Assume that a
point stabilizer of G is a Hamiltonian group. Then the quotiemt
graph Γ/B is GB-arc-regular provided that B is a normal
imprimtivity system of G .

In particular, this statement works when a point stabilizer is an
abelian group.



Cayley maps

Definition

Let H be a finite group, S ⊆ H an inverse closed subset s.t.
1 6∈ H, p a cyclic permutation on S . Then Cayley map
CM(H, S , p) over H is a map with underlying graph Cay(H, S)
with vertex rotation (x , sx) 7→ (x , p(s)x).

Two Cayley maps CM(H,S , p) and CM(H ′,S ′, p′) are isomorphic
if there exists a graph isomorphism ϕ : H → H ′ which preserves
the arc orientation at each vertex, that is

{(sx , x , p(s)x) | x ∈ H, s ∈ S}ϕ = {(s ′y , y , p′(s ′)y) | y ∈ H, s ′ ∈ S ′}.

A map automorphism is defined in a natural way. The maps are
called Cayley isomorphic if there exists a group isomorphism which
induces a map isomorphism.
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Regular Cayley maps

Definition

A Cayley map M = CM(H, S , p) is called regular if Aut(M) acts
transitively on the arc set of the underlying Cayley graph.

Theorem

Let G be the automorphism group of a regular Cayley map
M = CM(H, S , p). Then

1 Cay(H,S) is a G -arc-regular graph;

2 a point stabilizer Y = G1 is cyclic;

3 if B is normal imprimitivity system of G , then the quotient
graph is G/N-arc-regular, where N = GB.
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Regular Cayley maps

Definition

A Cayley map M = CM(H, S , p) is called balanced if
H E Aut(M).

For balanced maps a rotation permutation p extends to an
automorphism of H.

Problem

Given a finite group H. Find all regular non-balanced maps over H.

Problem

Given a finite group H. Find all skew morphisms of H.
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Regular non-balanced dihedral Cayley maps

D = 〈r , c | cn = r2 = (rc)2 = 1}, n is odd and n ≡ 0(mod 3);

D∗ := {d∗ | d ∈ D} where d∗ ∈ Sym(D) is a right translation
by d , i.e. xd∗ := xd , x , d ∈ D;

` ∈ Z∗n, o(`) = m is odd;

define an automorphism σ of D as follows

cσ = c`, rσ = r ;

〈D∗, σ〉 is a subgroup of Sym(D) isomorphic to D o Zm.
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Regular non-balanced dihedral Cayley maps

Define µ ∈ Sym(D) as follows xµ = rx , x ∈ D;

Notice that µ centralizes 〈D∗, σ〉;
The subgroup B = 〈r , cn/3〉 has index three in D and
D = B ∪ Bc ∪ Bc2;

D acts on {0, 1, 2} via Bc id = Bc i
d
;

Define µi ∈ Sym(D) as follows:

xµi :=

{
x , x ∈ Bc i ,

xµ, x 6∈ Bc i

N := {id , µ0, µ1, µ2} ≤ Sym(D) and N ∼= Z2
2;

d−1∗ µid∗ = µid for any d ∈ D =⇒ [N,D∗] ≤ N;

G := N〈D∗, σ〉 is a subgroup of Sym(D) which normalizes N
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Regular non-balanced dihedral Cayley maps

Theorem

The point stabilizer G1 is a cyclic group of order 4m
generated by µ1r∗σ;

The permutation µ1r∗σ is a skew-morphism of D whose
action on the rG1 has the following form:

(c , rc−`, rc`
2
, c−`

3
, · · · c`4m−4

, rc−`
4m−3

, rc`
4m−2

, c−`
4m−1

).

G is an automorphism group of a regular Cayley map
CM(n, `) over D;

Any non-balanced regular Cayley map over D is isomorphic to
CM(n, `).


