Notes on semiarcs

Gy. Kiss

$|\mathcal{DM}| = 60$

May 3rd, 2013, Koper

・ロト ・回 ・ ・ 回 ・

æ

< ≣ >

1994

gyk

1995

gyk

Arcs from 1997

Notes on semiarcs

Arcs in Projective Planes over Finite Fields G. Kiss, A. Malnič, D. Marušič

In the past forty years there has been quite a lot of research regarding the existence and characterization of certain type of arcs in projective planes over finite fields. Here, an *arc* means a subset of points no three of which are colinear. Apart from being an interesting and difficult mathematical problem in its own due, some of the results are of particular importance to other fields and in particular to Coding theory.

gyk

Abstract

Some properties of arcs in PG(2, q) are discussed via its cyclic model. An algorithm for checking whether a given set of points is an arc is given, and certain constructions of special type of arcs are presented

It is of interest to consider certain special types of arcs. For example, a now classical result of Segre states that all (q + 1)-arcs are conics if q is odd; however, no characterization of (q + 1)-arcs in the even case is known. There are of course other ways to declare arcs as nice. We shall consider the case when arcs have certain nice properties with respect to the *inversion* (multiplication by -1 in \mathbb{Z}_{q^2+q+1}).

Proposition

If K is a k-segment then -K is a k-arc. In particular, if L is a line then -L is a (q + 1)-arc.

Let a,b and c be arbitrary points where $a \neq b$. Then -a, -b, -care colinear if and only if $a + b - c \in L_{a,b}$. Consequently, $L_{-a,-b} = L_{a,b} - a - b$.

Let $L_{a,b} = S + i$. Then $a = s_a + i$ and $b = s_b + i$. We know that -a, -b, -c are colinear if and only if -b + a and -c + a are in the same column of D_S . Since $-b + a = -s_b - i + s_a + i = s_a - s_b$ is in s_b -th column, we must have $-c + a = s - s_b$ for some $s \in S$. This can be rewritten as $a + b - c = s + i \in L_{a,b}$. Rewriting again we have $-c \in L_{a,b} - a - b$, that is, $L_{-a,-b} = L_{a,b} - a - b$.

gyk

・ 回 と ・ ヨ と ・ ヨ と

SEMIOVALS CONTAINED IN THE UNION OF THREE CONCURRENT LINES

Aart Blokhuis, György Kiss, István Kovács Aleksander Malnič, Dragan Marušič and János Ruff

gyk

Abstract

Semiovals which are contained in the union of three concurrent lines are studied. The notion of a *strong semioval* is introduced, and a complete classification of these objects in PG(2, p) and $PG(2, p^2)$, p an odd prime, is given.

Theorem

If a semioval S in Π_q , q > 3, is contained in the union of three concurrent lines, then $|S| \leq 3\lceil q - \sqrt{q} \rceil$.

Example

Let $q = s^2$ and let ℓ_1, ℓ_2, ℓ_3 be three concurrent lines in PG(2, q). Choose Baer sublines $\overline{\ell}_1 \subset \ell_1$, $\overline{\ell}_2 \subset \ell_2$, and $\overline{\ell}_3 \subset \ell_3$ in such a way that, for any triple of distinct $i, j, k \in \{1, 2, 3\}$, the Baer subplane $\mathcal{B}_{j,k} = \langle \overline{\ell_j}, \overline{\ell_k} \rangle$ meets the line ℓ_i only in the common point C. Then $\mathcal{S} = (\ell_1 \setminus \overline{\ell_1}) \cup (\ell_2 \setminus \overline{\ell_2}) \cup (\ell_3 \setminus \overline{\ell_3})$ is a semioval which has $3(q - \sqrt{q})$ points.

gyk

▲圖▶ ▲屋▶ ▲屋▶

A semioval S allows an algebraic description in terms of an ordered triple (R, S, T), where R, S, and T are certain subsets of GF(q). Namely, let us choose a system of reference for PG(2, q) in such a way that the lines ℓ_1 , ℓ_2 , and ℓ_3 have equations $X_1 = -X_3$, $X_1 = 0$, and $X_1 = X_3$, respectively. Then $C = (0, 1, 0) \notin S$ because q > 3. Let

$$egin{aligned} R &= \{r \in {\it GF}(q): \ (-1,r,1) \in {\cal L}_1\}, \ S &= \{s \in {\it GF}(q): \ (0,s,-2) \in {\cal L}_2\}, \ T &= \{t \in {\it GF}(q): \ (1,t,1) \in {\cal L}_3\}. \end{aligned}$$

If we denote the size of \mathcal{L}_i by a, then |R| = |S| = |T| = a. Consider the sets R, S and T as subsets of the additive group of GF(q).

イロト イヨト イヨト イヨト

Strong semiovals

Now r + s + t = 0 if and only if the points (-1, r, 1), (0, s, -2)and (1, t, 1) are collinear. Thus, S is a semioval if and only if

$$\begin{split} |S^c + u \cap -T^c| &= 1, \quad \text{if } u \in R, \\ |T^c + u \cap -R^c| &= 1, \quad \text{if } u \in S, \\ |R^c + u \cap -S^c| &= 1, \quad \text{if } u \in T. \end{split}$$

But for every $u \in E$,

Si |7

$$|S + u \cap -T| + |S + u \cap (-T)^c| = |S + u| = a,$$

$$|S + u \cap -T^c| + |S^c + u \cap -T^c| = |-T^c| = q - a.$$

Further, if $u \in R$ then $|S + u \cap (-T)^c| = |S + u \cap -T^c|$, and so

$$|S^c + u \cap -T^c| = 1 \text{ amounts to } |S + u \cap -T| = 2a - q + 1.$$

Similarly, if $u \in S$ then $|T^c + u \cap -R^c| = 1$ amounts to

$$|T + u \cap -R| = 2a - q + 1 \text{ and if } u \in T \text{ then } |R^c + u \cap -S^c| = 1$$

amounts to $|R + u \cap -S| = 2a - q + 1.$

Therefore the above system of equations is equivalent to the following one:

$$|S + u \cap -T| = 2a - q + 1, \text{ if } u \in R, |T + u \cap -R| = 2a - q + 1, \text{ if } u \in S, |R + u \cap -S| = 2a - q + 1, \text{ if } u \in T.$$
(1)

⊡ ▶ < ≣ ▶

Strong semiovals

Let S be a strong semioval in PG(2, q) and let S, R, T be subsets of E which are induced by S in the way described in the previous section. Let a = |R| = |S| = |T|. Since S is a strong semioval, there exists a natural number k such that the number of two-secants of S passing through each point in $\ell_i \setminus (\mathcal{L}_i \cup \{C\})$ is equal to k. (Example 4 gives a strong semioval with $k = (\sqrt{q} - 1)^2$.) So instead of (1) we have the following refined system of equations

$$|S + u \cap -T| = \begin{cases} 2a - q + 1, & \text{if } u \in R, \\ k, & \text{if } u \notin R, \end{cases}$$
$$|T + u \cap -R| = \begin{cases} 2a - q + 1, & \text{if } u \in S, \\ k, & \text{if } u \notin S, \end{cases}$$
$$|R + u \cap -S| = \begin{cases} 2a - q + 1, & \text{if } u \in T, \\ k, & \text{if } u \notin T \end{cases}$$
$$(2)$$

We call k the *parameter* of S.

gyk

Let S be a strong semioval in PG(2, q) with parameter k. If S consists of 3a points, then

$$k=a-rac{a}{q-a}.$$

Theorem

If S is a strong semioval of cardinality $|S| = 3(p^m - p^l)$, m/2 < l < m, in PG(2, q), $q = p^m$ odd, then

$$(p-1)(p^{2l-m}-1)^2 \mid (p^{m-l}-1).$$
 (3)

/⊒ ▶ ∢ ≣ ▶

Corollary

There is no strong semioval in PG(2, p) if p is an odd prime.

Corollary

If S is a strong semioval in $PG(2, p^m)$, where p is an odd prime, and

$$m \leq \left\{ egin{array}{ccc} (p-1)^2 & p \equiv -1 \,(\mod 4) \ 2(p-1)^2 & p \equiv 1 \,(\mod 4), \end{array}
ight.$$

gyk

then $|\mathcal{S}| = 3(q - \sqrt{q}).$

<- ↓ ↓ < ≥ >

Definition

Let Π_q be a projective plane of order q. A non-empty pointset $S_t \subset \Pi_q$ is called a t-semiarc if for every point $P \in S_t$ there exist exatly t lines $\ell_1, \ell_2, \ldots, \ell_t$ such that $S_t \cap \ell_i = \{P\}$ for $i = 1, 2, \ldots, t$. These lines are called the tangents to S_t at P.

イロン イ部ン イヨン イヨン 三日

Definition

Let Π_q be a projective plane of order q. A non-empty pointset $S_t \subset \Pi_q$ is called a t-semiarc if for every point $P \in S_t$ there exist exatly t lines $\ell_1, \ell_2, \ldots, \ell_t$ such that $S_t \cap \ell_i = \{P\}$ for $i = 1, 2, \ldots, t$. These lines are called the tangents to S_t at P.

Some examples:

- Semiovals, t = 1.
- Subplanes, t = q m, where m is the order of the subplane.

(《圖》 《문》 《문》 - 문

Let S_t be a t-semiarc in Π_q . The followings hold:

- if t = q + 1, then S_t is a single point,
- if t = q, then S_t is a subset of a line, and vice versa any subset of a line containing at least two points is a q-semiarc,
- if t = q 1, then S_t is a set of three non-collinear points.

Let S_t be a t-semiarc in Π_q . The followings hold:

- if t = q + 1, then S_t is a single point,
- if t = q, then S_t is a subset of a line, and vice versa any subset of a line containing at least two points is a q-semiarc,
- if t = q 1, then S_t is a set of three non-collinear points.

There exist *t*-semiarcs for each value of *t* satisfying $1 \le t < q - 1$.

Example

Let ℓ_1 and ℓ_2 be two lines of Π_q , and let $1 \le t < q-1$ be an arbitrary integer. If we delete the point $\ell_1 \cap \ell_2$ and t other points from both lines, then the remaining 2(q-t) points obviously form a t-semiarc.

イロン イヨン イヨン イヨン

If a t-semiarc S_t is contained in the union of two lines ℓ_1 and ℓ_2 of \prod_q and $1 \le t < q - 1$, then $|S_t \cap \ell_i| = q - t$ for i = 1, 2, and S_t does not contain the point $\ell_1 \cap \ell_2$.

An algebraic description: $S_t \iff$ ordered triple (A, B, C), where $A, B, C \subset GF(q)$. The lines ℓ_1 , ℓ_2 , and ℓ_3 have equations $X_1 = 0$, $X_1 = X_3$ and $X_3 = 0$, respectively. V = (0, 1, 0).

$$\begin{split} & A = \{ a \in \mathrm{G}F(q) : \ (0, a, 1) \notin \mathcal{L}_1 \}, \\ & B = \{ b \in \mathrm{G}F(q) : \ (1, b, 1) \notin \mathcal{L}_2 \}, \\ & C = \{ c \in \mathrm{G}F(q) : \ (1, c, 0) \notin \mathcal{L}_3 \}. \end{split}$$

gyk

An algebraic description: $S_t \iff$ ordered triple (A, B, C), where $A, B, C \subset GF(q)$. The lines ℓ_1, ℓ_2 , and ℓ_3 have equations $X_1 = 0, X_1 = X_3$ and $X_3 = 0$, respectively. V = (0, 1, 0).

$$\begin{split} &A = \{a \in \mathrm{G}F(q) : \ (0,a,1) \notin \mathcal{L}_1\}, \\ &B = \{b \in \mathrm{G}F(q) : \ (1,b,1) \notin \mathcal{L}_2\}, \\ &C = \{c \in \mathrm{G}F(q) : \ (1,c,0) \notin \mathcal{L}_3\}. \end{split}$$

(0, a, 1), (1, b, 1), (1, c, 0) collinear $\iff a + c = b$.

The line ℓ_i has equation $X_i = 0$.

・ロ・ ・ 日・ ・ ヨ・

토 🕨 🗉 토

The line ℓ_i has equation $X_i = 0$.

$$(0, a, 1), (b, 0, 1), (1, c, 0)$$
 collinear $\iff ac = -b.$

・ロ・ ・ 日・ ・ ヨ・

토 🕨 🗉 토

Theorem (Exact inverse sumset theorem)

Suppose that A and B are finite nonempty subsets of the abelian group Z. Then the following are equivalent.

- |A + B| = |A|.
- |A B| = |A|.
- Let G := stab(A). Then G is a finite subgroup of Z, B is contained in a coset of G, and A is the union of cosets of of G.

gyk

Definition

Let A and B be finite, nonempty subsets of an abelian group (Z, \odot) , and let $i \ge 1$ an integer. Let $N_i(A, B)$ all the elements c with at least i representations of the form $c = a \odot b$ with $a \in A$ and $b \in B$. Sometimes we use the shorthand notation N_i instead of $N_i(A, B)$.

Theorem (Pollard, 1974)

Let Z be an abelian group, |Z| = p prime, $A, B \subseteq G$ nonempty subsets, and $1 \le k \le min\{|A|, |B|\}$. Then

 $|N_1| + |N_2| + \ldots + |N_k| \ge k \cdot \min\{p, |A| + |B| - k\}.$

イロン イヨン イヨン イヨン

Theorem (Grynkiewicz, 2010)

Let Z be an abelian group, $A, B \subseteq Z$ finite and nonempty subsets, and $k \ge 1$. If $|A|, |B| \ge k$, then either

$$\sum_{i=1}^{k} |N_i| \ge k(|A| + |B|) - 2k^2 + 1,$$

▲ ▶ ▲ ●

Theorem

or else there exist $A' \subseteq A$ and $B' \subseteq B$ with

$$I := |A \setminus A'| + |B \setminus B'| \le k - 1,$$

$$N_k(A',B') = N_1(A',B') = N_k(A,B),$$

 $\sum_{i=1}^{k} |N_k| \ge k(|A|+|B|) - (k-l)(|H|-\rho) - kl \ge k(|A|+|B|-|H|),$

where H is the nontrivial stabilizer of $N_k(A, B)$ and $\rho = |A' \odot H| - |A'| + |B' \odot H| - |B'|$. In the case k = 2 instead of the first inequality $|N_1| + |N_2| \ge 2(|A| + |B|) - 4$ also holds.

・ 同 ト ・ 三 ト

Theorem ($V \notin S_t$)

Let S_t be a t-semiarc in Π_q , suppose that S_t is contained in the union of three lines of \mathcal{P}_V , but does not contained in the union of any two lines of \mathcal{P}_V . If $V \notin S_t$, then there are three possibilities.

1
$$u_1 = u_2 = u_3 = u$$
, and

$$3 \cdot \frac{q-t}{2} \leq |\mathcal{S}_t| \leq 3 \cdot \left(q + \frac{t}{2} - \sqrt{qt + \frac{t^2}{4}}\right)$$

2 $u_i = u_j = q - t$ and $2 \le u_k \le t$ holds for $\{i, j, k\} = \{1, 2, 3\}$. The inequalities

$$2q - 2t + 2 \le |\mathcal{S}_t| \le 2q - t \tag{4}$$

also hold in this case.

Application of thms from additive group theory

Theorem (B. Csajbók, Gy. K, 2012)

Suppose that the t-semiarc S_t in $PG(2, p^r)$, p odd prime, belongs to the family of Case 2 of Theorem $V \notin S_t$. Then there exists a subgroup G of E such that both A and C are union of cosets of G, and \overline{B} is contained in a coset of G. If ϕ is the natural homomorphism from E to E/G, |G| = g and

 $|\phi(C)| = h$, then t = gh and $|S_t| = 2p^r - 2gh + |\overline{B}|$.

Corollary (B. Csajbók, Gy. K, 2012)

Let p be an odd prime. Then the followings hold.

 In PG(2, p) there is no semiarc belonging to the family of Case 2 of Theorem V ∉ S_t.

 2 Let 1 ≤ e < r be integers and let t = p^es, where (p, s) = 1 and t < p^r. Then PG(2, p^r) contains t-semiarcs with cardinality 2p^r - 2t + k for all t and k satisfying the conditions 2 ≤ k ≤ p^e.

Theorem (B. Csajbók, Gy. K, 2012)

Let S_1 be a semioval in the plane PG(2,q), $q = p^r$, p odd prime. Suppose that S_1 is contained in the union of three lines of \mathcal{P}_V , but does not contained in the union of any two lines of \mathcal{P}_V . Then $|S_1| \ge 3q - 3f_r(q)$, where

$$F_{r}(q) = \begin{cases} 2\lceil \sqrt{p+1} \rceil - 2 & \text{if } r = 1, \\ 4 \lceil \sqrt{\frac{q+1}{2}} \rceil - 4 & \text{if } r = 2, \\ q^{\frac{r-1}{r}} + q^{\frac{1}{r}} - 1 & \text{if } r \ge 3. \end{cases}$$

gyk

Theorem (B. Csajbók, Gy. K, 2012)

Let S_1 be a strong semioval in $PG(2, p^r)$, p an odd prime. Then the followings hold.

- If r = 2I, then S_1 contains $3(p^{2I} p^I)$ points.
- If r = 2l + 1 and p > 7, then there is no strong semioval in PG(2, p^r).
- If r = 2l + 1 and p = 3, 5 or 7, then S_1 contains $3(p^{2l+1} p^{l+1})$ points.

★ 同 ▶ ★ 三 ▶

Theorem (B. Csajbók, Gy. K, 2012)

Let S_2 be a 2-semiarc in PG(2, q), $q = p^r$, p odd prime. Suppose that S_2 belongs to the family of Case 1 of Theorem $V \notin S_t$. Then $|S_2| \ge 3q - 3f_r(p)$, where

$$f_r(p) = \begin{cases} 2\lceil \sqrt{2p+4} \rceil - 4 & \text{if } r = 1, \\ 4\left\lceil \sqrt{p^2 + \frac{7}{2}} \right\rceil - 8 & \text{if } r = 2, \\ 14, 37, 66 & \text{if } r = 3 \text{ and } p = 3, 5, 7, \\ p^2 + 2p + 2 & \text{if } r = 3 \text{ and } p \ge 11, \\ p^{r-1} + 2p - 2 & \text{if } r \ge 4. \end{cases}$$

gyk

・ 回 と ・ ヨ と ・ ヨ と

3

THANK YOU FOR YOUR ATTENTION!

<- ↓ ↓ < ≥ >

- < ≣ →

æ