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A few definitions

All groups are finite, all graphs are finite, connected and simple
(undirected, loopless, no multiple edges).

A graph T is G-vertex-transitive (respectively G-arc-transitive) if
G < Aut(l) acts transitively on the vertices (respectively the arcs)

of I'. (An arc in a graph is an ordered pair of adjacent vertices.)

A permutation group G < Sym(Q) is semiregular if G, =1 for
every w € Q.

An element g € G is called semiregular if (g) is semiregular.

Equivalently, g is semiregular if all of its cycles have the same
length.
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A graph with a semiregular automorphism admits a compact
description.

The larger the semiregular group of automorphism, the more
compact the definition. In the “best” case (a regular group) we
have a Cayley graph.
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Polycirculant conjecture

Conjecture (Marusi¢ 1981)

Every vertex-transitive graph of order at least 2 admits a
non-trivial semiregular automorphism.

Known for graphs of valency 3 (Marugi¢, Scapellato 1998), and
valency 4 (Dobson, Malni¢, Marusi¢, Nowitz 2007).

Known for graphs of order p¥ and 2p? (Marui¢, Scapellato
1981,1998).

Known for graphs of square-free order. (Dobson, Malni¢, Marusi¢,
Nowitz 2007).
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Quasiprimitive groups

A group is called quasiprimitive if every non-trivial normal
subgroup is transitive. It is called biquasiprimitive if every
non-trivial normal subgroup has at most 2 orbits.

Theorem (Giudici 2003, Giudici, Xu 2007)

A vertex-transitive graph with a quasiprimitive or biquasiprimitive
automorphism group has a non-trivial semiregular automorphism.

Corollary

A vertex-transitive graphs such that a vertex-stabiliser acts
quasiprimitively on the corresponding neighbourhood admits a
non-trivial semiregular automorphism.

Corollary

2-arc-transitive graphs and arc-transitive graphs of prime valency
admit non-trivial semiregular automorphisms.



Recent progress

Theorem (Giudici, V. 2013)

An arc-transitive graph of valency twice a prime admits a
non-trivial semiregular automorphism.
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Sketch of the proof

The case when Aut(I") admits a nonabelian minimal normal
subgroup was already dealt with by Jing Xu (2008).

We assume Aut(I') has an elementary abelian minimal normal
g-subgroup N.

If N is semiregular, we are done. We can also assume that N has
at least 3 orbits.

Since N is not semiregular, g = p or g = 2. In the first case, we
use the following result.

Theorem (Praeger, Xu 1989)

Let p be a prime and let [ be a 2p-valent G-arc-transitive graph
such that G has an abelian normal p-subgroup which is not
semiregular on the vertices of . Then I = C(p, r,s) for some
r>3and1<s<r-—1.



Sketch of the proof, Il

We can assume that N is a 2 group and I'/N is p-valent. We use
the following result.
Theorem (Burness, Giudici 2013)

Let p be a prime and let T be a G-arc-transitive graph of valency
p. Then one of the following occurs.

1. G has a semiregular element of odd order,

2. |[V(I)| is a power of 2,

3. p=11, G contains a semiregular normal 2-subgroup M
(possibly M = 1), such that G/M = My1, Gx = PSL(2,11)
and I'/M = Kia. In particular T is G-2-arc-transitive.
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abelian minimal normal subgroup. Then one of the following
occurs:

1. G has a semiregular element,
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Together with Jing Xu's result, this ends the proof.

It would be interesting to go through Xu's proof to see when she
actually needs Aut(I") rather than G.
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Further work

Theorem (V. 2013)

An arc-transitive graph of valency 8 admits a non-trivial
semiregular automorphism.

For valency pq, the bottleneck seems to be solvable groups.



Happy birthday Dragan!
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