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Generalized polygons

Let S = (P,L, I) be a connected, finite point-line incidence
geometry.
P and L are two distinct sets, the elements of P are called points,
the elements of L are called lines. I ⊂ (P × L) ∪ (L × P) is a
symmetric relation, called incidence.

Chain of length h :

x0 I x1 I . . . I xh

where xi ∈ P ∪ L.
The distance of two elements d(x , y) : length of the shortest chain
joining them.
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Generalized polygons

Definition

Let n > 1 be a positive integer. S = (P,L, I) is called a
generalized n-gon if it satisfies the following axioms.

Gn1. d(x , y) ≤ n ∀ x , y ∈ P ∪ L.
Gn2. If d(x , y) = k < n then ∃! a chain of length k joining x
and y .

Gn3. ∀ x ∈ P ∪ L ∃ y ∈ P ∪ L such that d(x , y) = n.
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Some elementary observations

(For the graph-theorists:) A generalized n-gon is a connected
bipartite graph of diameter n and girth 2n.

The simplest example: n-gon in the euclidean plane.

The dual of a generalized n-gon is also a generalized n-gon.

The distance of two points or two lines is even. The distance
of a point and a line is odd.

If n = 2 then any two points are collinear, any two lines
intersect each other, hence generalized 2-gons are trivial
structures (their Levi graphs are the complete bipartite
graphs).
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Almost trivial structures

n = 3
The distance of two distinct points is 2, hence the points are
collinear. Because of Gn2 the line joining them is unique.
The distance of two distinct lines is 2, hence the lines intersect
each other. Because of Gn2 the point of intersection is unique.

There are trivial structures,
and there are non-trivial ones:
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The Fano plane
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Almost trivial structures

n = 4
Grid

I

I
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Almost trivial structures

Its dual, bipartite graph.

Points: vertices
Lines: edges
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Nontrivial structures

Definition

A generalized polygon is called thick, if it satisfies the following.
Gn4. Each line is incident with at least three points and each
point is incident with at least three lines.

Theorem

In a thick finite generalized polygon each line is incident with the
same number of points and each point is incident with the same
number of lines.

Definition

The polygon is called of order (s, t) if these numbers are s + 1 and
t + 1, respectively.
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Existence

Theorem (Feit-Higman)

Finite thick generalized n-gons exist if and only if n = 2, 3, 4, 6 and
8.
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n = 3, projective planes

Definition

S = (P,L, I) is called a projective plane if it satisfies the following
axioms.

P1. For any two distinct points there is a unique line joining
them.

P2. For any two distinct lines there is a unique point of
intersection.

P3. Each line is incident with at least three points and each
point is incident with at least three lines.
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The Fano plane
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Basic combinatorial properties

Theorem

Let Π be a projective plane. If Π has a line which is incident with
exatly n + 1 points, then

1 each line is incident with n + 1 points,

2 each point is incident with n + 1 lines,

3 the plane contains n2 + n + 1 points,

4 the plane contains n2 + n + 1 lines.

The number n is called the order of the plane.
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Proof

If (P, `) is a non-incident point-line pair, then there is a bijection
between the set of lines through P and the set of points on `.

Fi I `⇐⇒ PFi
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Proof

The total number of points of the plane. Let H be any point of
the plane. By (2) there are n + 1 lines through H. Since any two
points of the plane are joined by a unique line, every point of the
plane except H is on exactly one of these n + 1 lines. By (1) each
of these lines contains n points distinct from H. Thus the total
number of points is 1 + (n + 1)n = n2 + n + 1.

Dually, the total number of lines of the plane. Let h be any line of
the plane. By (1) there are n + 1 points on h. Since any two liness
of the plane intersect in a unique point, every line of the plane
except h is on exactly one of these n + 1 points. By (2) each of
these points is incident with n liness distinct from h. Thus the
total number of lines is 1 + (n + 1)n = n2 + n + 1.
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The cyclic model

The plane of order 3 have 32 + 3 + 1 = 13 points and 13 lines.
Take the vertices of a regular 13-gon P1P2 . . .P13. The chords
obtained by joining distinct vertices of the polygon have 6
(= 3(3 + 1)/2) different lengths. Choose 4 (= 3 + 1) vertices of
the regular 13–gon so that all the chords obtained by joining pairs
of these points have different lengths. Four vertices define
4× 3/2 = 6 chords. For example the vertices P1,P2,P5 and P7

form a good subpolygon. Let us denote this quadrangle by Λ0.
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The cyclic model

The points of the plane are the vertices of the regular 13-gon.

The lines of the plane are the sub-quadrangles
Λi = {P1+i ,P2+i ,P5+i ,P7+i}. We can represent the lines of the
plane as the images of our origanal subpolygon under the rotations
around the centre of the regular 13–gon by the angles 2π × i/13.
The incidence is the set theoretical inclusion.
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Cyvlic model

12

II

IQ

13 1

9

8 7

4

5

gyk Finite Geometries



The cyclic model

The model obviously satisfies P3.

If Pk and Pl are two distinct vertices of the regular 13-gon, then
there uniquely exists a chord of the quadrangle Λ0 which has a
length equal to PkPl . Thus this chord is carried into the chord
PkPl by a unique rotation with angle less than 2π. Thus the model
satisfies P1.
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The cyclic model

If Λk and Λl are two distinct quadrangles, then ∃! an angle φ < 2π
which is the angle of the rotation carrying Λk into Λl . The
quadrangle Λk has exactly one chord which corresponds to φ. The
rotation by φ carries one endpoint of this chord into the other, but
this second endpoint is also a vertex of Λl . So any two distinct line
of the plane have at least one point in common.

If any two lines have at least one point of intersection and P1
holds, then any two distinct lines meet in exactly one point. So the
model satisfies P2.
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The cyclic model

This proof works for an arbitrary n ≥ 2, so we can construct a
projective plane of order n, if we are able to choose n + 1 vertices
of the regular n2 + n + 1-gon in such a way that no two chords
spanned by the choosen vertices have the same length.

One can easily find such sets of vertices if n is equal to 2 or 3. The
most elementary method, trial and error, leads to the solution if
n = 4 or n = 5. But as n increases, the number of cases to be
tested increases too rapidly, so the trial and error method does not
work in practice.
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The cyclic model

Some examples.

n n2 + n + 1 vertices of the subpolygon

2 7 1,2,4

3 13 1,2,5,7

4 21 1,2,5,15,17

5 31 1,2,4,9,13,19

6 43 ???

7 57 1,2,4,14,33,37,44,53
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Difference sets

Definition

Let G be an additive group. A subset D = {d1, d2, . . . , dk} is
called difference set, if ∀ 0 6= g ∈ G ∃! di , dj ∈ D such that
g = di − dj .

Theorem

Let n > 1 be an integer and v = n2 + n + 1. If the group Zv

contains a difference set then there exists a projective plane of
order n.
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Incidence matrix

A B C D E F G

a 1 1 0 1 0 0 0

b 0 1 1 0 1 0 0

c 0 0 1 1 0 1 0

d 0 0 0 1 1 0 1

e 1 0 0 0 1 1 0

f 0 1 0 0 0 1 1

g 1 0 1 0 0 0 1
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Incidence matrix

Let n > 1, v = n2 + n + 1, A a v × v 0− 1 matrix,
ri the i th row vector of A, cj the j th column vector of A.

A =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


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Incidence matrix

ri · rj : number of common points of the i-th and j-th lines.

Theorem

A is the incidence matrix of a projective plane if and only if

ci · cj = 1 for all i 6= j (⇐⇒ P1),

ri · rj = 1 for all i 6= j (⇐⇒ P2),

c2
i = r2

i = n + 1 for all i (⇐⇒ P3).

AAT = nI + J
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Analytic geometry

Euclidean plane (as we know from high school):
Points: (a, b) a, b ∈ R
Lines: [c], [m, k] c ,m, k ∈ R
Incidence:

(a, b) I [c]⇐⇒ a = c,

(a, b) I [m, k]⇐⇒ b = ma + k .
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Euclidean plane

One can prove (by solving sets of linear equations) the following.

E1. For any two distinct points there is a unique line joining
them.

E2. For any non-incident point-line pair (P, e) ∃! a line f
such that P I f and e ∩ f = ∅.
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Affine planes

Definition

S = (P,L, I) is called an affine plane if it satisfies the following
axioms.

A1. For any two distinct points there is a unique line joining
them.

A2. For any non-incident point-line pair (P, e) ∃! a line f
such that P I f and e ∩ f = ∅.
A3. ∃ three non-collinear points.
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AG(2,K)

Replace R by any field K. The affine plane AG(2,K) is the
following.
Points: (a, b) a, b ∈ K
Lines: [c], [m, k] c ,m, k ∈ K
Incidence:

(a, b) I [c]⇐⇒ a = c,

(a, b) I [m, k]⇐⇒ b = ma + k .
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AG(2, 3)
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The classical projective plane

The classical projective plane is an extension of the euclidean
plane. It contains all points and lines of the euclidean plane and
some extra points, called points at infinity and an extra line called
the line at infinity. The points at infinity correspond to the classes
of parallel lines of the euclidean plane. Each line of the euclidean
plane is incident with exactly one point at infinity such a way that
parallel lines have the same point at infinity, while the line at
infinity contains all points at infinity and no euclidean point.
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PG(2, 3)
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Homogeneous coordinates, PG(2,K)

Let V3 be a 3-dimensional vector space over the field K. The
projective plane PG(2,K) is the following.

points: 1-dim subspaces of V3 0 6= v = (v0, v1, v2)
lines: 2-dim subspaces of V3 ⇔

1-codim subspaces of V3 0 6= u = (u0, u1, u2)

incidence: inclusion
∑2

i=0 uivi = 0
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Homogeneous coordinates, PG(2,K)

The relation ∼

x ∼ y⇔ ∃ 0 6= λ ∈ K : x = λy

is an equivalence relation. The equivalence class of the vector
v ∈ V3 is denoted by [v].

Homogeneous coordinates
– of the point represented by the class of vectors [v] : (v0 : v1 : v2),
– of the line represented by the class of vectors [u] : [u0 : u1 : u2].

gyk Finite Geometries



Homogeneous coordinates, PG(2,K)

The relation ∼

x ∼ y⇔ ∃ 0 6= λ ∈ K : x = λy

is an equivalence relation. The equivalence class of the vector
v ∈ V3 is denoted by [v].

Homogeneous coordinates
– of the point represented by the class of vectors [v] : (v0 : v1 : v2),
– of the line represented by the class of vectors [u] : [u0 : u1 : u2].

gyk Finite Geometries



Collinearity conditions in PG(2,K)

Three distinct points X = x, Y = y and Z = z are collinear if and
only if their coordinate vectors are linearly dependent.

∃αβ ∈ K : x = αy + βz.

∣∣∣∣∣∣
x0 x1 x2

y0 y1 y2

z0 z1 z2

∣∣∣∣∣∣ = 0,
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AG(2,K) −→ PG(2,K)

Cartesian coordinates homogeneous coordinates

(a, b) (1 : a : b)
(m) (0 : 1 : m)
(∞) (0 : 0 : 1)

[m, k] [k : m : −1]
[c] [c : −1 : 0]
[∞] [1 : 0 : 0]
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PG(n,K)

Let Vn+1 be an (n + 1)-dimensional vector space over the field K.
The n-dimensional projective space PG(n,K) is the geometry
whose k-dimensional subspaces are the (k + 1)-dimensional
subspaces of Vn+1 for k = 0, 1, . . . , n.

points: 1-dim subspaces of Vn+1 [v] = (v0 : v1 : . . . : vn)
lines: 2-dim subspaces of Vn+1 Plücker-coordinates
... Grassmann-coordinates
hyperplanes: n-dim subspaces of Vn+1 ⇔

1-codim subspaces of Vn+1 [u] = (u0 : u1 : . . . : un)
incidence: inclusion

point-hyperplane:
∑2

i=0 uivi = 0
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... Grassmann-coordinates
hyperplanes: n-dim subspaces of Vn+1 ⇔

1-codim subspaces of Vn+1 [u] = (u0 : u1 : . . . : un)
incidence: inclusion

point-hyperplane:
∑2

i=0 uivi = 0

gyk Finite Geometries



The principle of duality

Definition

Let S be a projective space. Its dual space S∗ is the projective
space whose k-dimensional subspaces are the
(n − k − 1)-dimensional subspaces of S.
The incidence is defined as

S∗k ⊂ S∗` ∈ S∗ ⇐⇒ Sk ⊃ S` ∈ S.

Theorem (Principle of Duality)

If T is a theorem stated in terms of subspaces and incidence, then
the dual theorem is also true.
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Combinatorial properties of PG(n, q)

[nk ]q :=
(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)

Proposition

The number of k-dimensional subspaces of PG(n, q) is
[
n+1
k+1

]
q
.

The number of k-dimensional subspaces of PG(n, q) through a

given d-dimensional (d ≤ k) subspace in PG(n, q) is
[
n−d
k−d

]
q
.
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Combinatorial properties of PG(3, q)

number of

points q3 + q2 + q + 1
lines (q2 + q + 1)(q2 + 1)
planes q3 + q2 + q + 1
lines through a point q2 + q + 1
planes through a point q2 + q + 1
planes through a line q + 1
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Collineations

Definition

Let Si (i = 1, 2) be two projective spaces and Pi be the pointset of
Si . A bijection φ : P1 → P2 is called collineation if any three
points A,B and C are collinear in S1 if and only if the points
Aφ,Bφ and Cφ are collinear in S2.

Proposition

A collineation maps any k-dimensional subspace of S1 into a
k-dimensional subspace of S2.

Simplest example: rotation of the cyclic model

Pi 7→ Pi+1.
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Linear transformations

Let A be an (n + 1)× (n + 1) nonsingular matrix over K. Then the
mapping

φ : x 7→ xA

is a collineation of the projective space PG(n,K).

xA = λyA⇐⇒ x = λy because det A 6= 0, so [x] 7→ [xA].

x = λy + µz⇐⇒ xA = λyA + µz.

If [u] is a hyperplane then

φ : u 7→ u(A−1)T,

because

xuT = 0⇐⇒ (xA)(u(A−1)T)T = x(AA−1)uT = 0.
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Polarities

Definition

Let S be a projective space and S∗ be its dual space. A
collineation φ : S → S∗ is called correlation.

If φ is a correlation then φ maps any (n − k − 1)-dimensional
subspace of S into a k-dimensional subspace of S∗. Hence φ can
be considered as an S∗ → S collineation, too.

Definition

A correlation π is called polarity if (Pπ)π = P holds for each point
P ∈ S.
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Polarities

Definition

Let π be a polarity of the projective space S. If Sk is any
k-dimensional subspace then the (n − k − 1)-dimensional subspace

Sφk is called the polar of Sk .
A k-dimensional subspece Sk is self-conjugate if
– Sk ⊆ Sπk if k ≤ (n − 1)/2,
– Sk ⊇ Sπk if k ≥ (n − 1)/2.
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Polarities

Let A be an (n + 1)× (n + 1) nonsingular, symmetric matrix over
K. Then the mapping

π : x 7→ xA

is a polarity of the projective space PG(n,K).

x 7→ xA 7→ (xA)(A−1)T = x.

because AT = A. This type of polarities is called ordinary polarity.
The self-conjugate points form a quadric xAxT = 0.
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Polarities

Let A be an (n + 1)× (n + 1) nonsingular, antisymmetric matrix
over K. det A 6= 0, A = −AT, hence n is odd. Then the mapping

π : x 7→ xA

is a polarity of the projective space PG(n,K).

x 7→ xA 7→ (xA)(A−1)T = −x.

because AT = −A. This type of polarities is called null polarity.
Each point is self-conjugate. If n = 3, then there are self-conjugate
lines.
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Basic combinatorial properties of GQ-s

Theorem

Let Q be a finite, thick generalized quadrangle of order (s, t).
Then

1 For each non-incident point-line pair (P, e) ∃! a point-line pair
(R, f ) such that P I f IR I e,

2 Q contains (s + 1)(st + 1) points,

3 Q contains (t + 1)(st + 1) points.
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The smallest example

s = t = 2
15 points, 15 lines
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A GQ of order (q, q)

Let A be a 4× 4 nonsingular, antisymmetric matrix over GF(q).
Then A defines a null polarity π of the projective space PG(3, q).

A line RS is self-conjugate if and only if

rAsT = 0 ⇐⇒ R ∈ Sπ.

Hence the self-conjugate lines through a point P are the elements
of the pencil of lines in Pπ having carrier P.

Theorem

The points of PG(3, q) and the self-conjugate lines of a null
polarity with the inherited incidence form a generalized quadrangle
of order (q, q).
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A GQ of order (q, q)

Each line contains q + 1 points.

There are q + 1 lines through each point.

If (P, `) is a non-incident point-line pair, then ` 6⊂ Pπ. Hence
∃ ! Q = ` ∩ Pπ. The line PQ is self-conjugate, contains P
and meets `.
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A generalized hexagon of order (q, q)

Let A be a 7× 7 nonsingular, symmetric matrix over GF(q). Then
A defines an ordinary polarity π of the projective space PG(6, q).

The self-conjugate points of π form a parabolic quadric Q. The
points of Q and a subset of the lines contained in Q with the
inherited incidence form a generalized hexagon of order (q, q).
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Arcs

Definition

A k-arc is a set of k points no three of them are collinear.
A k-arc is complete if it is not contained in any (k + 1)-arc.

Definition

Let K be a k-arc and ` be a line. ` is called
– a secant to K if |K ∩ `| = 2,
– a tangent to K if |K ∩ `| = 1,
– an external line to K if |K ∩ `| = 0.
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Upper bound

Theorem (Bose)

If there exists a k-arc in a finite plane of order n, then

k ≤
{

n + 1 if n odd ,
n + 2 if n even.

If the points P1,P2, . . . ,Pk form a k-arc, then the lines P1Pi are
distinct lines through P1. But there are n + 1 lines through P1,
hence k ≤ n + 2.
Assume that the points P1,P2, . . . ,Pn+2 form an (n + 2)-arc H.
Then each line of the plane meets H in either 0 or 2 points, hence
H contains an even number of points, so n must be even.

gyk Finite Geometries



Upper bound

Theorem (Bose)

If there exists a k-arc in a finite plane of order n, then

k ≤
{

n + 1 if n odd ,
n + 2 if n even.

If the points P1,P2, . . . ,Pk form a k-arc, then the lines P1Pi are
distinct lines through P1. But there are n + 1 lines through P1,
hence k ≤ n + 2.

Assume that the points P1,P2, . . . ,Pn+2 form an (n + 2)-arc H.
Then each line of the plane meets H in either 0 or 2 points, hence
H contains an even number of points, so n must be even.

gyk Finite Geometries



Upper bound

Theorem (Bose)

If there exists a k-arc in a finite plane of order n, then

k ≤
{

n + 1 if n odd ,
n + 2 if n even.

If the points P1,P2, . . . ,Pk form a k-arc, then the lines P1Pi are
distinct lines through P1. But there are n + 1 lines through P1,
hence k ≤ n + 2.
Assume that the points P1,P2, . . . ,Pn+2 form an (n + 2)-arc H.
Then each line of the plane meets H in either 0 or 2 points, hence
H contains an even number of points, so n must be even.

gyk Finite Geometries



Ovals, hyperovals, conics

Definition

An (n + 1)-arc in a projective plane of order n is called oval.
An (n + 2)-arc in a projective plane of order n is called hyperoval.

There are no hyperovals in planes of odd order.
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Ovals, hyperovals, conics

Theorem

There are ovals in PG(2, q) for all q. If q is even then PG(2, q)
contains hyperovals, too.

The conic X 2
1 = X0X2 is an oval.

C = {(1 : t : t2) : t ∈ GF(q)} ∪ {(0 : 0 : 1)}

∣∣∣∣∣∣
1 t1 t2

1

1 t2 t2
2

1 t3 t2
3

∣∣∣∣∣∣ 6= 0,

∣∣∣∣∣∣
1 t1 t2

1

1 t2 t2
2

0 0 1

∣∣∣∣∣∣ 6= 0

if ti 6= tj .
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Ovals, hyperovals, conics

The equation of the tangent line to C at the point (t0, t
2
0 ) is

Y − t2
0 = 2t0(X − t0).

If q even then the equation becomes Y = t2
0 . Hence each tangent

contains the point (0 : 1 : 0).
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Ovals in planes of odd order

Theorem

Let Ω be an oval in the plane Πn, n odd. Then the points of Πn \Ω
are divided into two classes. There are (n + 1)n/2 points which lie
on two tangets to Ω (exterior points), and there are (n − 1)n/2
points none of which lie on a tangent to Ω (interior points).

Let ` be the tangent to Ω at P and P1,P2, . . . ,Pn be the other
points of `. Let ti be the number of tangents to Ω through Pi . Ω
contains an even number of points, hence ti > 0 must be an even
number, too. There are n tangents of Ω distinct from `, each of
these meets ` in a uniqe point, hence

∑
ti = n. Thus ti = 2

because of the pigeonhole principle.
So the number of exterior points is (n + 1)n/2, while the number
of interior points is n2 + n + 1− (n + 1)− (n + 1)n/2 = (n− 1)n/2.
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Caps

Definition

A k-cap is a set of k points no three of them are collinear.
A k-cap is complete if it is not contained in any (k + 1)-cap.

Theorem

If K is a k-cap in PG(3, q) then

k ≤ q2 + 1.
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Caps

Proof if q is odd.
If R and S are two distinct points points of K then each of the
q + 1 planes through the line RS meets K in an arc. Hence
applying the Theorem of Bose we get

|K| ≤ 2 + (q + 1)(q − 1) = q2 + 1.

The estimate is sharp. The surface

αX 2
0 + X 2

1 + X 2
2 + X 2

3 = 0

contains exatly q2 + 1 points if α is a non-square element in
GF(q). Each elliptic quadric contains exatly q2 + 1 points.
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One-factorization

Definition

A one-factor of the graph G = (V ,E ) is a set of pairwise disjoint
edges of G such that every vertex of G is contained in exactly one
of them. A one-factorization of G is a decomposition of E into
edge-disjoint one-factors.

Theorem

The graph G = (V ,E ) has a one-factor if and only if for each
subset W ⊂ V the number of the components G −W having an
odd number of vertices is less than or equal to the number of the
vertices W .
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One-factorization of K2n

The one-factorizations of K2n have an interesting application.
Suppose that several soccer teams play against each other in a
league (e.g. 10 teams in Prva Liga).
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One-factorization of K2n

The competition can be represented by a graph with the teams as
vertices and edges as games (the edge uv corresponds to the game
between the two teams u and v). If every pair of teams plays
exactly once, then the graph is complete. Several matches are
played simultaneously, every team must compete at once, the set
of games held at the same time is called a round. Thus a round of
games corresponds to a one-factor of the underlying graph. The
schedule of the championship is the same as a one-factorization of
K2n.

The bigger n the more difficult schedule.
Slovenians are lucky, because 10 = 32 + 1 and 10 = 23 + 2.
Italians are also lucky, because 18 = 17 + 1 and 18 = 24 + 2.
Hungarians are not, because there are 16 teams in NB 1.
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Schedule from an oval

Suppose that the projective plane Π2n−1 contains an oval
Ω = {P1,P2, . . . ,P2n}. Take the points of Ω as the vertices of
K2n. Let E be an external point of Ω. The one-factor F belonging
to E consists of the edges PjPk if the points Pj , Pk and E are
collinear, and the edge P`Pm if the lines EP` and EPm are the two
tangent lines to Ω through E .

Let ei be the tangent line to Ω at the point P2n, for
i = 1, 2, . . . , 2n − 1, let Li be the point ei ∩ e0 and let Fi be the
one-factor belonging to the point Li .

Lemma

The union of the one-factors Fi gives a one-factorization of K2n.

The edge P2nP` belongs to F`, and Li 6= Lj if i 6= j . If i 6= 2n 6= j ,
then there is a uniqe intersection point Lk of the lines PiPj and e0,
Hence there is a uniqe one-factor Fk containing the edge PiPj .
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Schedule from an oval

___P.•..l__ Pj"
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Schedule from a hyperoval

The following similar construction gives a one-factorization of K2n

if there exists a projective plane of order 2n − 2 which contains a
hyperoval H = {P1,P2, . . . ,P2n}.
Take the points P1,P2, . . . ,P2n as the vertices of K2n. Let e be an
external line to H and let L1, L2, . . . L2n−1 be the points of e

The one-factor Fi belonging to the point Li is defined to consist of
the edges PjPk if the points Pj ,Pk and Li are collinear. The union
of the one-factors Fi is a one-factorization of K2n because there is
a unique point of intersection of the lines PiPj and e.
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Schedule from a hyperoval
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Turán-type problems

Graphs are simple (no loops, no multiple edges), finite and
connected. (n, e)-graph: graph with n vertices and e edges.

Given a graph F , what is the maximum number of edges of a
graph with n vertices not containing F as a subgraph?

Give estimates on the number of edges.

Characterize the extremal graphs.
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Turán-type problems

In Turán’s original theorem F = K3 = C3.
In this case both questions are solved.

k ≤

{
n2

4 if n even,
(n−1)2

4 if n odd .

The extremal graphs are Kn/2,n/2 and K(n+1)/2,(n−1)/2,
respectively.
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Turán-type problems

We investigate the cases F = Cn and F = Ks,t .
Let us start with C4 = K2,2.

Theorem

Let G be an (n, e)-graph which does not contain C4. Then

e ≤ n

4
(1 +

√
4n − 3).
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C4-free graphs

Count those pairs of edges of G which has a joint vertex. First
consider the ”free” ends of the edges. For any pair of free ends
there is at most one joint vertex, otherwise a C4 would appear.
Hence the number of pairs is at most

(n
2

)
.

If we count the pairs at their joint vertex we get the exact number
of them: ∑

v∈V (G)

(
deg(v)

2

)
.

Applying
∑

v∈V (G) deg(v) = 2e, we get∑
v∈V (G)

deg(v)2 ≤ 2e + n(n − 1).
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If we count the pairs at their joint vertex we get the exact number
of them: ∑

v∈V (G)

(
deg(v)

2

)
.

Applying
∑

v∈V (G) deg(v) = 2e, we get∑
v∈V (G)

deg(v)2 ≤ 2e + n(n − 1).
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C4-free graphs

Because of the well-known inequality between the arithmetic and
quadratic means we have√∑

v∈V (G) deg(v)2

n
≥
∑

v∈V (G) deg(v)

n
,

and because of
∑

v∈V (G) deg(v) = 2e we get(
2e

n

)2

· n ≤ 2e + n(n − 1).

4e2 − 2en − n2(n − 1) ≤ 0.

The solution gives the estimate on e at once.
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C4-free graphs

The extremal graphs are not known in general.
If n = q2 + q + 1 then the polarity graph defined by Erdős and
Rényi is almost optimal.

Definition

Let π be an ordinary polarity of PG(2, q). The vertices of the
polarity graph G are the points of the plane, the points P and R
are adjacent if and only if P IRπ.

gyk Finite Geometries



Polarity graph

n = q2 + q + 1.

P IPπ ⇐⇒ P is a point of the conic defined by π.

e = q2(q+1)+(q+1)q)
2 = q(q+1)2

2 .

n
4 (1 +

√
4n − 3) = q2+q+1

4 (1 + (2q + 1)) = e + q+1
2 .

Theorem

The polarity graph is C4-free.

gyk Finite Geometries



Polarity graph

n = q2 + q + 1.

P IPπ ⇐⇒ P is a point of the conic defined by π.

e = q2(q+1)+(q+1)q)
2 = q(q+1)2

2 .

n
4 (1 +

√
4n − 3) = q2+q+1

4 (1 + (2q + 1)) = e + q+1
2 .

Theorem

The polarity graph is C4-free.

gyk Finite Geometries



Polarity graph

Suppose that the vertices A,K ,B and L form a C4. Then
– A IKπ,
– A I Lπ, hence KL is the polar line of A.

– B IKπ,
– B I Lπ, hence KL is the polar line of B,
– Aπ = Bπ, so A = B.
The polarity graph is not C3-free.

Theorem (Füredi)

Let q > 13 be a prime power, G be a graph with n = q2 + q + 1
vertices which does not contain C4. Then G has at most
q(q + 1)2/2 edges.
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The problem of Zarankiewicz

What is the maximum number of 1’s in an n ×m 0-1 matrix if it
does not contain an s × t submatrix consisting of entirely 1’s?

This is a special case of Turán’s problem.
What is the maximum number of edges in a Ks,t-free bipartite
graph Kn,m?

Definition

The Zarankiewicz number Zs,t(n,m) is the maximum number of
edges of a Ks,t-free bipartite graph Kn,m.

The simplest case: n = m and t = s = 2.

Theorem (Reiman)

Z2,2(n, n) ≤ n

2
(1 +

√
4n − 3).
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The first proof

First apply the proof of the previous theorem. Now the graph has
2n vertices. The ”free” ends of the pairs must come from the same
class of the bipartite graph, hence on the right-hand side 2

(n
2

)
stands instead of

(2n
2

)
. Copying the proof finally we get

e2 − ne − n2(n − 1) ≤ 0

and hence
e ≤ n

2
(1 +

√
4n − 3).
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The original proof of Reiman

Let ri and cj be the row and the column vectors of the matrix,
respectively. The forbidden 2× 2 submatrix means that ri rj ≤ 1
and cicj ≤ 1 if i 6= j .
If r2

i = ri and c2
i = ci , then obviously

∑n
i=1 ri =

∑n
i=1 ci = e,

where e denotes the total number of 1’s in the matrix.

(r1 + r2 + . . .+ rn)2 = c2
1 + . . .+ c2

n ,

and counting in another way

(r1 + r2 + . . .+ rn)2 = (r2
1 + r2

2 + . . .+ r2
n) + 2(r1r2 + . . .+ rn−1rn) ≤

(r1 + r2 + . . .+ rn) + n(n − 1) = (c1 + c2 + . . .+ cn) + n(n − 1).

The inequality between the arithmetic and quadratic means gives

c2
1 + c2

2 + . . .+ c2
n ≤ e2/n,

e2

n
≤ e + n(n − 1),

and we have already seen this inequality in the previous proof.
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Characterization of the extremal graphs

Theorem (Reiman)

If an n × n 0-1 matrix does not contain a 2× 2 submatrix
consisting of entirely 1’s and it contains exactly

n

2
(1 +

√
4n − 3)

1’s, then the matrix is the incidence matrix of a finite projective
plane.

Equality occurs if and only if the scalar product of each pair of
rows (and each pair of columns) is equal to 1, and each row and
column contains the same number of 1’s. This means that the
incidence stucture defined by the matrix satisfies the axioms of the
finite projective planes.
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Some generalizations

Theorem (Kővári, T. Sós, Turán)

If s ≥ t ≥ 2 and G is a Ks,t-free (n, e)-graph then

e ≤ 1

2
((s − 1)1/tn2−1/t + (t − 1)n).

Theorem (Füredi)

If s ≥ t ≥ 2 and G is a Ks,t-free (n, e)-graph, then

e ≤ 1

2
(s − t + 1)1/tn2−1/t + tn + tn2−2/t .

In particular if s = t = 3, then

e ≤ n5/3

2
+ n4/3 +

n

2
.
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An almost extremal graph

In the case s = t = 3 Füredi’s bound is asymptotically sharp. The
extremal graph was originally constructed by Brown.

Theorem (Brown’s construction)

Let k1, k2 be such elements of GF(q), q odd, for which the
equation X 2 + k1Y 2 + k2Z 2 = 1 defines an E elliptic quadric in
AG(3, q).
Let G be the graph whose vertices are the points of AG(3, q), two
points (x , y , z) and (a, b, c) are joined if and only if
(x − a)2 + k1(y − b)2 + k2(z − c)2 = 1.
This graph G has ∼ n5/3/2 edges and it does not contain K3,3 as a
subgraph.

gyk Finite Geometries



An almost extremal graph

E meets the plane at infinity in a conic. Hence E contains
q2 + 1− (q + 1) = q2 − q affine points. The neighbours of the
point A = (a, b, c) are on a translate of E , thus each vertex has
degree q2 − q.

e =
1

2
q3(q2 − q), n = q3 ⇒ e ∼ 1

2
n5/3.

Suppose that G contains a K3,3. Let A = (a, b, c), D = (d , e, f )
and G = (g , h, i) be the three distinct points of AG(3, q) and let
EA, ED and EG be the three translates of E which contain the
neighbours of A, D and G , respectively.
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An almost extremal graph

The equations of these quadrics are as follow.

(X − a)2 + (Y − b)2 + (Z − c)2 = 1,

(X − d)2 + (Y − e)2 + (Z − f )2 = 1,

(X − g)2 + (Y − h)2 + (Z − i)2 = 1.

Subtracting the first from the second and also from the third
equation we get

(d−a)X +(e−b)Y +(f −c)Z +(d2 +e2 +f 2−a2−b2−c2)/2 = 0,

(g−a)X +(h−b)Y +(i−c)Z +(g 2 +h2 + i2−a2−b2−c2)/2 = 0.

Tese are the equations of two non-parallel planes. Hence the
common neighbours of A,D and G are incident with both of these
planes, hence they are collinear. But the elliptic quadric EA
contains at most two points of any line, hence the number of the
common neighbours of A,D and G is at most two.
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Some more extremal graps

Theorem (Damásdi, Héger, Szőnyi)

Assume that a projective plane of order n exists. Then
Z2,2(n2 + n + 1− c , n2 + n + 1) = (n2 + n + 1− c)(n + 1)

if 0 ≤ c ≤ n/2,
Z2,2(n2 + c, n2 + n) = n2(n + 1) + cn

if 0 ≤ c ≤ n + 1,
Z2,2(n2 − n + c , n2 + n − 1) = (n2 − n)(n + 1) + cn

if 0 ≤ c ≤ 2n,
Z2,2(n2 − 2n + 1 + c, n2 + n − 2) = (n2 − 2n + 1)(n + 1) + cn

if 0 ≤ c ≤ 3(n − 1).
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Cn-free graphs

Too difficult in general. Some extra conditions are added.

Cm-free for all m ≤ n,

conditions on the vertex degrees,

regularity.

Definition

A (k , g)-graph is a k-regular graph of girth g. A (k , g)-cage is a
(k, g)-graph with as few vertices as possible. We denote the
number of vertices of a (k, g)-cage by c(k , g).

Erdős and Sachs proved that a (k , g)-cage exists with arbitrary
prescribed parameters k and g .
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Cages

A general lower bound on c(k , g), known as the Moore bound, is a
simple consequence of the fact that the vertices at distance
0, 1, . . . , b(g − 1)/2c from a vertex (if g is odd), or an edge (if g is
even) must be distinct.

Proposition (Moore bound)

c(k, g) ≥

{
1 + k + k(k − 1) + · · ·+ k(k − 1)

g−1
2
−1 g odd;

2
(

1 + (k − 1) + (k − 1)2 + · · ·+ (k − 1)
g
2
−1
)

g even.
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Moore graphs

If g = 4 then c(k, 4) = 2k, complete bipartite graphs.

If g = 5, then c(k , 5) = k2 + 1. This is known to be attained only
if k = 1 (trivial) k = 2 (almost trivial, pentagon), 3 (Petersen), 7
(Hofman-Singleton) and perhaps 57.
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Hofman-Singleton graph

Figure 2: Hoffman-Singleton graph.
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g = 6

Theorem

If G is a k-regular graph with girth g = 6 with
n = 2(1 + (k − 1) + (k − 1)2) vertices then G is the incidence
graph of a finite projective plane.

Choose an edge of G and colour by black and red its two
endpoints. After that colour by red the neighbors of the black
vertex and by black the neighbours of the red vertex and continue
this process. After the third step each of the
2(1 + (k − 1) + (k − 1)2) vertices is coloured in such a way that
each edge joins one black and one red vertex, thus G is bipartite.
G does not contain C4, hence it has at most
(1 + (k − 1) + (k − 1)2)k edges. But G is k-regular, thus it
contains exactly (1 + (k − 1) + (k − 1)2)k edges, so G is the
incidence graph of a projective plane.
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Incidence graphs of generalized polygons

In the same way it is easy to prove the following theorem.

Theorem

If G is a (k , 2n)-graph on c(k , 2n) vertices then G is the incidence
graphs of a generalized n-gon.
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Cages

Definition

A t-good structure in a generalized polygon is a pair T = (P0,L0)
consisting of a proper subset of points P0 and a proper subset of
lines L0, with the property that there are exactly t lines in L0

through any point not in P0, and exactly t points in P0 on any line
not in L0.
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Cages

Removing the points and lines of a t-good structure from the
incidence graph of a generalized n-gon of order q results a
(q + 1− t)-regular graph of girth at least 2n, and hence provides
an upper bound on c(q + 1− t, 2n).

Theorem (Lazebnik, Ustimenko, Woldar)

Let k ≥ 2 and g ≥ 5 be integers, and let q denote the smallest
odd prime power for which k ≤ q. Then

c(k , g) ≤ 2kq
3
4
g−a,

where a = 4, 11/4, 7/2, 13/4 for g ≡ 0, 1, 2, 3 (mod 4),
respectively.

In particular, for g = 6, 8, 12 this gives c(k , 6) ≤ 2kq,
c(k, 8) ≤ 2kq2, c(k , 12) ≤ 2kq5, where q is the smallest odd prime
power not smaller than k. Combined with the Moore bound, this
yields c(k , 8) ∼ 2k3.
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(∆,D)-graphs

A similar problem (with its usual notation, ∆ = k, g ≤ 2D + 1).

Definition

A simple finite graph G is a (∆,D)-graph if it has maximum
degree ∆ ≥ 3 and diameter at most D.

The degree/diameter problem is to determine the largest possible
number of vertices that G can have. Denoted this number by
n(∆,D), the inequality

n(∆,D) ≤ 1 + ∆ + ∆(∆− 1) + . . .+ ∆(∆− 1)D−1 =

=
∆(∆− 1)D − 2

∆− 2

is also called Moore bound.

gyk Finite Geometries



Moore graphs again

We have already seen the following (∆ = k , D = (g − 1)/2).
This is known to be attained only if either D = 1 and the graph is
K∆+1, or D = 2 and ∆ = 1, 2, 3, 7 and perhaps 57.
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Lower bounds

The only known general lower bound is given as

(∆, 2) ≥
⌊∆ + 2

2

⌋
·
⌈∆ + 2

2

⌉
. (1)

This is obtained by choosing G to be the Cayley graph
Cay(Za × Zb,S), where a = b∆+2

2 c, b = d∆+2
2 e, and

S = { (x , 0), (0, y) | x ∈ Za \ {0}, y ∈ Zb \ {0} }.

If ∆ = kD + m, where k ,m are integers and 0 ≤ m < D, then a
straightforward generalization of this construction results in a
Cayley (∆,D)-graph of order⌊∆ + D

D

⌋D−m
·
⌈∆ + D

D

⌉m
. (2)
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Linear Cayley graphs

Let Vn denote the n-dimensional vector space over GF(q). For
S ⊆ V such that 0 /∈ S , and S = −S := {−x | x ∈ S}, the Cayley
graph Cay(V , S) is the graph having vertex-set V and edges
{x , x + s}, x ∈ V , s ∈ S . A Cayley graph Cay(V ,S) is said to be
linear, if S = αS := {αx | x ∈ S} for all nonzero scalars
α ∈ GF(q). In this case S ∪ {0} is a union of 1-dimensional
subspaces, and therefore, it can also be regarded as a point set in
the projective space PG(n − 1, q). Conversely, any point set P in
PG(n − 1, q) gives rise to a linear Cayley graph, namely the one
having connection set {x ∈ V \ {0} | 〈x〉 ∈ P}. We denote this
graph by Γ(P).
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Lower bounds on n(∆,D)

Given an arbitrary point set P in PG(n, q), 〈P〉 denotes the
projective subspace generated by the points in P, and

(P
k

)
(k ∈ N)

is the set of all subsets of P having cardinality k .

Proposition

Let P be a set of k points in PG(n, q) with 〈P〉 = PG(n, q). Then
Γ(P) has qn+1 vertices, with degree k(q − 1) and with diameter

D = min
{

d | ∪X∈(Pd )〈X 〉 = PG(n, q)
}
. (3)
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Saturating sets

Once the number of vertices and the diameter for Γ(P) are fixed to
be qn+1 and D, respectively, our task becomes to search for the
smallest possible point set P for which

∪X∈(PD)〈X 〉 = PG(n, q).

A point set having this property is called a (D-1)-saturating set.

If D = 2, then a 1-saturating set P is a set of points of PG(n, q)
such that the union of lines joining pairs of points of P covers the
whole space.
In the plane: complete arcs, double blocking sets of Baer
subplanes.
In PG(3, q) : two skew lines.
In PG(n, q) : complete caps.
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Lower estimates

Theorem (Gy. K. I. Kovács, K. Kutnar, J. Ruff, and P. Šparl)

Let ∆ = 27 · 2m−4 − 1 and m > 7. Then

n(∆, 2) ≥ 256

729
(∆ + 1)2.

Theorem (Gy. K. I. Kovács, K. Kutnar, J. Ruff, and P. Šparl)

Let q > 3 be a prime power and let ∆ = 2q2 − q − 1. Then

n(∆, 2) >
1

4

(
∆ +

√
∆

2
+

5

4

)2

.
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