On regular Cayley maps over dihedral groups

M. Muzychuk,

Netanya Academic College, Israel

|DM|=60 Conference, May 1-3, 2013, Koper, Slovenia joint work with Dragan Marušič and István Kovács

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

A Cayley (di)graph over the cyclic/dihedral group is called a *circulant/dihedrant*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A Cayley (di)graph over the cyclic/dihedral group is called a *circulant/dihedrant*.

A graph Γ is called *G-arc-transitive/G-arc-regular* if the group $G \leq \operatorname{Aut}(\Gamma)$ acts transitively/regularly on the arc set of Γ . An $\operatorname{Aut}(\Gamma)$ -arc-transitive/regular graph is called *arc-transitive/arc-regular*.

Definition

A Cayley (di)graph over the cyclic/dihedral group is called a *circulant/dihedrant*.

A graph Γ is called *G*-arc-transitive/*G*-arc-regular if the group $G \leq \operatorname{Aut}(\Gamma)$ acts transitively/regularly on the arc set of Γ . An $\operatorname{Aut}(\Gamma)$ -arc-transitive/regular graph is called arc-transitive/arc-regular.

A classification of connected arc-transitive circulants was done by I.Kovacs (2004) and C.H. Li (2005, CFSG).

Definition

A Cayley (di)graph over the cyclic/dihedral group is called a *circulant/dihedrant*.

A graph Γ is called *G*-arc-transitive/*G*-arc-regular if the group $G \leq \operatorname{Aut}(\Gamma)$ acts transitively/regularly on the arc set of Γ . An $\operatorname{Aut}(\Gamma)$ -arc-transitive/regular graph is called arc-transitive/arc-regular.

A classification of connected arc-transitive circulants was done by I.Kovacs (2004) and C.H. Li (2005, CFSG).

Problem (Marušič)

Classify connected arc-transitive (arc-regular) dihedrants.

- 2-arc-transitive dihedrants were classified by S.F. Du, A. Malnič and D. Marušič (2008).
- Arc-transitive dihedrants of degrees 4,6 were studied by Y.H Kwak, Y.M Oh, C.Q. Wang, M. Xu and Z.Y. Zhou (2006) and I. Kovacs, B. Kuzman, A. Malnič.
- D. Kim, Y.S. Kwon and J. Lee proved that an arc-regular dihedrants of prime degree are normal
- Y.H. Kwak, Y.S. Kwon and Y.-M. Oh constructed arc-regular dihedrants of any prescribed valency (2008).
- I. Kovács classified arc-transitive dihedrants of order $2p^e$, p an odd prime (2012).

Let $\Gamma = (V, E)$ be a digraph. It's *canonical double cover* (CDC) $\widetilde{\Gamma}$ is the undirected bipartite graph with vertex set $V \times \mathbb{Z}_2$ where two vertices (x, 0), (y, 1) are connected by an edge whenever (x, y) is an arc of Γ .

A CDC of a circulant Cay(\mathbb{Z}_n , S) produces a bipartite graph with vertex set $\mathbb{Z}_n \times \{0, 1\}$ where the vertices (x, 0) and (y, 1) are connected iff $x - y \in S$.

Another presentation of the same graph may be obtained if we connect two vertices (x, 0), (y, 1) whenever $x + y \in S$. An isomorphism between two graphs is given by $(x, i) \mapsto ((-1)^i x, i)$.

A permutation $s: (x, i) \mapsto (-x, i+1)$ is an order two automorphism of a CDC of $Cay(\mathbb{Z}_n, S)$. Together with the permutation $c: (x, i) \mapsto (x+1, i)$ it generates a dihedral group of order 2n which acts regularly on the point set $\mathbb{Z}_n \times \mathbb{Z}_2$. Notice that every dihedrant $Cay(D_{2n}, S)$ where S is a set of reflections may be obtained in this way.

Proposition

If Γ is a CDC of a *G*-arc-transitive circulant, then $\overline{\Gamma}$ is a $\langle \widetilde{G}, s \rangle$ -arc-transitive dihedrant.

Definition

Let $\Gamma = (V, E)$ and $\Gamma' = (V', E')$ be two graphs. Their *lexicographic* product has a vertex set $V \times V'$, two vertices (v, v') and (w, w') are connected in G[G'] iff

$$vv' \in E \text{ or } v = v' \wedge ww' \in E'$$

Proposition

If $\Gamma = (V, E)$ is an arc-transitive circulant, then $\Gamma[\overline{K_2}]$ is an arc-transitive dihedrant.

Let $S \subseteq \mathbb{Z}_n \times \mathbb{Z}_2$ be a symmetric subset. Then the map

$$s:(x,y)\mapsto (-x,1-y)$$

is an automorphism of the Cayley graph $\Gamma := \text{Cay}(\mathbb{Z}_n \times \mathbb{Z}_2, S)$. Together with the automorphism $c : (x, y) \mapsto (x + 1, y)$ it generates a dihedral regular group of automorphisms of Γ .

Proposition

If Γ is a *G*-arc-transitive/regular and $s \in G$, then Γ is a *G*-arc-transitive/regular dihedrant. In particular, if Γ is arc-transitive/regular, then Γ is an arc-transitive/regular dihedrant.

Arc-regular dihedrant with a trivial cyclic core

Definition

A *core* of a subgroup $H \in G$ in G is the maximal normal subgroup of G contained in H.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Arc-regular dihedrant with a trivial cyclic core

Definition

A *core* of a subgroup $H \in G$ in G is the maximal normal subgroup of G contained in H.

Theorem

Let Γ be a *G*-arc-regular connected dihedrant of order 2*n*. Let $D \leq G$ be a regular dihedral subgroup and *C* a cyclic subgroup of *D* of index 2. If the core of *C* in *G* is trivial, then

•
$$n = 1, \Gamma \cong K_2, G = S_2;$$

• $n = 2, \Gamma \cong K_4, G = A_4;$
• $n = 3, \Gamma \cong K_{2,2,2}, G = S_4;$
• $n = 4, \Gamma \cong Q_3, G = S_4;$
• $n = 2m, m \text{ odd}, \Gamma \cong K_{n,n}, G = (D_n \times D_n) \rtimes S_2$

Dihedral subgroups of small index

Proposition

If H is a subgroup of index n, then $[G : Core_G(H)] \le n!$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dihedral subgroups of small index

Proposition

If H is a subgroup of index n, then $[G : Core_G(H)] \le n!$.

Theorem (Lucchini 1998)

If H is a cyclic subgroup of G of index n, then

 $[G: \operatorname{Core}_G(H)] \leq n(n-1).$

In the case of equality n is a prime power and $G \cong AGL_1(n)$.

Dihedral subgroups of small index

Proposition

If H is a subgroup of index n, then $[G : Core_G(H)] \le n!$.

Theorem (Lucchini 1998)

If H is a cyclic subgroup of G of index n, then

$$[G: \operatorname{Core}_G(H)] \leq n(n-1).$$

In the case of equality n is a prime power and $G \cong AGL_1(n)$.

Theorem

Let H be a dihedral subgroup of G of index n, then

$$[G: \operatorname{Core}_G(H)] \leq 2n^2.$$

In the case of equality $G \cong (D_n \times D_n) \rtimes S_2, n = 2m, m$ is odd.

Theorem (Wielandt)

If a primitive permutation group $G \leq Sym(\Omega)$ contains a regular dihedral subgroup, then it's 2-transitive.

Theorem (Wielandt)

If a primitive permutation group $G \leq Sym(\Omega)$ contains a regular dihedral subgroup, then it's 2-transitive.

Corollary

If Γ is a connected non-complete *G*-arc-transitive dihedrant, then *G* is imprimitive.

If \mathcal{B} is an imprimitivity system of G, then its block $\mathcal{B}(1)$ is a subgroup of D and all blocks of \mathcal{B} are the right cosets of $\mathcal{B}(1)$. In what follows C is an index two cyclic subgroup of D (it's unique if $|D| \neq 4$).

Quotients of arc-transitive dihedrants

Definition

An imprimitivity system \mathcal{B} is called *cyclic* if $\mathcal{B}(1) \leq C$. Otherwise, it's called *dihedral*.

Proposition

If Γ is *G*-arc-transitive dihedrant and \mathcal{B} is an imprimitivity system of *G*. Then the quotient graph Γ/\mathcal{B} is dihedrant if \mathcal{B} is cyclic and circulant otherwise. In both cases it is $G^{\mathcal{B}}$ -arc-transitive.

Proposition

Let Γ be *G*-arc-transitive dihedrant. Then there exists a unique (possibly trivial) maximal cyclic imprimitivity system C of G. If $Core_G(C)$ is non-trivial, then C is non-trivial too.

One can always factor out by a maximal cyclic imprimitivity system and obtain an arc-transitive dihedrant with a trivial maximal cyclic imprimitivity system.

Problem

Classify *G*-arc-transitive dihedrants with trivial maximal cyclic imprimtivity system.

In general, a quotient of an arc-regular graph may be not arc-regular.

Proposition

Let Γ be a *G*-arc-regular vertex transitive graph. Assume that a point stabilizer of *G* is a Hamiltonian group. Then the quotiemt graph Γ/B is $G^{\mathcal{B}}$ -arc-regular provided that \mathcal{B} is a normal imprimtivity system of *G*.

In particular, this statement works when a point stabilizer is an abelian group.

Definition

Let *H* be a finite group, $S \subseteq H$ an inverse closed subset s.t. $1 \notin H$, *p* a cyclic permutation on *S*. Then *Cayley map* CM(H, S, p) over *H* is a map with underlying graph Cay(H, S)with vertex rotation $(x, sx) \mapsto (x, p(s)x)$.

Cayley maps

Definition

Let *H* be a finite group, $S \subseteq H$ an inverse closed subset s.t. $1 \notin H$, *p* a cyclic permutation on *S*. Then *Cayley map* CM(H, S, p) over *H* is a map with underlying graph Cay(H, S)with vertex rotation $(x, sx) \mapsto (x, p(s)x)$.

Two Cayley maps CM(H, S, p) and CM(H', S', p') are *isomorphic* if there exists a graph isomorphism $\varphi : H \to H'$ which preserves the arc orientation at each vertex, that is

 $\{(sx, x, p(s)x) \, | \, x \in H, s \in S\}^{\varphi} = \{(s'y, y, p'(s')y) \, | \, y \in H, s' \in S'\}.$

A map automorphism is defined in a natural way. The maps are called *Cayley* isomorphic if there exists a group isomorphism which induces a map isomorphism.

Definition

A Cayley map $\mathcal{M} = CM(H, S, p)$ is called *regular* if Aut(\mathcal{M}) acts transitively on the arc set of the underlying Cayley graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

Let G be the automorphism group of a regular Cayley map $\mathcal{M} = \mathsf{CM}(\mathcal{H}, \mathcal{S}, p)$. Then

Definition

A Cayley map $\mathcal{M} = CM(H, S, p)$ is called *regular* if Aut(\mathcal{M}) acts transitively on the arc set of the underlying Cayley graph.

Theorem

Let G be the automorphism group of a regular Cayley map $\mathcal{M} = \mathsf{CM}(H, S, p)$. Then

1 Cay(H, S) is a *G*-arc-regular graph;

Definition

A Cayley map $\mathcal{M} = CM(H, S, p)$ is called *regular* if Aut(\mathcal{M}) acts transitively on the arc set of the underlying Cayley graph.

Theorem

Let G be the automorphism group of a regular Cayley map $\mathcal{M} = \mathsf{CM}(H, S, p)$. Then

- **1** Cay(H, S) is a *G*-arc-regular graph;
- **2** a point stabilizer $Y = G_1$ is cyclic;

Definition

A Cayley map $\mathcal{M} = CM(H, S, p)$ is called *regular* if Aut(\mathcal{M}) acts transitively on the arc set of the underlying Cayley graph.

Theorem

Let G be the automorphism group of a regular Cayley map $\mathcal{M} = CM(H, S, p)$. Then

- **1** Cay(H, S) is a *G*-arc-regular graph;
- **2** a point stabilizer $Y = G_1$ is cyclic;
- 3 if \mathcal{B} is normal imprimitivity system of G, then the quotient graph is G/N-arc-regular, where $N = G_{\mathcal{B}}$.

Definition

A Cayley map $\mathcal{M} = CM(H, S, p)$ is called *balanced* if $H \leq Aut(\mathcal{M})$.

For balanced maps a rotation permutation p extends to an automorphism of H.

Definition

A Cayley map $\mathcal{M} = CM(H, S, p)$ is called *balanced* if $H \leq Aut(\mathcal{M})$.

For balanced maps a rotation permutation p extends to an automorphism of H.

Problem

Given a finite group H. Find all regular non-balanced maps over H.

Definition

A Cayley map $\mathcal{M} = CM(H, S, p)$ is called *balanced* if $H \leq Aut(\mathcal{M})$.

For balanced maps a rotation permutation p extends to an automorphism of H.

Problem

Given a finite group H. Find all regular non-balanced maps over H.

Problem

Given a finite group H. Find all skew morphisms of H.

• $D = \langle r, c | c^n = r^2 = (rc)^2 = 1 \}$, *n* is odd and $n \equiv 0 \pmod{3}$;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $D = \langle r, c | c^n = r^2 = (rc)^2 = 1 \}$, *n* is odd and $n \equiv 0 \pmod{3}$;
- $D_* := \{d_* \mid d \in D\}$ where $d_* \in \text{Sym}(D)$ is a right translation by d, i.e. $x^{d_*} := xd, x, d \in D$;

•
$$D = \langle r, c | c^n = r^2 = (rc)^2 = 1 \}$$
, *n* is odd and $n \equiv 0 \pmod{3}$;

• $D_* := \{d_* \mid d \in D\}$ where $d_* \in \text{Sym}(D)$ is a right translation by d, i.e. $x^{d_*} := xd, x, d \in D$;

•
$$\ell \in \mathbb{Z}_n^*, o(\ell) = m$$
 is odd;

•
$$D = \langle r, c | c^n = r^2 = (rc)^2 = 1 \}$$
, *n* is odd and $n \equiv 0 \pmod{3}$;

• $D_* := \{d_* \mid d \in D\}$ where $d_* \in \text{Sym}(D)$ is a right translation by d, i.e. $x^{d_*} := xd, x, d \in D$;

•
$$\ell \in \mathbb{Z}_n^*, o(\ell) = m$$
 is odd;

• define an automorphism σ of D as follows

$$c^{\sigma}=c^{\ell},r^{\sigma}=r;$$

•
$$D = \langle r, c | c^n = r^2 = (rc)^2 = 1 \}$$
, *n* is odd and $n \equiv 0 \pmod{3}$;

• $D_* := \{d_* \mid d \in D\}$ where $d_* \in \text{Sym}(D)$ is a right translation by d, i.e. $x^{d_*} := xd, x, d \in D$;

•
$$\ell \in \mathbb{Z}_n^*, o(\ell) = m$$
 is odd;

• define an automorphism σ of D as follows

$$c^{\sigma}=c^{\ell},r^{\sigma}=r;$$

• $\langle D_*, \sigma \rangle$ is a subgroup of Sym(D) isomorphic to $D \rtimes \mathbb{Z}_m$.

• Define $\mu \in \text{Sym}(D)$ as follows $x^{\mu} = rx, x \in D$;

• Define $\mu \in \text{Sym}(D)$ as follows $x^{\mu} = rx, x \in D$;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Notice that μ centralizes $\langle D_*, \sigma \rangle$;

- Define $\mu \in \text{Sym}(D)$ as follows $x^{\mu} = rx, x \in D$;
- Notice that μ centralizes $\langle D_*, \sigma \rangle$;
- The subgroup $B = \langle r, c^{n/3} \rangle$ has index three in D and $D = B \cup Bc \cup Bc^2$;

- Define $\mu \in \text{Sym}(D)$ as follows $x^{\mu} = rx, x \in D$;
- Notice that μ centralizes $\langle D_*, \sigma \rangle$;
- The subgroup $B = \langle r, c^{n/3} \rangle$ has index three in D and $D = B \cup Bc \cup Bc^2$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• *D* acts on $\{0, 1, 2\}$ via $Bc^{i}d = Bc^{i^{d}}$;

- Define $\mu \in \text{Sym}(D)$ as follows $x^{\mu} = rx, x \in D$;
- Notice that μ centralizes $\langle D_*, \sigma \rangle$;
- The subgroup $B = \langle r, c^{n/3} \rangle$ has index three in D and $D = B \cup Bc \cup Bc^2$;
- *D* acts on $\{0, 1, 2\}$ via $Bc^{i}d = Bc^{i^{d}}$;
- Define $\mu_i \in \text{Sym}(D)$ as follows:

$$x^{\mu_i} := \left\{egin{array}{cc} x, & x\in Bc^i,\ x^\mu, & x
ot\in Bc^i \end{array}
ight.$$

- Define $\mu \in \text{Sym}(D)$ as follows $x^{\mu} = rx, x \in D$;
- Notice that μ centralizes $\langle D_*, \sigma \rangle$;
- The subgroup $B = \langle r, c^{n/3} \rangle$ has index three in D and $D = B \cup Bc \cup Bc^2$;
- *D* acts on $\{0, 1, 2\}$ via $Bc^{i}d = Bc^{i^{d}}$;
- Define $\mu_i \in \text{Sym}(D)$ as follows:

$$x^{\mu_i} := \begin{cases} x, & x \in Bc^i, \\ x^{\mu}, & x \notin Bc^i \end{cases}$$

(日) (同) (三) (三) (三) (○) (○)

• $N := \{ id, \mu_0, \mu_1, \mu_2 \} \leq \text{Sym}(D) \text{ and } N \cong \mathbb{Z}_2^2;$

- Define $\mu \in \text{Sym}(D)$ as follows $x^{\mu} = rx, x \in D$;
- Notice that μ centralizes $\langle D_*, \sigma \rangle$;
- The subgroup $B = \langle r, c^{n/3} \rangle$ has index three in D and $D = B \cup Bc \cup Bc^2$;
- *D* acts on $\{0, 1, 2\}$ via $Bc^{i}d = Bc^{i^{d}}$;
- Define $\mu_i \in \text{Sym}(D)$ as follows:

$$x^{\mu_i} := \begin{cases} x, & x \in Bc^i, \\ x^{\mu}, & x \notin Bc^i \end{cases}$$

$$N := \{ id, \mu_0, \mu_1, \mu_2 \} \leq \operatorname{Sym}(D) \text{ and } N \cong \mathbb{Z}_2^2; \\ d_*^{-1} \mu_i d_* = \mu_{i^d} \text{ for any } d \in D \implies [N, D_*] \leq N;$$

- Define $\mu \in \text{Sym}(D)$ as follows $x^{\mu} = rx, x \in D$;
- Notice that μ centralizes $\langle D_*, \sigma \rangle$;
- The subgroup $B = \langle r, c^{n/3} \rangle$ has index three in D and $D = B \cup Bc \cup Bc^2$;
- *D* acts on $\{0, 1, 2\}$ via $Bc^{i}d = Bc^{i^{d}}$;
- Define $\mu_i \in \text{Sym}(D)$ as follows:

$$x^{\mu_i} := \begin{cases} x, & x \in Bc^i, \\ x^{\mu}, & x \notin Bc^i \end{cases}$$

• $N := \{id, \mu_0, \mu_1, \mu_2\} \leq \text{Sym}(D) \text{ and } N \cong \mathbb{Z}_2^2;$ • $d_*^{-1}\mu_i d_* = \mu_{i^d} \text{ for any } d \in D \implies [N, D_*] \leq N;$ • $G := N \langle D_*, \sigma \rangle \text{ is a subgroup of Sym}(D) \text{ which normalizes } N$

Theorem

- The point stabilizer G₁ is a cyclic group of order 4m generated by μ₁r_{*}σ;
- The permutation $\mu_1 r_* \sigma$ is a skew-morphism of D whose action on the r^{G_1} has the following form:

$$(c, rc^{-\ell}, rc^{\ell^2}, c^{-\ell^3}, \cdots c^{\ell^{4m-4}}, rc^{-\ell^{4m-3}}, rc^{\ell^{4m-2}}, c^{-\ell^{4m-1}}).$$

- G is an automorphism group of a regular Cayley map CM(n, ℓ) over D;
- Any non-balanced regular Cayley map over D is isomorphic to $CM(n, \ell)$.