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Abstract

ON THE ISOMORPHISM PROBLEM OF BI-CAYLEY GRAPHS

In this PhD thesis we study the isomorphism problem of bi-Cayley graphs and
the related question of classifying finite BCI-groups. More precisely, the following
questions/problems are considered:

(i) Find effective sufficient and necessary conditions for the isomorphism of two
cyclic bi-Cayley graphs.

(ii) Which groups are 3-BCl-groups?

)
(iii) Which cubic bi-Cayley graphs are BCI-graphs?
(iv) Which cyclic balanced configurations have the CI-property?
)

(v) Analytical enumeration of balanced cyclic configurations.

Problem (i) is solved for tetravalent graphs. Problem (ii) is solved for nilpotent
groups. We contribute to Problem (iii) by proving that all connected cubic arc-
transitive bi-Cayley graphs over abelian groups are BCl-graphs. Regarding Prob-
lem (iv), we prove that all cyclic balanced configurations have the Cl-property for
which the number of points is either a product of two distinct primes, or a prime
power. Regarding Problem (v), we derive a close formula for the number of connected
cyclic configurations of type (vs).

Math. Subj. Class (2010): 20B25, 05C25, 05C60, 51E30.

Key words: graph isomorphism, bi-Cayley graph, BCI-graph, BCI-group, n-BCI-
group, arc-transitive graph, cyclic configuration, cyclic object.






Izvlecek

O PROBLEMU IZOMORFNOSTI BI-CAYLEYJEVIH GRAFOV

V doktorski disertaciji obravnavamo problem izomorfnosti bi-Cayleyjevih grafov
in z njim povezano vpraSanje klasifikacije kon¢nih BCI-grup. Obravnavani so nasled-
nji konkretni problemi oz. vprasanja:

(i) Poiskati u¢inkovite potrebne in zadostne pogoje za izomorfnost dveh cikli¢nih
bi-Cayleyjevih grafov.

(ii) Katere grupe so 3-BCl-grupe?

)
(iii) Kateri kubi¢ni bi-Cayleyjevi grafi so BCl-grafi?
(iv) Katere cikli¢ne uravnotezene konfiguracije imajo CI-lastnost?
)

(v) Analiti¢no osteviléenje uravnotezenih cikli¢nih konfiguracij.

V doktorski disertaciji je Problem (i) reSen za tetravalentne grafe, Problem (ii) pa
za nilpotentne grupe. Prispevek k resitvi Problema (iii) je dokaz, da je vsak povezan
kubien lo¢no-tranzitiven bi-Cayleyjev graf nad abelsko grupo BCI-graf. Kar se
tice Problema (iv), je v doktorski disertaciji dokazano, da ima Cl-lastnost vsaka
cikli¢na uravnotezena konfiguracija, katere Stevilo to¢k je bodisi enako produktu
dveh razli¢nih prastevil ali pa je enako potenci nekega prastevila. Za Problem (v) je
izpeljana formula za Stevilo povezanih cikli¢nih konfiguracij tipa (vs).

Math. Subj. Class (2010): 20B25, 05C25, 05C60, 51E30.

Kljuéne besede: isomorfia grafov, bi-Cayleyjey graf, BCI-graf, BCI-grupa, n-BCI-
grupa, lo¢no tranzitiven graf, cikli¢na ¢ configuracija, cikli¢en objekt.






Chapter 1

Introduction

The central objects in this PhD Thesis are the so called bi-Cayley graphs. These
graphs are natural generalizations of Cayley graphs in the following sense: while the
latter graphs can be described as those with a regular subgroup in their automor-
phism group, the former graphs are those having a semiregular group with two orbits.
In this thesis we are interested in the case when each edge has endpoints in differ-
ent orbits. More formally, for a group G and a subset S of G, the bi-Cayley graph
BCay(G, S) has vertex set G x {0,1}, and the edges are in the form (x,0)(sx,1),
where x € G and s € S. Bi-Cayley graphs have been studied from various aspects,
e. g., they have been used for constructions of strongly regular graphs [17, 49] and
semisymmetric graphs [21, 60]. In this thesis we focus on their isomorphism problem
and the related question of classifying finite BCI-groups. The latter problem is a
natural analogue to the well-known problem of classifying finite CI-groups which has
attracted considerable attention over the last 45 years and which is still wide open
(see, e. g., [20, 53, 54]).

In 2008, motivated by the concepts Cl-graph, m-Cl-group and Cl-group, Xu
et al. [77] introduced the concepts BCI-graph, m-BCl-group and BCI-group, re-
spectively. We say that a bi-Cayley graph BCay(G,S) is a BCI-graph if whenever
BCay (G, S) =2 BCay(G,T) for some subset T' of G, the set T' = ¢S for some g € G
and automorphism o € Aut(G). The group G is an m-BCI-group if every bi-Cayley
graph over G of valency at most m is a BCl-graph, and G is a BCI-group if every
bi-Cayley graph over G is a BCl-graph. The theory of BCl-graphs and BCIl-groups
is less developed as in the case of Cl-graphs and Cl-groups. Several basic properties
have been obtained by Jin and Liu in a series of papers [34, 35, 36, 37|, and very
recently, by Arezoomand and Taeri |2, 3]. We will review these results in Chapter 3.
We also give several examples, and most importantly, discuss in details the relation
between BCl-groups and Cl-groups. In fact, our primary motivation by studying
BCl-graphs and BCI-groups is that these objects can bring new insight into the old
problem of classifying Cl-groups.

The isomorphism problem for circulant graphs was investigated by many re-
searchers, and finally, a complete solution was given by Muzychuk [64]. In Chapter 4,
we consider the same problem in the class of cyclic bi-Cayley graphs (i. e., bi-Cayley
graphs over cyclic groups). As far as we know, the only result in this direction is
due to Wiedemann and Zieve [76], who proved that every cyclic bi-Cayley graph
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of valency at most 3 is a BCl-graph. Furthermore, they also gave examples of non-
BCl-graphs of valency 4, and thus the tetravalent bi-Cayley graphs represent the first
non-trivial case to be considered. In Chapter 4, we solve this case (see Theorem 4.1).
Interestingly, the arithmetic conditions that appear in our solution coincide entirely
with those in the solution for cubic circulant graphs that can be retrieved from the
general algorithm of Muzychuk [64].

In Chapters 5 and 6 we consider cubic BCI-graphs and also 3-BCI-groups. It
is a trivial observation that every group is a 1-BCl-group, while the 2-BCI-groups
were described in purely group theoretical terms in [77]. In this PhD Thesis we
are interested in 3-BCI-groups. The classification of these groups is still an open
problem, some partial solutions can be found in [34, 35, 36]. In the theory of CI-
groups the counterpart problem is [53, Problem 9.6]. In Chapter 5, we contribute
to this problem by classifying the nilpotent 3-BCl-groups (see Theorem 5.1). In
Chapter 6, we give further examples of cubic BCI-graphs. Namely, we prove that
every connected arc-transitive cubic bi-Cayley graph over an abelian group is a BCI-
graph (see Theorem 6.2). In addition to this, we also derive a complete description
of these graphs which is of independent interest. This result is comparable with the
recent classification of vertex-transitive cubic bi-Cayley graphs over abelian groups
obtained by Feng and Zhou [25]. Our interest in connected arc-transitive cubic
abelian bi-Cayley graphs came from the classification of connected arc-transitive
cubic graphs of girth 6 obtained by Kutnar and Marusic¢ [47]. It turns out that each
of the latter graphs has a semiregular abelian automorphism group with two orbits.

In Chapter 7, we change the subject and turn to configurations. A cyclic con-
figuration (P, B) consists of a point set P and a line set B, which consists of certain
subsets of P, and it is also assumed that a cyclic automorphism group G is regular
on P. In this case there is a canonical way to identify P with G, and thus (P, B) can
be regarded as a Cayley-object of G. Furthermore, if the configuration (G, B) is also
balanced (i. e., |G| = |B|), then the incidence graph of (G, B) is a bi-Cayley graph
over G, and (G, B) has the Cl-property exactly when the corresponding bi-Cayley
graph is a BCI-graph. Using also this observation, we prove that every balanced
cyclic configuration has the Cl-property for which the number of points is either a
product of two distinct primes, or it is a prime power (see Theorem 7.2). As an ap-
plication, we also derive a close formula for the number of non-isomorphic connected
cyclic configurations of type (v3) (see Theorem 7.3).

The results presented in this PhD Thesis are from the following articles:

e H. Koike, I.Kovacs, Isomorphic tetravalent circulant Haar graphs, Ars Math.
Contemporanea 7 (2014), 215-235.

e H. Koike, I. Kovacs, T. Pisanski, The number of cyclic configurations of type
(v3) and the isomorphism problem, J. Combin. Designs 22 (2014), 216-229.

e H. Koike, I. Kovacs, Arc-transitive cubic abelian bi-Cayley graphs and BCI-
graphs, Filomat, in press.

e H. Koike, I. Kovacs, A classification of nilpotent 3-BCI groups, submitted.



Chapter 2

Preliminaries

The purpose of this chapter is to familiarize the reader with the concepts, terminology
and notation, and to review the results that we shall use in the thesis.

2.1 Groups

In this thesis we will consider finite groups. If it is not specified otherwise we use
multiplicative notation for the group operation and denote by 14 the identity element
of a given group G. For group theoretical terms not defined here we refer the reader
to [18, 70, 72.

The following list presents the notation and definitions of special classes of groups
that will appear throughout the thesis.

e Z,. The ring of residue classes of integers module n, and parallel, it will
denote its additive group, representing the cyclic group of order n. We let
Zn ={0,1,....,n—1}.

e Z}. The multiplicative group of units of the ring Z,,.

e AGL(1,n). The group of all permutations of Z,, of the form x — ax + b, where
a € Z} and b € Z,,. These will be also called the affine transformations of Z,,.

e Dih(A). The generalized dihedral group defined as the semidirect product of
the abelian group A with Zy = (1) where 1 acts on A as a” = a~! for every
a € A.

e Ds,. The dihedral group of order 2n, i. e., the group Dih(Zy,).
e (Qs. The usual quaternion group given as Qg = {1, —1,4, —4,j, —j, k, —k}.

e GL(n,F). The general linear group, i. e., the group of all n x n invertible
matrices with elements from the field F'

e SL(n, F'). The special linear group, i. e., the group of all n x n matrices with
elements from the field F' whose determinants are equal to 1.
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4 2.1 Groups

e PGL(n, F') and PSL(n, F). The projective linear group and projective special
linear group, respectively, i. e., the quotients groups of GL(n, F') and SL(n, F')
by their respective centers.

If F is a finite field with ¢ elements, where ¢ is a prime power, we write GL(n, q),
SL(n,q), PGL(n,q) and PSL(n, q) instead of GL(n, F), SL(n, F), PGL(n, F') and
PSL(n, F).

2.1.1 Nilpotent and solvable groups

A sgeries of subgroups
(e} =Go< G < <Gp=G

of a group G is called a subnormal series of G if G; < G4 for every i € {0,1,...,n—
1}. A subnormal series is called a normal series if, in addition, G; < G holds for
every i € {0,1,...,n—1}. A group G is called nilpotent if it has a central series, i. e.,
a normal series {1} = Gy < G; < --- < G,, = G, such that G;41/G; is contained in
the center of G/G; for every i € {0,1,...,n—1}. There are several group theoretical
properties which are equivalent to nilpotency for finite groups. We summarize some
of them in the following theorem (cf. |70, Theorem 5.2.4]):

Theorem 2.1. Let G be a finite group. Then the following properties are equivalent:
(i) G is nilpotent.

(ii) Ewvery proper subgroup of G is properly contained in its normalizer.

(113) Every mazimal subgroup of G is normal.

(iv) G is the direct product of its Sylow subgroups.

A group G is solvable if it has an abelian series, by which we mean a subnormal
series 1g = Gp < G1 < --- < G, = G in which each factor G;11/G; is abelian. The
following theorem is due to Huppert and Ito (cf. [72, Theorem 13.10.1]):

Theorem 2.2. If a finite group G = AB, where A is nilpotent, and B contains a
cyclic subgroup of index 2, then G is solvable.

2.1.2 Group actions

Let X be a nonempty set. We shall denote by Sym(X) the group of all permutations
of X. In this thesis we let permutations act on the right, i. e., if 7 and p are
permutations in Sym(X), then by their product mp we apply first 7 and then p. In
consistence with this, we denote by ™ the image of x € X under .

An action of a group G on the set X is a function X x G — X which satisfies
the following axioms:

o ¢ = g for every x € X, and

o (29)" = 29" for every x € X and for all g,h € G,
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where, for z € X and g € G, the symbol z9 denotes the image of (z,9) € X x G
under this function.

For every g € G, the mapping 7y : X — X defined by x — 29 is a permutation
of X. The mapping ¢ : g — 7, defines a homomorphism from G to Sym(X), this
is called the permutation representation of G induced by the action. The kernel
Ker(p) ={g € G|29 =z, x € X} is also called the kernel of the action, and if this
is trivial then the action is called faithful.

For an element = € X, we denote by z¢ the orbit of z under G, and by G, the
stabilizer of x in G. The set of all orbits under G, or in other words, the set of all
G-orbits will be denoted by Orb(G, X). If the whole set X is a G-orbit, then we
say that G is transitive on X. We say that G is semirequlor on X if G, is trivial
for every element z € X, and that G is regular on X if it is both transitive and
semiregular. The following basic relation holds between orbits and stabilizers (cf.
[18, Theorem 1.4A|):

Lemma 2.3. (The Orbit Stabilizer Property) Let G be a finite group acting on
a finite set X and let x € X. Then |G| = |29] - |G|

For g € G, we define
fix(g) ={zr € X |29 = x}.
The next lemma essentially says that number | Orb(G, X)| of orbits is equal to the
the average number of points fixed by elements of G (cf. [18, Theorem 1.7A]):

Lemma 2.4. (The Orbit Counting Lemma) Let G be a finite group acting on a
finite set X. Then

| Orh(G, X)| = |61;, S |fix(g)]-
geG

Let A C X and define A9 = {292 € A}. Suppose that G is transitive on X.
A nonempty subset A of X is called a block if for each g € G, either A9 = A or
A9 N A = (. It follows from the definition that the whole set X and the singletons
{z}, x € X, are blocks, these are called trivial blocks and any other block is called
nontrivial. We say that G is primitive if it has no nontrivial blocks, otherwise it is
imprimitive. If A is a block for G, then the set § = {AY|g € G} is a partition of
the set X. This partition is called the system of blocks induced by A. The following
theorem is a special case of [18, Theorem 1.5A]:

Theorem 2.5. Let G be a group which acts transitively on a set X, x € X, and
H < G be a subgroup for which G, < H. Then the orbit ™ is a block for G.

Let G be a group acting on a set X and let A be a subset of X. Then the
pointwise stabilizer of A in G is:

Ga={g€eG|29=x,ze A}
and the setwise stabilizer of A in G is:

G{A}:{QGG‘AQZA}.
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We say that A is G-invariant if A9 = A for every g € G. Clearly, A is G-invariant
if and only if it is an union of G-orbits. In this case we can consider the restriction
of the action to A, and denote by G* the image of the latter restriction (note that,
GA < Sym(A)). Two permutation groups G < Sym(X) and H < Sym(Y) are
called permutation isomorphic if there exist a bijection A : X — Y and a group
isomorphism ¢ : G — H such that:

Aa9) = A(2)?9) for all z € X and g € G.

The next theorem is [18, Theorem 1.6A]:

Theorem 2.6. Let G be a group acting transitively on a set X, and let N be a
normal subgroup of G.

(i) The N-orbits form a system of blocks for G.

(i) If A and A’ are two N-orbits, then the permutation groups N® and N2 are
permutation isomorphic.

(i5i) If any point of X is fized by all elements of N, then N lies in the kernel of the
action.

(i) The group N has at most |G : N| orbits. If the index |G : N| is finite, then the
number of N-orbits divides |G : N|.

(v) If G is primitive on X then either N is transitive, or it lies in the kernel of the
action.

2.1.3 The holomorph

The right reqular representation of G is the permutation representations p of G
induced by its action on itself by multiplying from the right, i. e., g” :  — xg for all
g,x € G. The image of p will be denoted by Giighi. The left reqular representation
of GG is the permutation representations A of G induced by its action on itself defined
by ¢ :  — ¢ 'z for all g,z € G. The image of A will be denoted by Gie.

Now, the product ¢*g” maps an element z in G to the conjugate g~ 'zg, so g*g”
is equal to the inner automorphism of G induced by g. Consequently,

< Glef‘m AUt(G) > = < Grighta Aut(G) >

This group is called the holomorph of G, and it is denoted by Hol(G). Moreover, if
a € Aut(G) and g € G, then a~!g°a maps an element = of G to (xo‘flg)o‘ = xg“.
Consequently, a~!'g?a = (g®)?, and thus Ghight <Hol(G). Since the group Giignt is
regular, Gright VAut(G) is trivial, and we can write Hol(G) as the semidirect product

HOI(G) = Gright bl Aut(G).

Notice that, the holomorph Hol(Z,,) coincides with the group AGL(1, n) defined
in page 7.
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2.2 Graphs

In this thesis every graph will be finite and simple. For graph theoretical terms not
defined below we refer the reader to [27].

2.2.1 Action of groups on graphs

For a graph I', we denote by V(T'), E(T'), A(T') and Aut(T") its vertex set, edge set,
arc set and full automorphism group, respectively. An edge {u,v} € E(I") will be
also written as uv, and the ordered pairs (u,v) and (v,u) will be called the arcs of
I' induced by the edge uv. For a vertex v € V(I'), we let Np(v) denote the set of all
vertices adjacent to v. In what follows we also use the terms cubic and tetravalent,
respectively, for a regular graph of valency 3 and 4, respectively.

We say that I' is vertex-transitive, edge-transitive and arc-transitive, respectively,
if Aut(T") acts transitively on the vertex set V(I'), edge set E(I') and arc set A(T),
respectively. A k-arc of a graph I' is a sequence of k + 1 vertices, such that any
two consecutive vertices are adjacent, and with any repeated vertices being more
than 2 steps apart. More formally, it is an ordered (k + 1)-tuple (vg,v1,...,v) of
vertices of I' such that, for every i € {1,...,k}, v;_1 is adjacent to v;, and for every
ie{l,...,k—1}, vi1 # viy1. Let G < Aut(I"). Then the graph I is called (G, k)-
arc-transitive ((G,k)-arc-regular) if G is transitive (regular) on the set of k-arcs of
I'. If G = Aut(T'), then a (G, k)-arc-transitive ((G, k)-arc-regular) graph is simply
called k-transitive (k-regular).

2.2.2 Connected arc-transitive cubic graphs

In this subsection we review some results on connected arc-transitive cubic graphs.
Perhaps the most important among these was proved by Tutte in 1947:

Theorem 2.7 (Tutte |74]). Every connected arc-transitive cubic graph is k-regular
for some k < 5.

In this thesis we will occasionally need information about connected arc-transitive
cubic graphs of small order. For this purpose we use the catalogue [14, Table| due
to Conder and Dobcsanyi which contains all such graphs of order up to 768 (let us
remark that, this has completed and extended the earlier list of these graphs up to
512 vertices which was compiled by Foster [26]). For an update of the catalogue |14,
Table|, we refer to the homepage of Marston Conder [13]. Following [14], we denote
by FnA, FnB, ..., etc. the connected arc-transitive cubic graphs on n points, and
simply write F'n if the graph is uniquely determined by n.

We will use the following description of connected arc-transitive cubic graphs of
girth 6:

Theorem 2.8. Let I' be a connected arc-transitive cubic graph of girth 6. Then one
of the following holds:

(i) T is 1-reqular, and Aut(I') contains a regular normal subgroup isomorphic to
the generalized dihedral group Dih(L), where L = Zypy, X Ly, v = 3°p7* - - - pit,
r>3andr>11 ifm=1, s € {0,1}, and every p; = 1(mod 3).
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(11) T is 2-regular, and T' = GP(8,3), or Aut(T") contains a reqular normal subgroup
isomorphic to the generalized dihedral group Dih(L), where L = Zyp, X L,
re{1,3}, m>1, and if r =1, then m # 3.

(111) T is 3-regular, and T' = F18 (the Pappus graph) or GP(10,3) (the Desargues
graph).
(i) T is 4-reqular, and T' = F14 (the Heawood graph).

In fact, part (i) is deduced from [47, Theorem 1.2|, part (ii) from [47, Theorem 1.1],
and parts (iii)-(iv) from [24, Corollary 6.3] (see also [15, Theorem 2.3]).

2.2.3 Normal quotients, covers and voltage graphs

Let T be an arbitrary graph and G < Aut(I') which is transitive on V(I'). For a
normal subgroup N < G which is not transitive on V(I'), the normal quotient T'y is
the graph whose vertices are the N-orbits on V(I'), and two N-orbits A; and Aj
are adjacent if and only if there exist vertices v1 € Ay and v € Ag such that vy is
adjacent to v in I'.

Example 2.9. Let I' be the graph on 15 vertices shown on Fig. 2.1.

Figure 2.1: The graph I' (left) and its normal quotient I'x (right).

It is easily seen that I' has an automorphism group G = Z;5 which is regular on
V(I'). Now, take N to be the subgroup of G of order |[N| = 3. Then N <G, and
the normal quotient I'y is isomorphic to the 5-cycle (see Fig. 2.1, where each colour
represents one N-orbit on V(I')). O

Let T be a finite simple graph and K be a finite group whose identity element is
denoted by 1x. For an arc z = (w,w') € A(T') we set 271 = (w',w). A K-voltage
assignment of T is a mapping ¢ : A(I') — K with the property that ((z~!) = ((z)~*
for every x € A(T"). The values of ( are called voltages and K is called the voltage
group. Voltages are naturally extended to a directed walk W = (w1,...,wy) by
letting ¢(W) = H?z_ll C((wj,wiy1)). Fix a spanning tree T of I'. Then every edge
not in E(T) together with the edges in E(T") span a unique circuit of I'; and we shall
refer to the circuits obtained in this manner as the base circuits of I' relative to T.
The K-voltage assignment ( is called T-reduced if ((z) = 1x whenever z is an arc
belonging to A(T).
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The woltage graph I' x¢ K is defined to have vertex set V(I') x K, and edge set
E( x¢ K) = {(w,k)(w',g(x)k) | z = (w,w') € A(T) and k € K} (2.1)

The voltage group K induces an automorphism group of I' x; K through the
action defined by

(w, ) = (w,lk), w e V(T') and k,l € K.

We denote k the permutation of V(I') induced by k with respect to the above action,
and let K = {k: ke K}. Let g € Aut(T X¢ K) such that it normalizes K. This
implies that, if (w,k) € V(I x¢ K) and (w, k)? = (w', k'), then w' does not depend
on the choice of k € K, and the mapping w — w’ is a well-defined permutation of
V(T'). The latter permutation is called the projection of g which belongs to Aut(T).
On the other hand, we say that an automorphism of Aut(T") lifts to an automorphism
h € Aut(I" x¢ K) if it is equal to the projection of h. The following “Lifting Lemma”
is a special case of |59, Theorem 4.2|:

Theorem 2.10 (Malnic [59]). Let I x¢ K be a connected voltage graph, where K is
an abelian group, and ¢ is a T-reduced K-voltage assignment. Then o € Aut(L") lifts
to an automorphism of I' x¢ K if and only if there exists some o, € Aut(K) such
that for every directed base circuit C relative to T, 0, (¢(C)) = ¢(C9).

For more information on voltage graphs the reader is referred to |28, 59].

2.2.4 Cayley graphs and the CI-property

Let G be a group and S C G\ {l¢}. The Cayley graph Cay(G, S) is the graph whose
vertex set is G and arc set is {(z, sz) | * € G, s € S}. Observe that, if S = S~!, then
Cay(G, S) is in fact an undirected graph. By definition, Cay(G, S) has out-valency
|S], and it is connected if and only if (S) = G, i. e., S generates G. In general,
Cay((5),S) is a connected component of Cay(G,S), and Cay(G, S) is isomorphic
to the union of |G : (S)| disjoint copies of Cay((S),S). For every Cayley graph
Cay(G, S), the group Grigne (see Subsection 2.1.3) acts as an automorphism group
of the graph, implying that Cay(G,S) is vertex-transitive. In fact, Sabidussi [71]
characterized Cayley graphs over a group G as those (di)graphs whose automorphism
groups contain a regular subgroup isomorphic to G.

A fundamental problem about Cayley graphs is the so called isomorphism prob-
lem, that is, given two Cayley graphs Cay(G, S) and Cay(H,T) determine whether
or not Cay(G,S) = Cay(H,T). It follows quickly from the definition that for any
automorphism « € Aut(G), the graphs Cay(G,S) and Cay(G, S*) are isomorphic,
namely, « induces an isomorphism between these graphs. Such an isomorphism is
also called a Cayley isomorphism. In 1967, Adam [1] conjectured that two Cayley
graphs over the cyclic group Z, are isomorphic if and only if there is a Cayley iso-
morphism which maps one to the other. Soon afterwards, Elpas and Turner [22]
found the counterexample shown in Fig. 2.2. The graphs Cay(Zs,{1,2,5}) and
Cay(Zs,{1,6,5}) are isomorphic but there is no Cayley isomorphism between them.
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Figure 2.2: The Cayley graphs Cay(Zs, {1,2,5}) and Cay(Zs, {1,6,5}).

This also motivated the following definition. A Cayley graph Cay(G,S) has
the Cl-property (for short, it is a Cl-graph) if for any Cayley graph Cay(G,T),
Cay(G,S) = Cay(G,T) implies that T = S® for some a € Aut(G). A group G is
called a DCI-group if every Cayley graph over G is a Cl-graph, and it is called a CI-
group if every undirected Cayley graph over G is a Cl-graph. Finite DCI-groups and
Cl-groups have attracted considerable attention over the last 45 years. In [61, 62],
Muzychuk gave a complete classification of cyclic Cl-groups and DCI-groups.

Theorem 2.11 (Muzychuk |61, 62]).

(i) A cyclic group of order n is a DCI-group if and only if n = k, 2k or 4k where
k is an odd square-free number.

(i) A cyclic group of order n is a Cl-group if and only if either n € {8,9,18} or
n =k, 2k or 4k where k is an odd square-free number.

The best list of possible DCI-groups has been derived from the works of Li et al.
[56, 57]. Before we recall this list, we need one more definition. Let M be an abelian
group of odd order for which all Sylow subgroups are elementary abelian, and let
n € {2,3,4,8} be such that ged(|M|,n) = 1. Now, let

E(M,n) = E x (2) (2.2)

such that z is of order n, and if n is even then z inverts all elements of M, that is,
x? = 7! for all x € M; while if n = 3 then 2% = 2! for all x € M, where [ is an
integer satisfying [> = 1(mod exp(M)) and ged(I(I — 1),exp(M)) = 1.

Theorem 2.12 (Li, Praeger and Xu [53]). If G is a DCI-group, then all Sylow
subgroups of G are elementary abelian or isomorphic to Z4 or Qg. Moreover, G =

UxV, where gcd(|U|, |V|) = 1, U is abelian, and V = 1,Qs, Ay, E(M,2) or E(M,4).

The best list of Cl-groups is due to Li et al. [54]. It should be mentioned that
their proof was incomplete, but this was corrected recently by Dobson et al. [20]:

Theorem 2.13 (Li, Lu, Palfy [54]). Let G be a Cl-group.
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(a) If G does not contain elements of order 8 or 9, then G = Hy x Hy x Hs, where
the orders of Hi, Ho and Hj3 are pairwise coprime, and

(i) Hi is an abelian group, and each Sylow subgroup of Hy is elementary abelian
or Zy;

(1) Hy is one of the groups 1, E(M,2), E(M,4) or Qs;
(113) Hs is one of the groups 1, E(M,3) or Ay.

(b) If G contains elements of order 8, then G = E(M,8) or Zs.

(¢c) If G contains elements of order 9, then G is one of the groups Zg X Zao,Zg X
74,73 x Ly or Lo x 75 with n < 5.

However, the problem of determining whether or not a given group in the the-
orems above is really a DCI- or Cl-group is difficult. For several results in these
directions we refer the reader to the survey [53].

2.3 Cayley objects and the Cl-property

In [5], Babai extended the Cl-property of graphs to the Cl-property of arbitrary
relational structures (in fact, he used the language of categories). Given a finite set
X, we define Rel(X) to be the set of all relations on X, and by a relational structure
on X we simply mean an arbitrary subset R C Rel(X). It should be mentioned that
this definition includes such classical combinatorial objects as graphs, block-designs,
configurations and codes.

The symmetric group Sym(X) acts naturally on the set Rel(X ), namely, given a
k-ary relation p and g € Sym(X) we set

pP=A{(al, ) | (. mk) € p}

For any ¢ € Sym(X) and R C Rel(X), we set RI = {p? | p € R}. Two relational
structures R and S are isomorphic if there exists g € Sym(X) such that RY = S.
The automorphism group of R, denoted by Aut(R), consists of all isomorphisms
from R to itself. A relational structure with point set being equal to a group G is
called a Cayley object of G, if Aut(R) contains Gight. In particular, it is called cyclic
if G is a cyclic group.

Now, the isomorphism problem for Cayley objects reads as follows: given two
Cayley objects R and S, how do we check whether they are isomorphic or not? Let
K be a class of Cayley objects of G, and let X € K. Following [5], we say that
X has the Cl-property (for short X is a Cl-object) for G in the class K if, given
any Cayley object Y € K, the isomorphism X = Y implies that there exists some
automorphism of G which maps X to Y. The group G is a Cl-group with respect to
KC if every Cayley object of G in K has the Cl-property. This generalizes the concept
of a DCI- and Cl-groups introduced in the previous section. In this context G is
a DCl-group is equivalent to saying that it is a Cl-group with respect to digraphs.
Probably, the first result about Cl-property of combinatorial objects is due to Bays
[7] and Lambossy [48]|, who proved that the cyclic group Z,, p is a prime number,
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has the Cl-property with respect to Steiner triple systems. Babai [5] generalized the
Bays-Lambossy Theorem to any class of Cayley objects:

Theorem 2.14 (Babai [5]). Z, is a Cl-group with respect to any class of Cayley
objects.

In fact, this follows directly from the following lemma, which is typically the
starting point when one studies Cl-graphs:

Lemma 2.15 (Babai [5]). The following are equivalent for every Cayley object X of
G:

(i) X is a Cl-object.

(i1) Given a permutation m € Sym(G) such that TF_lGrightﬂ' < Aut(X), Gright and
Tr_lGrightw are conjugate in Aut(X).

The strongest result was obtained by Palfy [65]. Let ¢ denote Euler’s totient
function.

Theorem 2.16 (Palfy [65]). A finite group G has the CI-property with respect to all
relational structures if and only if G = Z,, with ged(n,p(n)) =1, or |G| = 4.

In Chapter 7, we will consider the Cl-property of cyclic groups with respect to
balanced configurations. In particular, we will be interested in the special case when
the number of points is either a product of two distinct primes or a prime power. We
will make use of the results of Huffman [31] about isomorphic cyclic combinatorial
objects on pq points, where p, ¢ are distinct primes. In order to recall these results
it is necessary to set a few definitions.

Let Obj(Z,) denote the set of all cyclic objects of the group Z,. Given a class
IC of cyclic objects in Obj(Z,,), a solving set for K is a set A of permutations of Z,
satisfying the following property (see [63]):

(VX € K) (VY € Obj(Zy,) (X 2Y <= X7 =Y for some o € A).

Let p and g be distinct primes. In fact, for every cyclic object X € Obj(Zy,),
a solving set for X was determined by Huffman [31]. For j € Z; , let u; be the
permutation p; :  + jz. For i € {0,1,...,q¢ — 1}, define the permutation 7; by

Ti - L +—

{x—i—q if x =i(mod q)

x otherwise,
and if in addition j € Z;, with j = 1(mod g), then define the permutation p; ; by
jx if x =i(mod ¢
Hij - & = .( )
x  otherwise.

For the next two theorems suppose in addition that ¢ divides p—1. Furthermore,
fix an element a € Zj, of order p — 1 for which a = 1(mod ¢), and put b = aP=1/a,
The next result is [31, Theorem 1.1]:
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Theorem 2.17 (Huffman [31]|). Let n = pq, where p and q are primes such that q
divides p— 1, and let X € Obj(Z,,) such that p, ¢ Aut(X), where b is defined above.
Then Z;, is a solving set for X.

The powers a,a?,..,aP are pairwise distinct modulo p. Let a be the positive

integer in {1,2,...,p} such that a® = —s(mod p), where s = (p — 1)/q. For i €
{0,1,...,q— 1}, define v; = H?;é f4j qop—ii- Notice that, vg = pea. The next theorem
is [31, Theorem 1.2] which, for our convenience, is formulated slightly differently.

Theorem 2.18 (Huffman [31]|). Let n = pq, where p and q are primes such that q
divides p—1, and let X € Obj(Z,,) such that p, € Aut(X) and 19 ¢ Aut(X), where b
15 defined above. Let B be the smallest positive integer such that uf € Aut(X). Then
X admits a solving set A in the form:

q—1
A= {M; vt 0<i<B 0<jk<q-1, [[#""" e Aut(X)}. (2.3)
=0

Remark 2.19. Theorems 2.16, 2.17 and 2.18 imply that every cyclic object in Obj(Zy,)
admits a solving set whose size is at most ¢(n) if n = pg. The same result was
obtained by Huffman et al. [32] in the case when n = p?, and finally, this was proved
by Muzychuk [63] to be the case for any number n.
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Chapter 3

BClI-graphs and BCI-groups

In this chapter we introduce the main concepts of the thesis: bi-Cayley graphs,
BClI-graphs and BCI-groups.

A finite, simple and undirected graph T is called a bi-Cayley graph over a group
G if it has a semiregular automorphism group, isomorphic to G, which has two orbits
in the vertex set. Given such I, there exist subsets R, L, S of G such that R~ = R,
L'=1L,16¢ RUL, and I 2 BCay(G, R, L, S), where the latter graph is defined
to have vertex set G x {0, 1}, the right part G x {0} = {(g,0) | g € G} and the left
part G x {1} = {(g,1) | g € G}; and the edge set consists of three sets:

{(z,0)(y,0) | yz=! € R} (right edges),
{(z,1)(y,1) | ya~=' € L} (left edges),
{(2,0)(y,1) | yo~=t € S} (spoke edges).

In what follows we will also refer to BCay(G, R, L, S) as a bi-Cayley representation
of I As an example, we mention the well-known class of generalized Petersen graphs
introduced by Coxeter [16], the name was given by Watkins [75]. These are the
same as the bi-Cayley graphs BCay(Z,, {1, —1},{k,—k},{0}), commonly denoted
by GP(n,k). Fig. 3.1 shows the graph GP(12,5) also known as the Nauru graph.

Bi-Cayley graphs are natural generalizations of Cayley graphs, they have at-
tracted considerable attention in the last two decades. Unfortunately, the term
“bi-Cayley” is not commonly accepted, they are also known as semi-Cayley graphs
[17, 49], 2-Cayley graphs [4], referring to the two orbits of the semiregular group G,
and Haar graphs |30] in the case when G is abelian and L = R = {). In this thesis
we are interested exclusively in bi-Cayley graphs having only spoke edges. Formally,
these are the graphs BCay(G, R, L, S) for which L = R = (). From now on we use
the simplified notation BCay(G, S) for the graph BCay(G, 0,0, S).

3.1 BClI-graphs

Let BCay(G, S) be a bi-Cayley graph of G, 0 € Aut(G) and g € G. The graphs
BCay(G, S) and BCay(G, gS?) are isomorphic, which can be easily checked by using

15
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{3,0}

Figure 3.1: The generalized Petersen graph GP(12,5).

the mapping ¢ : G x {0,1} — G x {0,1} defined by

(2.0} = (z7,0) ifi=0
’ (ga°,1) ifi=1.

Clearly, ¢ is a bijection. Furthermore,

(2,0)(y,1) € E(BCay(G,S)) <= yz 'leS
—= gy (a%) " €gS°
— (2,0)7(y,1)¥ € E(BCay(G,95%)),

hence it is also an isomorphism from BCay(G, S) to BCay(G, ¢S?). This isomor-
phism is called a bi- Cayley isomorphism. However, it is not always true that whenever
two bi-Cayley graphs are isomorphic, there is a bi-Cayley isomorphism which maps
one to the other.

Example 3.1. It is easy to see, by simply looking at their picture in Fig. 3.2, that
the graphs BCay(Zs, {0,1,2,5}) and BCay(Zs, {0,1,6,5}) are isomorphic.

On the other hand, on can directly check that there are no a € Z§ and b € Zg
for which the mapping x + az + b maps the set {0,1,2,5} to the set {0,1,6,5}.
Therefore, BCay(Zs, {0,1,2,5}) is not a BCI-graph. O

This motivates the following definitions which were first introduced by Xu et al.
[77].
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Figure 3.2: BCay(Zs, {0,1,2,5}) (top) and BCay(Zs, {0,1,6,5}) (bottom).

Definition 3.2.

1. A bi-Cayley graph BCay(G,S) is called a BCI-graph if for any BCay(G,T),
BCay(G,T) = BCay(G, S) implies that T' = ¢S for some g € G and 0 € Aut(G).

2. A finite group G is called an m-BCI-group if every bi-Cayley graph over G of
degree at most m is a BCI-graph, and it is called a BCI-group if it is an |G|-BCI-

group.
The following simple lemma is useful for constructions of non-BCl-graphs:

Lemma 3.3. If BCay(G, S) is a BCI-graph, then there exist g € G and o € Aut(Q)
which satisfy S~1 = ¢S°.

PROOF. In view of Definition 3.2, it is enough to prove that BCay(G, S) is isomorphic
to BCay(G, S71). Define the mapping ¢ : G x {0,1} — G x {0,1} by (x,0) — (z,1)
and (z,1) — (z,0),z € G. Now, (z,0)(y,1) € E(BCay(G, S)) if and only if yz~=* €
S, and this happens exactly when xy~! € S~!, or equivalently, (x,0)%(y,1)? €
E(BCay(G,S™1)). O

= -

We remark that, Lemma 3.3 can be applied only to non-abelian groups. Namely,
if G is abelian, then for every subset S of G, the condition S~! = ¢S° holds by
choosing g = 15 and o to be the isomorphism o :  + 27!, 2 € G. As an illustration
of Lemma 3.3, we show below that there is no the dihedral BCI-group of order larger
than 12.

Proposition 3.4. The dihedral group Doy, is not a BCI-group if n > 6.

PROOF. Let n > 4, G = Dy, = {(a,b | a® = b* = 1,bab = a™ ') and let S =
{1,a,a3,b,ab, a®b,a*b}. Suppose that the graph BCay(G,S) is a BCl-graph. By
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Lemma 3.3, there is o € Aut(Dsy,) and g = a't’ € Dy, where i € Z,, and j € {0,1},
such that a'd?S7 = S~1. Recall that Aut(Day,) = {05+ : s € Z%, t € Zy,} where

ks ;
kpmyose _ | @ if m=0
(CL b ) - { akstty if m=1.

Notice that j = 0 because the set S contains 4 involutions from Dy, \ (a) and
3 elements of {a). Then a*{1,a, a3 b,ab,a?b,a*b}?st = {1,a=, a=3,b,ab,a’b,a*b}.
Thus

{ai’as+i’a3s+i} — {1,CL_1,CL_3}
{a"Th, a5t o' T2 oAy = b ab, a®b, a’b}.

An exhaustive case-by-case analysis gives that these only hold when n = 5, ¢ = 0,
s=—landt=1,orn=6,=0,s=—1and t = 2. O

3.2 A Babai-type lemma

For a group G and an element g € G, let R(g) be the permutation of G x {0,1}
defined by
(2,1)9) = (2g,1) for every z € G and i € {0,1}.

We set R(G) = {R(g) : g € G}. Obviously, R(G) < Aut(BCay(G,S)) for every
bi-Cayley graph BCay(G, S). The group R(G) is semiregular with orbits G x {0}
and G x {1}. In what follows we will denote by S(Aut(BCay(G, 5))) the set of all
semiregular subgroups of Aut(BCay(G, S)) whose orbits are G x {0} and G x {1}.

In the following lemma we characterize the BCI-graphs by group theoretical terms
in the same way as the Cl-objects are characterized in Lemma 2.15. The proof below
is from our paper [41]. It should be mentioned that this result was also derived by
Arezoomand and Taeri in [2, Theorem CJ.

Lemma 3.5. The following are equivalent for every bi-Cayley graph T' = BCay (G,
S).

(i) BCay(G,S) is a BCI-graph.

(i4) The normalizer Ny (R(G)) is transitive on V(I'), and every two subgroups
in S(Aut(I")), isomorphic to G, are conjugate in Aut(T).

PrROOF. In order to simplify notation, we will write below (G,0) for G x {0} and
(G,1) for G x {1}.

We start with the part (i) = (i7). Let X € S(Aut(T")) such that X = G. We
have to show that X and R(G) are conjugate in Aut(I'). Let ¢ € {0,1}, and set
X&) and R(G)(E for the permutation groups of the set (G, i) induced by X and
R(G) respectively. The groups X (%% and R(G)(“? are conjugate in Sym((G, 1)),
because these are isomorphic and regular on (G,4). Thus X and R(G) are conjugate
by a permutation ¢ € Sym(G x {0, 1}) such that (G, 0) is ¢-invariant. We write X =
®R(G)¢~ L. Consider the graph I'?, the image of I under ¢. Then R(G) = ¢ 1 X ¢ <
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Aut(T'?). Using this and that (G, 0) is ¢-invariant, we obtain that I'? = BCay(G, T)
for some subset ' C G. Then I' = BCay(G,T), and by (i), T' = gS® for some g € G
and a € Aut(G). Define the permutation o of G x {0,1} by

©0)  ifi=0
iy = {0
(gz, 1) ifi=1.

Then,

(z i)aflR(h)a _ {((xa h)%,0) = (xh®,0) = (an)R(ha)
/ (™) 1), 1)7 = (gl(g™ ) ) 1) = (, 1RO,

This shows that o' R(h)o = R(h®) if h € G. Thus o normalizes R(G). The vertex
(x,0) of BCay(G,S) has neighbourhood (Sz,1). This is mapped by o to the the
set (gS%r® 1) = (T, 1). This proves that ¢ is an isomorphism from I' to I'?,
and in turn it follows that, I'? = I'?, ¢o~! € Aut(I'), and thus ¢ = po for some
p € Aut(T). Finally, X = ¢R(G)p~! = poR(G)o~Lp~! = pR(G)p~ !, i. e., X and
R(G) are conjugate in Aut(I").

In order to prove that the normalizer Ny ¢y (R(G)) is transitive on V(I'), it is
sufficient to find some automorphism 7 which switches (G,0) and (G, 1) and normal-
izes R(G). Observe that BCay(G, S) =2 BCay (G, S~ 1), where S7! = {s7!: 5 € S}.
Then by (i), S7! = ¢S“ for some g € G and a € Aut(G). We claim that the
permutation of G x {0,1} defined below is an appropriate choice for such an n:

()7 = (z*,1)  ifi=0
’ (gz®,0) ifi=1.

Clearly, n is a bijection from G x {0,1} to itself. Let {(x,0), (sz,1)} be an edge
of I' and suppose that z® = y € G. {(,0),(sz, )} = {(x,0)", (sz,1)"} =
{(z%,1), (g(sz)*,0)}. Since S~1 = ¢S, g5 = s’ € S71, and {(,0), (sz,1)}" =
{(y,1),(s'y,0)} is an edge of I'. In the other hand, suppose that {(z,0), (sz,1)}" =
{(y,0), (s'y, 1)} for some z, y, s € G and s’ € S. This implies that z® = s’y and
g5z =y. Then gs® = (s/)71, 5% € g718~! = §% and so s € S. Therefore, 1 is an
automorphism of I'. Now, for R(h) € R(G),

1

(2,07 0 = (g™ 4)™ B, 1) = (g((g™ )" 1), 0) = (, 07,

while

(z, 1) B0 — (207 R 0)1 = (zh®, 1) = (w, 1)7H),

This proves that n normalizes R(G).

We turn to the part (i4) = (¢). Let IY = BCay(G,T') such that IV =2 T'. We have
to show that T' = ¢gS® for some g € G and a € Aut(G).

We claim the existence of an isomorphism ¢ : I' — IV for which ¢ : (15,0) —
(1g,0) and (G,0) is ¢-invariant (here ¢ is viewed as a permutation of G x {0, 1}).
We construct ¢ in a few steps. To start with, choose an arbitrary isomorphism
¢1: ' — I". Since the normalizer Naur)(R(G)) is transitive on V(I'), there exists
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p € Nawyr)(R(G)) which maps (1¢,0) to (lg,O)‘f’fl. Let ¢2 = pp1. Then ¢ is an
isomorphism from I to IV, and also ¢3 : (1¢,0) — (1g,0). The connected component
of I" containing the vertex (1¢, 0) is equal to the induced subgraph I'[(H,0)U(sH, 1)],
where s € S and H < G is generated by the set s~1S. It can be easily checked that

T'[(H,0)U (sH,1)] = BCay(H,s™19).

Similarly, the connected component of I” containing the vertex (1g,0) is equal to
the induced subgraph I''[(K,0) U (tK,1)], where t € T and K < G is generated by
the set t~17, and

I'[(K,0) U (tK,1)] = BCay (K, t'T).

Since ¢2 fixes (1¢, 0), it induces an isomorphism from I'[(H,0)U(sH, 1)] to T'[(K,0)U
(tK,1)]; denote this isomorphism by ¢3. It follows from the connectedness of these
induced subgraphs that ¢3 preserves their bipartition classes, moreover, ¢3 maps
(H,0) to (K,0), since it fixes (1¢,0). Finally, take ¢ : I' — I to be the isomorphism
whose restriction to each component of I' equals ¢3. It is clear that ¢ : (15,0) —
(1¢,0) and (G, 0) is ¢-invariant.

Since R(G) < Aut(I"), pR(G)¢p~! < Aut(T'). The orbit of (15,0) under pR(G)p~!
is equal to (G, 0)¢”" = (G, 0), and hence pR(G)p~* € S(Aut(I)). By (ii), pR(G)p~ ! =
0 R(G)o for some o € Aut(T). Since Npyyry(R(G)) is transitive on V(I), o can
be chosen so that o : (1g,0) — (1g,0). To sum up, we have an isomorphism
(0¢) : T — I which fixes (1¢,0) and also normalizes R(G). Thus (0¢) maps (G, 1)
to itself. Consider the permutation group (R(G),0¢)(@V) of (G, 1) obtained by re-
stricting the group (R(G),0¢) to (G, 1). It follows that this is permutation isomor-
phic to the holomorph Hol(G) (see [18, Exercise 2.5.6]). Therefore, there exist g € G
and a € Aut(G) such that (0¢) : (z,1) — (gz*,1) for all x € G. The isomorphism
o¢ fixes (1g,0) and it maps the neighbourhood Np((1g,0) to the neighbourhood
Nr/((1g,0), i. e., (T, 1) = (S,1)7? = (¢S, 1), from which T = gS®. This completes
the proof of the theorem. O

Let us remark that the condition on the normalizer Ny (R(G)) cannot be
omitted from Lemma 3.5(ii). To see this we give the following example.

Example 3.6. We consider the bi-Cayley graph I' = BCay(G, S), where
G=(a,bla® =b*=1,b"tab=10a?) and S = {1,a,b}.

The group G is the unique Frobenius group of order 20, and we find by the help
of the computer package MAGMA [11] that I' is arc-transitive (see Appendix A.2).
In fact, I is the unique arc-transitive cubic graph on 40 points (see [14]). We also
compute that any two subgroups in S(Aut(T")), isomorphic to G, are conjugate in
Aut(T"). However, we show below that S* # ¢gS~! for any g € G and a € Aut(G),
hence by Lemma 3.3, I' is not a BCI-graph.

To the contrary assume that S* = gS~! for some g € G and o € Aut(G). It
follows at once that g € S. As no element in bS™! = {b,ba~!,1} is of order 5, g # b.
Since every automorphism of G is inner, o equals to the conjugation by some element
c€@G. Let g=1. Then S* = ¢S~! = S7!, hence a° = a® = ¢! and b* = b* = b~ L.



BCl-graphs and BCI-groups 21

From the first equality ¢ € Cg(a)b? = (a)b?. Thus ¢ = a'b? for some i € {0,...,4}.
Plugging this in the second equality, we get b2a~ba’b?* = b~!, hence a>b = b,
which is impossible. Finally, let g = a. Then S® = gS~! = aS~!, hence a® = a® = a
and b¢ = b* = ab~!. The first equality gives that ¢ = a’ for some i € {0,...,4}.
Plugging this in the second equality, we get a~‘ba’ = ab™!, hence a?b = ab™!, which
is again impossible. g

3.3 m-BCI- and BCI-groups

The study of m-BCl-groups was initiated in [77]. In this paper the authors considered
the 1-BCI- and the 2-BCI-groups and derived some basic properties of BCI-graphs.
Clearly, for every group G and any two elements a and b € G, the bi-Cayley graphs
BCay(G,{a}) and BCay(G, {b}) are isomorphic, since the edge set of both graphs
consists of a perfect matching. In the other hand, we have that ga = b, where
g = ba—!. Therefore, every group is a 1-BCI-group.

It turns out that the class of finite 2-BCl-groups coincides with the class of finite
groups in which any two elements of the same order are either fused or inverse-fused.
The formal definition is given below.

Definition 3.7. A group G is called a FIF-group if for any two elements a and b of
the same order there is an automorphism o of G such that a® = b or a® = b~ L.

Theorem 3.8. A finite group G is a 2-BCIl-group if and only if G is a FIF-group.

PRrROOF. Suppose first that G is a 2-BCl-group. Let a,b € G be of the same order,
say m. Consider the graphs BCay(G, {1,a}) and BCay(G, {1,b}) (here 1 denotes
the identity element of ). It is easily seen that both graphs are isomorphic to |G|/m
disjoint copies of the the cycle of length 2m. Now, since G is a 2-BCI-group, there
is an automorphism o of G and an element g € G such that g{1,a}? = {1,b}. Thus
ga® = b or ga® = 1. In the first case, we have that g = 1 and a® = b. For the second
case, g = b and a® = b~!. Therefore, G is a FIF-group.

Now, suppose that G is a FIF-group. Consider the isomorphic graphs BCay (G, S)
and BCay(G, T) such that |S| = |T| = 2. Let us write S = {s1,s2} and T' = {t1,t2}.
It is not hard to show that the isomorphism of the graphs implies that the elements
51_132 and tl_ltg are of the same order in G. Since G is a FIF-group, (31_132)" = tl_ltg
or (s7's2)7 = ty 't holds for some automorphism o of G. Put g = t1(s7)~" in the
first case and g = t2(sJ) ! in the second case. Then in the first case

957 = t1{1,s7 89} = t1{1, 8] 2} = T,
and in the second case
gSU = tg{]., 8;182}0 = tQ{l,t;ltl} = T

Therefore, the group G is a 2-BCI-group. O

The FIF-groups play an analogous rule in the theory of BCI-groups as the F'-
groups in the theory of DCI-groups. By an F-group we mean a group in which any
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two elements of the same order are fused, i.e., one can be mapped to the other by
some group automorphism. In [55], Li and Praeger studied the finite FIF-groups in
details. As the main result, they have derived a relatively short list containing all
possible finite FIF-groups. Here we do not recall this list in full details, only the
description given in [55, Corollary 1.3]. For this result we need to introduce some
further definitions.

A finite group is called homocyclic if it is direct product of cyclic groups of the
same order. Let k > 2 be an integer and let G(k) denote the class of non-abelian
2-groups G such that

e Z(G) =G = ®(G) =75, and Z(G) \ {1} consists of all involutions of G
e G/ is of order 2% or 2%F,

Theorem 3.9 (Li and Praeger [55]). If G is a finite FIF-group then one of the
following holds:

(1) If G is a nonabelian simple group then G is one of the following groups: PSL(2, q)
where g € {5,7,8,9}, PSL(3,4), the Suzuki group Sz(8), and the Mathieu groups
M11 and M23.

(1) If G is nilpotent then each Sylow p-subgroup of G is either homocyclic, Qg, or
a member of G(k) for some k > 2.

(111) If G is solvable then G = A x B with ged(|A|,|B|) = 1 where A is a nilpotent
FIF-group and every Sylow subgroups is cyclic or Qs.

(iv) If G is not solvable then G = A x B where A and B have coprime orders, A is
a solvable FIF-group and B is either one of the simple groups in (i), or SL(2,q)
for q € {5,7,9}, or (C x Sz(8)) X Zssm, where m,s > 1 and C is an abelian
group.

The problem of deciding which groups in the above classes (i)-(iv) are really FIF-
groups is still open (see [55, Problem 1.5]).

Now, we turn to m-BCIl-groups for m > 3. The concepts of an m-BCI- and
BCI-group are relatively new (2007), and thus there are not so many results have
been proved about these groups. Wiedemann and Zieve |76] proved that every cyclic
group Zy is a 3-BCl-group. The particular case when n = pq, p and ¢ are different
odd primes, was done by Xu et al. [77], and the case when n = 2p, p is a prime,
was done by Jin and Liu [34]. Also, Jin and Liu proved that every finite p-group is
a (p — 1)-BClI-group. The Sylow p-subgroups of the 3-BCl-groups were considered
in two papers of Jin and Liu [35, 36]. They showed that a Sylow 2-subgroup of
such a group is either cyclic, or elementary abelian, or Qg; and a Sylow p-subgroup
for an odd prime p is homocyclic. As one of my PhD projects I have proved that
the converse of these statements are also true for nilpotent group; i. e., whenever a
group is a direct product of the aforementioned groups, then it is a 3-BCI-group.
This result is presented in Chapter 5. As for non-solvable groups, Jin and Liu [35]
proved the following theorem:
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Theorem 3.10 (Jin and Liu [35]). The alternating group As is the only finite non-
abelian simple 3-BCI-group.

This theorem was obtained after an analysis of the simple groups listed in The-
orem 3.9(i). In their latest paper [37] on BCI-groups, Jin and Liu have determined
the BCl-groups of order up to 8. These are the following groups:

Zon,n <7, 73, Z3, and Dg.

In the end of this section we mention two very recent results of Arezoomand and
Taeri:

Theorem 3.11 (Arezoomand and Taeri [3]|). Let G be a BCI-group and H be a
characteristic subgroup of G. Then G/H is a BCI-group.

Theorem 3.12 (Arezoomand and Taeri [3]). Every finite BCI-group is solvable.

Both properties hold also for Cl-groups. The Cl-group analogue of Theorem 3.11
was proved by Babai and Frankl [6]; while the CI-group analogue of Theorem 3.12 is
due to Li [50]. It is worth to mention that Dobson and Morris [19] proved that every
quotient of a Cl-group is also a CI-group. The question arises naturally whether this
property is also shared by BCI-groups.

3.4 BCI-groups versus CI-groups

In this section we compare the class of BCI-groups with the class of Cl-groups.

Example 3.1 shows that Zg is not a BCI-group, while it is a Cl-group, see The-
orem 2.11(ii). At present we do not know any BCI-group which is not a CI-group.
Moreover, Arezoomand and Taeri [3] stated the following conjecture:

Conjecture 3.13. Every BCI-group is a Cl-group.

A possible way to settle the conjecture would be to construct non-BCl-graphs
from known non-Cl-graphs. In this direction we have the following proposition.

Proposition 3.14. Suppose that I' = BCay(Z,, S) is a connected bi-Cayley graph
such that for some a € Zn, Aut(') o0y = Aut(I)(4,1). Then the following are equiv-
alent.

(i) BCay(Zy, S) is a BCI-graph.
(11) Cay(Zn, (S —a)\{0}) is a Cl-graph, where S —a ={s—a | s € S}.

PROOF. For sake of simplicity we put A = Aut(T') and A* = Az (0}, i. €., the
setwise stabilizer of Z, x {0} in A. Obviously, X < A% for every group X € S(A).
Observe that, the permutation d of Z,, x {0,1}, defined by d : (x,i) — (—z,1 — 1)
where i € {0,1}, is an automorphism of I'. Moreover, A = (A", d), and d normalizes
R(Zy). Tt follows that the conjugacy class of subgroups of A containing R(Z,)
is equal to the conjugacy class of subgroups of A" containing R(Z;). This also
shows that the normalizer of R(Z,) is transitive on the vertex set. Using these and
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Lemma 3.5, we obtain that BCay(Z,,S) is a BCI-graph if and only if every group
in S(A) is conjugate to R(Z,) in A*.

Let W = {(0,0), (a,1)} and consider the setwise stabilizer Agyy. Since Ay o) =
Aa)s A,0) < Ay By Theorem 2.5, the orbit of (0,0) under Agyyy is a block for
A. Denote this block by A and the induced system of blocks by § (i. e., § = {AY |
g € A}). Denote by c the generator of R(Z,,) acting as

c:(x,i) = (x+1,i), v € Zy,i € {0,1}.

0) and (a, 1), hence

Consider the element g = dc¢® from A. We see that g switches (0,0)
(0,0)49) = W, and so

Agwy = A,0)(g)- Therefore, A = (0,0)*tW} = (0,0)%00{9) =
§={{(z,0),(z+a, 1)} | z€Zy}.

Define the mapping ¢ : § — Zy, by ¢ : {(z,0),(z + a,1)} — z, © € Z,,. Now, an
action of A on Z, can be defined by letting g € A act as

1
9 =2% 9% x €,

For ¢ € A we write g for the image of g under the corresponding permutation
representation, and for a subgroup X < A we let X = {Z | # € X}. In this action
of A the subgroup AT < A is faithful. Also notice that, a subgroup X < AT is
in S(A) if and only if X is a regular cyclic subgroup of A*. In particular, for the
group R(Zy), R(_Zn) = (Zn)right ((Zn)right is the group generated by the translation
x—=x+ 1,z €ZLy).

Pick g € AT and (z,x + s — a) € Zy, X Zy,, where s € S such that s # a. Then g
maps the arc ((z,0), (x+s,1)) to an arc ((y,0), (y+r,1)) for some y € Z,, and r € S.
Since § is a system of blocks for AT, g maps (x + s —a,0) to (y +7 —a,0), and so g
maps the pair (z, z+s—a) to the pair (y, y+r—a). We have just proved that g leaves
the set { (z,z+s—a) | © € Zy,,s € S\{a} } setwise fixed. As the latter set is the arc
set of the Cayley graph Cay(Zy, (S—a)\{0}), AT < Aut(Cay(Z,, (S—a)\{0})). For
an automorphism h of Cay(Z,, (S —a)\{0}), define the permutation g of Z,, x {0,1}
by
(z",0) ifi=0

v €Z,, icf{01).
(z —a)* +a,1) ifi=1, 0.1}

g:(x,é)b—>{

The reader is invited to check that the above permutation g is an automorphism of T".
It is clear that g € AT and § = h; we conclude that AT = Aut(Cay(Z,, (S—a)\{0})).
Now, the proposition follows along the following equivalences:

(1) <= Every group in S(A), isomorphic to Z,, is conjugate
to R(Zy) in AT.
<= Every regular cyclic subgroup of A+ is conjugate to R(Zn) in A+.
—  (i1).

The last equivalence is Lemma 2.15. U
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In order to apply Proposition 3.14, one requires the condition Aut(F)(Op) =
Aut(I') (q,1), which is not easy to check in general. In fact, this condition is equivalent
to saying that setwise stabilizer Aut(F){ZnX{O}} acts equivalently on the right part
Zy, x {0} and the left part Z,, x {1}. Unfortunately, this is not always the case. A
well-known example comes from finite geometry.

Example 3.15. Let PG(d,q) the projective space of dimension d over the finite
field with ¢ elements. The incidence graph I' of the space is the bipartite graph
whose colour classes are identified by the set of points and the set of hyperplanes,
and the edges are defined by the incidences between the points and the hyperplanes.
It is well-known that PG(d, ¢q) admits a cyclic group of automorphisms which acts
regularly on both the points and the hyperplanes (called a Singer subgroup). This
also means that I' is isomorphic to a bi-Cayley graph over the cyclic group Z,,
where n = qdqtll_l. The automorphism group Aut(I') = PT'L(d+ 1, q) X Zo; its colour
preserving subgroup is PI'L(d + 1, g), the full group of automorphisms of PG(d, 2).
The actions of the latter group on the set points and hyperplanes, respectively, are
inequivalent. g

Let BCay(Zy,, S) be an arbitrary bi-Cayley graph. In the above proof we defined
the permutation d of Z, x {0,1} as

d((z,1)) = (—z,1 — ).

It is not hard to check that d is an automorphism of BCay(Z,,S), and that the
group (R(Zy,),d) is isomorphic to the dihedral group Da,. Therefore, BCay(G, S)
is isomorphic to a Cayley graph over Ds,. Moreover, if as a Cayley graph over
(R(Zy,),d), the graph BCay(G, S) is a Cl-graph, then it is a BCI-graph. To deduce
this implication one only needs to observe that the automorphisms of the dihedral
group (R(Zy,),d) act on Z, x {0,1} as follows

(2,0) — (az,0) and (z,1) — (ax + b,1), x € Zy,
where a € Z} and b € Z,,. This argument implies the following proposition.
Proposition 3.16. If Do, is a Cl-group, then Z, is a BCI-group.

We finish our comparison of BCI-groups and Cl-groups by an example showing
that the converse of the above Proposition 3.16 does not hold. In other words,
the problem of classifying dihedral Cl-groups is not equivalent to the problem of
classifying cyclic BCI-groups.
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Example 3.17. Let I' = BCay(Z10, {0, 1, 3,4}), see Fig. 3.3.

(9

}Z

(97
(8,0)

0 (0,1)(0,0) 1,

1)

Xl‘

70)

(81)
(7,0)
(™1

(6,0)

(

6

) " " (4,

)1 (5,0)(5,1)

2,1)
(2,0)
(3.1)

(3,0

(4.1)

0)

Figure 3.3: The bi-Cayley graph BCay(Z10, {0, 1,3,4}).

It follows that I' is isomorphic to two Cayley graphs over the dihedral group Dag
see Fig. 3.4, where Dyg is given by the presentation (a,b | a'® = b> = 1,bab = a™1).

9
a® b ! ab ba? “ ! ba*

o ba® ba®

" é; >>E @X j@ >>E @&
a8 ba? a? a®
bad a? a3 al
a’ bada’ b
ba” 7' a®  ba? 7' ba

ba*

a7

a

a2

ba” bal

Figure 3.4: The graphs Cay(Dag, {b, ba, ba®, ba*}) and Cay (D2, {a,a®,b,ba}).

Is is easy too see that there is no o € Aut(Dgg) such that {b,ba,ba>, ba*}’ =
{a,a®,b,ba*}, and therefore, Dyg is not a Cl-group. On the other hand, we checked
by the help of MAGMA that Zig is a BCI-group.

0



Chapter 4

Isomorphic tetravalent cyclic
bi-Cayley graphs

By a cyclic bi-Cayley graph we simply mean a bi-Cayley graph over a cyclic group.
In this chapter we consider the isomorphism problem for cyclic bi-Cayley graphs, i.
e., given two such graphs, find effective sufficient and necessary conditions for their
isomorphism.

Wiedemann and Zieve [76] proved that Z, is a 3-BCI-group, and so the isomor-
phism can be tested by bi-Cayley isomorphisms if the valency is at most 3. Also,
we have seen in Example 3.1 that Z, is not a 4-BCl-group, hence bi-Cayley isomor-
phisms are not enough for tetravalent graphs in general (tetravalent means that the
graph is of valency 4). In this chapter we deal with the tetravalent graphs by proving
the following theorem:

Theorem 4.1. Two connected bi-Cayley graphs BCay(Z,,, S) and BCay(Z,,,T) with
|S| = |T'| = 4 are isomorphic if and only if there exist aj,ay € Z) and by, by € Zy,
such that

(1) a1S +by =T; or

(1) a1S+ b1 = {0,u,v,v+m} and asT + by = {0, u+m,v,v+m}, where n = 2m,
Ly = (u,v), 2| u, 2u | m.

It is worth to compare Theorem 4.1 with the solution of the isomorphism problem
for cubic circulant digraphs (i. e., Cayley graphs over cyclic groups). It follows that
similar conditions can be derived from Muzychuk’s general algorithm presented in
[64]:

Theorem 4.2. Two connected Cayley graphs Cay(Zy,, S) and Cay(Z,,T) with |S| =
|T| = 3 are isomorphic if and only if there exist ai,ay € 7, such that

(i) a1S =T, or

(1) a1S = {u,v,v+m} and axT = {u+m,v,v+ m}, where n = 2m, Z, = (u,v),
2| u, and 2u | m.

However, this phenomenon does not hold in general. The group Zg is not a
DClI-group, see Theorem 2.11(i), but it was proved to be a BCI-group [2].
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4.1 Bicyclic bases

Throughout this chapter we use the following notation. Let
Vi=17Z, x{i}, 1€ {0,1}, and V =V, U V4.

Furthermore, let ¢ and d be the permutations of V defined by

¢ (zyi)— (x+1,4), i €{0,1},z € Z,
(x,1) = (2,1 —1), 1 € {0,1},x € Zy,.

Also, we let D = (¢, d). As noted before, both ¢ and d will be automorphisms of any
bi-Cayley graph BCay(Z,, S), the group R(Z,) is generated by ¢, and the group D
acts regularly on V and it is isomorphic to Day,,.

We call a permutation group G < Sym(V') bicyclic if G is a cyclic group with
orbits Vp and V;. In this context, the set S(Aut(BCay(Z,,S)) contains the bicyclic
groups contained in Aut(BCay(Z,, S)). Obviously, R(Z,) is a bicyclic group, and it
will be referred to as the canonical bicyclic group.

For a graph I' = BCay(Z,, S), we let Iso(I') denote the set of all isomorphisms
from I' to another bi-Cayley graph over Z,,. Formally,

Iso(I') = {f € Sym(V) | I = BCay(Z,, T) for some T' C Zn}.

Furthermore, let Ciso(I') denote the isomorphism class of cyclic bi-Cayley graphs over
Z,, which contains T, i. e., Ciso(T') = {I'/ | f € Iso(T')}.

Lemma 4.3. Let I' = BCay(Z,,S) be a connected bi-Cayley graph and f be a
permutation of V.. Then f € Iso(T') if and only if fR(Z,)f™! is a bicyclic group
contained in Aut(T).

PrROOF. Let f € Iso(T"). Then fR(Z,)f~! < Aut(T'). Clearly, fR(Z,)f ! is a cyclic
group. Since the sets Vg and Vi are the colour classes of the connected bipartite
graph T, f preserves these sets, implying that the orbits of fR(Z,)f~! are equal to
Vo and V;. Therefore, fR(Zy,)f~! is a bicyclic group.

Conversely, suppose that fR(Z,)f~! is a bicyclic group which is contained in
Aut(T). Then R(Z,) = f~Y(fR(Zn)f~1)f < Aut(T'/). Because Vp and V; are the
orbits of fR(Zy)f ', the graph T'/ is connected and bipartite whose colour classes
are Vo and Vi. This implies that I'fY = BCay(Z,,T) for some T C Z,, and so
f €Iso(T"). The lemma is proved. O

Lemma 4.3 shows that the normalizer Ngyy,v)(R(Z,)) C Iso(BCay(Zy, S)). It
is known that the group Ngym(v)(R(Zy)) consists of the following permutations:

(i) v T D0 HEE=0 (4.1)
Pabe 15 (ax +c¢,1) ifi=1, '
and
) axr +b,1 ifi=0
¢a,b,c : (l‘,l) = ( ) e (42)
(ax +¢,0) ifi=1,
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where a € Z} and b,c € Z,. Notice that, the equality T = aS + b with some
a € Z and b € Z, can be expressed equivalently as the graphs BCay(Z,,S) and
BCay(Zn,T) are in the same Ngyy(v)(R(Zy))-orbit. For a graph I' = BCay(Zy, S),
we let

Cart(T) = {T? | ¢ € Noyuu(v(R(Zn))}-

Clearly, the isomorphism class Cis(I') can be decomposed as follows:
Ciso(r) = Caff(rl) U--- Ucaff(rk)-l

Our goal in this section is to describe the above decomposition with the aid of
bicyclic groups contained in Aut(I'). We first observe that, if I" is connected, then
for any bicyclic group X < Aut(I') and for any g € Aut(T'), the conjugate group
g 'Xg is also bicyclic. We remark that the conclusion does not hold when the
graph is disconnected, the group ¢~'X g might have orbits different from Vy and V;.
Thus the set of all bicyclic groups contained in Aut(I") is the union of some Aut(T')-
conjugacy classes. We will denote the set of all bicyclic groups contained in Aut(I")
by B(Aut(T)).

Definition 4.4. Let I' = BCay(Z,, S) be a connected bi-Cayley graph. We say that
a subset = C Iso(T) is a bicyclic base of Aut(T) if the subgroups ER(Z,)E71, ¢ € E,
form a complete set of representatives of the Aut(I')-conjugacy classes contained in
B(Aut(T)).

Theorem 4.5. Lel I' = BCay(Zy, S) be a connected bi-Cayley graph and let = be a
bicyclic base of Aut(I'). Then Ciso(I') = Ugezcaff(FE),

ProOF. It follows immediately that,

Ciso(T) 2 ) Car(T9). (4.3)

£e=

We prove that equality holds in (4.3). Pick ¥ € Ciso(T'). Then ¥ = I'f for some
f €Iso(T'). By Lemma 4.3, fR(Z,)f~ " is a bicyclic group of I, hence

FR(Za)f ' = gER(Z)(9€) 7, € € 2,9 € Aut(D).
Thus f~'g¢ = h, where h € Ngymv)(R(Zy)). Then
Y =1 = et = (e
This shows that ¥ € Cog(T), and so

Ciso(r) g U Caff(Fs)

£e=

In view of (4.3) the two sides are equal.

"Here we mean that Ciso(T') = Cag(I'1) U -+ U Cag(T'x) and Cag(I';) N Car(L';) = O for every
i,j €{1,....k}, i #].
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Moreover, if Cag (') N Cag(T€2) # O for £1,& € =, then TS = I'2" for some
h € Ngym(v)(R(Zy)). Hence &her ! = g for some g € Aut(T), and so

GR(Zp)E = g7 QR R(Za)h™ ¢ g = 97 (&R(Zn)E ) g.

The bicyclic groups §1R(Zn)£f1 and ng(Zn)fgl are conjugate in Aut(I'), hence
&1 = & follows from the definition of the bicyclic base Z. We obtain that Cag(I'**) N
Car(T%2) = 0 whenever &1,& € B, & # &, and 50 Ciso(T') = UgezCar(T¢). The
theorem is proved. O

4.2 Bi-Cayley graphs BCay(Zay,, {0, u, v, v + m})

Theorem 4.1 will follow from the following theorem, which we are going to prove in
the next section.

Theorem 4.6. Two connected bi-Cayley graphs BCay(Z,, S) and BCay(Zy,,T) with
|S| = |T'| = 4 are isomorphic if and only if there exist ai1,a2 € Z}, and by, by € Zy,
such that

(i) a1S +by =T; or

(ii) a1S+ by = {0,u,v,v+m} and axT +be = {0, u+m,v,v+m}, where n = 2m,
Zn = (u,v), 2 | u, 2u | m and u/2 Z v+ m/(2u)(mod m/u).

ProOOF OF THEOREM 4.1. In view of Theorem 4.6, it is sufficient to prove that, if
a1S + by = {0,u,v,v + m} and axT + b = {0, u + m,v,v + m},

where n = 2m, Z,, = (u,v), 2 | u, 2u | m and u/2 = v + m/(2u)(mod m/u), then
BCay(Zy,S) =g BCay(Z,,T).2 In fact, we are going to show that there exist
a € Zy, and b € Zj,, such that

a-{0,u,v,v+m}+b={0,u+m,v,v+m}.

Then (ay'aai) - S + ay*(aby + b — by) = T, and hence indeed BCay(Zy,, S) g
BCay(Zy,, T).

Let us consider the following system of congruences:
uxr = —u + m(mod n) and vz = —u + v(mod n). (4.4)

By the first congruence, using also that 2u | m, x may be written in the form
r = (n/u)y — 1+ m/u. Plugging this in the second one, we obtain (vn/u)y =
2v—u—vm/u(mod n), which has an integer solution in y exactly when ged(vn/u,n) |
(2v —u—vm/u). Then ged(vn/u,n) = n/uged(u,v), and since Z,, = (u,v), n/u and
ged(u, v) are coprime. Since ged(u, v) is clearly a divisor of 2v —u —vm/u, a solution
in y exists if and only if n/u | (20 — u — vm/u), i. e., u = 2v — vm/u(mod 2m/u)

*We write BCay(Zn, S) =ag BCay(Zn,T) if there is a bi-Cayley isomorphism which maps the
first graph to the second, or equivalently, if T' = aS + b holds for some a € Z;, and b € Z,.
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(recall that m = 2m). On the other hand, one of the initial assumptions is u/2 =
v+ m/(2u)(mod m/u), and so u = 2v + m/u(mod 2m/u). We conclude that (4.4)
has an integer solution if —vm/u = m/u(mod 2m/u). Now, the latter congruence
holds because of the conditions 2 | u, 2 | n, and Z,, = (u,v).

Let a be a solution of (4.4). It follows from the above argument that ged(a, m/u) =
1. Notice that, since 2u | m, 2 a. Let d = ged(a,u). By (4.4), av = —u+v(mod n),
implying that d | v, and so d = 1. We see that ged(a,2m) = 1, i. e., a € Z}. Choos-
ing b=wu+m, we get by (44) that a-0+b=u+m,au+b=0,av+b=v+m,
and a(v +m) + b = v. The theorem is proved. O

In this section we prove Theorem 4.6 for graphs BCay(Z,, S) satisfying certain
additional conditions.

Theorem 4.7. Let n =2m and S = {0, u,v,v +m} such that

(a) Zn = (u,v);

(b) 1 <u<m,u|m,

(c) The stabilizer Aut(BCay(Zy, S))(0,0) leaves the set {(0,1), (u,1)} setwise fived.

Then BCay(Zy,, S) = BCay(Zy,,T) if and only if there exist a € Z}, and b € Zy, such
that

(i) «T +b=S; or
(11) aT +b={0,u+m,v,v+m}, and 2 | u, 2u | m, u/2 #Z v+m/(2u)(mod m/u).

It follows from Theorem 4.7(b) that 2u < m. We prove first the extremal case
when 2u = m. Notice that, in this case the conditions in Theorem 4.7(ii) that
2 | u, 2u | m and u/2 # v+ m/(2u)(mod m/u) can be replaced by one condition:
u = 2(mod 4).

Lemma 4.8. Let S be the set defined in Theorem 4.7. If 2u = m, then BCay(Z,, S) =
BCay(Zy,,T) if and only if there exist a € 7 and b € Zy, such that

(i) aT +b=S; or
(it) aT + b= {0,u+m,v,v +m} and u = 2(mod 4).

PROOF. Let d = ged(n,v). Because of (u,v) = Z, we have that ged(u,v,n) = 1,
i. e., ged(n/4,v) = 1, and this gives that d € {1,2,4}. Note that, if d # 1, then
necessarily 2 u. Let us write v = vyd, where ged(vi,n) = 1. Let vy ' denote the
inverse of vy in the group Z¥. Then the following hold in Z, (here we use that
u=n/4):
vy lw=d, vy (v+m)=d+m and v u € {u,3u}.

We conclude that S can be mapped by a bi-Cayley isomorphism to one of the sets
Si(d), i € {1,2} and d € {1,2,4}, where

S1(d) = {0,u,d,d + 2u} or Sa(d) = {0,3u,d,d + 2u}.

The lemma follows from the following claims:
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AN s
N

Figure 4.1: Bi-Cayley graphs BCay(Z,, S1(1)) and BCay(Z,, S2(1)).

(i) BCay(Zn,51(1)) = BCay(Zn, S2(1)).
(ii) BCay(Zn, S1(1)) Zag BCay(Zn, S1(d)) for d € {2,4};

(iii) BCay(Zy,, S1(d)) =.g BCay(Zy,Sa2(d)) <= d € {2,4}or (d = 1and u #
2(mod 4));

(i): Define the mapping f: V — V by

(x,1) ifre{0,1,....u—1}U{2u,....3u—1},

(x 4+ 2u,i) otherwise.

f(x,l)r—>{

We leave for the reader to verify that f is an isomorphism from BCay(Z,, S1(1))
to BCay(Z,, S2(1)). Compare the graphs in Figure 4.1. Here the white vertices
represent the colour class [y, while the black ones represent the colour class V.

(ii): Since d € {2,4}, u is an odd number. For d € {2,4} define rq € Z} as
follows:

{2+u if u = 1(mod 4), {4+u if u = 3(mod 4),
T9 =

I
2+ 3u if u = 3(mod 4), ! 44 3u if u=1(mod 4).

It can be directly checked that 7451(1) + u = Si(d), so BCay(Zy,S1(1)) Z.g
BCay(Z,, S1(d)) for d € {2,4}.

(iii): If w is odd, then (2u + 1)Si1(d) = S2(d), hence BCay(Zy, S1(d)) g
BCay(Zp, S2(d)). Since w is odd whenever d € {2,4}, we are left with the case
that d = 1 and w is even. If also u = 0(mod 4), then (u+1)S1(1) + 3u = S2(1), and
again Bcay(Zn, Sl(l)) Zaff BcaY(Zm 52(1))

Suppose that d = 1 and v = 2(mod 4). We finish the proof by showing that
in this case BCay(Zy, S1(1)) 2.z BCay(Zy, S2(1)). Suppose that, there is an affine
transformation ¢ : x — rz + s, r € Z} and s € Z,, which maps the set S1(1) to
S1(2). Then 1¥ — (1 +2u)¥ = 2u in Z,,. This implies that {1,1+2u}¥ = {1,1+ 2u}
and {0,u}¥ = {0, 3u}, and hence

r+se€{l,1+42u} and r{0,u} + s = {0, 3u}.
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3 _eo
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Figure 4.2: The bi-Cayley graph BCay(Z,, S).

A direct analysis shows that the above equations cannot hold if v = 2(mod 4). Thus
BCay(Zp, S1(1)) Zax BCay(Z,, S2(1)). This completes the proof of (iii). O

Now, we turn to the case when 2u # m. Recall that the canonical bicyclic group
R(Zy,) is generated by the permutation ¢ defined in the beginning of Section 4.1.
For a divisor £ | n, R(Z,)" will denote the subgroup of R(Z,) generated by cf. Tt
will be convenient to denote by &, the partition of V into the orbits of R(Z,)’, i. e.,
8¢ = Orb(R(Z,)%, V). Furthermore, we set 1n,¢ for the homomorphism 7y, ¢ : Zy, — Z¢
defined by 7, ¢(1) = 1.

Let A = Aut(BCay(Z,, R)), where R is an arbitrary subset of Z,,. Observe that,
if §y is, in addition, a system of blocks for A, then we define the action of A on
V(BCay(Z¢, mme(R))) by letting g € A act as

(2,19 = (y.5) <= {(z.0) | z€n(2)} = {(z.9) | z€n,,()} (4.5)

We denote by Aj, the corresponding kernel, and by g% the image of an element
g € A. Note that, if X is a bicyclic group in S(A), then X% = {z% : x € X} is a
bicyclic group in S(Aut(BCay(Z¢, nye(R))).

Now, let S = {0,u,v,v + m} be the subset of Z,, defined in Theorem 4.7. Let §
be the partition of V defined by

6= {XUX¥0 | X € Orb(R(Z,)",V)}, (4.6)
where 11 0 is defined in (4.2). We write 6 = {Uy, ..., Uy—1}, where
Ui = {(iv + ju,0), (iv + ju,1) | j €{0,1,...,(n/u) —1}}.

A part of BCay(Zy,S) is drawn in Figure 4.2 using the partition . White
and black colours represent again the colour classes Vy and Vi, respectively. For
i€{0,1,...,u—1} and k € {0, 1}, let e; be the involution of V' defined by

B (z, k) otherwise.
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It is clear that each e; € Aut(BCay(Zy,S)), and also that e;e; = eje; for all 7,5 €
{0,1,..., u—1}. Let E = (eo,e1,...,ey—1). Thus E < Aut(BCay(Z,,S)) and
E = 7% For a subset I C {0,1,...,u — 1} let e; be the element in E defined by
er = Hz’e] €;.

The following lemma will be used throughout the chapter.

Lemma 4.9. Let I' = BCay(Z,, R) be a bi-Cayley graph and suppose that R, C R
such that the stabilizer Aut(I')(o o) fizes setwise R x {1}, and let d = |(R« — R4)],
where Ry — Ry = {r1 — 1o | 71,72 € Ry}. Then the partition m of V defined by

T ={XUXY" | X € Orb(R(Z,)"*,V)}, where r € R,,
is a system of blocks for Aut(T).3

Proor. We let A = Aut(I'). Since R, x {1} is fixed setwise by A ), we may write
R.=R1U---URy,

where R; x {1} is an A g y-orbit for every i € {1,2,...,k}. Fori € {1,...,k}, choose
an arc ((0,0), (r;, 1)) of ', where r; € R;. We claim that the A-orbit of this arc is
equal to the edge set of the bi-Cayley graph BCay(Z,, R;).

Let AT be the colour preserving subgroup of A (i. e., AT is the setwise stabilizer
Agypy)- Then A = A% x (h_100). Also, AT = Ao R(Zy), as R(Zy) is transitive
on Vp. Then the A-orbit of the arc ((0,0), (73, 1)) can be obtained as follows

((0,0), (ri, 1) = =
(0,0, (rf, 1)) | 7§ € R;}FEnW—r00)
(7,0),(j +71,1)) | 7} € R, j € Zy}{0-100
(4,0), (4 7«2,1)) | i€ Ry, j € Ly} U

(=3, 1), (=j —13,0)) | 73 € Ri,j € Zn},

7,0)(j + 7%, 1) \ v € Ri,j € Zn}.

,0), (14, 1)) A0 0 B(Zn){-1.00) —

((0

{(

{( +
= { +

{(

{(

This is clearly equal to the edge set of BCay(Z,, R;).

Now, we can write A < Aut(BCay(Z,, R;)) for every i € {1,...,k}. Since
BCay(Zy, R.) = UY_| BCay(Z,, R;), this gives that A < Aut(BCay(Z,, R.). Tt is
easily seen that the connected component of BCay(Z,, R.) containing (0,0) is its
subgraph induced by the vertex set X U X %1~ where X is the orbit of (0,0) under
R(Z,)™®. Clearly, this set is a block for A. The lemma is proved. O

Lemma 4.10. Let S be the set defined in Theorem 4.7. If 2u # m, then the stabilizer
Aut(BCay(Zn, S))(0,0) s given as follows.

(i) If u # 2v(mod m/u), then Aut(BCay(Zy,S))(0,0) = £(0,0)-

(i) If u = 2v(mod m/u), then Aut(BCay(Zy,S))0,0) = E,0) X F' for a subgroup
F < Aut(BCay(Zn,S))(Qo), ‘F| = 2.

3Notice that, m does not depend of the choice of the element r € R..
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PROOF. For short we put I' = BCay(Z,, S) and A = Aut(I"). Consider the partition
0 defined in (4.6). Applying Lemma 4.9 with R = S, R, = {0,u} and r = 0, we
obtain that § is a system of blocks for A. The quotient graph I'/d is a u-cycle if
u > 2 and a 2-path if u = 2. Let g € A(ggy. Then g fixes the arc (U, Uy) of I'/d,
hence it must fix all sets U;. Thus A ) < As, where As is the kernel of the action
of Aond.

Consider the action of A on Uy. The corresponding kernel is Ay, the pointwise
stabilizer of Uy in A, and the corresponding image is a subgroup of Aut(I'[Up]),
where I'[Up] is the subgraph of ' induced by the set Up. Using that 2u # m, we
show next that Ay, = E ). It is clear that Ay, > Eg). We are going to prove
that Ay, < E(g) also holds. Let g € Ay,. Then for a suitable element e € (e1), the
product ge fixes pointwise Uy and fix the vertex (v, 1) from block Uy (see Figure 4.2).
Thus ge acts on Uy as the identity or the unique reflection of the cycle I'[U;] that fixes
(v, 1). If this action is not the identity, then ge switches (v,0) and (v+n—u,0), and
so it must switch (v+u, 1) and (v +n —u,1). On the other hand, since (v+u,1) is
connected to (u,0) € Uy, it follows that (v+wu, 1) can only be mapped to (v+u+m, 1),
and so (v+mn—u,1) = (v+u+m,1), contradicting that 2u # m. We conclude that
ge acts as the identity also on U;. Continuing in this way, we find that ge’ is the
identity with a suitable choice of €’ € F ), hence g = ¢'.

The equality Ay, = E(g) together with Aut(I'[Up]) = Dy, imply that |Aq ) :
E,0)| < 2. Moreover, [A(g) : Eo0)| = 2 holds exactly when A q) contains an
involution g for which g : (0,1) <> (u, 1). In the latter case Ay ) = E(g0) X (9) as g
centralizes F (to see this, observe that g is in the kernel As, and acts on every block
U; as an element of Dy, ,,, whereas E acts on U; as the center Z(Dsy,/,,).) We settle
the lemma by proving the following equivalence :

Aw,0) = Eo0) X Zz <= u = 2v(mod m/u). (4.7)

Suppose first that Ao = FEg) X (9), where g € Apg) and g : (0,1) <
(u,1). By Theorem 4.7(c), {(v,1), (v + m,1)}*©0 = {(v,1), (v + m,1)}. Apply-
ing Lemma 4.9 with R = S, R, = {v,v + m} and r = v, we obtain that the set
B = {(0,0),(m,0), (v,1), (v +m,1)} is a block for A. The induced graph I'[B] is a
4-cycle (see Figure 4.2). Denote by Aypy the setwise stabilizer of B in A, and by
A?B} the permutation group of B induced by A¢py. As I'[B] is a 4-cycle, A{BB} < Dg.
This gives that {(0,0), (m,0)} is a block for A]{BB}, and therefore it is also a block for
A. We conclude that §,, = {X | X € Orb(R(Z,)™,V)} is a system of blocks for A.
Consider the action of A on BCay(Zy,, Mnm(S)) defined in (4.5). Then E < A;, .
while g ¢ As,. This implies that g is an automorphism of BCay(Zu, 7.m(S))

which normalizes its canonical bicyclic group. This means that ¢ = ©r.s,¢ for some

r € 7% and s,t € Zy,. Using that g°» : (0,0) + (0,0) and (0,1) = (9pm(u), 1), we
find that s = 0 and t = 1, (u), and so

A(;m = <D6m7 @T,O,r]n,m(u)>' (48)

Also, ¢°" ¢ (Mm(u),1) = (0,1) and (9ym(v),1) = (Pnm(v), 1), hence 71, m(u) =
—n,m(w) and 71, m (V) = Npm(v — w) hold in Z,,. From these r = —1(mod m/u)
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and rv = v — u(mod m/u), i. e., u = 2v(mod m/u). The implication “=" in (4.7) is
now proved.

Suppose next that u = 2v(mod m/u). Define the permutation g of V' by

(tv — (1 + j)u,0) ifi=0

: (v 4+ ju,0) —
9: (v +ju0) {(iv—(i+j—1)u,1) iti=1,

where i € {0,1,...,u— 1} and j € {0,1,...,n/u — 1}. We complete the proof by
verifying that g € A ). Since (0,0)? = (0,0) and g : (0,1) <> (u, 1), this will imply
that A ) = E(0,0) X (g). Thus part “<=" of (4.7) is also proved.

Choose an arbitrary vertex w € Vp such that w = (iv+ju,0),7 € {0,1,...,u—1}
and j € {0,1,...,n/u—1}, and suppose for the moment that i < u—1. Then w has
the following neighbours:

(iv + ju, 1), (iv + (5 + Du, 1), (GG + Vv + ju, 1), (G + Vv + (5 + m/u)u, 1),

where v+ 1€ {0,1,...,u— 1}, and j+ 1 and j + m/u are from {0,1,...,n/u— 1}.
Thus these vertices are mapped by g to

(iv—(i+j—1)u,1), (iv—(i+7)u, 1), (((+1)v—(i4+7)u, 1), ((i+1)v—(i+j+m/u)u,1).

A direct check shows that these are just the neighbours of w9 = (iv — (i + j)u,0).
Let ¢ = w — 1. Then the neighbours of w are:

(tv + ju, 1), (iv+ (§ + Du, 1), ((j + v)u, 1), ((j + v + m/u)u, 1),

where j+v and j+v+m/u are from {0, ...,n/u—1}. Then these vertices are mapped
by g to

(lv—(G+j—Du,1),(iv—(i+j)u, 1), (=G +v—Du,1),(=(j +v+m/u—1)u,1).

The first two are clearly connected with w9 = (iv — (i + j)u, 0); whereas the rest two
are connected with w? if and only if the following equality holds in Z,:

{iv—(+jutv,iv—(i+ju+v+m}={-G+v—Du,—(j+v+m/u—1)u}.

Using that v = u— 1, this reduces to {—(u—v)u, —(u—v)u+m} = {—vu, —vu+m}.
Finally, observe that this equality holds if (v — v)u = vu(mod m), and the latter
congruence follows from the initial assumption that v = 2v(mod m/u). The lemma
is proved. ]

Lemma 4.11. Let S be the set defined in Theorem 4.7, and let us write A =
Aut(BCay(Zy, S)). If 2u # m, then for the normalizer No(R(Zy)) of R(Zy) in
A,
22 if 2| u and (u # 2v(mod m/u) or
‘A : NA(R(Zn))’ = u/2 = v(mod m/u)) (4.9)

2u=l  otherwise.
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PROOF. For short we set N = Ny(R(Z,)). Recall that D = (¢, d), see the beginning
of Section 4.1. Since A = DAy and D < N, N = D(N N Ap))- The two cases of
Lemma 4.10 are considered separately.

CASE 1. u # 2v(mod m/u).

In this case, from Lemma 4.10, Agg) = FEq), hence [A| = 2%n. Let g €
NN Ag)- Since g € Eg ), it follows quickly that g is the identity element, or 2 [ u
and g = ere3 - - - e,—1. Combining this with N = D(NNAq)) we find that |[N| = 4n
if 2 | u, and |N| = 2n if 2 { u. Formula (4.9) follows.

CASE 2. u = 2v(mod m/u).

From Lemma 4.10, A(g ) = E(g,0) x F' for a subgroup F' < A ), |F| = 2, hence
|A| = 24F1n. It follows from the proof of Lemma 4.10 that, there exists r € Z, such
that the following hold:

Tp,m (W) = —1nm(w) and rinm(v) = Npm (v — ).
Let s € Z} such that 7y, ,(s) = r. Then
su € {—u,—u+m} and sv € {v —u,v —u+m}. (4.10)

Suppose that 2 { u. Then we get as before that N N E ¢ is trivial. Notice
also that, v = 2v + m/u(mod n/u), which follows from the assumption that u =
2v(mod m/u) and that 24 w. Thus 2tm and 2 | (u+m), implying that in (4.10) we
have su = —u. We obtain that ¢s.0 € NN (A0 \ Eo,0), and so [N N A gl = 2.

Suppose next that 2 | u. Then [NNE( )| = 2. It is easily seen that [N N A )| =
4 if and only if there exists » € Z; such that ru = —u and v = v — u hold in Z,,.
Consider the following system of linear congruences:

zu = u(mod n), xv = v — u(mod n). (4.11)

From the first congruence we can write x in the form x = yn/u — 1. Substitute this
into the second congruence. We obtain that yuvn/u = 2v — u(mod n). This has a
solution if and only if ged(vn/u,n) | (2v — u). Suppose that ged(v,n) # 1. Using
that (u,v) = Z, and that 2 | u, we obtain that ged(v,m/u) # 1. However, then
from the assumption that u = 2v(mod m/u) it follows that also ged (v, u) # 1, which
contradicts that (u,v) = Z,. Hence ged(v,n) = 1, ged(vn/u,n) = n/u, and so (4.11)
has a solution if and only if u = 2v(mod n/u), or equivalently, u/2 = v(mod m/u)
(recall that 2 | v and w | m). It is not hard to show that any solution to (4.11) is
necessarily prime to n, hence is in Z;,. The above arguments can be summarized as
follows: |N| =8nif 2 | u and u/2 = v(mod m/u), and |N| = 4n otherwise. This is
consistent with (4.9). The lemma is proved. O

Lemma 4.12. Let r € Zy, r # 1 and s € Zy, such that the permutation @, s is of
order 2. Then the group (c,d, pros) contains a bicyclic group different from R(Zy,)

if and only if 8 |n, r=n/2+1, and s=0 or s =n/2.

PROOF. Suppose that (c, d, ¢ 0,s) contains a bicyclic group X such that X # R(Zy,).
Then X is generated by a permutation in the form ¢, 5. Since gp%o, < 1s the identity
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mapping, r? = 1in Z,, and we calculate that (c'¢,. o s)? sends (x, 0) to (z+r(r+1)i,0)
for every x € Z,. That Vj is an orbit of X is equivalent to the condition that
ged(n,r + 1) = 2. Using this and that 72 — 1 = (r — 1)(r + 1) = 0(mod n), we find
that n/2 divides r—1,s0 7 =1 or r = n/2+1. Since r # 1, we have that r = n/2+1
and 8 | n. Then (¢r05)? sends (x,1) to (z + (n/2 + 2)s,1). Since (p0.5)? is the
identity mapping, we obtain that s =0 or s = n/2.

On the other hand, it can be directly checked that, if 8 | n, r = n/2 + 1 and
s € {0,n/2}, then the permutation cp, s generates a bicyclic group in (¢, d, ¢r0.s)-
Obviously, this bicyclic subgroup cannot be R(Z,). The lemma is proved. O

Everything is prepared to prove the main result of the section.

Proor or THEOREM 4.7. The case that 2u = m is settled already in Lemma 4.8,
hence let 2u # m. We consider the action of A = Aut(BCay(Z,,S)) on the system
of blocks d,, defined in (4.5). We claim that the corresponding image A% has a
unique bicyclic group (which is, of course, R(Z,)%").

This is easy to see if Ay = FE(), because in this case Adm = (DA(()’O))‘S’" =
Do,

Let A0) # F,0). Then A = Eqg) x F for some subgroup F, |F| = 2.
By (4.8), A% = <D5"L,g07n70mn7m(u)>. Also, r = —1(mod m/u), hence r # 1 in Z,,.
By Lemma 4.12, A% contains more than one bicyclic group if and only if 8 | m,
r=m/2+1 and n,m,m(u) € {0,m/2}. In the latter case u € {m, m/2}, which is
impossible as u < m/2. Hence A" contains indeed a unique bicyclic group.

We calculate next the number of bicyclic groups contained in A, and we denote
this number by B. In fact, we are going to derive the following formula:

- {2“ if 2 | wand 24 (m/u)

4.12
2u=1  otherwise. ( )

Let g € G such that (g) < A is a bicyclic group. Since A = DA ), g can
be written as g = xy with z € D and y € A(g). Since (g) is a bicyclic group, g
fixes the colour classes setwise, implying that 2 € R(Z,). The image (g)° is also
a bicyclic group in A%, hence by the previous paragraph, (g)» = R(Z,)%". Now,
since © € R(Zy), v € R(Z,)’", from which yo" is the identity mapping. We
conclude that z = ¢ for some i € {1,...,n — 1} with ged(i,m) = 1, and y € E,0),
and so y = ey for a subset I C {1,...,u— 1}.

Obviously, the product ¢(n)B calculates the number of elements g € G such that
(g9) is a bicyclic group in A, where ¢ denotes Euler’s totient function. Therefore,
©(n)B is equal to the number of elements in the form c’e; that i € {1,...,n —
1},ged(i,m) =1, I C{1,...,u— 1}, and (c’es) is a bicyclic group contained in A.

Let us pick cley with i € {1,...,n—1},ged(i,m) =1,and I C {1,...,u—1}. Tt
is easily seen that erc’ = clery;, where I +i = {z +1i | = € I}, here the addition is
taken modulo u. Using this and induction on wu, it follows that

(cer) = c"ereryi €rp(u1)i-
Since ged(i,m) =1 and u | m, ged(é,u) = 1, from which

1 1
6161+i . €I+(u—1)z = (6061 .. 'e’ll,fl)‘ | — Cm‘ |
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Thus (cfer)* = ¢+ %D This and ged(é,u) = 1 show that (cfes) is a semiregular
group. Therefore, (c'e;) is a bicyclic group if and only if cle; is of order n, or
equivalently,

2
ged (z + g, —m) ~1 (4.13)
u u

Notice that, since ged(i, m) = 1, the greatest common divisor above is always
equal to 1 or 2. Suppose at first that 2 | (m/u). Then 2 | m and i is odd. Hence
(4.13) always holds. We obtain that the number of elements in A which generate a
bicyclic group is ¢(n)2%~!, and so B = 2¢~1, as claimed in (4.12). Suppose next that
21 (m/u). Now, if 2 | u, then 2 | m, hence 2 {4, and so (4.13) holds if and only if |I|
is even. We deduce from this that B = 2%~2, as claimed in (4.12). Finally, if 2 { u,
then 2 m, and in this case (4.13) holds if and only if ged(i,n) = 1 and |I] is even,
or ged(i,n) = 2 and |I| is odd. We calculate that B = 2471, and this completes the
proof of (4.12).

Let = be a bicyclic base of A. By (4.9) and (4.12) we obtain that, |Z| > 1 if and
only if
|A: NA(R(Zy))| = 2“2 and B = 2v7 1,

This happens exactly when
(2| wand (u# 2v(mod m/u) or u/2 = v(mod m/u))) and (2w or 2u | m).
After some simplification,
2| >1 <= 2| u, 2u|mand u/2 #Z v+ m/(2u)(mod m/u).

Suppose that |Z| > 1. Then A contains exactly 2"~! bicyclic groups, 22 of
which are conjugate to R(Z,). These 2"~ ! subgroups are enumerated as: (ce), I C
{1,...;u—=1}. Fori € {1,...,u—2}, e;ce; = ceq; ;413 We can conclude that the set
of bicyclic groups split into two conjugacy classes:

{(cer) | I C{1,...,u—1},|I|is even } and {{ces) | I C{1,...,u—1},[I]is odd }.

In particular, |E| = 2.
Choose £ from Sym(V') which satisfies

£c€1 =cep and €:(0,0) — (0,0), (0,1) — (0,1).
Then = can be chosen as E = {idy, &}, where idy is the identity mapping of V.
Also, {(v,1), (v +m, 1)} = {(v,1), (v + m, 1)}, and since (ce1)*™™ = c¥, (u,1)¢ =
(0, 1)(e)™™& — (0,1)5""™ = (u 4 m,1). Thus BCay(Zy,,S)¢ = BCay(Zn, {0, u +
m,v,v +m}). The theorem follows from Theorem 4.5. O

4.3 Proof of Theorem 4.6

Theorem 4.6 follows from Theorem 4.7 and the following theorem.
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Theorem 4.13. Let BCay(Z,,S) be a connected bi-Cayley graph such that |S| = 4
and BCay(Zy, S) is not a BCl-graph. Then n = 2m, and there ezxist a € Z;, and
b € Zy such that aS + b = {0,u,v,v + m} and the conditions Theorem 4.7(a)-(c)
hold.

Before we prove Theorem 4.13 it is necessary to give three preparatory lemmas.
For an element i € Z,,, we denote by o(i) the order of i viewed as an element of the
additive group Z,. Thus we have o(i) = n/ ged(n, 7).

Lemma 4.14. If R = {i,n —1,j} is a generaling subset of Z,, and o(i) is odd, then
Cay(Zn, R) is a Cl-graph.

PrOOF. For short we set A = Aut(Cay(Z,, R)) and denote by Ay the stabilizer of
0 € Z, in A. Clearly, Ay leaves R setwise fixed. If Ay acts on R trivially, then
A = Z,, and the lemma follows from Lemma 2.15. If Ay acts on R transitively, then
Cay(Zy, R) is edge-transitive. This condition forces that Cay(Z,, R) is a Cl-graph
(see [53, page 320]).

We are left with the case that R consists of two orbits under Ag. These orbits
must be {i,n — i} and {j}. It is clear that Ap leaves the subgroups (i) and (j)
fixed; moreover, the latter set is fixed pointwise, and since o(7) is odd, (i) consists of
(o(7) —1)/2 orbits under A, each of length 2, and one orbit of length 1. We conclude
that Z, = (i) x (j), and also that A is permutation isomorphic to the permutation
direct product ((Zo(;))right ¥ (7)) X (Zo(j))right, where for £ € {o(i),0(4)}, (Ze)rignt is
generated by the translation z — x+ 1, and 7 is the permutation x — —z. We leave
for the reader to verify that the above group has a unique regular cyclic subgroup.
The lemma follows from Lemma 2.15. O

Lemma 4.15. Let n =2m and R = {i,n —1,j,j + m} be a subset of Z,, such that
(a) R generates Zy,;

(b) o(i) is odd;

(c) the stabilizer Aut(Cay(Z,, R))o leaves the set {i,n — i} setwise fized.

Then Cay(Zy, R) is a CI-graph.

ProOOF. For short we set A = Aut(Cay(Zy, R)). Let T be a subset of Z, such
that Cay(Z,, R) = Cay(Z,,T) and let f be an isomorphism from Cay(Z,, R) to
Cay(Zy,T) such that f(0) = 0. Let us consider the subgraphs

I'y = Cay(Zp, {i,n —i}) and T's = Cay(Z,, {j,j +m}).

By condition (c¢), the group A preserves both of these subgraphs, that is, A < Aut(I'))
for ¢ € {1,2}. As f is an isomorphism between two Cayley graphs, f(Zs)rigntf ' <
A. Then f(Znp)rignt f~+ < A < Aut(I'y), implying that f maps Iy to a Cayley graph
Cay(Zy,Ty) for both ¢ € {1,2}. Clearly, T' = T1 UT». It was proved by Sun [73] (see
also [53]) that every Cayley graph over Z, of valency 2 is a Cl-graph. Using this, it
follows from Cay(Zy, {i,n—1i}) = Cay(Z,,T1) that Th = a{i,n—i} for some a € Z.
Letting t; = ai, we have T1 = {t1,n — t1} such that o(i) = o(¢;). In the same way,
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Ty = d'{j,j +m} for some o’ € Z, and letting t2 = a'j, we have Ty = {ta,t2 + m}
with o(t2) = o(j). Since f(0) =0, f maps {i,n—i} to Th = {t1,n—t1} and {j, j+m}
to Ty = {tg,tz + m}

We claim that the partition of Z, into the cosets of (m) is a system of blocks
for Aut(T'z), hence also for the group A < Aut(I's). Let us put A = Aut(Is).
Then Ag leaves the set T = {j,j + m} setwise fixed. Thus the setwise stabilizer
A{T} of the set T'in A can be written as A{T} = A{T} NA= A{T} N AO(Zn)right =
AO(A{[}Q(Zn)right) = Ag(Maright)- Here myign is the permutation x — z+m, x € Z,.
Thus Ag(myight) is a subgroup of A which clearly contains Ag. By Theorem 2.5, the
orbit of 0 under the group flo<mright> is a block for A. Now, the required statement
follows as the latter orbit is equal to 040 (xignt) — (mrignt) = ().

Since the partition of Z, into the cosets of (m) is a system of blocks for A, f
induces an isomorphism from Cay (Zy,, 7n,m (R)) to Cay(Zy,, nm(T)), we denote this
isomorphism by f. Note that, f(0) = 0 for the identity element 0 € Z,,.

The set 1y, m(R) satisfies the conditions (a)-(c) of Lemma 4.14, hence it defines
a Cl-graph. This means that f is equal to a permutation z + 72 for some r € Z,.
Let s € Z;, such that 17, (s) = r. Then 1y m(51) = Dnm(8)nm (1) = Nn,m(t1), and
so the following holds in Z,:

si =t1 or si =t +m. (4.14)

The order o(t1) = o(7) is odd by (b), implying that o(t1) # o(t; +m), and so si = t;
holds in (4.14). We conclude that sR = T, so Cay(Z,, R) is a Cl-graph. The lemma
is proved. ]

Lemma 4.16. Let n =2m and S = {0,u,v,v + m} such that

(a) S generates Zp;

(b) 1 <u<n,ul|n but ufm;

(¢) the stabilizer Aut(BCay(Zy, S))0,0) leaves the set {(0,1), (u,1)} setwise fized.
Then BCay(Zy, S) is a BCI-graph.

PROOF. Let 0 be the partition of V' defined in (4.6). Applying Lemma 4.9 with
R =S, R, = {0,u} and r = 0, we obtain that 0 is a system of blocks for A =
Aut(BCay(Zp, S)). Thus the stabilizer A ) leaves the set Vj setwise fixed, and we
may consider the action of Ay on Vp. The subgraph of BCay(Zy, S) induced by
the set Vp is a cycle of length 2n/u, thus A fixes also the vertex on this cycle
antipodal to (0,0). We find that this antipodal vertex is (u/2 + m,1). Therefore,
A0,0) = A(mus2,1)- By Proposition 3.14, BCay(Z,, S) is a BCl-graph if and only if
Cay(Zy,S —u/2 +m) is a Cl-graph. The latter set is

S—u/2+m={u/24+m,—u/2+m,v—u/2,v—u/2+m}.

Since u 1 m, u is even and the order |u/2+m| is odd. Thus we can apply Lemma 4.15
to the set S —u/2 + m (choose i = u/2 4+ m and j = v —u/2). This gives us that
S —u/2 + m defines a Cl-graph. This completes the proof of the lemma. O
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Figure 4.3: The lexicographical product C,,[K$].

PROOF OF THEOREM 4.6. Let S be the subset of Z,, given in Theorem 4.6. We
deal first with the case when the canonical bicyclic group R(Z,) is normal in A =

Aut(BCay(Zy, S)).
CASsE 1. R(Z,) < A.

By Theorem 4.5, there is a bicyclic group X of A such that X # R(Z,). Since
R(Z,) < A, X is generated by a permutation in the form cigpm,s, r €LY, s € Ly,
and the order of ¢, g, is at least 2. The permutation ¢, s acts on both V5 and V; as
an affine transformation. This fact together with the connectedness of BCay(Z,, S)
imply that, ¢, 05 acts faithfully on S x {1}. Thus the order of ¢, is at most 4.
Let o denote this order.

Suppose that o = 4. We may assume without loss of generality that S x {1}
can be obtained as S x {1} = {(0, 1)‘”170*3 | 7€{0,1,2,3}}, and so S = {0, s, (r +
s, (r> +r +1)s} and (r® + 72 +r + 1)s = 0. Since BCay(Z,, S) is connected,
ged(s,n) = 1, and (r + 1)(r2 + 1) = 0. We find that (c'p,05)* sends (z,0) to
(z 4+ r(r+1)(r? + 1)i),0) = (x,0). Since X = (c'¢r0,) is a bicyclic group, n = 4,
and so BCay(Zy,, S) = K4 4. This, however, contradicts that R(Z,) < A.

Now, suppose that o = 3. If A is transitive on S x {1}, then it must be
regular, see [44, Theorem 4.3|. This implies that S x {1} splits into two orbits under
A0y with length 1 and 3, respectively. Let s € S such that {(s,1)} is an orbit
under Ao ). Then Agg) = A1), and by Proposition 3.14, S — s does not define
a Cl-graph. However, in this case the graph Cay(Z,,S — s) is edge-transitive, and
thus it is a CI-graph (see [53, page 320|), which is a contradiction.

Finally, suppose that o = 2. If » = 1, then 2 | n and s = m, where n = 2m.
This implies that S x {1} is a union of two orbits of R(Z,)™, we may write S =
{0,m,s,s + m}. The graph BCay(Z,,S) is then isomorphic to the lexicographical
product C,,[K$§] of an n-cycle C), with the graph K¢, see Figure 4.3. It is easily seen
that then A ) is not faithful on the set S x {1}, which is a contradiction.

Let r # 1. By Lemma 4.12, 8 | n, r = m+ 1 and s € {0,m}, where n = 2m. We
consider only the case when s = 0 (the case when s = m can be treated in the same
manner). Then V; splits into the following orbits under ¢, ¢ s:

{20, 1)}, {(2i+1,1),(2i + 1 +m,1)}, where i€ {0,1,...,m — 1}.

Since BCay(Z,,, S) is connected and cannot be the union R(Z,,)™-orbits (see above),
S x {1} contains one orbit under ¢, s of length 2, and two orbits of length 1. Let Sy
denote the orbit of length 2 and let Sy = S\ S;. Then we may write S; = {s, s+m},
and Sy = {s', s"}, where both s’ and s” are even. Let u = ged(s’ — s”,n). Then u is
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a divisor of n and also 2 | u. There exist a € Z}, such that a(s’ — s”) = u(mod n).
Choosing b = —as” (all arithmetic is done in Z,), we find that aSs + b = {u,0}.
Now, letting v = as + b, we get aS; + b = {v,v + m}. We finish the proof of this
case by showing that the set R = aS + b = {0, u,v,v + m} satisfies the conditions
Theorem 4.6(a)-(c).

(a): As BCay(Zy, S) is connected, BCay(Z,, R) is also connected. This implies
that {u,v} is a generating set of Z,.

(c): Since R(Zy) < A, R(Zy,) < Aut(BCay(Zy,,, R)). To the contrary assume that
the stabilizer Aut(BCay(Zn, R))(0,0) does not leave {(0, 1), (u, 1)} setwise fixed. Thus
there exists some g € Aoy and thus the image of (v, 1) under g is in {(0, 1), (u,1)}.
Letting (w1,1) = (v,1)¢ and (w2,1) = ((v+m),1)9, we find that w; — wy = m, and
from this that v = m. However, then BCay(Z,, R) = C,,[K§], which we have already
excluded above. Thus Aut(BCay(Zy, R))o,0) fixes setwise {(0, 1), (u,1)}.

(b): We have already showed (see previous paragraph) that u # m and 1 < w.
Since S does not define a BCI-graph, neither does R. This also implies that u | m
by Lemma 4.12, and we conclude that 1 < v < m and u | m, as required.

CASE 2. R(Z,) 4 A.

Let Aq) act transitively on S x {1}. This gives that BCay(Z,,S) is edge-
transitive. Since R(Z,) 4 A, D 4 A, in other words, BCay(Z,, S) is non-normal
as a Cayley graph over the dihedral group D, where D = (¢,d). We apply [45,
Theorem 1.2], and obtain that BCay(Z,, S) is either isomorphic to K,[K$], or to
one of 5 graphs of orders 10, 14, 26, 28 and 30, respectively. Suppose that the former
case holds. Then n = 2m, and we obtain quickly that S consists of two R(Zy)™-
orbits. Then S can be mapped by an affine transformation to a set {0, m,v,v+m},
where (m,v) = Z,. Then v or v + m is a generating element of Z,, and so S can
actually be mapped by an affine transformation to {0, m, 1,1+ m}. Now, the same
holds for any set 7' with BCay(Z,,,T) = BCay(Z,, S) = K,[KS], contradicting that
BCay(Zy,S) is not a BCl-graph. In the latter case, a direct computation by the
computer package MAGMA [11] shows that none of these graphs is possible (in fact,
in each case the corresponding subset S defines a BCI-graph).

The set S x {1} cannot split into two orbits under A having size 1 and
3, respectively (see the argument above). Thus we are left with the case that S =
S1US, |S1] = [Sa], and Ay leaves both sets 51 and Sy setwise fixed. For i € {1, 2},
let n; = [(S; — Si)|, n1 < ng, where S; — S; ={a—0b | a,beS;}.

We claim that ny = 2. To the contrary assume that n; > 2. We prove first that
R(Zn)"/"1 < A. Apply Lemma 4.9 with R =S5, R, = S1 and r = 51 € 51. We
obtain that the partition

§={XUX¥=1-s1 | X € Orb(R(Zn)"™,V)},

is a system of blocks for A. Let us consider the action of A(s) (the kernel of A
acting on 0) on the block of § which contains (0,0). Denote this block by A, and
by A’ the block which contains (s, 1) for some s € Sy. Notice that, the subgraph of
BCay(Zy,S) induced by any block of ¢ is a cycle of length 2n;, and when deleting
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these cycles, the rest splits into pairwise disjoint cycles of length 2ny. Let X denote
the unique (2nz)-cycle through (s,1). Now, suppose that g € A5 which fixes A
pointwise. If V(X)N A = {(0,0)}, then g must fix the edge (0,0)(s, 1), and so fixes
also (s,1). If V(X) N A # {(0,0)}, then [V(X) N A|] = ng > 2. This implies that g¢
fixes every vertex on X, in particular, also (s,1). The block A’ has at least nj vertices
having a neighbour in A, hence by the previous argument we find that all are fixed
by g. Since ny > 2, A’ is fixed pointwise by g. It follows, using the connectedness of
BCay(Zn, S), that g is the identity mapping, hence that As) is faithful on A. Thus
R(Z,)™™ is a characteristic subgroup of As), and since A5 I A, R(Z,)"™ < A.

Let AT be the subgroup of A that fixes setwise the colour classes V and V5. We
consider N = At N Z4(R(Z,)"™). Then R(Z,) < N and N < A. Pick g € No,0)
such that g acts non-trivially on S x {1}. Since N centralizes R(Z,)"™™, g fixes
pointwise the orbit of (0,0) under R(Z,)™™, and hence also A. Then g¢? fixes
S x {1} pointwise, and so also A’. We conclude that g° is the identity mapping,
and thus that either N = R(Z,), or N = R(Zy) % (g). The case N = R(Z,) is
impossible because R(Zy,) 4 A. Let N = R(Zy) % (g). Then (S; x {1})¢ = S; x {1}
(for both i € {1,2}), hence S; is a union of (g)-orbits. As g normalizes R(Z;) and
fixes (0,0), g = ¢ro,s- Recall that the order of g is equal to 2. If r # 1, then by
Lemma 4.12, either R(Z;,) is the unique cyclic subgroup of N, or 8 | n, r =n/2+1
and s = 0 or s = n/2. In the former case R(Z,) is characteristic in N, and since
N < A, R(Zy,) < A, a contradiction. Therefore, we are left with the case that r =1
(and so s =n/2),0or 8 | n,r =n/2+1and s =0 or s = n/2. Then every (g)-orbit
is of length 1 or 2, and if it is of length 2, then is in the form {(j,0), (j +m,0)} or
{(4,1),(j + m,1)} as we have proved in Case 1. Since n; > 2, we see that S; x {1}
must be fixed pointwise by g for both ¢ € {1,2}. This, however, contradicts that g
was assumed to act non-trivially on S x {1}; and so n; = 2.

This means that 2 | n, say n = 2m, and the group generated by the set S} —S; =
{z —y:x,y € 51} is equal to {0,m}. Then we can write S; = {s,s +m}. It can
be proved as before that there exist a € Z} and b € Z,, such that aSy + b = {0, u}
for some divisor u of n. Then, letting v = as + b, we get aS1 + b = {v,v +m}. We
finish the proof of this case by showing that the set R = aS + b = {0, u,v,v + m}
satisfies the conditions Theorem 4.6(a)-(c).

(a): As BCay(Z,, S) is connected, BCay(Z,, R) is also connected. This implies
that {u,v} is a generating set of Z,.

(c): Since S1 and Sy are left fixed setwise by A, Aut(BCay(Zn, R))(9,0) leaves the
set {(0,1), (u, 1)} setwise fixed.

(b): If u = 1, then Aut(BCay(Z,,{0,u})) < D4y. But then R(Z,) < A, which
is a contradiction. We conclude that 1 < u, and by Lemma 4.16, u | m also holds, i.
e., 1 <u < m and u | m, as required. O



Chapter 5
Nilpotent 3-BCI-groups

Let G be a 3-BClI-group, i. e., every bi-Cayley graph over G valency at most 3 has
the BCI-property. Jin and Liu [35] proved a Sylow 2-subgroup of G is Zgr, or Z3
or Qs; and they also proved in [36] that a Sylow p-subgroup for an odd prime is
homocyeclic, i. e., a direct product of cyclic groups of the same order. Therefore, if
G is nilpotent, then it is necessarily a direct product of the groups described above.
In this chapter we prove that the converse implication also holds.

Theorem 5.1. FEvery finite group G = U X V is a 3-BCI-group, if U is an abelian
group of odd order whose Sylow p-subgroups are homocyclic, and V' is trivial or one
of the following groups: Zyr, Z5 and Q)g.

Throughout this chapter C will denote the set of all groups G = U x V, where U
is an abelian group of odd order whose Sylow p-subgroups are homocyclic, and V is
either trivial or one of the groups Zsyr, Z5 and Q)g. Furthermore, Cg,p, will denote set
of all groups that have an overgroup in C.

5.1 Preparatory lemmas

Our first lemma generalizes Lemma 3.14.

Lemma 5.2. Let I' = BCay(G, S) such that there exists an involution 7 € Aut(T)
which normalizes R(G) and (1,0)" = (1g,1). Suppose, in addition, that Aut(I'), o)
= Aut(T)(14,1)- Then BCay(G, S) is a BCI-graph whenever Cay(G, S) is a Cl-graph.

PROOF. Set A = Aut(I") and A" = Aygy{o})}, and let us suppose that Cay(G, S)
is a Cl-graph. Recall that, by S(A) we denote the set of all semiregular groups in
A with orbits G x {0} and G x {1}. Let X € S(A) such that X = G. Obviously,
X, R(G) < A*. The normalizer Ny(R(G)) > (R(G),7), hence it is transitive on
V(T'). Thus, by Lemma 3.5, we are done if we show that X and R(G) are conjugate
in A*.

In order to prove this we define a faithful action of A" on G as follows. Let A =
{(1g,0),(1g,1)} and consider the setwise stabilizer Agay. Since Ag,0) = A(14,1);
Ang0) < Agay. By Theorem 2.5, the orbit of (1g,0) under Aay is a block for A.
Since 7 switches (1¢,0) and (1¢g, 1), this orbit is equal to A, and the system of blocks
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induced by A is § = {AF®) | z € G} = {{(z,0),(z,1)} | € G}. Now, define
the action of AT on G by letting 2° = 2/, where 2 € G and o € A", if 0 maps the
block {(x,0), (z,1)} to the block {(2’,0),(z',1)}. We will write & for the image of
o under the corresponding permutation representation, and let B = {7 : 0 € B}
for a subgroup B < AT. It is easily seen that this action is faithful. Therefore,

X and R(G) are conjugate in A* exactly when X and R(G) are conjugate in A+.

Also, R(G) = Ghight, and X is regular on G. We finish the proof by showing that
At = Aut(Cay(G, S)). Then the conjugacy of X and R(G) follows by Lemma 2.15
and the assumption that Cay(G, S) is a Cl-graph.

Pick an automorphism o € A" and an arc (z,sz) of Cay(G,S). Then the
edge {(z,0), (sz,1)} of T is mapped by o to an edge {(2’,0),(s'z’,1)} for some
¥ € Gand s € S. Hence 7 : * — 2’ and sx — s'2/. i.e., it maps the arc
(x,sz) to the arc (2/,s'z’). We have just proved that & € Aut(Cay(G,S)), and
hence A+ < Aut(Cay(G,S)). In order to establish the relation “>", for an arbi-
trary automorphism p € Aut(Cay (G, S)), define the permutation 7 of G x {0,1} by
(x,9)™ = («f,q) for all x € G and i € {0,1}. Repeating the previous argument we
obtain that 7 € A. Tt is clear that m € At and @ = p. Thus A+ > Aut(Cay(G, S)),
and so A+ = Aut(Cay(G, S)). The lemma is proved. O

Lemma 5.3. Let I' be a cubic bipartite graph with bipartition classes A;, i = 1,2, and
X < Aut(T") be a semireqular subgroup whose orbits are A;, i =1, 2, and X € Cqyp-
Then Aut(I') has an element Tx which satisfies:

(i) every subgroup of X is normal in (X, 7x);
(11) (X, 7x) is reqular on V(I').

ProoF. It is straightforward to show that I' = BCay(X, S) for some subset S C X
with 1x € S and |S| = 3. Moreover, there is an isomorphism from I" to BCay(X, S)
which induces a permutation isomorphism from X to R(X). Therefore, it is suffi-
cient to find 7 € Aut(BCay(X,S)) for which every subgroup of R(X) is normal in
(R(X),7); and (R(X),7) is regular on V(BCay(X,S)).

Since X € Ceuyp, X = U x V, where U is an abelian group of odd order, and V' is
trivial or one of Zgr, Zi and Q3. We prove below the existence of an automorphism
¢ € Aut(X), which maps the set S to its inverse S~!. Let my and 7y denote the
projections U x V. — U and U x V — V respectively. It is sufficient to find an
automorphism ¢; € Aut(U) which maps my(S) to my(S)~!, and an automorphism
2 € Aut(V) which maps m/(S) to my(S)~!. Since U is abelian, we are done by
choosing ¢ to be the automorphism x ~— x~!. If V is abelian, then let to : z + z71.
Otherwise, V' = Qg, and since |my(S) \ {1y }| < 2, it follows that 7y (S) is conjugate
to my(S)~!in V. This ensures that ¢ can be chosen to be some inner automorphism.
Now, define ¢ by setting its restriction ¢|y to U as ¢|y = ¢1, and its restriction ¢|y to
V as t|y = t2. Define the permutation 7 of X x {0,1} by

, (z4,1) ifi=0,
(xal)T: -
(z4,0) ifi=1.
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The vertex (x,0) of BCay(X, S) has neighbourhood (Sz,1). This is mapped by 7 to
the set (S~12%,0), which is equal to the neighbourhood of (z*,1). We have proved
that 7 € Aut(BCay (X, S)).

It follows from its construction that 7 is an involution. Fix an arbitrary subgroup
Y < X, and pick y € Y. We may write y = yyyy for some yy € U and yy € V. Then
(yu,yv) <Y, since yy and yy commute and ged(|U|,|V|) = 1. Also, (yu)"* = yljl
and (yy)"? € (yy), implying that ¥* = (yv)" (yv)*? € (yv,uy) < Y. We conclude
that ¢ maps Y to itself. Thus 77 'R(y)7 = T7R(y)T = R(y') is in R(Y), and 7
normalizes R(Y"). Since X € Cqup, R(Y') is also normal in R(X), and part (i) follows.

For part (ii), observe that [(R(X),7)| = 2|X| = |V(BCay(X,S5))|. Clearly,
(R(X), ) is transitive on V(BCay(X,S)), so it is regular. O

In the next lemma we recall some properties of normal quotients of cubic bi-
Cayley graphs. The proof of the lemma is rather straightforward, and thus it is
omitted. For instance, it can be deduced from |58, Theorem 9|).

Lemma 5.4. Let I' = BCay(G, S) be a connected arc-transitive graph, G be any
finite group, |S| = 3, and let N < R(G) be a subgroup which is normal in Aut(T").
Then the following hold for the normal quotient I'

(i) T'n is a connected cubic arc-transitive graph. Moreover, if T' is (Aut('),s)-
transitive, then Ty is (Aut(T')/N, s)-arc-transitive.!

(i4) T'n is isomorphic to the bi-Cayley graph BCay(G /M, 7q/n(S)), where M < G
is the subgroup that N = {R(z) | * € M}, and gy is the natural projection
from G to G/M (clearly, M I G as R(M) =N < R(Q)).

(i5i) N is equal to the kernel of Aut(I') acting on the set of N-orbits.

5.2 The proof of Theorem 5.1

The proof of Theorem 5.1 in the case of arc-transitive graphs will be based on three
lemmas about cubic connected arc-transitive bi-Cayley graphs to be proved below.
In these lemmas we we keep the following notation:

(x) T' = BCay(G,S) is a connected arc-transitive graph, where G € Cgyp and
|S] = 3.

Recall that, S(Aut(I")) is the set of all semiregular subgroups of Aut(I') whose
orbits are G x {0} and G x {1}.

Lemma 5.5. With notation (x), let § be a system of blocks for Aut(I") induced by
a block properly contained in G x {0}, and X be in S(Aut(I")) such that X € Cqup.
Then the kernel Aut(I')s < X. Moreover, if 6 is non-trivial, then Aut(I')s is also
non-trivial.

'The group Aut(T") acts on the set of N-orbits which is, by definition, coincides with the vertex
set V(I'yv). By part (iii) of the lemma, the image of the action is isomorphic to Aut(I')/N. In
what follows, by some abuse of notation, this image will also be denoted by Aut(I')/N, and in this
context we shall write Aut(I')/N < Aut(T'n).
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Proor. Set A = Aut(l'). Let Y = X N Agay, where A € § with A C G x {0}. Then
A is equal to an orbit of Y, and |Y| = |A| because A C G x {0} and X is regular
on G x {0}. Formally, A = Orb(Y,v) for some vertex v € A.

Let 7x € A be the automorphism defined in Lemma 5.3, and set L = (X, 7x).
The group L is regular on V(T'), and Y < L. These yield

§={A' | 1e L} ={0rb(Y,v)! | I € L} = {Orb(Y,2!) | l € L}.

From this Y < As. This shows that, if |Y| = |A| # 1, then As is non-trivial. Since §
has more than 2 blocks, and IT" is a connected and cubic graph, it is known that As
is semiregular. These imply that A; =Y < X. O

Corollary 5.6. With notation (x), let N < R(G) be normal in Aut(I'), and X be
in S(Aut(T")) such that X € Cyy,. Then N < X.

PROOF. Let § be the system of blocks for Aut(I") consisting of the N-orbits, see
Theorem 2.6. Then As; = N because of Lemma 5.4(iii). The corollary follows
directly from Lemma 5.5. O

We denote by Q3 the graph of the cube and by H the Heawood graph. The latter
is graph is the incidence graph of the Fano plane, it is the unique arc-transitive cubic
graph on 14 points [14]. Recall that, the core of a subgroup H < K in the group K
is the largest normal subgroup of K contained in H.

Lemma 5.7. With notation (x), suppose that R(G) is not normal in Aut(I'), and
let N be the core of R(G) in Aut(T'). Then (R(G)/N,T'y) is isomorphic to one of
the pairs (Zs, K3 3), (Z4,Q3) and (Z7,H).

PrROOF. Set A = Aut(I'). Consider the normal quotient I'y, and suppose that
M < R(G) such that N < M and M/N < Aut(I'y) (here M/N < A/N < Aut(I'n),
see Footnote 1 in the previous page). This in turn implies that, M/N < A/N,
M 9 A, and M = N. We conclude that, I'y is a bi-Cayley graph of R(G)/N,
R(G)/N is in Ceyp, and R(G)/N has trivial core in Aut(I'y). This shows that it is
sufficient to prove Lemma 5.7 in the particular case when N is trivial. For the rest
of the proof we assume that the core N is trivial, and we write N = 1.

By Theorem 2.7, T' is k-regular for some k < 5. Set AT = Aygyqoyy- Tt fol-
lows from the connectedness of T' that A = (A", 7)), where ) € A is the
automorphism defined in Lemma 5.3. Let M be the core of R(G) in AT. Then
M < A, since M is normalized by 7y, see Lemma 5.3(i), and A = (A", 7))
Thus M < N =1, hence M is also trivial.

Let us consider A" acting on the set [AT : R(GQ)] of right R(G)-cosets in A*.
This action is faithful because M is trivial. The corresponding degree is equal to
|A* . R(G)|, which is 3 - 2¥=1 because T is k-regular. Since R(G) acts as a point
stabilizer in this action, we have an embedding of G into S3.or-1_;. We will write
below that G < Sg.95-1_1.

It is well-known that A, o) is determined uniquely by k, namely, A, o) = Z3,
or Ss, or Dis, or Sy, or Sy X Zsy correspondingly to k = 1,2,3,4 or 5. We go through
each case.
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Case 1. £ =1.

This case can be excluded at once by observing that we have G < Sy by the
above discussion, which contradicts the obvious bound |G| > 3.

CASE 2. k£ = 2.

In this case G < S5. Using also that G € Cg1,, we see that G is abelian, hence
|G| <6, |[V(I')| < 12. We obtain by [14, Table| that I' = @3, and G = Zy.

CASE 3. k£ =3.

Then A" = R(G)A(1,,0) = R(G)D12, a product of a nilpotent and a dihedral
subgroup. By Theorem 2.2, AT is solvable. Assume for the moment that A" is
imprimitive on G x {0}. This implies that A is also imprimitive on V(I') and it
has a non-trivial block system ¢ which has a block properly contained in G x {0}.
Lemma 5.5 gives that As < R(G), and As is non-trivial. This, however, contradicts
that the core N = 1. Thus A™ is primitive on G x {0}. Using that AT is also
solvable, we find that G is a p-group. We see that G is either abelian or it is Q)g.
In the latter case |V (I')] = 16, and T is isomorphic to the Moebius-Kantor graph,
which is, however, 2-regular, see [14, Table|. Therefore, G is an abelian p-group. Let
S ={s1, $2,83}. Since G is abelian, in I" we find the closed walk:

((16'7 0)7 (Sla 1)7 (82_1817 0)7 (8332_1817 1) - (8182_1337 1)7 (82_1337 0)7 (837 1) )

Thus the girth of T" is equal to 4 or 6 (3 and 5 are impossible as the graph is bipartite).

It was proved in [15, Theorem 2.3| that the Pappus graph on 18 points and the
Desargues graph on 20 points are the only 3-regular cubic graphs of girth 6. For the
latter graph |G| = 10, contradicting that G is a p-group. We can exclude the former
graph by the help of MAGMA, namely, we computed that the Pappus graph has no
abelian semiregular automorphism group of order 9 which has trivial core in the full
automorphism group.

Thus T is of girth 4. It is well-known that there are only three cubic connected
arc-transitive graphs of girth 4 (e. g., see [47, page 163]): K4, K33 and Q3. We get
at once that I' = K33 and G = Zs.

CASE 4. k = 4.

It is sufficient to show that G is abelian. Then by the above reasoning I' is of
girth 6, and as the Heawood graph is the only cubic 4-regular graph of girth 6 (see
[15, Theorem 2.3|), we get at once that I' = H and G = Zr.

Assume, towards a contradiction, that G is non-abelian. Thus G = U x V, where
U is an abelian group of odd order, and V =2 (3. We have already shown above that
AT is primitive on G x {0}. In other words, I' is a 4-transitive bi-primitive cubic
graph. Two possibilities can be deduced from the list of 4-transitive bi-primitive
graphs given in [52, Theorem 1.4]:

o ['is the standard double cover of a connected vertex-primitive cubic 4-regular
graph, in which case A = A" x (n) for an involution n; or

e I" isomorphic to the sextet graph S(p) [9], where p = £7(mod 16), in which
case A~ PGL(2,p), and AT = PSL(2,p).
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The second possibility cannot occur, because then AT = PSL(2, p), whose Sylow
2-subgroup is a dihedral group (cf. [33, Satz 8.10|), which contradicts that R(V) <
R(G) < AT, and V = Qs.

It remains to exclude the first possibility. We may assume, by replacing S with
xS for a suitable x € G if necessary, that n switches (1¢,0) and (1g,1). Since 7
commutes with R(G), we find (z,1)7 = (1g,1)F®" = (14, 1)@ = (14,0)E@) =
(x,0) for every z € G. Let s € S. Then (1¢,0) ~ (s,1), hence (1g,1) = (1¢,0)7 ~
(5,1)" = (s,0), which shows that s € S7!, and thus S = S~!. Thus there exists
s € Soforder o(s) < 2. Put T =5 1S = s5. Then 1¢ € T, and since I is connected,
G = (T). Notice that s € Z(G). This implies that T~ = S~'s = S = T, and thus
7y (T) satisfies 1y € my(T) and 7y (T) = 7wy (T) 1. Since V 2 Qg, this implies that
(my(T)) # V, a contradiction to G = (T'). This completes the proof of this case.

CASE 5. k£ =5.

In this case I' is a 5-transitive bi-primitive cubic graph. It was proved in [52,
Corollary 1.5] that I' is isomorphic to either the PI'L(2,9)-graph on 30 points (also
known as Tutte’s 8-Cage), or the standards double cover of the PSL(3, 3).Ze-graph
on 468 points. These graphs are of girth 8 and 12 respectively (see [14, Table]). Also,
in both cases 8 1 |G|, hence G is abelian, which, however, implies that I" cannot be
of girth larger than 6. This proves that this case does not occur. g

For a group A and a prime p dividing |A|, we let A, denote a Sylow p-subgroup
of A.

Lemma 5.8. With notation (x), let X € S(Aut(T")) such that X € Csyp and Xo =
Ga. Then X and R(G) are conjugate in Aut(I').

Remark 5.9. We remark that, the assumption Xo =2 (G2 cannot be deleted. The
Mébius-Kantor graph is a bi-Cayley graph of the group g, which has a semiregular
cyclic group of automorphisms of order 8 which preserves the bipartition classes.

ProOOF. Set A = Aut(I"). The proof is split into two parts according to whether
R(G) is normal in A.

CasE 1. R(G) is not normal in A.

Let N be the core of R(G) in A. By Corollary 5.6, N < X N R(G). Therefore,
it is sufficient to show that

X/N and R(G)/N are conjugate in A/N. (5.1)

Recall that, the group A/N < Aut(I'y), where I'y is the normal quotient of I’
induced by N (see Lemma 5.4). Both groups X/N and R(G)/N are semiregular
whose orbits are the bipartition classes of I'y. Also notice that, R(G)/N cannot be
normal in A/N, otherwise R(G) will be normal in A.

According to Lemma 5.7, (R(G)/N,T'n) = (Z3,K33), or (Z4,Q3), or (Z7,H).
Thus (5.1) follows immediately from Sylow Theorems when (R(G)/N,T'n) = (Z7,H).

Let (R(G)/N,T'n) = (Z3,K33). Since R(G)/N is not normal in A/N, and I'y
is (A/N, 1)-arc-transitive, we compute by MAGMA that either A/N = Aut(I'y), or
it is a subgroup of Aut(I'y) of index 2. In both cases A/N has one conjugacy class
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of semiregular subgroups whose orbits are the bipartition classes of I'y. Thus (5.1)
holds.

Let (R(G)/N,Tn) = (Z4,Q3). Since X9 = G9, X/N = R(G)/N = Z4. Using
this and that I'y is (A/N, 1)-arc-transitive, we compute by MAGMA that A/N =
Aut(T'y), and that Aut(I'y) has one conjugacy class of semiregular cyclic subgroups
whose orbits are the bipartition classes of I'y. Thus (5.1) holds also in this case.

CASE 2. R(G) is normal in A.

We have to show that X = R(G). Notice that, X contains every proper subgroup
K < R(G) which is characteristic in R(G). Indeed, since R(G) < A, we have that
K < A, and hence K < X follows from Corollary 5.6. This property will be used
often below.

In particular, R(G), < R(G) is characteristic for every prime p dividing |R(G)|.
If G is not a p-group, then R(G), < R(G), and by the above observation R(G), < X.
This gives that X = R(G) if G is not a p-group. Let G be a p-group. If p > 3, then
both R(G) and X are Sylow p-subgroups of A, and the statement follows from Sylow
Theorems. Notice that, since I is connected, G is generated by the set s~15 for some
s € S, hence it is generated by two elements.

Let p = 2. Assume for the moment that G is cyclic. Then R(G) has a charac-
teristic subgroup K such that R(G)/K = Z4. Then K < A, T = Q3. Moreover,
I'k is a bi-Cayley graph of R(G)/K, and R(G)/K is normal in A/K < Aut(I'x). A
simple computation, using MAGMA, shows that this situation does not occur. Let
G be a non-cyclic 2-group in Cyyp. Also using the fact that G is generated by two
elements, we conclude that either G = Z3 and T’ & Q3, or G = Qg and T is the
Mbbius-Kantor graph. Now, X = Xy 2 G9 = G. The equality X = R(G) can be
verified by the help of MAGMA in either case.

Let p = 3. Observe first that |G| > 3. For otherwise, I' = K3 3, but no semiregu-
lar automorphism group of order 3 is normal in Aut(K33). Since G is generated by
two elements, we may write G = Zge X Z3s, where e > 1 and 0 < f <e. If e =1,
then f =1, G = Z%, and I' is the Pappus graph. However, this graph has no auto-
morphism group which is isomorphic to Zg and also normal in the full automorphism
group. Therefore, e > 2. Define K = {R(z) | = € G and o(x) < 3°72}. Then K
is a characteristic subgroup of R(G). Thus K < A, and ' is a Bi-Cayley graph of
R(G)/K.

Let f <e—2. Then R(G)/K = Zy, and T' is the Pappus graph. This graph,
however, does not have a cyclic semiregular automorphism group of order 9. We
conclude that f € {e — 1,¢e}.

Let f =e—1. Then R(G)/K = Zg x Zs. It follows that ' is the unique cubic
arc-transitive graph on 54 points (see [14, Table|). We have checked by MAGMA that
this graph has a unique semiregular abelian automorphism group whose orbits are the
bipartition classes. Therefore, X/K = R(G)/K. This together with K < X N R(G)
yield that X = R(G).

Finally, let f = e. Then R(G)/K = Zg x Zg. It follows that I'xc is the unique
cubic arc-transitive graph on 162 points (see [14, Table]). A direct computation,
using MAGMA, gives that X/K = R(G)/K, which together with K < X N R(G)
yield that X = R(G). O
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Recall that, a group H is homogeneous if every isomorphism between two sub-
groups of H can be extended to an automorphism of H. A finite group G is called
an m-DClI-group if every Cayley graph over G of valency at most m is a Cl-graph.
The following result is |51, Proposition 3.2|:

Proposition 5.10. Every 2-DCI-group is homogeneous.

Since every group in C is a 2-DCl-group (see [51, Theorem 1.3|), we have the
corollary that every group in C is homogeneous.

Everything is prepared to prove Theorem 5.1.

PROOF OF THEOREM 5.1. Let G € C and I' = BCay(G, S) such that |S| < 3. We
have to show that I' is a BCI-graph. This holds trivially when [S| = 1, and follows
from the homogeneity of G when |S| = 2. Let |S| = 3.

CASE 1. T' is arc-transitive.

Let BCay (G, S) = BCay(G,T) for some subset T C G. We may assume with-
out loss of generality that 1 € SNT. Let H = (S) and K = (T). Then
H,K € Cgup, both bi-Cayley graphs BCay(H,S) and BCay(K,T) are connected,
and BCay(H, S) = BCay(K,T). We claim that BCay(H, S) is a BCI-graph. In view
of Lemma 3.5, this holds if the normalizer of R(H) in Aut(BCay(H, S)) is transitive
on the vertex-set V(BCay(H,S)), and for every X € S(Aut(BCay(H, S5))), isomor-
phic to H, X and R(H) are conjugate in Aut(BCay(H,S)). Now, the first part
follows from Lemma 5.3, while the second part follows from Lemma 5.8.

Let ¢ be an isomorphism from BCay(K,T) to BCay(H,S), and consider the
group X = ¢ 'R(K)¢ < Sym(H). Since ¢ maps the bipartition classes of BCay(K, T')
to the bipartition classes of BCay(H, S), we have X € S(Aut(BCay(H, S))). Also,
Xy = R(H)s, because X = K, |H| = |K| and H and K are both contained in
the group G from C. Thus Lemma 5.8 is applicable, as a result, X and R(H) are
conjugate in Aut(BCay(H,S)). In particular, H = K. Since G is homogeneous,
there exists a; € Aut(G) such that K“' = H. This «; induces an isomorphism from
BCay(K,T) to BCay(H,T*'). Therefore, BCay(H, S) = BCay(H,T*'), and since
BCay(H, S) is a BCI-graph, T = ¢S“2 for some g € H and ay € Aut(H). By the
homogeneity of G, ag extends to an automorphism of G, implying that BCay(G, S)
is a BCl-graph.

CASE 2. I' is not arc-transitive

Since I' is vertex-transitive (see Lemma 5.3), but not arc-transitive, we have
Ag,0) = A(s,) for some s € S. We show below that BCay (G, s719) is a BCI-graph,
this obviously yields that the same holds for BCay(G, S). Define the permutation
¢ of G x {0,1} by (z,i)? = (x,0) if i = 0, and (,i)® = (s™'a,1) if i = 1. The
vertex (z,0) of BCay(G, S) has neighbourhood (Sz,1). This is mapped by ¢ to the
set (s71Sx,1). This shows that ¢ is an isomorphism from I' to IV = BCay(G, s~19).
Then Aut(]?’)(lg’o) = ¢_1A(1G70)¢ = ¢_1A(871)¢) = Aut(].“’)(lc,l). Let TR(G) be the
automorphism of I' defined in Lemma 5.3. It follows that 7p(¢) is an involution (see
the proof of Lemma 5.3), which normalizes R(G) and maps (1¢,0) to (1g,1). Now,
we can apply Lemma 5.2 to I, as a result, it is sufficient to show that Cay(G, s~ 19\
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{15}) is a CI-graph. This follows because |s~1S\ {15}| = 2 and that G is a 2-DCI-
group (see [51, Theorem 1.3]). This completes the proof of the theorem. O
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5.2 The proof of Theorem 5.1




Chapter 6

Connected arc-transitive cubic
bi-Cayley graphs

In this chapter we turn to the class of connected arc-transitive cubic bi-Cayley graphs
BCay(G, R, L,S). As a first result, we give a classification of these graphs in the
case when G is an abelian group. For sake of simplicity we call such a graph also an
abelian bi-Cayley graph. We start with a definition.

Definition 6.1. We say that a bi-Cayley graph BCay(G, R, L,S) is of type s if
Rl =|L| =s.

Clearly, if BCay(G, R, L, S) is cubic, then it is of s-type for s € {0,1,2}. The
classification in the cases of 0- and 2-type graphs follows from results in [15, 24, 46,
47]. The O-type graphs are listed in Table 6.1.

no. | G S k-reg. | other name
1. | Zpm X Z, = {a,b|a™ =" = | {1,a,b} 1 —

Lb™ = am ) r = 3opit g

r > 3and r > 11 if m = 1,

s € {0,1}, every p; = 1(mod 3), and
u? +u+1=0(mod r)

2. | Zs = (a) {1,a% a%} 2 Mébius-Kantor graph
3. | 22 = {a,b), m>1,m#3 {1, a,b} 2 -
4. de X Zm = <a’b|a3m = b3m = {170,,()} 2 —
17 a"L — b/’n,>’ m > 1
5. | Z3 = (a) {l,a,a7"} 3 K33
6. | Z3 = (a,b) {1,a,b} 3 Pappus graph

7. | Z7 = {a) {1,a,a%} 4 Heawood graph

Table 6.1: Connected arc-transitive cubic abelian 0-type bi-Cayley graphs.

In deriving Table 6.1, the key observation is that each 0-type graph is of girth
4 or 6, which we have already deduced in the proof of Lemma 5.7. Let I" be a
connected arc-transitive cubic bi-Cayley graph over an abelian group G. If the girth
of I' is 4, then the it is isomorphic to K33 or Q3. The graph K3 3 is isomorphic to
the bi-Cayley graph given in row no. 5 of Table 6.1, and @3 is isomorphic to the
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bi-Cayley graph given in row no. 3 of Table 6.1 with m = 2. Assume that I' is of
girth 6. Then by Theorem 2.8, I' is k-regular for some k < 4. We consider each case
of the theorem separately.

Case 1. k£ =1.

In this case Aut(I") contains a regular normal subgroup K isomorphic to Dih(L),
where L = Zypy X Ly, 7 = 3°p7*---p*, r >3 and r > 11 if m =1, s € {0,1},
and every p; = 1(mod 3). Consequently, the subgroup G < K that G = L is
semiregular and has two orbits on V(I'). Notice that, the group L is characteristic
in Dih(L). Thus G is characteristic in K, and since K < Aut(I') we conclude that
G < Aut(T"). Using this and that I' is arc-transitive, we find that I' is bipartite, and
the bipartition classes are equal to the orbits of G. Therefore, I' = BCay(G, S) for a
subset S of G. We may assume without loss of generality that 1 € S, here 1 denotes
the identity element of G. Since I' is arc-transitive and G is normal in Aut(I"), there
exist 0 € Aut(G) and h € G with the property that S is equal to the orbit of 1
under the mapping ¢ : z +— 2%h, x € G. Thus we may write S = {1, a, b} such that
19 = a, a¥ = b and b¥ = 1. It follows from this that h = a, a° = a ‘b and b =a~'.
This shows that both elements a and b are of the same order. On the other hand
I is connected, hence (a,b) = G = Zyp, X Ly, and thus a and b are of order rm,
and (a™) = (b™). Then we can write (a™)? = (b"™)7 = ((b”)™) = (a"), and thus
(@™)? = (a™)" for some integer u, ged(u, r) = 1. From this (™) = (a™)? = a~™b"™,
hence b = a™® 41 Also, (™) = (a™)°" = (a~™b™) = (™)~ and this gives
that u?+u+1 = 0(mod r). To sum up, BCay(G, {1,a,b}) is one the graphs described
in row no. 1 of Table 6.1. In fact, any graph in that row is arc-transitive, the proof
of this claim we leave for the reader.

CASE 2. k = 2. In this case I' = GP(8,3), or Aut(I') contains a regular normal
subgroup isomorphic to Dih(L), where L = Zy, X Zpy, r € {1,3}, m > 1, and
if = 1, then m # 3. We have checked by MAGMA that GP(8,3) admits a bi-
Cayley representation given in row no. 2 of Table 6.1. Otherwise, copying the same
argument as in CASE 1, we derive that I' = BCay(G, S), where S = {1,a,b}, and
either G = {(a,b) = Zy, X Zy, m > 1 and m # 3, or G = (a,b|a®™ = > =
1,a™ =b") = Zsm X Ly, m > 1. Therefore, BCay(G, {1, a,b}) is one of the graphs
described in row no. 3 of Table 6.1 in the former case, while it is one of the graphs
described in row no. 4 of Table 6.1 in the latter case. In fact, any graph in these
rows is arc-transitive, the proof is again left for the reader.

CASE 3. k = 3. In this case I' = F'18 (the Pappus graph) or GP(10, 3) (the Desargues
graph). The Pappus graph admits a bi-Cayley representation given in row no. 6 of
Table 6.1, and we have checked by MAaGMA that the Desargues graph cannot be
represented as a O-type abelian bi-Cayley graph.

CASE 4. k = 4. In this case I' & F'14 (the Heawood graph), which admits a bi-Cayley
representation given in row no. 7 of Table 6.1.

The 2-type connected arc-transitive cubic abelian bi-Cayley graphs are listed in
Table 6.2.

Table 6.2 follows directly from the classification of connected arc-transitive abelian
bi-Cayley graphs BCay(G, R, L, S) with |S| =1 given in [46, Theorem 1.1].
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G R L S | k-trans | other name

{a,b) = 73 {a,b} {a,b} {1} 2 GP(4,1)

{a) x (b) = Zy x Z1g | {ab®,ab=3} | {b,6~1} | {1} 2 -

(a) = Zn {a} {o*}y {1} 2 GP(n, k), (nk) =
(4,1), (8,3), (10,2),
(12,5), (24,5)

(a) = Zn, {a} {a} | {1} 3 GP(n.k), (nk) =
(5,2), (10,3)

Table 6.2: Connected arc-transitive cubic abelian 2-type bi-Cayley graphs.

In Section 6.1 we complete the classification by proving the following theorem:

Theorem 6.2. There are exactly four connected arc-transitive cubic 1-type abelian

bi-Cayley graphs: K4, Q3, GP(8,3) and GP(12,5).

In Section 6.2 we turn to the BCI-property of cubic bi-Cayley graphs BCay(G, S)
where G is a finite abelian group. We have seen in the previous chapter that G is a 3-
BCl-group if and only if G = U x V', where U is an abelian group of odd order whose
Sylow subgroups are homocyclic and V' is trivial, Zor or Z} (see Theorem 5.1 and
the preceding paragraph). Consequently, the class of abelian 3-BCI groups is quite
restricted. As our second main result in this chapter, we prove that the situation
changes completely when one considers only connected arc-transitive graphs.

Theorem 6.3. Let G be a finite abelian group. Then every connected arc-transitive
cubic bi-Cayley graph BCay(G, S) is a BCI-graph.

6.1 Proof of Theorem 6.2
Till the end of the section we keep the following notation:

I' = BCay (G, {r}, {s},{1,t})

is a cubic symmetric graph, G = (r,s,t) is an abelian group and, r and s are
involutions.

The core of a subgroup A in a group B is the largest normal subgroup of B
contained in A. In order to derive Theorem 6.2, we analyse the core of R(G) in

Aut(T).

Lemma 6.4. If R(G) has trivial core in Aut(T'), then one of the following holds:
(i) G=Zy, s=r=t, and I = K.
(i5) G =73, s#r t=sr and I = Q3.

Proor. If I is of girth 4, then it is isomorphic to Ky, or K33, or (J3. In the first case
we get at once (i), and it is not hard to see that K33 is impossible. Furthermore,
we compute by MAGMA that Q3 is possible, G = Z%, and r, s, t must be as given in

(ii).
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For the rest of the proof we assume that the girth of I' is larger than 4. Then
r # s, for otherwise, we find the 4-circuit ((1,0),(1,1),(r,1),(r,0)). Then either
(r,s)y N (t) is trivial, and

G = (r,s) x (t) = 73 X Ly; (6.1)
or t is of even order, say 2n, t" € (r,s), and
G = <T‘,S,t> = ZQ X Zgn. (62)

Note that, we have |G| = 4n.

By Tutte’s Theorem (Theorem 2.7), I" is k-regular for some k£ < 5. The order
| Aut(T)| = [V(I')]-3-28"1 = |G|-3-2F, and thus | Aut(I") : R(G)| = 3-2*. Consider
the action of Aut(I') on the set of its right R(G)-cosets. Since R(G) has trivial core
in Aut(I"), this action is faithful. Using this and that R(G) acts as a point stabilizer,
we have an embedding of R(G) into Ss.or_q. We shall write below G < S35 ;.
It was proved in [12, Theorem 1] that, if n = 3m 4+ 2 and A < S, is an abelian
subgroup, then

|A] <2-3™, (6.3)

and equality holds if and only if A = Zy x Z5".

Case 1. k= 1. In this case Z3 < G < S5. This implies that |G| = 4, T' = Q3 (see
[14, Table]), which contradicts that the girth is larger than 4.

CASE 2. k = 2. In this case G < Sy;. Since |G| = 4n, we obtain by (6.3) that
n < 13. We compute by MAGMA that, if G is given as in (6.1) and n < 13, then T’
is not edge-transitive. Furthermore, if G is given as in (6.2) and n < 13, then I is
edge-transitive only if n = 2 or n = 3. Consequently, I' = GP(8,3) or GP(12,5) (see
[14, Table]). However, we have checked by MAGMA that in both cases the possible
semiregular subgroups have a non-trivial core in the full automorphism group, and
thus this case is excluded.

CASE 3. k£ > 3. We may assume that n > 13, see the previous paragraph. We find in
' the 8-cycle ((1,0), (r,0),(r,1), (rs, 1), (rs,0), (s,0), (s,1),(1,1)). Thus there must
be an 8-cycle, say C, starting with the 3-arc ((1,0), (¢, 1), (,0), (t2,1)), let this be
written in the form:

C = ((1,0), (t, ].), (t, 0)7 (t27 1), ((Stz’x)’ (ryétQ’ {L‘/), (5’}/(%2,.%”), (05,8’}/(5752, {L‘/,/) )’

where z, 2/, 2", 2" € {0,1} and a, 8,7, € {1,7,5,t,t71}. Put n = aBvy5t2. Observe
that, n = tzrjsk for some integers i, j, k > 0. Moreover, ¢ < 4 and ¢ = 0 if and only if

C = ((1,0), (t,1), (t,0), (t*,1), (t*s,1), (ts,0), (ts, 1), (s,0) ),

and so n = s. On the other hand, since 1g ~ nxm and 771” # t1, n € {1,7}, and
we conclude that i > 0 (recall that r # s). Now, 1 = 1% = t?r%s%% = {2 which
implies that the order of ¢ is at most 8, and hence n < 8 (see (6.1) and (6.2)), which
contradicts that n > 13. This completes the proof of the lemma. O
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Lemma 6.5. Let R(N) be the core of R(G) in Aut(T"). Then one of the following
holds:

(i) G =N x (r), and Nr = Ns = Nt.
(1)) G =N x (r,s), r# s, and Nt = Nrs.
PROOF. By Lemma 5.4(iii), the quotient graph I'g(y) can be written in the form
[rvy = BCay(G/N,{Nr},{Ns},{N, Nt}).

We claim that R(G/N) has trivial core in Aut(I'g(y)). This and Lemma 6.4 will
yield (i) and (ii).

Let p be the permutation representation of Aut(I") derived from its action on the
set of R(N)-orbits. By Lemma 5.4(ii), the kernel ker p = R(N), p(R(G)) = R(G/N),
and any subgroup of R(G/N) is in the form p(R(K)) for some N < K < G. Assume
that p(R(K)) J Aut(T'g(y)). Then p(R(K)) < p(Aut(I')), and hence R(K) <
Aut(T"). Thus R(K) = R(N), because R(N) is the core. We find that p(R(K)) is
trivial, and the claim is proved. O

In the next lemma we deal with case (i) of Lemma 6.5.

Lemma 6.6. Let R(N) be the core of R(G) in Aut(T'), and suppose that N # 1 and
case (i) of Lemma 6.5 holds. Then one of the following holds:

(i) G272, r=s#t, and T = Q3.
(i1) G = (r) x (t) 2 Zo x Zy, and T = BCay (G, {r}, {rt?},{1,t}) = GP(8,3).

ProoF. In this case G = N x (r), and Nr = Ns = Nt. Thus s = nyr, and ¢t = nar
for some nj,ng € N. Furthermore, n; is an involution, and since G = (r,s,1),
N = <’I’Ll, n2>.

Assume for the moment that N is not a 2-group, and let p be an odd prime
divisor of |N|. Then M = (nq, nb) is the unique subgroup in N of index p, hence it is
characteristic in N. Using also that R(N) < Aut(I'), this gives that R(M) < Aut(T").
The quotient graph I'g(yp) is a cubic symmetric graph on 4p points admitting a 1-
type bi-Cayley representation over G/M. It was proved in [23, Theorem 6.2] that
['r(ar) is isomorphic to one of the graphs: GP(10,3), GP(10,5), and the Coxeter
graph F'28. We compute by MAGMA that none of the these graphs has a 1-type
bi-Cayley representation. We conclude that N is a 2-group.

Notice that, N = Zom or Zg X Zom-1. If [N| > 8, then N has a characteristic
subgroup M such that |N : M| = 8. Using also that R(N) < Aut(T"), we find in turn
that, R(M) < Aut(I'), and T'g(ps) is a cubic symmetric graph on 32 points which
admits a 1-type bi-Cayley representation over G/M. Thus I' is isomorphic to the
Dyck graph F'32 (see [14, Table|), which can be excluded by the help of MAGMA.
Therefore, |[N| € {2,4}, and these yield easily cases (i) and (ii) respectively. O

In the next lemma we deal with case (ii) of Lemma 6.5.

Lemma 6.7. Let R(N) be the core of R(G) in Aut(l'), and suppose that N +#
1 and case (ii) of Lemma 6.6 holds. Then G = (r) x (t) = Zy X Zg, and T' =
BCay(G, {r}. {rf%}, {1,1}) = GP(12,5).
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Figure 6.1: Voltage assignment ¢ of I'g -

PRrROOF. In this case G = N x (r,s), r # s, and Nt = Nrs. Thus t = nyrs for some
ny € N. Since G = (r,s,t), N = (n1). Now, by Lemma 5.4(iii) we may write

[rvy = BCay(G/N,{N7r},{Ns},{N,Nrs}) = Q3.

We proceed by defining an N-voltage assignment of the quotient graph I'p .
For this purpose we have depicted I'g(y in Fig. 6.1, where we have also fixed the
spanning tree T' specified by the dashed edges. Now, let ¢ : A(Tgvy) — N be
the T-reduced N-voltage assignment with its voltages being given in Fig. 6.1. To
simplify notation we set [ = Crvy X¢ N. Recall that Nisa subgroup of Aut(f)
(see Subsection 2.2.3). Next, we prove the following properties:

r~T, and N < Aut(T). (6.4)
Define the mapping f : V(I') — V(I') by
f: ((Nz,0),n) = (nz,0) and ((Nz,1),n) — (nx,1), x € {1,r,s,7s}, n € N.

Notice that, f is well-defined because {1,r,s,rs} is a complete set of coset represen-
tatives of N in GG. We prove below that f is an isomorphism from [ tol. Let U1
and Ty be two adjacent vertices of I'. This means that 7, = ((Nz,i),n) and vy =
((Ny,j),¢(a)n), where a = ((Nz,i), (Ny, j)) is an arc of I'g(ny. Thenf(v1) = (zn, 1)
and f(2) = (yC(a)n, j).

Let ¢ = j = 0. Then it can be seen in Fig. 6.1 that y = rx and ((a) = 1. Thus
in I' we find f(v1) = (nz,0) ~ (rnz,0) = (y((a)n,0) = f(v2). Let i = j = 1. Then
y = sz, ((a) =1, and so f(v1) = (nz,1) ~ (snz,1) = (y((a)n,1) = f(v2). Finally,
let i =0 and j = 1. Then y = z or y = rsz. In the former case ((a) = 1, and
f(@1) = (nz,0) ~ (nx,1) = (y((a)n,1) = f(v2). In the latter case ((a) = ny, and

f(v1) = (nz,0) ~ (tnx, 1) = (nirsnz, 1) = (y¢(a)n, 1) = f(v2).

By these we have proved that f is indeed an isomorphism.
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For the second part of (6.4), compute that fR(m)f~! maps ((Nz,i),n) to
((Nw,i),nm) for every m € N. Thus fR(m)f~t = m, and 80 fR(N)f~t = N.
Since R(N) < Aut(T), N = fR(N)f~1 < f Aut(D) f~ = Aut(T), as claimed.

Now, (6.4) holds, implying that Aut(f) projects to an edge-transitive subgroup
of Aut(I'g(n)). We obtain from this that the automorphism o € Aut(I'g(y)) lifts,

where

a=((Nr,0),(Nrs,1),(N,1))((Nr,1),(Nrs,0),(Ns,1)).

Apply Theorem 2.10 to [ with o = a and the following directed base circuits relative
to T

C = ((Ns,0),(Nrs,0),(N,1),(Ns,1)) and C' = ((N,0), (Nr,0),(Ns, 1), (N,1)).

Let o, be the automorphism of N given in Theorem 2.10. Since ¢(C) = ¢(C") = ny,
C(C*) = ou(n1) = ¢(C"®), which gives n;? = ny. Thus |[N| = 3, and this yields
easily the statement of the lemma. O

PrROOF OF THEOREM 6.2. The theorem follows directly from Lemmas 6.4 - 6.7.

6.2 Proof of Theorem 6.3

Till the end of the section we keep the following notation:
I'= BC&Y(Ga {17 a, b})

is a cubic arc-transitive graph, where G = (a, b) is an abelian group.

Recall that, S(Aut(I")) denotes the set of all semiregular subgroups of Aut(T")
whose orbits are G x {0} and G x {1}. The next lemma is a special case of Lemma 5.3.

Lemma 6.8. For every abelian group X € S(Aut(I')), there ezists an involution
7x € Aut(T") which satisfies the following properties:

(i) Every subgroup Y < X is normalized by Tx .
(11) The group (X, 7x) is reqular on V(T').

Lemma 6.9. Let N < Aut(T") be a normal subgroup such that there exists an N -
orbit properly contained in G x {0}, and let X be an abelian group from S(Aut(T)).
Then N < X.

PrOOF. We copy the argument in the proof of Corollary 5.6. Let A be an N-orbit
such that A C G x {0}, and let us consider Y = X N Aut(I'){a}. Since A is a block
contained in an X-orbit, we obtain that A is an Y-orbit. We write A = Orb(Y,v).
Moreover, as X is semiregular, Y is regular on A, and by this and Lemma 5.4(ii) we
have

Y] = |A] = |N]. (6.5)
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Let 7x € Aut(I') be the automorphism defined in Lemma 6.8, and set L =
(X, 7x). According to Lemma 6.8 the group L is transitive on V(I'), and also Y < L.
Denote by ¢ the system of blocks induced by A. Then we may write

§={Al | 1e L} ={0rb(Y,v)! | l € L} = {Orb(Y,2!) | l € L}.

From this Y < Aut(I")s, where Aut(I')s is the kernel of Aut(I") acting on 0. Since
Aut(I")s = N (see Lemma 5.4(ii)), we have that Y < N. This and (6.5) imply that
N=Y <X. U

For a group G and a prime p dividing |G|, we let G}, denote a Sylow p-subgroup
of G.

Proor OF THEOREM 6.3. We have to show that I' is a BCl-graph. Let X €
S(Aut(T")) such that X = G. By Lemma 3.5 and Lemma 6.8, it is sufficient to show
the following

X and R(G) are conjugate in Aut(T"). (6.6)

Recall that the girth of I' is 4 or 6, and if it is 4, then I' is isomorphic to K33
or Q3. It is easy to see that (6.6) holds when I' = K3 3, and we have checked by the
help of MAGMA that it also holds when I' 2 Q3. Thus assume that I' is of girth 6.
By Theorem 2.8, I' is k-regular for some k < 4.

CASE 1. kK =1. In this case Aut(I') contains a regular normal subgroup K isomor-
phic to Dih(L), where L = Zyyy X Ly, r = 3°p{* ---pt,r >3 and r > 11 if m = 1,
s € {0,1}, and every p; = 1(mod 3). We have proved in the second paragraph fol-
lowing Table 6.1 that Aut(I') contains a semiregular normal subgroup N such that
N = L, and the orbits of N are G x {0} and G x {1}. Notice that, X contains every
proper characteristic subgroup K of N. Indeed, since N < Aut(I"), K < Aut(I),
and Lemma 6.9 can be applied for N, implying that K < X. In particular, if N is
not a p-group, then N, < X for every prime p dividing |N|, and thus N = X. Since
this holds for every X € S(Aut(I")) with X = @G, it holds also for X = R(G), and we
get R(G) = N = X. In this case (6.6) holds trivially. Let N be a p-group for a prime
p. Then it follows from the fact that N = L that p > 3, and thus both R(G) and X
are Sylow p-subgroups of Aut(T"). In this case (6.6) follows from Sylow’s Theorem.

CASE 2. k = 2. In this case I' = GP(8,3), or Aut(I') contains a regular normal
subgroup isomorphic to Dih(L), where L = Zyp, X Zp,, v € {1,3}, m > 1, and if
r =1, then m # 3. If ' & GP(8, 3), then we have checked by MAGMA that G = Zg
and (6.6) holds. Assume that I' 22 GP(8,3). We have proved in the third paragraph
following Table 6.1 that Aut(I") contains a semiregular normal subgroup N such that
N = L, and the orbits of N are G x {0} and G x {1}. Now, repeating the argument
in CASE 1 above, we obtain that N = X = R(G) if N is not a p-group. Let N be
a p-group for a prime p. If p > 3, then both R(G) and X are Sylow p-subgroups
of Aut(T"), and (6.6) follows from Sylow’s Theorem. We are left with the case that
p € {2,3}.

Let p = 2. Since N 2 L, we find that N = Zge X Zge, € > 1. Define K =
{x € N | o(x) <2°7'}. Then K is characteristic in N and thus K < Aut(T'). By
Lemma 6.9, K < X N R(G). By Lemma 5.4(iii), the quotient graph I' is a 0-type



Connected arc-transitive cubic bi-Cayley graphs 63

Bi-Cayley graph over the group N/K = Z3. Then 'y = Q3 and both N/K and
R(G)/K are semiregular on V(I'x) having orbits the two bipartition classes of I'k.
Since X 2 R(G), X/K = R(G)/K. A direct computation, using MAGMA, gives that
there are two possibilities: X/K = R(G)/K = Z3 or Z4. Furthermore, In the former
case X/K = R(G)/K, which together with K’ < XNR(G) yield that X = R(G), and
(6.6) holds trivially. Suppose that the latter case holds and consider Aut(I") acting
on the set of K-orbits. The kernel of this action is equal to K, see Lemma 5.4.(ii),
and thus the image Aut(T")/K is a subgroup of Aut(I'x) which is transitive on the
set of 2-arcs of I'x. However, 'k is 2-regular (it is, in fact, isomorphic to @3), and
we obtain that Aut(I')/K = Aut(I'x). We compute by MAGMA that X/K and
R(G)/K are conjugate in Aut(I'y) = Aut(I')/K, and so (6.6) follows from this and
the fact that K < X N R(G).

Let p = 3. Observe first that [N| > 3. For otherwise, I' = K33, contradicting
that the girth is 6. Since N = L, we find that N & Zgzete X Zge, e > 1, ¢ € {0, 1},
and if ¢ = 0, then e > 2. Let ¢ = 0. Define K = {x € N : o(z) < 3°°2}. Then
K is characteristic in N and thus K < Aut(I'). By Lemma 6.9, K < X N R(G).
By Lemma 5.4(iii), the quotient graph 'y is a 0-type Bi-Cayley graph of the group
N/K = Zg. It follows that I'k is the unique cubic symmetric graph on 162 points
of girth 6 (see [14, Table|). A direct computation, using MAGMA, gives that X/K =
R(G)/K = N/K, which together with K < X N R(G) yield that X = R(G), and
(6.6) holds trivially. Let e = 1. Define K = {x € N | o(z) < 3°"'}. Then K is
characteristic in N and thus K < Aut(I'). By Lemma 6.9, K < X N R(G). By
Lemma 5.4(iii), the quotient graph T'k is a O-type Bi-Cayley graph of the group
N/K = 79 x Zs. It follows that I'x is the unique cubic symmetric graph on 54
points (see [14, Table]). A direct computation, using MAGMA, gives that X/K =
R(G)/K = N/K, which together with K < X N R(G) yield that X = R(G), and
(6.6) holds also in this case.

CAseE 3. k = 3. In this case I' = F'18 (the Pappus graph) or GP(10,3) (the
Desargues graph). We have checked by MAGMA that in the former case G' 2 Z3 and
(6.6) holds, and the latter case cannot occur.

CASE 4. k = 4. In this case I' = F'14 (the Heawood graph), and (6.6) follows at
once because X and R(G) are Sylow 7-subgroups of Aut(I"). O
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6.2 Proof of Theorem 6.3




Chapter 7

Cl-property of cyclic balanced
configurations

An incidence geometry (P,B) consists of a set of v points P = {p1,...,py} and
a collection of b lines (or blocks) B = {Bj,..., By} such that B; C P for every
ie{l,..,b}, and |B; N Bj| <1 for every 4,j € {1,...,b} and ¢ # j. The incidence
geometry (P, B) is called a configuration of type (v, by) (combinatorial configuration
in the sense of [29]) if

o {BjeB:p;€ B;}|=rforeveryiec{l,.,v}; and
e |Bj| =k for every j € {1,..,b} with k& > 3.

A configuration with v = b (and therefore r = k) is called balanced, or a k-
configuration, and its type is simply denoted by (vg).

A configuration (P,B) is called decomposable if it is the disjoint union of two
configurations (P, B;),r = 1,2,i.e.,, P=PUP,, PN P, =0, and B = By U Bs.
Indecomposable configurations are also called connected. An isomorphism between
two incidence geometries (P.,B,),r = 1,2, is a bijective mapping o : P, — P,
which maps B; onto By. Here a line B € By with B = {p, ..., px} is mapped onto
B? = {p?,....,p7}. If (P1,B1) = (P, B2), then o is called an automorphism, and the
group of all automorphisms will be denoted by Aut(P, B).

Let (P, B) be an incidence geometry with v points. We say that (P, B) is cyclic
if it has an automorphism which permutes its points in a full cycle. From now on we
identify the point set P with the cyclic group Z, and also assume that (Zy)right <
Aut(P,B). Thus (Z,, B) can be regarded as a Cayley object of Z,, where B defines
the k-ary relation consisting of all k-tuples (z1,...,xy) for which {xy,..., 21} is
a line in B. Thus two cyclic configurations are isomorphic if and only if they are
isomorphic as Cayley objects. In this chapter we study the Cl-property of cyclic
configurations. It follows at once from Palfy’s Theorem 2.16 that the Cl-property is
guaranteed provided that the number of points is v = 4 or it satisfies (v, p(v)) = 1,
where ¢ is Euler’s totient function. Another special when the configuration is a
projective plane was considered by Jungnickel.
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Theorem 7.1 (Jungnickel [39]). Every projective plane with a regular abelian auto-
morphism group has the Cl-property

Projective planes are examples of balanced configurations. As for an example of a
cyclic configuration which does not have the Cl-property, we refer to [68]; in this
paper Phelps gave an example of cyclic 2-(v,3,1) design which does not have the
Cl-property. It is worth to note that the latter configuration is not balanced. In this
thesis we restrict our attention exclusively to the balanced case.

In Section 7.1, we make the simple observation that the incidence graph of a cyclic
balanced configuration is a bi-Cayley graph over Z,; moreover, the configuration has
the Cl-property if and only if the incidence graph is a BCI-graph. In fact, this idea
occurred in several papers [10, 30, 66, 67|, see also the monograph [69]. Some easy
corollaries of this equivalence will be also derived, namely, we give a short proof for
the fact that all cyclic balanced 3- and 4-configurations have the Cl-property.

In Section 7.2, we give more examples of cyclic balanced configurations having
the Cl-property. The main result will be the following theorem:

Theorem 7.2. Every cyclic balanced configuration with v-points has the Cl-property
if v =pq or v=p", where p,q are primes.

Finally, in Section 7.3, we turn to the enumeration problem for configurations.
This problem, both for geometrical and combinatorial configurations, attracted con-
siderable attention, see the monograph [29, Chapters 2-3]. Betten et al. [8] produced
the list of all configurations of type (v3). Here we are going to derive a close formula
for the number of connected cyclic configurations of type (v3).

Theorem 7.3. Let v > 4 be an integer with prime factorization v = py* - - -pzk, Then

the number of connected cyclic configurations of type (vs) is given by the following
formula:

%Hf:l (1 + pl) +a2F -2 ifv is odd, -
Z 7.1
5 Hf:l (1 + i) + 828 — 3 if v is even,

where a is defined for v odd by

5/6 if every p; = 1(mod 3),
a=1<¢2/3 ifp* =3 andifi > 1, then p; = 1(mod 3),
1/2  otherwise,

and B is defined for v even by

1/4 if v=2(mod 8) or v = 6(mod 8),
B=1<1/2 if v=4(mod ),
1 if v =0(mod 8).
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7.1 Balanced configurations and bi-Cayley graphs

Let C = (P,B) be an arbitrary configuration. The incidence graph T'(C) of C is
the bipartite graph whose colour classes are identified with the point set P and the
line set B, and the vertex associated with a point p € P is adjacent to the vertex
associated with a line B € B if and only if p € B.

Example 7.4. We depicted in Fig. 7.1 the Fano plane F, the unique projective
plane of order 2, and its incidence graph. The point set of F is the set {1,2,...,7},
and it has 7 lines each having 3 points. These lines correspond to the 3 sides, the 3
altitudes, and the inner circle of the triangle.

6

2 4

- q

Figure 7.1: The Fano plane F and its incidence graph I'(F).

It can be checked directly that the cycle 7 = (1234567) is an automorphism
of F which permutes the lines in a 7-cycle. Thus the group G := () induces an
automorphism group of the graph I'(F) such that G is semiregular on the vertex
set, and its orbits coincide with the point set and the line set. By definition, I'(F)
is a bi-Cayley graph of G. A possible bi-Cayley representation of I'(F) is shown in
Fig. 7.2.

Figure 7.2: A bi-Cayley representation BCay(Z7, {0,4,6}) of the graph I'(F).

In the following lemma we generalize the above example.

Lemma 7.5. Let C = (Z,,B) be a balanced configuration such that (Zy)ight <
Aut(C). Then the following hold.
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(i) There exists a subset S of Z, such that B consists of the sets in the form S +1,
U € ZLy.

(11) The incidence graph I'(C) is isomorphic to BCay(Z,, 5).

Proor. For sake of simplicity we put G' = (Zy)right- Choose a line B € B such that
0 € B, where 0 is the zero element of Z,. Assume for the moment that B satisfies
the following property:

B9 =B or BINB =0 for every g € G. (7.2)

In other words, B is a block for GG. Since G is regular on Z,, B is an orbit of a
subgroup of G of size k, where k is the size of the lines. Since G is a cyclic group,
the set B is uniquely determined. Choose next a line B’ € B for which 0 € B’ and
B’ # B. Then (7.2) does not hold for B’, i. e., there exists g € G such that B’ and
B’ 9 have a nonempty intersection. Since B and B’ are two lines they intersect at a
unique point, let ¢ € Z, be this point.

Consider the action of G on the set B. The stabilizer G of the line B’ in this
action is defined as Gg = {g € G | B'9 = B'}. Then Gps = g 'Gpg, |Gp 4| =
|Gp/|, and so G = G as G is a cyclic group. Clearly, every element in GgNGpr g
fixes the point i. Since G is regular on the points, we get Ggr = G NGpr¢ = 1. By
Theorem 2.3, the orbit of B’ under G is of length |G| = |P| = |B|. Letting S = B/,
the part (i) of the lemma follows.

In order to prove part (ii), we associate the point set Z, with Z, x {1} by
associating the point i € Z,, with (7, 1); and the line set B with Z, x {0} by associating
the line S + i € B with (4,0). It follows from part (i) that the bi-Cayley graph
BCay(Z,, S) is isomorphic to the incidence graph I'(C). O

We shall refer to the set S in Lemma 7.5 as a base line of C, and use the symbol
Con(Z,, S) for C. Base lines are characterized in the next lemma.

Lemma 7.6 (Hladnik et al. [30]). The following (i)-(ii) are equivalent for every
subset S of Z,.

(i) S is a base line of a cyclic configuration of type (vi).
(i) |S| =k and |S — S| =k*> —k +1, where S — S = {s1 — s9 : 51,52 € S}.

Suppose that S is a base line such that 0 € S (clearly, every configuration admits
base lines with this property). The set S generates a subgroup of Z,, say of order d,
and denote it by Zy. Then Con(Zg, S) is a connected configuration. Also, Con(Z,, S)
decomposes to the union of v/d copies of Con(Zg, S):

Con(Z,,S) = Con(Zg, S) U ---U Con(Zg, S). (7.3)
Note that, if S is an arbitrary base line (0 is not necessarily in S), then it holds:
Con(Z,, S) is connected <= (S — S) = Z,. (7.4)

The following necessary condition, which follows from Lemma, 7.6(ii), for a set to
be a base line will be used frequently through the chapter.
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Corollary 7.7. If a subset S of Z, is a base line of a cyclic configuration, then S
contains no H-coset for every nontrivial subgroup H < Z,.

For positive integers v and k denote by B(v, k) the set of all base lines of Z,
of size k, and by Becon(v, k) the set of those which define connected configurations.
More formally,

B(w,k) = {XCZ,: |X|=Fkand |X—-X|=k —k+1},
Beon(v,k) = {X € B(v,k): (X — X) =Zy}.

Notice that, if X € B(v, k), a € Z} and b € Z,, then the set aX +bis also in B(v, k).
Hence the mapping X — aX +b defines an action of the group AGL(1,v) on B(v, k).
Clearly, the subset Beon(v, k) of B(v, k) is invariant with respect to this action.

Next, we review the definition of a circulant matrix. Let A be an v-by-v matrix.
The matrix A is a permutation matriz if it is a (0, 1)-matrix, and every row and
column contains exactly one 1’s. Furthermore, A = (a; ;) is a circulant matriz if
@it1,j+1 = a;,j holds for every 4, j € {0,1,...,v—1}, where the additions in subscripts
are modulo v. Here we label rows and columns by elements of Z,. We let Z, =
{0,1,...,v—1}, the leftmost column is labelled 0, the next is 1 and so on. If A = (a; ;)
is an v-by-v (0,1) circulant matrix, then denote by S4 the subset of Z, defined by

SA:{Z'EZUZGO,Z'Zl}.

The cardinality |Sa| is also called the weight of A. Also, AT denotes the transpose
of the matrix A.

Let S € B(v,k), and let A be the circulant (0, 1)-matrix defined by S4 = S. It
follows immediately from the definitions that, A is a line-point incidence matriz of
the cyclic configuration Con(Z,, S) (see [29]).

Lemma 7.8. Forr =1,2, let S, € B(v,k), and let A, be the (0,1) circulant matriz
defined by Sa, = Sy.

(i) The following are equivalent:

(i1) Con(Z,,S1) = Con(Z,, S2)
(i2) Ay = PAyQ for some v-by-v permutation matrices P and Q.
(7/3) BC&y(Zv, Sl) = BC&y(ZU, 82)
(11) The configuration Con(Z,,S) has the Cl-property if and only if BCay(Z,, S) is
a BCI-graph.

PRrOOF. Let P and @ arbitrary v-by-v permutation matrices. Associate the permu-
tation w of Z, with P and the permutation ¢ of Z, with @ as follows:

i = j & Pj=1and i’ =j g Qji = 1 for evey i,j € Z,.

Then

v—1

(PA2Q)ij =Y Pir(A2)kiQuj = (Az)im jo.

k,1=0
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Now, A1 = PA>Q can be interpreted as the permutation o maps the line S7 + ¢
to the line Sy + ¢™. Equivalently, o induces an isomorphism from Con(Z,,S1) to
Con(Zy, S2). The equivalence (il) < (i2) follows.

We finish the proof of (i) by showing the equivalence (il) < (i3). It is easy seen
that (i1) = (i3) holds. For (i1) < (i3), suppose that the graph BCay(Z,, S1) =
BCay(Z,, S2). We have shown in the proof of Lemma 3.5 that there exists an isomor-
phism ¢ from the first graph to the second one which, as a permutation of Z, x {0, 1},
fixes setwise Z, x {0} (and thus Z, x {1} as well). By Lemma 7.5(ii), there also
exists an isomorphism o from the incidence graph of Con(Z,, S1) to the incidence
graph of Con(Z,,S2) such that o preserves the colour classes defined by the two
point sets. This gives immediately that ¢ induces an isomorphism between the two
configurations, and so (1) <= (:3) holds too.

By definition, the configuration Con(Z,,S) has the Cl-property if whenever
Con(Zy, S) = Con(Z,,T) for some T € B(v,|S|), there is some a € Z, such that

a-{S+i|i€Zyy={TH+1i|i€Zy}

Clearly, this is equivalent to the condition that T' = a.S + b for some b € Z,. On the
other hand, BCay(Z,, S) is a BCl-graph if whenever BCay(Z,, S) = BCay(Z,, R)
for some subset R, then there is some ¢ € Z; and d € Z, such that R = ¢S + d.
Because of these and part (i) we are done if show the following: if BCay(Z,, S) =
BCay(Z,, R) for some subset R, then R € B(v,|S|). This follows by the observation
that R € B(v,|S]) if and only if the graph BCay(Z,, R) has girth larger than 4. This
completes the proof of part (ii). O

Lemma 7.8(i2) brings us to the following result of Wiedemann and Zieve:

Theorem 7.9 (Wiedemann and Zieve [76]). The following (i)-(iv) are equivalent for
every two v-by-v (0,1) circulant matrices Ay and Ay of weight at most 3.

(i) There is a € Z} and b € Z,, such that Sy, = aSa, +b.
(ii) There are v-by-v permutation matrices P,Q such that A1 = PA2Q.
(iii) There is an v-by-v permutation matriz P such that A;AT = PA,AT P~1.
(iv) The complex matrices A1 AT and A3 AT are similar.
The above theorem and Lemma 7.8 give us the following corollary:
Corollary 7.10. Ewvery cyclic 3-configuration has the Cl-property.
Our description of isomorphic tetravalent circulant bi-Cayley graphs in Theo-
rem 4.1 allows us to extend the above statement to 4-configurations. We finish the

section with this statement.

Proposition 7.11. Every cyclic 4-configuration has the Cl-property.
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PRrROOF. We prove the proposition for connected configurations. The general case
follows then by using the decomposition in (7.3) and induction on the number of
points.

Let Con(Z,,S) be a connected 4-configuration. Then (S — S) = Z,, see (7.4),
and hence BCay(Z,, S) is a connected graph. By Lemma 7.8, it is sufficient to show
that BCay(Z,, S) is a BCI-graph. For this purpose we apply Theorem 4.1. This
implies that, if BCay(Z,, S) is not a BCI-graph, then there exist a € Z} and b € Z,
such that

aS+b={0,u,v,v+m},

where v = 2m, Z, = (u,v), 2 | v and 2u | m. However, in this case S contains
a coset of the nontrivial subgroup (m) < Z,. This is impossible by Corollary 7.7,
hence BCay(Z,, S) is indeed a BCI-graph. O

7.2 Proof of Theorem 7.2

Recall that, Obj(Z,) denotes the set of all cyclic objects of the group Z,, and given
a class KC of cyclic objects in Obj(Z,), a solving set for K is a set A of permutations
of Z, satisfying the following property:

(VX € K) (VY € Obj(Z,) (X 2Y <= X7 =Y for some o € A).
In this context Lemma 2.15 implies the following equivalence:
Lemma 7.12. The following are equivalent for every object X € Obj(Z,).
(1) 72 is a solving sel for X.

(1) Ewvery two regular cyclic subgroup of Aut(X) are conjugate in Aut(X).

PrOOF oF THEOREM 7.2. Obviously, the theorem can be rephrased as follows: Z;
is a solving set for the class of cyclic configurations on v points if v = pq or v = p”,
where p and ¢ are primes.

THE CASE v = pq: We prove the above statement for connected configurations.
The general case follows then by using the decomposition in (7.3) and the fact that
the statement is true for configurations with a prime number of points, so let C =
Con(Zyg, S) be a connected cyclic configuration.

Towards a contradiction assume that Z;, is not a solving set for C. Because of
Theorem 2.16 we may also assume that ¢ divides p — 1. In the rest of the proof
we follow the notations set in page 14 and 15: 79, a, b, @ and vy, v1,...,v4—1. Let
P ={0,q,...,(p—1)q}, i.e., the subgroup of Z,, of order p. Replace S with a suitable
line S + i if necessary to ensure that SN P # (). Also, S € P by the connectedness
of X, i.e., there exists ¢t € {1,...,¢ — 1} such that

SAP#£Qand SN (P+1) % 0. (7.5)

Suppose for the moment that 79 € Aut(C). Using that 7 fixes every point outside
P, (7.5) and that |S| > 3, we conclude |STf]J€ N S| > 2 for some k € {1,...,q — 1}.
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Hence S = S. As P is an orbit of 75, P C S, which contradicts Corollary 7.7.
Thus 79 ¢ Aut(C).

Therefore, Theorems 2.17 and 2.18, together with the assumption that Z;, is not
a solving set, imply that C admits a solving set A defined in (2.3). Consider the
permutation o = ?:_01 le(Hl)k, ke {0,1,...q—1}. If k =0, then o = 77 which is
clearly in Aut(C). The corresponding permutations in A are p’, v ,u;l = pi pige ,u;l.

Since A Z Z3, there must exist k& > 0 for which o = H?;Ol lewl)k belongs to Aut(C).

Notice that,
Vi,j€{0,1,...,q—1}: i #j = b* £ v/*(mod p). (7.6)

For otherwise, b("9* = 1(mod p). Since ordy(a) = p — 1, @ = 1(mod ¢) and
b = aP~D/4 we find from aP~DE-9k/a = p(i=1)k = 1(mod p) that p — 1 divides
(p—1)(i — j)k/q, and so ¢ divides (i — j)k, a contradiction.

Consider the product o’ = o7, Now, o’ fixes each point in P, but because of
(7.6) it permutes the points of P +¢ in a p-cycle. Unless |S N (P + z)| < 1 for every
z €{0,1,...,¢ — 1}, we may also assume that |[S N P| > 2. However, if |SNP| > 2,
then o’ fixes S, implying that (P 4 t) C S, which is impossible.

We are left with the case that |SN (P + z)| <1 for every x € {0,1,...,q — 1}.
Note that, then the same holds for all lines S + 4. It is obvious that |S| < g. Let
{s} = SNP. AsC is balanced, there are exactly | S| lines through s. Now, each of the
lines S, S, ..., 59" contains s, while they intersect P+t at distinct points. These
imply in turn that, they are pairwise distinct, hence [S| > p, and so p < |S| < ¢, a
contradiction. This completes the proof of case v = pq.

We turn next to the case v = p”. Now, we cannot relay on a list of solving sets
covering all cyclic objects as such list is available only when v = p? (see [32]). The
argument below will be a combination of Lemma 7.12 with Sylow’s theorems.

THE CASE v = p™: Again, it is sufficient to consider connected configurations, the
general case follows then by using the decomposition in (7.3) and induction on n.
Let C = Con(Zy», S) be a connected cyclic configuration, G = Aut(C) and C be the
group generated by 7 : x — x + 1. Let G}, be a Sylow p-subgroup of G such that
C < G)p. By Lemma 7.12 and Sylow’s theorems it is sufficient to prove that G, = C.

Towards a contradiction assume that C' < G. Then the normalizer Ng,(C) > C.
Let us put N = Ng,(C) and let Ny be the stabilizer of 0in N. Then Nj is non-trivial,
and we may choose o from Ny of order p. Since ¢ normalizes the regular subgroup
C and fixes 0, 0 = pu, for some a € Zn (see [18, Exercise 2.5.6]). Then ordy(a) = p.
Using the well-known structure of Zj» (cf. |38, Theorem 6.7 and Exercise 6.12]) we
deduce that n > 2, and either

a=ap" ' +1 for some a' € {1,...,p—1},

orn>3,p=2andac {2" - 1,21 —1}.

Agsume for the moment that the latter case holds. Let Q = (C, o). It is a
routine exercise to show that C is the only cyclic subgroup of @ of order 2. This
implies that the normalizer Ng,(Q) < Ng,(C) = N. Let H be an arbitrary regular
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cyclic subgroup of G. If Q = Ga, then, by Sylow’s theorems, HY < @ for some
g € G, and so H9 = (C, and we are done by Lemma 7.12. Thus we may assume
that @ < G2. Then Q < Ng,(Q) < N. Choose an element o/ € Ny such that
o' # o. It is well-known that 52" ° = 271 4 1(mod 2") (see [38, Lemma 6.9]),
and that Z35, = (5) x (—=1) = Zgn—2 X Za (see |38, Theorem 6.10]). These imply that
pon—1,1 € (0,0'), and s0 pign-1,1 € Ny. Therefore, we may assume that p, € Aut(C)
where a = a/p"~! + 1 for some a’ € {1,...,p—1}.

Now, p1, maps S to a line of C, hence we may write aS+b = S for some b € Zyn
Equivalently, S is a union of orbits of the affine transformation ¢ : © — ax +b. Then
©P is equal to the translation x — x + (1 +a + --- + a?~1)b. By Corollary 7.7, S
contains no non-trivial cosets. Form this and that S is a union orbits of ¢P, we find
that (1 +a+ --- 4+ a?~1)b = 0(mod p"). This quickly implies that p"~! divides b,
hence we may write b = b'p"~! for some ¥’ € {0,1,...,p — 1}. Also,

o:xar+b=x+ (dz+b)p" L
From this we easily find the orbits of ¢. For x € Z,, let O be the orbit which contains
x. Then

IRES: if 'z + b = 0(mod p),
lP+z otherwise,

where P = {0,p""L, ..., (p — 1)p" 1}, i.e., the subgroup of Z,» of order p. Since X
is connected, (S — S) = Zpn. This implies that a’'s + b # 0(mod p) for some s € S.
But then the coset (P + s) C S, contradicting Corollary 7.7. This completes the
proof of the theorem. O

7.3 Proof of Theorem 7.3

From now on we denote by #C'(v3) the total number cyclic balanced configurations
of type (v3). Corollary 7.10 implies that the number #C'(v3) is equal to the number
of orbits of AGL(1,v) acting on Beon (v, 3).

Lemma 7.13. Let v and k be integers such that k > 3 and v > k> — k + 1, and
denote by N the number of orbits of AGL(1,v) acting on Beon(v, k). Then

Zva:l

leZ*
where N(v,k,l) = {X € Beon(v,k) : 0 € X and IX = X — z for some x € X }.

Proor.For short we put By = {X € Beon(v,k) : 0 € X}, and for X € By with
X ={x1,x9,...,x1}, define the set

X = {X —21, X —x9,..., X — 21}

It is easily seen that for every set ¥ = X — x; it holds Y = X. It follows from this
that the sets X X € By, form a partition of By. This partition will be denoted by
7. Notice also that |X| = k holds for every class X € 7 because | X — X | = k2 —k+1
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(see (2) in Lemma 7.6). Let us consider the action of Z¥ on By defined by X! =
IX ={lx:xze X} forevery | € Z} and X € By. The partition 7 is preserved by Z}
in this action, denote by Orb(Z}, ) the set of the corresponding orbits. For X € By,
denote by O(X) the orbit of X under AGL(1,v), and by O(X) the orbit of X under
Zy.

We claim that the mapping f : O(X) — O(X) establishes a bijection from
Orb(Z}, ) to the set of orbits of AGL;(v) acting on Beon(v, k) (notice that, the
mapping f is well-defined). Tt is clear that f is surjective. To settle that it is
also injective choose X,Y € Bcon(v, k) such that O(X) = O(Y). We may assume
without loss of generality that 0 € X NY. By definition, ¥ = aX + b for some
a € Z5and b € Z,. Since 0 € Y, b = —ax for some z € X. Thus d'Y = X — z,
where ad’ = 1(mod v), implying that O(X) = O(Y), and so f is also injective,
hence bijective. We obtain that the required number N' = | Orb(Z*, 7)|. Then the
Lemma 2.4 applied to Orb(Z, 7) yields the formula:

1 ~ ~ ~
N:%Z\{XEW.XZ:X}‘.

leZ:

In order to finish the proof one only needs to observe that Xl =X happens
exactly when [X = X — x for some z € X; and if this is so, then every set ¥ € X
satisfies [Y =Y — y for some y € Y.This gives us

N(v, k1)
k

The lemma is proved. U
By Corollary 7.10 and Lemma 7.13, we find that,

X en: XI=X}| =

#C(v3) = wl@) > N(v,3,0). (7.7)

=

We compute next the parameters N(v,3,1) in (7.7).
Define first the function ® : N - N by ®(1) =1, and for v > 1 let

(I)(”):”<1+pll)'”<1+plk)’

where v has prime factorization v = p{*---p*. Obviously, ® is a multiplicative
function, i.e., ®(vivy) = ®(v1)P®(v2) whenever ged(vy,ve) = 1.
Lemma 7.14. Ifv > 4, then
1 . .
sd(v)(P(v) —6)  if v is odd,
N(v,3,1) = ?
20(0)(@(v) — 6) — 3p(v/2) if v is even.

PRrROOF.Define the sets:
Sw) = {(z,y) € Ly X Ly : {x,y) = Ly},
S*(U) = {(5137?/)55(”)1‘{Oa%?/,—xa—y,ﬂ?—yay—f’?H<7}-
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We leave for the reader to verify that the function v — |S(v)| is multiplicative.
Let v = p™, pis a prime. Then two elements x, y generate Z, if and only if one of them
is a generator. By this we calculate that |S(v)| = 2¢(v)v—¢(v)? = ¢(v)(2v—p(v)) =
¢(v) ®(v). We find, using that all functions ¢, ® and v — |S(v)| are multiplicative,
that |S(v)| = ¢(v) ®(v) for every number v.

Now, for every @,y € Zy, {0,2,y} € Beon(v, 3) if and only if (2,y) € S(v)\S*(v).
Therefore,
[S()| —[5*(v)] _ 1

N(v,3,1) = 2200 = 2 (9(0)0(0) — |5 (0)]). (7.8)

It remains to calculate |S*(v)|. Let v be odd. Then S*(v) can be expressed as
S*(v) = {(0,2), (z,0), (x,x), (x, —x), (z,22), (2z,2) : x € Z}.

Since v > 4, there is no coincidence between the above pairs, and so |S*(v)| = 6¢(v).
The formula for N(v,3,1) follows by this and (7.8).
Let v be even, say v = 2u. In this case

S*(v) = {(0,2),(x,0), (z,x),(x,—x),(z,2z), (2z,2) : x € Zj} U
{(u,z), (z,u), (x,z+u) : x € Z, and (x,u) = Z,}.

Again, since v > 4, there is no coincidence between the above pairs. A quick com-
putation gives that [S*(v)| = 6¢(v) + 6¢(u). The formula for N(v,3,1) follows by
this and (7.8). The lemma is proved. O

For | € Z}, denote by ordy,(l) the order of [ as an element of Z}. Furthermore,
O(l) denotes the set of orbits of Z, under [, i.e.,

o) = { {=z,lz,...,1" 2} 1 2 € Z, } where m = ordp(l).
Lemma 7.15. Letl € Z, 1 # 1.
(i) If ordm(l) > 3, then N(v,3,l) =0.
(1) If ordy (1) = 2, then

0 if L+ 1 =0(mod v), or v=0(mod 4) and | = 1(mod v/2),
N(U,3,l) = 3¢(v)

5 otherwise.

(111) If ordm(l) = 3, then

0 if+1+1%0(mod ),
N(v,3,1) = { o(v)  otherwise.

PrOOF. Put again By = {X € Beon(v,3) : 0 € X}, and let X € By such that
X ={0,z,y} and
IX=XorlX=X—u. (7.9)
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We consider step-by-step all cases (i)-(iii).

(1): Assume by contradiction that (7.9) holds for some [ € Z7 with ordy,(I) > 3.
If XI = X, then [’z = z and [?y = y. This together with (x,y) = Z, imply
that 12 = 1(mod v), a contradiction to ordy(l) > 2. Let XI = X — z, and so
{lz,ly} = {—z,y — x}. Now, if lx = —2 and ly = y — z, then I’z = 2 and [’y =y
which is impossible. If lx = y — « and ly = —x, then {3z = 2 and 3y = y, implying
that {3 = 1(mod v), which is in contradiction with ord,,({) > 3.

(ii): Assume that (7.9) holds with ord,,(I) = 2. If [IX = X, then Iz = y and
ly = x and so we find X as X = {0,z,lz}, x € Z}. Let IX = X —x. Then it
follows that Ir = —z and ly = y — z (otherwise [3 = 1(mod v), a contradiction to
ordmy (1) = 2), and so X = {0,y, —ly + y} where y € Z}. Since X € By, the elements
0,1, —1,1, =, 1 — 1 and 1 — I must be pairwise distinct. We conclude from these
that, N(v,3,1) = 0if [ +1 = 0(mod v) or | = 1(mod v/2), and otherwise N (v, 3,1)
is the size of the following set:

{{0,2,lz} : 2 € Zy} U {{0,0,~lz + 2} : 2 € Zj}.

We observe in turn that, the two sets above are disjoint, the first has size ¢(v)/2,
while the second has cardinality ¢(v). Then (ii) follows.

(iii): Assume that (7.9) holds with ordy,(l) =3. Then X =X —z, le =y —=
and ly = —z (otherwise I> = 1(mod v), see above). Thus X = {0,z,x + Iz}, z € Z*
and [? + 1 = —1(mod v). We conclude that, N(v,3,1) = 0 if {> + [ 4+ 1 # 0(mod v),
and otherwise N (v,3,1) = |{{0,z,lz + 2} : v € Z}}| = ¢(v). Thus (iii) follows, and
this completes the proof of the lemma. O

PROOF OF THEOREM 7.2. By Lemmas 7.13 and 7.14, the sum in (7.7) reduces to

o(v) — 14 3y + 37 if v is odd,
#0(us) = %(I)(U) - %{))2) -1+ %'yl + %’}/2 if v is even, (7.10)
where v, and 72 are defined by
v = Hle€Z}:ordy(l) =2, I+ 1% 0(mod v) and [ # 1(mod v/2) if
v = 0(mod 4)}|,
v = |[{l€Z;:ordy(l) =3 and [ +1+ 1= 0(mod v)}|.

In calculating 1 and 72 below we shall use the fact Z; can be written as Z;, =
Z;nl X - X Zz*)nk, and every [ € Z can be expressed as
1 k

l=(l,...,lx), where [; € Z;T‘i for every i € {1, ..., k}. (7.11)
Note that, we may assume that I; = I(mod p;*) for every i € {1, ..., k}.

CASE 1. v is odd.

Since v is odd, there are exactly 2¥ — 1 elements [ € Z¥ such that ordy,(l) = 2,
and all but one contributes to v; (namely, [ = v — 1 is excluded in the definition of
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71). Thus 71 = 2¥ — 2. The value of yo depends solely on the residue of v modulo 9
and the reside of prime factors p; modulo 3. Let [ € Z} such that ordy, () = 3 and
write [ = (Iq,...,1;) as described in (7.11). Thus [; is of order 1 or 3 in Z;m-

Cask 1.1. p; = 1(mod 3) for every i € {1,...,k}.

If I; is of order 1 in Z*nl, then | = I; = 1(mod p}'?), from which I> + 1+ 1 =

3(mod p!'?), hence > +1+ 1 §é 0(mod v), so [ cannot contribute to vo. If [; is of order
3in Z* i then 12 +1+1=1?+1;+ 1 = 0(mod p}") for every i € {1,...,k}, hence
l2+l+1 = O(mod v). Since there are exactly two elements in Z » of order 3, v, = 2k,
Substitute this and y; = 2¥ —2 in (7.10). We obtain that #C(vs) = $®(v)+ 228 —2.
Cask 1.2. v = 3(mod 9) and p; = 0/1(mod 3) for every i € {1,....k} .
We may write pj* = 3. We obtain, by the same argument as in the previous case,
that [ contributes to o if and only if /1 is of order 1 in Zp;n, and [; is of order 3 in
n; if i > 2. Thus 7o = 2F=1 which together with v, = 2¥ — 2 yield in (7.10) that
#C(v3) = ¢®(v) + 228 — 2.
CAsE 1.3. v =0(mod 9) or p; = 2(mod 3) for some i € {1,....,k} .
We show that in this case [2 4+ + 1 # 0(mod v) independently of the choice .
Thus 72 = 0, and so #C(v3) = :®(v) + 22~ — 2.
Suppose first that v = 0(mod 9). We may write p; = 3, now n; > 2. Since

ordy (1) = 3, I; = 1(mod 3™~1). We claim that {7 +I; + 1 = 3(mod 3™ ). Indeed,
I =3~k + 1(mod 3™) for some k € {0,1,2}. Hence

B4 +1=(k+2k)3" ! + 3 = 3(mod 3™).

Therefore, 12 4+1+1 =13+ 11 + 1 = 3(mod 3™), and since n; > 2, 2 +1+1 #
0(mod 37"), and so 2 + 1 + 1 # 0(mod v).

Suppose next that p; = 2(mod 3) for some ¢ € {1, ..., k}. Then [; must be of order
lin ZP?” and hence [?+1+1 = 12+1;+1 = 3(mod p}'*), and so [2+1+1 # 0(mod v).

CASE 2. v is even.

Since v is even, [ is odd, and thus 12 4+ 1+ 1 # 0(mod v). We obtain that vo = 0.
The value of v; depends on the residue of n modulo 8. The number of elements of
order 2 in Z% is 2¥~! — 1 if v = 2/6(mod 8), 2F — 1 if v = 4(mod 8), and 2F*! — 1 if
v = 0(mod 8) (see [38, Exercise 6.12]). Thus

k=1 _2 if v =2/6(mod8),
Y= 2F —3 if v =4(mod38), (7.12)
2k+1 3 if v =0(mod 8).
Obviously, ¢(v/2)/é(v) = 1 if v = 2(mod 4) and it is 1/2 if v = 0(mod 4).

Substituting this, (7.12) and v2 = 0 in (7.10) yields formula (7.1). The theorem is
proved. O



78

7.3 Proof of Theorem 7.3




Chapter 8

Conclusions

A number of research problems in algebraic graph theory were solved and are pre-
sented in this work. In particular, the isomorphism problem of tetravalent cyclic
bi-Cayley graphs was solved, the classification of nilpotent 3-BCI-groups and of con-
nected arc-transitive cubic abelian BCl-graphs were obtained; the Cl-problems of
balanced cyclic configurations on p™ and pqg points, where p and ¢ are primes, were
solved, and the enumeration of balanced cyclic configurations of type (v3) was ob-
tained.

These results represent a contribution to open research problems previously
posted in the literature, such as the classification of m-BClI-groups, the Cl-problem
of combinatorial objects and the enumeration problem for configurations.

The general tools used in this research work range from group theory, alge-
braic methods in graph theory and purely combinatorial techniques. Computer-
implemented algebraic tools, such as MAGMA, were used for particular cases, exam-
ples and testing results.

In addition to the results presented in this thesis, this work discusses directions
of future research work, such as the relation between the BCI-problem for bi-Cayley
graphs and the Cl-problem for Cayley graphs, the Cl-problem for cyclic configura-
tions or other combinatorial objects, and the study of the automorphism groups of
balanced cyclic configurations.
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Appendix A

MAGMA calculations

This Appendix contains two calculations we did in the PhD Thesis using the com-
puter package MAGMA.

A.1 BClI-graphs of Z,

The following procedure checks the BCl-property of all possible cyclic bi-Cayley
graphs with connection set {0,u,v,w} of Z, for a fixed n. As an output, it prints
all bi-Cayley graphs BCay(Z,,, {0,u,v,w}), and for each it tells if it is a BCI-graph
or not. Notice that, this procedure can be easily modified to check larger valencies.

procedure checkBCI(n)

Cs:={ {0,u,v,w} : u in {1..(n-1}, v in {1..(@-1D}, w in {1..n-1}|
(u ne v) and (u ne w) and (v ne w)};

for S in Cs do

1:=2%n -1;

V:={0..1%};

Vp:={1..n-13};

c:=0;

E:={ {a,((a+x) mod n) + n} : a in Vp , x in S};
X:= Graph< V | E >;

A:= AutomorphismGroup(X);

L:= Subgroups(A: IsCyclic:=true, OrderEqual:=n);

for i in {1..#L} do
if (Orbit(L[i] ‘subgroup,1l) eq {1..n}) and
(Orbit (L[i] ‘subgroup, (n+1))
eq {n+l1..2#n}) then
c:=ct+l;
end if;
end for;
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if ¢ eq 1 then

"BCay(", n, B, ")", "is BCI";
else

"BCay(", n, B, ")", "is non-BCI";
end if;

end for;
end procedure;

A.2 Example 3.6

In the Example 3.6, we considered the bi-Cayley graph I' = BCay(G, {1, a, b}), where
G = {(a,b | a® = b* b~lab = a?). In the program below we computed that, there is
only one conjugacy classes of subgroups of Aut(I') isomorphic to G and with orbits
equal to the bipartition classes.

©

:=Sym(5) !id;

:=Sym(5)!(1,2,3,4,5);

:=Sym(5)1(1,2,4,3);
:=PermutationGroup<20|(1,2,3,4,5),(1,2,4,3)>;

Q0 o

V:=SetToSequence({x: x in G});

S:={a,b,c};

E:={{i,j+20}: i,j in {1..20} | V[jl*Inverse(V[il) in S};
X:=Graph<40|E>;

A:=AutomorphismGroup(X);

L:=Subgroups(A:0rderEqual := 20);

for i in {1..#L} do
if (Orbit(L[i] ‘subgroup,1) eq {1..20}) and
(Orbit (L[i] ‘subgroup,2) eq {21..40}) then
i;
end if;
end for;
>4
H:=L[4] ‘subgroup;
IsIsomorphic(H,G);
>true



Bibliography

1]
2]

3]

4]

[5]

[6]

7]

18]

9]

[10]

[11]

[12]

[13]

A. Adam. ‘research problems 2-10’. J. Combin. Theory, 2:393, 1967.

M. Arezoomand and B. Taeri. Finite BCI-groups are solvable. To appear in Int.
J. Group Theory.

M. Arezoomand and B. Taeri. Isomorphisms of finite semi-Cayley graphs. To
appear in Acta Math. Sin. (Engl. Ser.).

M. Arezoomand and B. Taeri. Normality of 2-Cayley digraphs. Discrete Math.,
338(3):41-47, 2015.

L. Babai. Isomorphism problem for a class of point-symmetric structures. Acta
Math. Acad. Sci. Hungar., 29:329-336, 1977.

L. Babai and P. Frankl. Isomorphisms of Cayley graphs. I. In Combinatorics
(Proc. Fifth Hungarian Collog., Keszthely, 1976), Vol. I, volume 18 of Collog.
Math. Soc. Jdnos Bolyai, pages 35-52. North-Holland, Amsterdam-New York,
1978.

S. Bays. Sur les systémes cycliques des triples de steiner différents pour n
premier (ou puissance du nombre premier) de la forme 6n + 1. I. Comment.
Math. Helv., 2:294-305, 1930.

A. Betten, G. Brinkmann, and T. Pisanski. Counting symmetric configurations
vy. Discrete Appl. Math., 99:331-338, 2000.

N. Biggs and M. Hoare. The sextet construction for cubic graphs. Combinator-
ica, 8:153-165, 1983.

M. Boben, T. Pisanski, and A. Zitnik. I-graphs and the corresponding configu-
rations. J. Combin. Designs, 13:406-424, 2005.

W. Bosma, J. Cannon, and C. Playoust. The MAGMA Algebra System I: The
User Language. J. Symbolic Comput., 24:235-265, 1997.

J. M. Burns and B. Goldsmith. Maximal order abelian subgroups of symmetric
groups. Bull. London Math. Soc., 21:70-72, 1989.

M. D. E. Conder. https://www.math.auckland.ac.nz/"conder/
symmcubic100001list.txt. August 2012.

83



84

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

M. D. E. Conder and P. Dobcsanyi. Trivalent symmetric graphs on up to 768
vertices. J. Combin. Math. & Combin. Comp., 40:41-63, 2002.

M. D. E. Conder and R. Nedela. Symmetric cubic graphs of small girth. J.
Combin. Theory Ser. B, 97:757-768, 2007.

H. S. M. Coxeter. Self-dual configurations and regular graphs. Bul. Amer. Math.
Soc., 56:413-435, 1950.

M. J. de Resmini and D. Jungnickel. Strongly regular semi-Cayley graphs. .J.
Algebraic Combin., 1:171-195, 1992.

J. D. Dixon and B. Mortimer. Permutation groups, volume 163 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1996.

E. Dobson and J. Morris. Quotients of Cl-groups are Cl-groups. Graphs and
Combin., 7:1-4, 2013.

E. Dobson, J. Morris, and P. Spiga. A comment on: “Further restrictions on
the structure of finite DCI-groups”. arXiv:1402.4373v1 [math.CO| (2014).

S. F. Du and D. Marusi¢. An infinite family of biprimitive semysimmetric graphs.
J. Graph Theory, 32:217-228, 1999.

B. Elspas and J. Turner. Graphs with circulants adjacency matrices. J. Combin.
Theory, 9:297-307, 1970.

Y. Q. Feng and J. H. Kwak. Cubic symmetric graphs of order a small number
time a prime or a prime square. J. Combin. Theory Ser. B, 97:627-646, 2007.

Y. Q. Feng and R. Nedela. Symmetric cubic graphs of girth at most 7,. Acta
Univ. M. Belii Math., 13:33-55, 2006.

Y. Q. Feng and J. X. Zhou. Cubic bi-Cayley graphs over abelian groups. Furop.
J. Combin., 36:679-693, 2014.

R. Foster. The Foster census. Charles Babbage Research Centre, Winnipeg, MB,
1988. Foster’s census of connected symmetric trivalent graphs, with a foreword
by H. S. M. Coxeter, with a biographical preface by Seymour Schuster, with an
introduction by I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, edited
and with a note by Bouwer.

C. Godsil and G. Royle. Algebraic graph theory, volume 207 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 2001.

J. L. Gross and T. W. Tucker. Topological graph theory. Wiley-Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York,
1987.

B. Griinbaum. Configurations of points and lines, volume 103 of Graduate Stud-
ies in Mathematics. American Mathematical Society, Providence, RI, 2009.



BIBLIOGRAPHY 85

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

M. Hladnik, D. Marusi¢, and T. Pisanski. Cyclic Haar graphs. Discrete Math.,
244:137-152, 2002.

W. C. Huffman. The equivalence of two cyclic objects on pq elements. Discrete
Math., 154:103-127, 1996.

W. C. Huffman, V. Job, and V. Pless. Multipliers and generalized multipliers of
cyclic objects and cyclic codes. J. Combin. Theory Ser. A, 62:183-215, 1993).

B. Huppert. Endliche Gruppen. I. Die Grundlehren der Mathematischen Wis-
senschaften, Band 134. Springer-Verlag, Berlin, 1967.

W. Jin and W. Liu. Two results on BCI-subset of finite groups. Ars Combin.,
93:169-173, 2009.

W. Jin and W. Liu. A classification of nonabelian simple 3-BCI-groups. Furo-
pean J. Combin., 31:1257-1264, 2010.

W. Jin and W. Liu. On sylow subgroups of BCI-groups. Util. Math., 86:313-320,
2011.

W. Jin and W. Liu. On isomorphisms of small order bi-Cayley graphs. Util.
Math., 92:317-327, 2013.

G. A. Jones and J. M. Jones. Elementary number theory. Springer Undergrad-
uate Mathematics Series. Springer-Verlag London Ltd., London, 1998.

D. Jungnickel. The isomorphism problem for Abelian projective planes. Appli-
cable Algebra in Eng., Comm. and Comp., 19:195-200, 2008.

H. Koike and I. Kovacs. Arc-transitive cubic abelian bi-cayley graphs and BCI-
graphs. to appear in FILOMAT.

H. Koike and I. Kovéacs. A classification of nilpotent 3-BCI groups. submitted.

H. Koike and I. Kovacs. Isomorphic tetravalent circulant Haar graphs. Ars
Math. Contemporanea, 7(2):215-235, 2014.

H. Koike, I. Kovacs, and T. Pisanski. The number of cyclic configurations of
type (vs3) and the isomorphism problem. J. Combin. Des., 22(5):216-229, 2014.

I. Kovacs, B. Kuzman, A. Malni¢, and S. Wilson. Characterization of edge-
transitive 4-valent bicirculants. J. Graph Theory, 69(4):441-463, 2012.

I. Kovacs, B. Kuzman, and A. Malni¢. On non-normal arc transitive 4-valent
dihedrants. Acta Math. Sinica (Engl. ser.), 26(8):1485-1498, 2010.

I. Kovacs, A. Malni¢, D. Marusi¢, and S. Miklavi¢. One-mathcing bi-Cayley
graph over Abelian groups. Europ. J. Combin, 30:602-616, 2009.

K. Kutnar and D. Marusi¢. A complete classification of cubic symmetric graphs
of girth 6. J. Combin. Theory Ser. B, 99:162-184, 2009.



86

BIBLIOGRAPHY

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

P. Lambossy. Sur une maniére de différentcier les fonctions cycliques de 'une
forme donnée. I. Comment. Math. Helv., 3:69-102, 1931.

K. H. Leung and S. L. Ma. Partial difference triples. J. Algebraic Combin.,
2:397-409, 1993.

C. H. Li. Finite CI-groups are soluble. Bull. London Math. Soc., 31(4):419-423,
1999.

C. H. Li. Isomorphism of finite Cayley digraphs of bounded valency, 1I. J.
Combin. Theory. Ser. A, 87:333-346, 1999.

C. H. Li. The finite vertex-primitive and vertex-biprimitive s-transitive graphs
for s > 4. Trans. Amer. Math. Soc., 353:3511-3529, 2001.

C. H. Li. On isomorphisms of finite Cayley graphs - a survey. Discrete Math.,
256:301-334, 2002.

C. H. Li, Z. P. Lu, and P. Palfy. Further restrictions on the structure of finite
Cl-groups. J. Algebraic Combin., 26(2):161-181, 2007.

C. H. Li and C. E. Praeger. Finite groups in which any two elements of the
same order are either fused or inverse fused. Comm. Algebra, 25(10):3081-3118,
1997.

C. H. Li and C. E. Praeger. On the isomorphism problem for finite Cayley
graphs of bounded valency. European J. Combin., 20(4):279-292, 1999.

C. H. Li, C. E. Praeger, and M. Y. Xu. Isomorphisms of finite Cayley digraphs
of bounded valency. J. Combin. Theory. Ser. B, 73:164-183, 1998.

P. Lorimer. Vertex-transitive graphs: symmetric graphs of prime valency. J.
Graph Theory, 8:55-68, 1984.

A. Malni¢. Group actions, coverings and lifts of automorphisms. Discrete Math.,
182:203-218, 1998.

A. Malni¢, D. Marusi¢, and P. Sparl. On strongly regular bicirculants. Furop.
J. Combin., 28:891-900, 2007.

M. Muzychuk. Adam’s conjecture is true in the square-free case. J. Combin
Theory Ser. A, 72:118-134, 1995.

M. Muzychuk. Corrigendum: On Adam’s conjecture for circulant graphs. Dis-
crete Math., 176:285-298, 1997.

M. Muzychuk. On the isomorphism problem for cyclic combinatorial objects.
Discrete Math., 197, 198:589-606, 1999.

M. Muzychuk. A solution of the isomorphism problem for circulant graphs.
London Math. Soc., 88(3):1-41, 2004.



BIBLIOGRAPHY 87

[65]

[66]

[67]

[68]

[69]

[70]

[71]

72|
[73]

[74]

[75]

[76]

[77]

P. Pélfy. Isomorphism problem for relational structures with a cyclic automor-
phism. Fur. J. Combin., 8:35-43, 1987.

M. Petkovsek and T. Pisanski. Counting disconnected structures: chemical
trees, fullerenes, I-graphs, and others. Croat. Chem. Acta., 78:563-567, 2005.

M. Petkovsek and H. ZakrajSek. Enumeration of I-graphs: Burnside does it
again. Ars Math. Contemp., 2:241-262, 2009.

K. T. Phelps. Isomorphism problems for cyclic block designs. Ann. Discrete
Math., 34:385-392, 1987.

T. Pisanski and B. Servatius. Configurations from a graphical viewpoint.
Birkhduser Advanced Texts: Basler Lehrbiicher. Birkh&user/Springer, New
York, 2013.

D. J. S. Robinson. A course in the theory of groups, volume 80 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1996.

G. Sabidussi. On a class of fixed-point-free graphs. Proc. Amer. Math. Soc.,
9:800-804, 1958.

W. R. Scott. Group Theory. Dover Publications Inc., New York, 1987.

L. Sun. Isomorphisms of circulants with degree 2. J. Beijing Ins. Technol.,
9:42-46, 1984.

W. T. Tutte. A family of cubical graphs. Proc. Cambr. Philosoph. Soc., 43:459—
474, 1947.

M. E. Warkins. A theorem on Tait colorings with application to generalized
petersen graphs. J. Combin. Theory, 6:152-164, 1969.

D. Wiedemann and M. E. Zieve. Equivalence of sparse circulants: the bipartite
Adam problem. arXiv:0706.1567v1 [math. CO] (2007).

S. J. Xu, W. Jin, Q. Shi, and J. J. Li. The BCl-property of the Bi-Cayley
graphs. J. Guangxi Norm. Univ.: Nat. Sci. Edition, 26:33-36, 2008.



88

BIBLIOGRAPHY




List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3

6.1

7.1
7.2

The graph I' and its normal quotient I'y. . . . . . . . . .. ... ..
The Cayley graphs Cay(Zs,{1,2,5}) and Cay(Zs,{1,6,5}). . . . ..

The generalized Petersen graph GP(12,5). . .. ... ... ... ..
BCay(Zs,{0,1,2,5}) and BCay(Zs,{0,1,6,5}) . . . . ... ... ..
The bi-Cayley graph BCay(Zi0,{0,1,3,4}). . . . ... ... ... ..
The graphs Cay(Dag, {b, ba,ba® ba*}) and Cay(Dag, {a,a’,b,ba’}). .

Bi-Cayley graphs BCay(Z,, S1(1)) and BCay(Z,, S2(1)). . . . . . ..
The bi-Cayley graph BCay(Z,,S). . . . . . . . . ... ... .. ..
The lexicographical product C,[KS]. . . . .. .. ... ... ... ..

Voltage assignment ¢ of Triyy. - o 0 o oo o oo oo

The Fano plane F and its incidence graph I'(F). . . . ... ... ..
A bi-Cayley representation BCay(Z7, {0,4,6}) of the graph T'(F). . .

89

16
17
26

32
33

60

67
67






Povzetek v slovenskem jeziku

V doktorski disertaciji obravnavamo problem izomorfnosti bi-Cayleyjevih grafov in
z njim povezano vprasSanje klasifikacije kon¢nih BCI-grup. Obravnavani so naslednji
konkretni problemi oz. vprasanja:

(i) Poiskati u¢inkovite potrebne in zadostne pogoje za izomorfnost dveh cikli¢nih
bi-Cayleyjevih grafov.

Katere grupe so 3-BCl-grupe?

(i)

(iii) Kateri kubi¢ni bi-Cayleyjevi grafi so BCI-grafi?

(iv) Katere cikli¢ne uravnotezene konfiguracije imajo CI-lastnost?
)

(v) Analiti¢no o$teviléenje uravnotezenih cikli¢nih konfiguracij.

V doktorski disertaciji je Problem (i) reSen za tetravalentne grafe, Problem (ii) pa
za nilpotentne grupe. Prispevek k resitvi Problema (iii) je dokaz, da je vsak povezan
kubi¢en lo¢no-tranzitiven bi-Cayleyjev graf BCl-graf. Kar se ti¢e Problema (iv),
je v doktorski disertaciji dokazano, da ima Cl-lastnost vsaka cikli¢na uravnotezena
konfiguracija, katere Stevilo tock je bodisi enako produktu dveh razli¢nih prastevil
ali pa je enako potenci nekega prastevila. Za Problem (v) je izpeljana formula za
stevilo povezanih cikli¢nih konfiguracij tipa (vs).

BClI-grafi in BCI-grupe

Na podlagi koncepta Cl-grafov, m-Cl-grup in Cl-grup so leta 2008 Xu in ostali
[77] predstavili koncept BCI-grafov, m-BCI-grup in BCIl-grup. Bi-Cayleyjev graf
BCay(G, S) je BCl-graf, ¢e iz BCay(G,S) = BCay(G,T) za neko podmnozico T
grupe G sledi, da je T' = ¢gS? za nek element g € G in nek avtomorfizem o € Aut(G).
Grupa G je m-BClI-grupa, Ce je vsak bi-Cayleyjev graf grupe G, ki je stopnje najvec
m, BCl-graf. Grupa G je BCI-grupa, ¢e je vsak bi-Cayleyjev graf grupe G BCI-
graf. Teorija BCl-grafov in BCI-grup je precej manj razvita kot teorija Cl-grafov
in Cl-grup. Nekatere osnovne lastnosti BCI-grafov in BCI-grup sta obravnavala Jin
in Liu v seriji ¢lankov [34, 35, 36, 37|, ne dolgo nazaj pa tudi Arezoomand in Taeri
v ¢lankih [3, 2]. V naslednji lemi karakteriziramo BCl-grafe s stalis¢a teorije grup
na podoben nacin, kot je Babai [5] karakteriziral Cl-objekte. V tej lemi z R(G)
oznagimo grupo vseh permutacij R(g), g € G, kjer je permutacija R(g) definirana
kot R(g) : (z,4) — (zg,1) za vsak x € G in i € {0,1}.
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Lema 1. Za vsak bi-Cayleyjev graf I’ = BCay (G, S) sta naslednji izjavi ekvivalentns.
(i) BCay(G, S) je BCI-graf.

(i4) Normalizator N ) (R(G)) je tranzitiven na mnoZici V(') in je vsaka semireg-
ularna podgrupa grupe avtomorfizmov Aut(I') z orbitama G x {0} in G x {1},
ki je izomorfna grupi G, v grupi Aut(I') konjugirana podgrupi R(G).

Bolj podrobno obravnavamo povezavo med BCI-grupami in Cl-grupami. Med
drugim dokazemo naslednjo trditev:

Trditev 1. Naj bo I' = BCay(G, S) tak graf, da obstaja involucija T € Aut(L'), ki
normalizira grupo R(G), in da velja enakost (15,0)" = (1g,1). Predpostavimo Se,
da je Aut(T)(1,,0) = Aut(D)(1,,1). Potem je BCay(G, S) BCI-graph, ce je Cay (G, S)
CI-graf.

V bistvu je naSa primarna motivacija za obravnavanje BCl-grafov in BCl-grup ta,
da nam lahko poznavanje teh objektov prinese nov vpogled v Ze znan in obravnavan
problem klasifikacije Cl-grup.

Izomorfni tetravalentni cikli¢ni bi-Cayleyjevi grafi

Problem izomorfnosti grafov, ki jih imenujemo cirkulanti, je bil obdelan s strani
mnogih raziskovalcev, popolno resitev tega problema pa je podal Muzychuk [64]. V
doktorski disertacije je obravnavan enak problem za razred cikli¢nih bi-Cayleyjevih
grafov (to so bi-Cayleyjevi grafi cikli¢nih grup). Kolikor je znano, je edini rezultat v
smeri refitve tega problema rezultat Wiedemanna in Zieveja [76], ki sta dokazala, da
je vsak cikli¢en bi-Cayleyjev graf stopnje najve¢ 3 BCl-graf. Poleg tega sta podala
primere ne-BCl-grafov stopnje 4, zato tetravalentni bi-Cayleyjevi grafi predstavl-
jajo prvi naslednji netrivialen primer, ki ga je smiselno obravnavati. V doktorski
disertaciji je dokazan naslednji izrek:

Izrek 1. Povezana bi-Cayleyjeva grafa BCay(Zi, S) in BCay(Z,,T), kjer je |S| =
|T| = 4, sta izomorfna natanko tedaj, ko obstajajo taki elementi ai,as € Z} in
b1,bo € Zy,, da velja

(i) a1S+by=T; ali

(11) a1S+ b1 = {0,u,v,v+m} in axT + by = {0, u + m,v,v+ m}, kjer je n = 2m,
L = (u,v), 2| u, 2u | m.

Zanimivo je, da pogoji za aritmetiko v zgornjem izreku popolnoma sovpadajo s pogoji
v rezultatu za kubi¢ne cirkulante, ki jih lahko dobimo iz splosnega algoritma, ki ga
je podal Muzychuk [64].

Nilpotentne 3-BCI-grupe

V doktorski disertaciji so oravnavani BCIl-grafi in 3-BCl-grupe. Trivialno je
videti, da je vsaka grupa 1-BCl-grupa, medtem ko so 2-BCl-grupe v smislu teorije



grup opisane v [77]. Klasifikacija 3-BCI-grup je 8e vedno odprt problem, nekatere
delne rezultate, pa lahko najdemo v [34, 35, 36]. V teoriji CI-grup je tovrsten prob-
lem obdelan v [53, Problem 9.6]. V doktorski disertaciji je dokazan naslednji izrek,
ki predstavja delno resitev klasifikacije nilpotentnih 3-BCl-grup:

Izrek 2. Vsaka koncna grupa U x V', kjer je U grupa lihega reda tako da so wvse
p-Sylowke od grupe U homociklicne (to je direktni produkt ciklicnih grup istega reda),
grupa V' pa je trivialna, ali pa je ena izmed grup Zor, Zy ali grupa kvaternionov QJg,
je 3-BCI-grupa.

Povezani lo¢no-tranzitivni kubi¢ni bi-Cayleyjevi grafi so BCI-grafi

V doktorski disertaciji so podani e nekateri novi primeri kubi¢nih BCI-grafov.

Izrek 3. Naj bo G koncna abelska grupa. Potem je vsak povezan locno-tranzitiven
kubicen bi-Cayleyjev graf BCay (G, S) BCI-graf.

Poleg tega je v doktorski disertaciji podan popoln opis grafov iz Izreka 3, ki so
zanimivi iz razliénih razlogov. Ta rezultat je naprimer primerljiv z nedavno klasi-
fikacijo tockovno-tranzitivnih kubi¢nih bi-Cayleyjevih grafov abelskih grup, ki sta
jo naredila Feng in Zhou [25]. Grafi iz Izreka 3 so zanimivi tudi zaradi klasifikacije
povezanih lo¢no-tranzitivnih grafov ozine 6, ki sta jo naredila Kutnar in Marugi¢
[47]. IzkaZe se, da ima vsak od grafov iz njunega rezultata semiregularno abelsko
grupo avtomorfizmov z dvema orbitama.

Cl-lastnost cikliénih uravnotezZenih konfiguracij

V tem delu raziskovanja je pozornost usmerjena h konfiguracijam. Ciklicna kon-
figuracija (P, B) je sestavljena iz mnozice to¢k P in mnozice premic B, katere elementi
so dolo¢ene podmnozice mnozice P, poleg tega pa predpostavljamo, da cikli¢na grupa
avtomorfizmov G deluje regularno na mnozici P. V tem primeru lahko na kanoni¢en
nacin identificiramo mnozico P z grupo G in lahko zato na (P, B) gledamo kot na
Cayleyjev-objekt grupe G. Ce je poleg tega konfiguracija (G, B) tudi uravnoteZena
(to pomeni, da je |G| = |B]), potem je pripadajo¢i inciden¢ni graf konfiguracije (G, B)
bi-Cayleyjev graf grupe G in ima konfiguracija (G, B) Cl-lastnost natanko tedaj, ko
je pripadajoci bi-Cayleyjev graf BCl-graf. 7 upostevanjem vseh teh dejstev, je v
dokotrski disertaciji dokazan naslednji izrek:

Izrek 4. Vsaka ciklicna uravnoteZena konfiguracija z v-tockami ima Cl-lastnost, ce
jev =mpq aliv=7p", kjer sta p in q razliécni prastevils.

Poleg tega je v doktorski disertaciji podana zaprta formula za izra¢un Stevila ne-
izomorfnih povezanih cikli¢nih konfiguracij tipa (vs) (to so uravnotezene konfiguracije
na v tockah, v katerih ima vsaka premica 3 tocke):

Izrek 5. Naj bo v > 4 celo Stevilo s prastevilsko faktorizacijo v = pi* ---p*. Potem
lahko stevilo povezanih ciklicnih konfiguracij tipa (vs) izracunamo po naslednji for-
muli:



%Hf:l (1+ p%) + a2 —2  ce je v lih,
%Hf:l (14 p%) +B2F -3 ée je v sod,
kjer je Stevilo o definirano za lihe v 2z
5/6 ce je vsak p; = 1(mod 3),

a=142/3 Cdejepi* =3in cejei>1, potem je p; = 1(mod 3),
1/2  sicer,

in je Stevilo B definirano za sode v z

1/4  ¢e je v =2(mod 8) ali v==6(mod 8),
B=141/2 ceje v=4(mod38),
1 ée je v =0(mod 8).

Naj omemimo Se, da so rezultati disertacije objavlejni v naslednjih znanstvenih
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