
UNIVERZA NA PRIMORSKEM
FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

DOKTORSKA DISERTACIJA
(DOCTORAL THESIS)

O PROBLEMU IZOMORFNOSTI BI-CAYLEYJEVIH GRAFOV

(ON THE ISOMORPHISM PROBLEM OF BI-CAYLEY
GRAPHS)

SERGIO HIROKI KOIKE QUINTANAR

KOPER, 2015





UNIVERZA NA PRIMORSKEM
FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

DOKTORSKA DISERTACIJA
(DOCTORAL THESIS)

O PROBLEMU IZOMORFNOSTI BI-CAYLEYJEVIH GRAFOV

(ON THE ISOMORPHISM PROBLEM OF BI-CAYLEY
GRAPHS)

SERGIO HIROKI KOIKE QUINTANAR

KOPER, 2015 MENTOR: IZR. PROF. DR. ISTVÁN KOVÁCS





Acknowledgements

I would like to express all my gratitude to my PhD. supervisor István Kovács for
all the help, support and patience he showed towards me, and all time he invested
on me throughout all these years.

I would like to show all my gratitude to Dr. Alexander Malni£ for accepting me
as a young researcher under his supervision.

I also would like to thank Dr. Dragan Maru²i£ and Dr. Klavdija Kutnar for
their support throughout my studies in the University of Primorska. I would like to
thank all the sta� in the Faculty of Mathematics, Natural Sciences and Information
Technologies and the Andrej Maru²i£ Institute, specially to Monika Marinko, for
their help during my stay in Slovenia, to Dr. Daniel Pellicer for encouraging me to
enrol in the University of Primorska, to Dr. Bo²tjan Frelih for the translation to
Slovene, to my family and to all my friends for their support, love and friendship.



ii



Contents

Abstract iv

Izvle£ek vi

1 Introduction 1

2 Preliminaries 3

2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Nilpotent and solvable groups . . . . . . . . . . . . . . . . . . 4
2.1.2 Group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 The holomorph . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Action of groups on graphs . . . . . . . . . . . . . . . . . . . 7
2.2.2 Connected arc-transitive cubic graphs . . . . . . . . . . . . . 7
2.2.3 Normal quotients, covers and voltage graphs . . . . . . . . . . 8
2.2.4 Cayley graphs and the CI-property . . . . . . . . . . . . . . . 9

2.3 Cayley objects and the CI-property . . . . . . . . . . . . . . . . . . . 11

3 BCI-graphs and BCI-groups 15

3.1 BCI-graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 A Babai-type lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 m-BCI- and BCI-groups . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 BCI-groups versus CI-groups . . . . . . . . . . . . . . . . . . . . . . 23

4 Isomorphic tetravalent cyclic bi-Cayley graphs 27

4.1 Bicyclic bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Bi-Cayley graphs BCay(Z2m, {0, u, v, v +m}) . . . . . . . . . . . . . 30
4.3 Proof of Theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Nilpotent 3-BCI-groups 45

5.1 Preparatory lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 The proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Connected arc-transitive cubic bi-Cayley graphs 55

6.1 Proof of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Proof of Theorem 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

iii



7 CI-property of cyclic balanced con�gurations 65

7.1 Balanced con�gurations and bi-Cayley graphs . . . . . . . . . . . . . 67
7.2 Proof of Theorem 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3 Proof of Theorem 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Conclusions 79

A Magma calculations 81

A.1 BCI-graphs of Zn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Example 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 82

List of Figures 87

Povzetek v slovenskem jeziku 89



Abstract

ON THE ISOMORPHISM PROBLEM OF BI-CAYLEY GRAPHS

In this PhD thesis we study the isomorphism problem of bi-Cayley graphs and
the related question of classifying �nite BCI-groups. More precisely, the following
questions/problems are considered:

(i) Find e�ective su�cient and necessary conditions for the isomorphism of two
cyclic bi-Cayley graphs.

(ii) Which groups are 3-BCI-groups?

(iii) Which cubic bi-Cayley graphs are BCI-graphs?

(iv) Which cyclic balanced con�gurations have the CI-property?

(v) Analytical enumeration of balanced cyclic con�gurations.

Problem (i) is solved for tetravalent graphs. Problem (ii) is solved for nilpotent
groups. We contribute to Problem (iii) by proving that all connected cubic arc-
transitive bi-Cayley graphs over abelian groups are BCI-graphs. Regarding Prob-
lem (iv), we prove that all cyclic balanced con�gurations have the CI-property for
which the number of points is either a product of two distinct primes, or a prime
power. Regarding Problem (v), we derive a close formula for the number of connected
cyclic con�gurations of type (v3).

Math. Subj. Class (2010): 20B25, 05C25, 05C60, 51E30.

Key words: graph isomorphism, bi-Cayley graph, BCI-graph, BCI-group, n-BCI-
group, arc-transitive graph, cyclic con�guration, cyclic object.





Izvle£ek

O PROBLEMU IZOMORFNOSTI BI-CAYLEYJEVIH GRAFOV

V doktorski disertaciji obravnavamo problem izomorfnosti bi-Cayleyjevih grafov
in z njim povezano vpra²anje klasi�kacije kon£nih BCI-grup. Obravnavani so nasled-
nji konkretni problemi oz. vpra²anja:

(i) Poiskati u£inkovite potrebne in zadostne pogoje za izomorfnost dveh cikli£nih
bi-Cayleyjevih grafov.

(ii) Katere grupe so 3-BCI-grupe?

(iii) Kateri kubi£ni bi-Cayleyjevi gra� so BCI-gra�?

(iv) Katere cikli£ne uravnoteºene kon�guracije imajo CI-lastnost?

(v) Analiti£no o²tevil£enje uravnoteºenih cikli£nih kon�guracij.

V doktorski disertaciji je Problem (i) re²en za tetravalentne grafe, Problem (ii) pa
za nilpotentne grupe. Prispevek k re²itvi Problema (iii) je dokaz, da je vsak povezan
kubi£en lo£no-tranzitiven bi-Cayleyjev graf nad abelsko grupo BCI-graf. Kar se
ti£e Problema (iv), je v doktorski disertaciji dokazano, da ima CI-lastnost vsaka
cikli£na uravnoteºena kon�guracija, katere ²tevilo to£k je bodisi enako produktu
dveh razli£nih pra²tevil ali pa je enako potenci nekega pra²tevila. Za Problem (v) je
izpeljana formula za ²tevilo povezanih cikli£nih kon�guracij tipa (v3).

Math. Subj. Class (2010): 20B25, 05C25, 05C60, 51E30.

Klju£ne besede: isomor�a grafov, bi-Cayleyjey graf, BCI-graf, BCI-grupa, n-BCI-
grupa, lo£no tranzitiven graf, cikli£na c con�guracija, cikli£en objekt.





Chapter 1

Introduction

The central objects in this PhD Thesis are the so called bi-Cayley graphs. These
graphs are natural generalizations of Cayley graphs in the following sense: while the
latter graphs can be described as those with a regular subgroup in their automor-
phism group, the former graphs are those having a semiregular group with two orbits.
In this thesis we are interested in the case when each edge has endpoints in di�er-
ent orbits. More formally, for a group G and a subset S of G, the bi-Cayley graph

BCay(G,S) has vertex set G × {0, 1}, and the edges are in the form (x, 0)(sx, 1),
where x ∈ G and s ∈ S. Bi-Cayley graphs have been studied from various aspects,
e. g., they have been used for constructions of strongly regular graphs [17, 49] and
semisymmetric graphs [21, 60]. In this thesis we focus on their isomorphism problem
and the related question of classifying �nite BCI-groups. The latter problem is a
natural analogue to the well-known problem of classifying �nite CI-groups which has
attracted considerable attention over the last 45 years and which is still wide open
(see, e. g., [20, 53, 54]).

In 2008, motivated by the concepts CI-graph, m-CI-group and CI-group, Xu
et al. [77] introduced the concepts BCI-graph, m-BCI-group and BCI-group, re-
spectively. We say that a bi-Cayley graph BCay(G,S) is a BCI-graph if whenever
BCay(G,S) ∼= BCay(G,T ) for some subset T of G, the set T = gSσ for some g ∈ G
and automorphism σ ∈ Aut(G). The group G is an m-BCI-group if every bi-Cayley
graph over G of valency at most m is a BCI-graph, and G is a BCI-group if every
bi-Cayley graph over G is a BCI-graph. The theory of BCI-graphs and BCI-groups
is less developed as in the case of CI-graphs and CI-groups. Several basic properties
have been obtained by Jin and Liu in a series of papers [34, 35, 36, 37], and very
recently, by Arezoomand and Taeri [2, 3]. We will review these results in Chapter 3.
We also give several examples, and most importantly, discuss in details the relation
between BCI-groups and CI-groups. In fact, our primary motivation by studying
BCI-graphs and BCI-groups is that these objects can bring new insight into the old
problem of classifying CI-groups.

The isomorphism problem for circulant graphs was investigated by many re-
searchers, and �nally, a complete solution was given by Muzychuk [64]. In Chapter 4,
we consider the same problem in the class of cyclic bi-Cayley graphs (i. e., bi-Cayley
graphs over cyclic groups). As far as we know, the only result in this direction is
due to Wiedemann and Zieve [76], who proved that every cyclic bi-Cayley graph
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of valency at most 3 is a BCI-graph. Furthermore, they also gave examples of non-
BCI-graphs of valency 4, and thus the tetravalent bi-Cayley graphs represent the �rst
non-trivial case to be considered. In Chapter 4, we solve this case (see Theorem 4.1).
Interestingly, the arithmetic conditions that appear in our solution coincide entirely
with those in the solution for cubic circulant graphs that can be retrieved from the
general algorithm of Muzychuk [64].

In Chapters 5 and 6 we consider cubic BCI-graphs and also 3-BCI-groups. It
is a trivial observation that every group is a 1-BCI-group, while the 2-BCI-groups
were described in purely group theoretical terms in [77]. In this PhD Thesis we
are interested in 3-BCI-groups. The classi�cation of these groups is still an open
problem, some partial solutions can be found in [34, 35, 36]. In the theory of CI-
groups the counterpart problem is [53, Problem 9.6]. In Chapter 5, we contribute
to this problem by classifying the nilpotent 3-BCI-groups (see Theorem 5.1). In
Chapter 6, we give further examples of cubic BCI-graphs. Namely, we prove that
every connected arc-transitive cubic bi-Cayley graph over an abelian group is a BCI-
graph (see Theorem 6.2). In addition to this, we also derive a complete description
of these graphs which is of independent interest. This result is comparable with the
recent classi�cation of vertex-transitive cubic bi-Cayley graphs over abelian groups
obtained by Feng and Zhou [25]. Our interest in connected arc-transitive cubic
abelian bi-Cayley graphs came from the classi�cation of connected arc-transitive
cubic graphs of girth 6 obtained by Kutnar and Maru²i£ [47]. It turns out that each
of the latter graphs has a semiregular abelian automorphism group with two orbits.

In Chapter 7, we change the subject and turn to con�gurations. A cyclic con-

�guration (P,B) consists of a point set P and a line set B, which consists of certain
subsets of P, and it is also assumed that a cyclic automorphism group G is regular
on P . In this case there is a canonical way to identify P with G, and thus (P,B) can
be regarded as a Cayley-object of G. Furthermore, if the con�guration (G,B) is also
balanced (i. e., |G| = |B|), then the incidence graph of (G,B) is a bi-Cayley graph
over G, and (G,B) has the CI-property exactly when the corresponding bi-Cayley
graph is a BCI-graph. Using also this observation, we prove that every balanced
cyclic con�guration has the CI-property for which the number of points is either a
product of two distinct primes, or it is a prime power (see Theorem 7.2). As an ap-
plication, we also derive a close formula for the number of non-isomorphic connected
cyclic con�gurations of type (v3) (see Theorem 7.3).

The results presented in this PhD Thesis are from the following articles:

• H. Koike, I.Kovács, Isomorphic tetravalent circulant Haar graphs, Ars Math.

Contemporanea 7 (2014), 215�235.

• H. Koike, I. Kovács, T. Pisanski, The number of cyclic con�gurations of type
(v3) and the isomorphism problem, J. Combin. Designs 22 (2014), 216�229.

• H. Koike, I. Kovács, Arc-transitive cubic abelian bi-Cayley graphs and BCI-
graphs, Filomat, in press.

• H. Koike, I. Kovács, A classi�cation of nilpotent 3-BCI groups, submitted.



Chapter 2

Preliminaries

The purpose of this chapter is to familiarize the reader with the concepts, terminology
and notation, and to review the results that we shall use in the thesis.

2.1 Groups

In this thesis we will consider �nite groups. If it is not speci�ed otherwise we use
multiplicative notation for the group operation and denote by 1G the identity element
of a given group G. For group theoretical terms not de�ned here we refer the reader
to [18, 70, 72].

The following list presents the notation and de�nitions of special classes of groups
that will appear throughout the thesis.

• Zn. The ring of residue classes of integers module n, and parallel, it will
denote its additive group, representing the cyclic group of order n. We let
Zn = {0, 1, . . . , n− 1}.

• Z∗n. The multiplicative group of units of the ring Zn.

• AGL(1, n). The group of all permutations of Zn of the form x 7→ ax+ b, where
a ∈ Z∗n and b ∈ Zn. These will be also called the a�ne transformations of Zn.

• Dih(A). The generalized dihedral group de�ned as the semidirect product of
the abelian group A with Z2 = 〈η〉 where η acts on A as aη = a−1 for every
a ∈ A.

• D2n. The dihedral group of order 2n, i. e., the group Dih(Zn).

• Q8. The usual quaternion group given as Q8 = {1,−1, i,−i, j,−j, k,−k}.

• GL(n, F ). The general linear group, i. e., the group of all n × n invertible
matrices with elements from the �eld F .

• SL(n, F ). The special linear group, i. e., the group of all n × n matrices with
elements from the �eld F whose determinants are equal to 1.
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4 2.1 Groups

• PGL(n, F ) and PSL(n, F ). The projective linear group and projective special
linear group, respectively, i. e., the quotients groups of GL(n, F ) and SL(n, F )
by their respective centers.

If F is a �nite �eld with q elements, where q is a prime power, we write GL(n, q),
SL(n, q), PGL(n, q) and PSL(n, q) instead of GL(n, F ), SL(n, F ), PGL(n, F ) and
PSL(n, F ).

2.1.1 Nilpotent and solvable groups

A series of subgroups

{1G} = G0 ≤ G1 ≤ · · · ≤ Gn = G

of a group G is called a subnormal series of G if Gi E Gi+1 for every i ∈ {0, 1, . . . , n−
1}. A subnormal series is called a normal series if, in addition, Gi E G holds for
every i ∈ {0, 1, . . . , n−1}. A group G is called nilpotent if it has a central series, i. e.,
a normal series {1G} = G0 ≤ G1 ≤ · · · ≤ Gn = G, such that Gi+1/Gi is contained in
the center of G/Gi for every i ∈ {0, 1, . . . , n−1}. There are several group theoretical
properties which are equivalent to nilpotency for �nite groups. We summarize some
of them in the following theorem (cf. [70, Theorem 5.2.4]):

Theorem 2.1. Let G be a �nite group. Then the following properties are equivalent:

(i) G is nilpotent.

(ii) Every proper subgroup of G is properly contained in its normalizer.

(iii) Every maximal subgroup of G is normal.

(iv) G is the direct product of its Sylow subgroups.

A group G is solvable if it has an abelian series, by which we mean a subnormal
series 1G = G0 ≤ G1 ≤ · · · ≤ Gn = G in which each factor Gi+1/Gi is abelian. The
following theorem is due to Huppert and Itô (cf. [72, Theorem 13.10.1]):

Theorem 2.2. If a �nite group G = AB, where A is nilpotent, and B contains a

cyclic subgroup of index 2, then G is solvable.

2.1.2 Group actions

Let X be a nonempty set. We shall denote by Sym(X) the group of all permutations
of X. In this thesis we let permutations act on the right, i. e., if π and ρ are
permutations in Sym(X), then by their product πρ we apply �rst π and then ρ. In
consistence with this, we denote by xπ the image of x ∈ X under π.

An action of a group G on the set X is a function X × G → X which satis�es
the following axioms:

• x1G = x for every x ∈ X, and

• (xg)h = xgh for every x ∈ X and for all g, h ∈ G,



Preliminaries 5

where, for x ∈ X and g ∈ G, the symbol xg denotes the image of (x, g) ∈ X × G
under this function.

For every g ∈ G, the mapping πg : X → X de�ned by x 7→ xg is a permutation
of X. The mapping ϕ : g 7→ πg de�nes a homomorphism from G to Sym(X), this
is called the permutation representation of G induced by the action. The kernel

Ker(ϕ) = {g ∈ G |xg = x, x ∈ X} is also called the kernel of the action, and if this
is trivial then the action is called faithful.

For an element x ∈ X, we denote by xG the orbit of x under G, and by Gx the
stabilizer of x in G. The set of all orbits under G, or in other words, the set of all
G-orbits will be denoted by Orb(G,X). If the whole set X is a G-orbit, then we
say that G is transitive on X. We say that G is semiregular on X if Gx is trivial
for every element x ∈ X, and that G is regular on X if it is both transitive and
semiregular. The following basic relation holds between orbits and stabilizers (cf.
[18, Theorem 1.4A]):

Lemma 2.3. (The Orbit Stabilizer Property) Let G be a �nite group acting on

a �nite set X and let x ∈ X. Then |G| = |xG| · |Gx|.

For g ∈ G, we de�ne
fix(g) = {x ∈ X |xg = x}.

The next lemma essentially says that number |Orb(G,X)| of orbits is equal to the
the average number of points �xed by elements of G (cf. [18, Theorem 1.7A]):

Lemma 2.4. (The Orbit Counting Lemma) Let G be a �nite group acting on a

�nite set X. Then

|Orb(G,X)| = 1

|G|
∑
g∈G
| fix(g)|.

Let ∆ ⊆ X and de�ne ∆g = {xg |x ∈ ∆}. Suppose that G is transitive on X.
A nonempty subset ∆ of X is called a block if for each g ∈ G, either ∆g = ∆ or
∆g ∩∆ = ∅. It follows from the de�nition that the whole set X and the singletons
{x}, x ∈ X, are blocks, these are called trivial blocks and any other block is called
nontrivial. We say that G is primitive if it has no nontrivial blocks, otherwise it is
imprimitive. If ∆ is a block for G, then the set δ = {∆g | g ∈ G} is a partition of
the set X. This partition is called the system of blocks induced by ∆. The following
theorem is a special case of [18, Theorem 1.5A]:

Theorem 2.5. Let G be a group which acts transitively on a set X, x ∈ X, and
H ≤ G be a subgroup for which Gx ≤ H. Then the orbit xH is a block for G.

Let G be a group acting on a set X and let ∆ be a subset of X. Then the
pointwise stabilizer of ∆ in G is:

G∆ = {g ∈ G |xg = x, x ∈ ∆},

and the setwise stabilizer of ∆ in G is:

G{∆} = {g ∈ G |∆g = ∆}.
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We say that ∆ isG-invariant if ∆g = ∆ for every g ∈ G. Clearly, ∆ isG-invariant
if and only if it is an union of G-orbits. In this case we can consider the restriction
of the action to ∆, and denote by G∆ the image of the latter restriction (note that,
G∆ ≤ Sym(∆)). Two permutation groups G ≤ Sym(X) and H ≤ Sym(Y ) are
called permutation isomorphic if there exist a bijection λ : X → Y and a group
isomorphism φ : G→ H such that:

λ(xg) = λ(x)φ(g) for all x ∈ X and g ∈ G.

The next theorem is [18, Theorem 1.6A]:

Theorem 2.6. Let G be a group acting transitively on a set X, and let N be a

normal subgroup of G.

(i) The N -orbits form a system of blocks for G.

(ii) If ∆ and ∆′ are two N -orbits, then the permutation groups N∆ and N∆′ are

permutation isomorphic.

(iii) If any point of X is �xed by all elements of N , then N lies in the kernel of the

action.

(iv) The group N has at most |G : N | orbits. If the index |G : N | is �nite, then the

number of N -orbits divides |G : N |.

(v) If G is primitive on X then either N is transitive, or it lies in the kernel of the

action.

2.1.3 The holomorph

The right regular representation of G is the permutation representations ρ of G
induced by its action on itself by multiplying from the right, i. e., gρ : x 7→ xg for all
g, x ∈ G. The image of ρ will be denoted by Gright. The left regular representation
of G is the permutation representations λ of G induced by its action on itself de�ned
by gλ : x 7→ g−1x for all g, x ∈ G. The image of λ will be denoted by Gleft.

Now, the product gλgρ maps an element x in G to the conjugate g−1xg, so gλgρ

is equal to the inner automorphism of G induced by g. Consequently,

〈Gleft,Aut(G) 〉 = 〈Gright,Aut(G) 〉.

This group is called the holomorph of G, and it is denoted by Hol(G). Moreover, if
α ∈ Aut(G) and g ∈ G, then α−1gρα maps an element x of G to (xα

−1
g)α = xgα.

Consequently, α−1gρα = (gα)ρ, and thus Gright / Hol(G). Since the group Gright is
regular, Gright∩Aut(G) is trivial, and we can write Hol(G) as the semidirect product

Hol(G) = Gright oAut(G).

Notice that, the holomorph Hol(Zn) coincides with the group AGL(1, n) de�ned
in page 7.
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2.2 Graphs

In this thesis every graph will be �nite and simple. For graph theoretical terms not
de�ned below we refer the reader to [27].

2.2.1 Action of groups on graphs

For a graph Γ, we denote by V (Γ), E(Γ), A(Γ) and Aut(Γ) its vertex set, edge set,
arc set and full automorphism group, respectively. An edge {u, v} ∈ E(Γ) will be
also written as uv, and the ordered pairs (u, v) and (v, u) will be called the arcs of
Γ induced by the edge uv. For a vertex v ∈ V (Γ), we let NΓ(v) denote the set of all
vertices adjacent to v. In what follows we also use the terms cubic and tetravalent,
respectively, for a regular graph of valency 3 and 4, respectively.

We say that Γ is vertex-transitive, edge-transitive and arc-transitive, respectively,
if Aut(Γ) acts transitively on the vertex set V (Γ), edge set E(Γ) and arc set A(Γ),
respectively. A k-arc of a graph Γ is a sequence of k + 1 vertices, such that any
two consecutive vertices are adjacent, and with any repeated vertices being more
than 2 steps apart. More formally, it is an ordered (k + 1)-tuple (v0, v1, . . . , vk) of
vertices of Γ such that, for every i ∈ {1, . . . , k}, vi−1 is adjacent to vi, and for every
i ∈ {1, . . . , k − 1}, vi−1 6= vi+1. Let G ≤ Aut(Γ). Then the graph Γ is called (G, k)-
arc-transitive ((G, k)-arc-regular) if G is transitive (regular) on the set of k-arcs of
Γ. If G = Aut(Γ), then a (G, k)-arc-transitive ((G, k)-arc-regular) graph is simply
called k-transitive (k-regular).

2.2.2 Connected arc-transitive cubic graphs

In this subsection we review some results on connected arc-transitive cubic graphs.
Perhaps the most important among these was proved by Tutte in 1947:

Theorem 2.7 (Tutte [74]). Every connected arc-transitive cubic graph is k-regular
for some k ≤ 5.

In this thesis we will occasionally need information about connected arc-transitive
cubic graphs of small order. For this purpose we use the catalogue [14, Table] due
to Conder and Dobcsányi which contains all such graphs of order up to 768 (let us
remark that, this has completed and extended the earlier list of these graphs up to
512 vertices which was compiled by Foster [26]). For an update of the catalogue [14,
Table], we refer to the homepage of Marston Conder [13]. Following [14], we denote
by FnA, FnB, . . . , etc. the connected arc-transitive cubic graphs on n points, and
simply write Fn if the graph is uniquely determined by n.

We will use the following description of connected arc-transitive cubic graphs of
girth 6:

Theorem 2.8. Let Γ be a connected arc-transitive cubic graph of girth 6. Then one

of the following holds:

(i) Γ is 1-regular, and Aut(Γ) contains a regular normal subgroup isomorphic to

the generalized dihedral group Dih(L), where L ∼= Zrm × Zm, r = 3spe11 · · · p
et
t ,

r > 3 and r ≥ 11 if m = 1, s ∈ {0, 1}, and every pi ≡ 1(mod 3).
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(ii) Γ is 2-regular, and Γ ∼= GP (8, 3), or Aut(Γ) contains a regular normal subgroup
isomorphic to the generalized dihedral group Dih(L), where L ∼= Zrm × Zm,
r ∈ {1, 3}, m > 1, and if r = 1, then m 6= 3.

(iii) Γ is 3-regular, and Γ ∼= F18 (the Pappus graph) or GP (10, 3) (the Desargues

graph).

(iv) Γ is 4-regular, and Γ ∼= F14 (the Heawood graph).

In fact, part (i) is deduced from [47, Theorem 1.2], part (ii) from [47, Theorem 1.1],
and parts (iii)-(iv) from [24, Corollary 6.3] (see also [15, Theorem 2.3]).

2.2.3 Normal quotients, covers and voltage graphs

Let Γ be an arbitrary graph and G ≤ Aut(Γ) which is transitive on V (Γ). For a
normal subgroup N / G which is not transitive on V (Γ), the normal quotient ΓN is
the graph whose vertices are the N -orbits on V (Γ), and two N -orbits ∆1 and ∆2

are adjacent if and only if there exist vertices v1 ∈ ∆1 and v2 ∈ ∆2 such that v1 is
adjacent to v2 in Γ.

Example 2.9. Let Γ be the graph on 15 vertices shown on Fig. 2.1.

Figure 2.1: The graph Γ (left) and its normal quotient ΓN (right).

It is easily seen that Γ has an automorphism group G ∼= Z15 which is regular on
V (Γ). Now, take N to be the subgroup of G of order |N | = 3. Then N / G, and
the normal quotient ΓN is isomorphic to the 5-cycle (see Fig. 2.1, where each colour
represents one N -orbit on V (Γ)). �

Let Γ be a �nite simple graph and K be a �nite group whose identity element is
denoted by 1K . For an arc x = (w,w′) ∈ A(Γ) we set x−1 = (w′, w). A K-voltage

assignment of Γ is a mapping ζ : A(Γ)→ K with the property that ζ(x−1) = ζ(x)−1

for every x ∈ A(Γ). The values of ζ are called voltages and K is called the voltage
group. Voltages are naturally extended to a directed walk ~W = (w1, . . . , wn) by
letting ζ( ~W ) =

∏n−1
i=1 ζ((wi, wi+1)). Fix a spanning tree T of Γ. Then every edge

not in E(T ) together with the edges in E(T ) span a unique circuit of Γ, and we shall
refer to the circuits obtained in this manner as the base circuits of Γ relative to T .
The K-voltage assignment ζ is called T -reduced if ζ(x) = 1K whenever x is an arc
belonging to A(T ).
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The voltage graph Γ×ζ K is de�ned to have vertex set V (Γ)×K, and edge set

E(Γ×ζ K) =
{

(w, k)(w′, ζ(x)k) | x = (w,w′) ∈ A(Γ) and k ∈ K
}
. (2.1)

The voltage group K induces an automorphism group of Γ ×ζ K through the
action de�ned by

(w, l)k = (w, lk), w ∈ V (Γ) and k, l ∈ K.

We denote k̂ the permutation of V (Γ) induced by k with respect to the above action,
and let K̂ = {k̂ : k ∈ K}. Let g ∈ Aut(Γ ×ζ K) such that it normalizes K̂. This
implies that, if (w, k) ∈ V (Γ×ζ K) and (w, k)g = (w′, k′), then w′ does not depend
on the choice of k ∈ K, and the mapping w 7→ w′ is a well-de�ned permutation of
V (Γ). The latter permutation is called the projection of g which belongs to Aut(Γ).
On the other hand, we say that an automorphism of Aut(Γ) lifts to an automorphism
h ∈ Aut(Γ×ζ K) if it is equal to the projection of h. The following �Lifting Lemma�
is a special case of [59, Theorem 4.2]:

Theorem 2.10 (Malni£ [59]). Let Γ×ζ K be a connected voltage graph, where K is

an abelian group, and ζ is a T -reduced K-voltage assignment. Then σ ∈ Aut(Γ) lifts
to an automorphism of Γ ×ζ K if and only if there exists some σ∗ ∈ Aut(K) such

that for every directed base circuit ~C relative to T , σ∗(ζ(~C)) = ζ(~C σ).

For more information on voltage graphs the reader is referred to [28, 59].

2.2.4 Cayley graphs and the CI-property

Let G be a group and S ⊆ G\{1G}. The Cayley graph Cay(G,S) is the graph whose
vertex set is G and arc set is {(x, sx) | x ∈ G, s ∈ S}. Observe that, if S = S−1, then
Cay(G,S) is in fact an undirected graph. By de�nition, Cay(G,S) has out-valency
|S|, and it is connected if and only if 〈S〉 = G, i. e., S generates G. In general,
Cay(〈S〉, S) is a connected component of Cay(G,S), and Cay(G,S) is isomorphic
to the union of |G : 〈S〉| disjoint copies of Cay(〈S〉, S). For every Cayley graph
Cay(G,S), the group Gright (see Subsection 2.1.3) acts as an automorphism group
of the graph, implying that Cay(G,S) is vertex-transitive. In fact, Sabidussi [71]
characterized Cayley graphs over a group G as those (di)graphs whose automorphism
groups contain a regular subgroup isomorphic to G.

A fundamental problem about Cayley graphs is the so called isomorphism prob-

lem, that is, given two Cayley graphs Cay(G,S) and Cay(H,T ) determine whether
or not Cay(G,S) ∼= Cay(H,T ). It follows quickly from the de�nition that for any
automorphism α ∈ Aut(G), the graphs Cay(G,S) and Cay(G,Sα) are isomorphic,
namely, α induces an isomorphism between these graphs. Such an isomorphism is
also called a Cayley isomorphism. In 1967, Ádám [1] conjectured that two Cayley
graphs over the cyclic group Zn are isomorphic if and only if there is a Cayley iso-
morphism which maps one to the other. Soon afterwards, Elpas and Turner [22]
found the counterexample shown in Fig. 2.2. The graphs Cay(Z8, {1, 2, 5}) and
Cay(Z8, {1, 6, 5}) are isomorphic but there is no Cayley isomorphism between them.
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Figure 2.2: The Cayley graphs Cay(Z8, {1, 2, 5}) and Cay(Z8, {1, 6, 5}).

This also motivated the following de�nition. A Cayley graph Cay(G,S) has
the CI-property (for short, it is a CI-graph) if for any Cayley graph Cay(G,T ),
Cay(G,S) ∼= Cay(G,T ) implies that T = Sα for some α ∈ Aut(G). A group G is
called a DCI-group if every Cayley graph over G is a CI-graph, and it is called a CI-
group if every undirected Cayley graph over G is a CI-graph. Finite DCI-groups and
CI-groups have attracted considerable attention over the last 45 years. In [61, 62],
Muzychuk gave a complete classi�cation of cyclic CI-groups and DCI-groups.

Theorem 2.11 (Muzychuk [61, 62]).

(i) A cyclic group of order n is a DCI-group if and only if n = k, 2k or 4k where

k is an odd square-free number.

(ii) A cyclic group of order n is a CI-group if and only if either n ∈ {8, 9, 18} or
n = k, 2k or 4k where k is an odd square-free number.

The best list of possible DCI-groups has been derived from the works of Li et al.
[56, 57]. Before we recall this list, we need one more de�nition. Let M be an abelian
group of odd order for which all Sylow subgroups are elementary abelian, and let
n ∈ {2, 3, 4, 8} be such that gcd(|M |, n) = 1. Now, let

E(M,n) = E o 〈z〉 (2.2)

such that z is of order n, and if n is even then z inverts all elements of M, that is,
xz = x−1 for all x ∈ M ; while if n = 3 then xz = xl for all x ∈ M, where l is an
integer satisfying l3 ≡ 1(mod exp(M)) and gcd(l(l − 1), exp(M)) = 1.

Theorem 2.12 (Li, Praeger and Xu [53]). If G is a DCI-group, then all Sylow

subgroups of G are elementary abelian or isomorphic to Z4 or Q8. Moreover, G =
U×V , where gcd(|U |, |V |) = 1, U is abelian, and V = 1, Q8, A4, E(M, 2) or E(M, 4).

The best list of CI-groups is due to Li et al. [54]. It should be mentioned that
their proof was incomplete, but this was corrected recently by Dobson et al. [20]:

Theorem 2.13 (Li, Lu, Pálfy [54]). Let G be a CI-group.
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(a) If G does not contain elements of order 8 or 9, then G = H1 ×H2 ×H3, where
the orders of H1, H2 and H3 are pairwise coprime, and

(i) H1 is an abelian group, and each Sylow subgroup of H1 is elementary abelian

or Z4;

(ii) H2 is one of the groups 1, E(M, 2), E(M, 4) or Q8;

(iii) H3 is one of the groups 1, E(M, 3) or A4.

(b) If G contains elements of order 8, then G ∼= E(M, 8) or Z8.

(c) If G contains elements of order 9, then G is one of the groups Z9 o Z2,Z9 o
Z4,Z2

2 o Z9 or Z9 × Zn2 with n ≤ 5.

However, the problem of determining whether or not a given group in the the-
orems above is really a DCI- or CI-group is di�cult. For several results in these
directions we refer the reader to the survey [53].

2.3 Cayley objects and the CI-property

In [5], Babai extended the CI-property of graphs to the CI-property of arbitrary
relational structures (in fact, he used the language of categories). Given a �nite set
X, we de�ne Rel(X) to be the set of all relations on X, and by a relational structure
on X we simply mean an arbitrary subset R ⊂ Rel(X). It should be mentioned that
this de�nition includes such classical combinatorial objects as graphs, block-designs,
con�gurations and codes.

The symmetric group Sym(X) acts naturally on the set Rel(X), namely, given a
k-ary relation ρ and g ∈ Sym(X) we set

ρg = {(xg1, . . . , x
g
k) | (x1, . . . , xk) ∈ ρ}.

For any g ∈ Sym(X) and R ⊂ Rel(X), we set Rg = {ρg | ρ ∈ R}. Two relational
structures R and S are isomorphic if there exists g ∈ Sym(X) such that Rg = S.
The automorphism group of R, denoted by Aut(R), consists of all isomorphisms
from R to itself. A relational structure with point set being equal to a group G is
called a Cayley object of G, if Aut(R) contains Gright. In particular, it is called cyclic

if G is a cyclic group.
Now, the isomorphism problem for Cayley objects reads as follows: given two

Cayley objects R and S, how do we check whether they are isomorphic or not? Let
K be a class of Cayley objects of G, and let X ∈ K. Following [5], we say that
X has the CI-property (for short X is a CI-object) for G in the class K if, given
any Cayley object Y ∈ K, the isomorphism X ∼= Y implies that there exists some
automorphism of G which maps X to Y . The group G is a CI-group with respect to

K if every Cayley object of G in K has the CI-property. This generalizes the concept
of a DCI- and CI-groups introduced in the previous section. In this context G is
a DCI-group is equivalent to saying that it is a CI-group with respect to digraphs.
Probably, the �rst result about CI-property of combinatorial objects is due to Bays
[7] and Lambossy [48], who proved that the cyclic group Zp, p is a prime number,



12 2.3 Cayley objects and the CI-property

has the CI-property with respect to Steiner triple systems. Babai [5] generalized the
Bays-Lambossy Theorem to any class of Cayley objects:

Theorem 2.14 (Babai [5]). Zp is a CI-group with respect to any class of Cayley

objects.

In fact, this follows directly from the following lemma, which is typically the
starting point when one studies CI-graphs:

Lemma 2.15 (Babai [5]). The following are equivalent for every Cayley object X of

G:

(i) X is a CI-object.

(ii) Given a permutation π ∈ Sym(G) such that π−1Grightπ ≤ Aut(X), Gright and

π−1Grightπ are conjugate in Aut(X).

The strongest result was obtained by Pálfy [65]. Let ϕ denote Euler's totient
function.

Theorem 2.16 (Pálfy [65]). A �nite group G has the CI-property with respect to all

relational structures if and only if G ∼= Zn with gcd(n, ϕ(n)) = 1, or |G| = 4.

In Chapter 7, we will consider the CI-property of cyclic groups with respect to
balanced con�gurations. In particular, we will be interested in the special case when
the number of points is either a product of two distinct primes or a prime power. We
will make use of the results of Hu�man [31] about isomorphic cyclic combinatorial
objects on pq points, where p, q are distinct primes. In order to recall these results
it is necessary to set a few de�nitions.

Let Obj(Zn) denote the set of all cyclic objects of the group Zn. Given a class
K of cyclic objects in Obj(Zn), a solving set for K is a set ∆ of permutations of Zn
satisfying the following property (see [63]):

(∀X ∈ K) (∀Y ∈ Obj(Zn) (X ∼= Y ⇐⇒ Xσ = Y for some σ ∈ ∆).

Let p and q be distinct primes. In fact, for every cyclic object X ∈ Obj(Zpq),
a solving set for X was determined by Hu�man [31]. For j ∈ Z∗pq, let µj be the
permutation µj : x 7→ jx. For i ∈ {0, 1, ..., q − 1}, de�ne the permutation τi by

τi : x 7→

{
x+ q if x ≡ i(mod q)

x otherwise,

and if in addition j ∈ Z∗pq with j ≡ 1(mod q), then de�ne the permutation µi,j by

µi,j : x 7→

{
jx if x ≡ i(mod q)

x otherwise.

For the next two theorems suppose in addition that q divides p−1. Furthermore,
�x an element a ∈ Z∗pq of order p− 1 for which a ≡ 1(mod q), and put b = a(p−1)/q.
The next result is [31, Theorem 1.1]:
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Theorem 2.17 (Hu�man [31]). Let n = pq, where p and q are primes such that q
divides p− 1, and let X ∈ Obj(Zn) such that µb /∈ Aut(X), where b is de�ned above.

Then Z∗n is a solving set for X.

The powers a, a2, .., ap are pairwise distinct modulo p. Let α be the positive
integer in {1, 2, ..., p} such that aα ≡ −s(mod p), where s = (p − 1)/q. For i ∈
{0, 1, ..., q− 1}, de�ne νi =

∏q−1
j=0 µj,aαb−ij . Notice that, ν0 = µaα . The next theorem

is [31, Theorem 1.2] which, for our convenience, is formulated slightly di�erently.

Theorem 2.18 (Hu�man [31]). Let n = pq, where p and q are primes such that q
divides p−1, and let X ∈ Obj(Zn) such that µb ∈ Aut(X) and τ0 /∈ Aut(X), where b

is de�ned above. Let β be the smallest positive integer such that µβa ∈ Aut(X). Then
X admits a solving set ∆ in the form:

∆ =
{
µia νk µ

−1
j | 0 ≤ i < β, 0 < j, k ≤ q − 1,

q−1∏
l=0

τ b
(l+1)k

l ∈ Aut(X)
}
. (2.3)

Remark 2.19. Theorems 2.16, 2.17 and 2.18 imply that every cyclic object in Obj(Zn)
admits a solving set whose size is at most ϕ(n) if n = pq. The same result was
obtained by Hu�man et al. [32] in the case when n = p2, and �nally, this was proved
by Muzychuk [63] to be the case for any number n.
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Chapter 3

BCI-graphs and BCI-groups

In this chapter we introduce the main concepts of the thesis: bi-Cayley graphs,
BCI-graphs and BCI-groups.

A �nite, simple and undirected graph Γ is called a bi-Cayley graph over a group
G if it has a semiregular automorphism group, isomorphic to G, which has two orbits
in the vertex set. Given such Γ, there exist subsets R,L, S of G such that R−1 = R,
L−1 = L, 1G /∈ R ∪ L, and Γ ∼= BCay(G,R,L, S), where the latter graph is de�ned
to have vertex set G× {0, 1}, the right part G× {0} = {(g, 0) | g ∈ G} and the left
part G× {1} = {(g, 1) | g ∈ G}; and the edge set consists of three sets:

{(x, 0)(y, 0) | yx−1 ∈ R} (right edges),

{(x, 1)(y, 1) | yx−1 ∈ L} (left edges),

{(x, 0)(y, 1) | yx−1 ∈ S} (spoke edges).

In what follows we will also refer to BCay(G,R,L, S) as a bi-Cayley representation

of Γ. As an example, we mention the well-known class of generalized Petersen graphs

introduced by Coxeter [16], the name was given by Watkins [75]. These are the
same as the bi-Cayley graphs BCay(Zn, {1,−1}, {k,−k}, {0}), commonly denoted
by GP (n, k). Fig. 3.1 shows the graph GP (12, 5) also known as the Nauru graph.

Bi-Cayley graphs are natural generalizations of Cayley graphs, they have at-
tracted considerable attention in the last two decades. Unfortunately, the term
�bi-Cayley� is not commonly accepted, they are also known as semi-Cayley graphs

[17, 49], 2-Cayley graphs [4], referring to the two orbits of the semiregular group G,
and Haar graphs [30] in the case when G is abelian and L = R = ∅. In this thesis
we are interested exclusively in bi-Cayley graphs having only spoke edges. Formally,
these are the graphs BCay(G,R,L, S) for which L = R = ∅. From now on we use
the simpli�ed notation BCay(G,S) for the graph BCay(G, ∅, ∅, S).

3.1 BCI-graphs

Let BCay(G,S) be a bi-Cayley graph of G, σ ∈ Aut(G) and g ∈ G. The graphs
BCay(G,S) and BCay(G, gSσ) are isomorphic, which can be easily checked by using

15
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Figure 3.1: The generalized Petersen graph GP (12, 5).

the mapping ϕ : G× {0, 1} → G× {0, 1} de�ned by

(x, i)ϕ =

{
(xσ, 0) if i = 0

(gxσ, 1) if i = 1.

Clearly, ϕ is a bijection. Furthermore,

(x, 0)(y, 1) ∈ E(BCay(G,S)) ⇐⇒ yx−1 ∈ S
⇐⇒ gyσ(xσ)−1 ∈ gSσ

⇐⇒ (x, 0)ϕ(y, 1)ϕ ∈ E(BCay(G, gSσ)),

hence it is also an isomorphism from BCay(G,S) to BCay(G, gSσ). This isomor-
phism is called a bi-Cayley isomorphism. However, it is not always true that whenever
two bi-Cayley graphs are isomorphic, there is a bi-Cayley isomorphism which maps
one to the other.

Example 3.1. It is easy to see, by simply looking at their picture in Fig. 3.2, that
the graphs BCay(Z8, {0, 1, 2, 5}) and BCay(Z8, {0, 1, 6, 5}) are isomorphic.

On the other hand, on can directly check that there are no a ∈ Z∗8 and b ∈ Z8

for which the mapping x 7→ ax + b maps the set {0, 1, 2, 5} to the set {0, 1, 6, 5}.
Therefore, BCay(Z8, {0, 1, 2, 5}) is not a BCI-graph. �

This motivates the following de�nitions which were �rst introduced by Xu et al.
[77].
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(0, 0)

(0, 1)

(1, 0) (6, 0) (7, 0) (4, 0) (5, 0) (2, 0) (3, 0)
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Figure 3.2: BCay(Z8, {0, 1, 2, 5}) (top) and BCay(Z8, {0, 1, 6, 5}) (bottom).

De�nition 3.2.

1. A bi-Cayley graph BCay(G,S) is called a BCI-graph if for any BCay(G,T ),
BCay(G,T ) ∼= BCay(G,S) implies that T = gSσ for some g ∈ G and σ ∈ Aut(G).

2. A �nite group G is called an m-BCI-group if every bi-Cayley graph over G of
degree at most m is a BCI-graph, and it is called a BCI-group if it is an |G|-BCI-
group.

The following simple lemma is useful for constructions of non-BCI-graphs:

Lemma 3.3. If BCay(G,S) is a BCI-graph, then there exist g ∈ G and σ ∈ Aut(G)
which satisfy S−1 = gSσ.

Proof. In view of De�nition 3.2, it is enough to prove that BCay(G,S) is isomorphic
to BCay(G,S−1). De�ne the mapping ϕ : G×{0, 1} → G×{0, 1} by (x, 0) 7→ (x, 1)
and (x, 1) 7→ (x, 0), x ∈ G. Now, (x, 0)(y, 1) ∈ E(BCay(G,S)) if and only if yx−1 ∈
S, and this happens exactly when xy−1 ∈ S−1, or equivalently, (x, 0)ϕ(y, 1)ϕ ∈
E(BCay(G,S−1)). �

We remark that, Lemma 3.3 can be applied only to non-abelian groups. Namely,
if G is abelian, then for every subset S of G, the condition S−1 = gSσ holds by
choosing g = 1G and σ to be the isomorphism σ : x 7→ x−1, x ∈ G. As an illustration
of Lemma 3.3, we show below that there is no the dihedral BCI-group of order larger
than 12.

Proposition 3.4. The dihedral group D2n is not a BCI-group if n > 6.

Proof. Let n > 4, G = D2n = 〈a, b | an = b2 = 1, bab = a−1〉 and let S =
{1, a, a3, b, ab, a2b, a4b}. Suppose that the graph BCay(G,S) is a BCI-graph. By
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Lemma 3.3, there is σ ∈ Aut(D2n) and g = aibj ∈ D2n, where i ∈ Zn and j ∈ {0, 1},
such that aibjSσ = S−1. Recall that Aut(D2n) = {σs,t : s ∈ Z∗n, t ∈ Zn} where

(akbm)σs,t =

{
aks if m = 0
aks+tb if m = 1.

Notice that j = 0 because the set S contains 4 involutions from D2n \ 〈a〉 and
3 elements of 〈a〉. Then ai{1, a, a3, b, ab, a2b, a4b}σs,t = {1, a−1, a−3, b, ab, a2b, a4b}.
Thus

{ai, as+i, a3s+i} = {1, a−1, a−3}
{ai+tb, ai+s+tb, ai+2s+tb, ai+4s+tb} = {b, ab, a2b, a4b}.

An exhaustive case-by-case analysis gives that these only hold when n = 5, i = 0,
s = −1 and t = 1, or n = 6, i = 0, s = −1 and t = 2. �

3.2 A Babai-type lemma

For a group G and an element g ∈ G, let R(g) be the permutation of G × {0, 1}
de�ned by

(x, i)R(g) = (xg, i) for every x ∈ G and i ∈ {0, 1}.

We set R(G) = {R(g) : g ∈ G}. Obviously, R(G) ≤ Aut(BCay(G,S)) for every
bi-Cayley graph BCay(G,S). The group R(G) is semiregular with orbits G × {0}
and G × {1}. In what follows we will denote by S(Aut(BCay(G,S))) the set of all
semiregular subgroups of Aut(BCay(G,S)) whose orbits are G× {0} and G× {1}.

In the following lemma we characterize the BCI-graphs by group theoretical terms
in the same way as the CI-objects are characterized in Lemma 2.15. The proof below
is from our paper [41]. It should be mentioned that this result was also derived by
Arezoomand and Taeri in [2, Theorem C].

Lemma 3.5. The following are equivalent for every bi-Cayley graph Γ = BCay(G,
S).

(i) BCay(G,S) is a BCI-graph.

(ii) The normalizer NAut(Γ)(R(G)) is transitive on V (Γ), and every two subgroups

in S(Aut(Γ)), isomorphic to G, are conjugate in Aut(Γ).

Proof. In order to simplify notation, we will write below (G, 0) for G × {0} and
(G, 1) for G× {1}.

We start with the part (i) ⇒ (ii). Let X ∈ S(Aut(Γ)) such that X ∼= G. We
have to show that X and R(G) are conjugate in Aut(Γ). Let i ∈ {0, 1}, and set
X(G,i) and R(G)(G,i) for the permutation groups of the set (G, i) induced by X and
R(G) respectively. The groups X(G,i) and R(G)(G,i) are conjugate in Sym((G, i)),
because these are isomorphic and regular on (G, i). Thus X and R(G) are conjugate
by a permutation φ ∈ Sym(G×{0, 1}) such that (G, 0) is φ-invariant. We write X =
φR(G)φ−1. Consider the graph Γφ, the image of Γ under φ. Then R(G) = φ−1Xφ ≤
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Aut(Γφ). Using this and that (G, 0) is φ-invariant, we obtain that Γφ = BCay(G,T )
for some subset T ⊆ G. Then Γ ∼= BCay(G,T ), and by (i), T = gSα for some g ∈ G
and α ∈ Aut(G). De�ne the permutation σ of G× {0, 1} by

(x, i)σ =

{
(xα, 0) if i = 0

(gxα, 1) if i = 1.

Then,

(x, i)σ
−1R(h)σ =

{
((xα

−1
h)α, 0) = (xhα, 0) = (x, 0)R(hα)

((g−1x)α
−1
h), 1)σ = (g((g−1x)α

−1
h)α, 1) = (x, 1)R(hα).

This shows that σ−1R(h)σ = R(hα) if h ∈ G. Thus σ normalizes R(G). The vertex
(x, 0) of BCay(G,S) has neighbourhood (Sx, 1). This is mapped by σ to the the
set (gSαxα, 1) = (Txα, 1). This proves that σ is an isomorphism from Γ to Γφ,
and in turn it follows that, Γφ = Γσ, φσ−1 ∈ Aut(Γ), and thus φ = ρσ for some
ρ ∈ Aut(Γ). Finally, X = φR(G)φ−1 = ρσR(G)σ−1ρ−1 = ρR(G)ρ−1, i. e., X and
R(G) are conjugate in Aut(Γ).

In order to prove that the normalizer NAut(Γ)(R(G)) is transitive on V (Γ), it is
su�cient to �nd some automorphism η which switches (G, 0) and (G, 1) and normal-
izes R(G). Observe that BCay(G,S) ∼= BCay(G,S−1), where S−1 = {s−1 : s ∈ S}.
Then by (i), S−1 = gSα for some g ∈ G and α ∈ Aut(G). We claim that the
permutation of G× {0, 1} de�ned below is an appropriate choice for such an η:

(x, i)η =

{
(xα, 1) if i = 0

(gxα, 0) if i = 1.

Clearly, η is a bijection from G × {0, 1} to itself. Let {(x, 0), (sx, 1)} be an edge
of Γ and suppose that xα = y ∈ G. {(x, 0), (sx, 1)}η = {(x, 0)η, (sx, 1)η} =
{(xα, 1), (g(sx)α, 0)}. Since S−1 = gSα, gsα = s′ ∈ S−1, and {(x, 0), (sx, 1)}η =
{(y, 1), (s′y, 0)} is an edge of Γ. In the other hand, suppose that {(x, 0), (sx, 1)}η =
{(y, 0), (s′y, 1)} for some x, y, s ∈ G and s′ ∈ S. This implies that xα = s′y and
gsαxα = y. Then gsα = (s′)−1, sα ∈ g−1S−1 = Sα, and so s ∈ S. Therefore, η is an
automorphism of Γ. Now, for R(h) ∈ R(G),

(x, 0)η
−1R(h)η = ((g−1x)α

−1
h, 1)η = (g((g−1x)α

−1
h)α, 0) = (x, 0)R(hα),

while
(x, 1)η

−1R(h)η = (xα
−1
h, 0)η = (xhα, 1) = (x, 1)R(hα).

This proves that η normalizes R(G).

We turn to the part (ii)⇒ (i). Let Γ′ = BCay(G,T ) such that Γ′ ∼= Γ. We have
to show that T = gSα for some g ∈ G and α ∈ Aut(G).

We claim the existence of an isomorphism φ : Γ → Γ′ for which φ : (1G, 0) 7→
(1G, 0) and (G, 0) is φ-invariant (here φ is viewed as a permutation of G × {0, 1}).
We construct φ in a few steps. To start with, choose an arbitrary isomorphism
φ1 : Γ→ Γ′. Since the normalizer NAut(Γ)(R(G)) is transitive on V (Γ), there exists
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ρ ∈ NAut(Γ)(R(G)) which maps (1G, 0) to (1G, 0)φ
−1
1 . Let φ2 = ρφ1. Then φ2 is an

isomorphism from Γ to Γ′, and also φ2 : (1G, 0) 7→ (1G, 0). The connected component
of Γ containing the vertex (1G, 0) is equal to the induced subgraph Γ[(H, 0)∪(sH, 1)],
where s ∈ S and H ≤ G is generated by the set s−1S. It can be easily checked that

Γ[(H, 0) ∪ (sH, 1)] ∼= BCay(H, s−1S).

Similarly, the connected component of Γ′ containing the vertex (1G, 0) is equal to
the induced subgraph Γ′[(K, 0) ∪ (tK, 1)], where t ∈ T and K ≤ G is generated by
the set t−1T, and

Γ′[(K, 0) ∪ (tK, 1)] ∼= BCay(K, t−1T ).

Since φ2 �xes (1G, 0), it induces an isomorphism from Γ[(H, 0)∪(sH, 1)] to Γ[(K, 0)∪
(tK, 1)]; denote this isomorphism by φ3. It follows from the connectedness of these
induced subgraphs that φ3 preserves their bipartition classes, moreover, φ3 maps
(H, 0) to (K, 0), since it �xes (1G, 0). Finally, take φ : Γ→ Γ′ to be the isomorphism
whose restriction to each component of Γ equals φ3. It is clear that φ : (1G, 0) 7→
(1G, 0) and (G, 0) is φ-invariant.

SinceR(G) ≤ Aut(Γ′), φR(G)φ−1 ≤ Aut(Γ). The orbit of (1G, 0) under φR(G)φ−1

is equal to (G, 0)φ
−1

= (G, 0), and hence φR(G)φ−1 ∈ S(Aut(Γ)). By (ii), φR(G)φ−1 =
σ−1R(G)σ for some σ ∈ Aut(Γ). Since NAut(Γ)(R(G)) is transitive on V (Γ), σ can
be chosen so that σ : (1G, 0) 7→ (1G, 0). To sum up, we have an isomorphism
(σφ) : Γ 7→ Γ′ which �xes (1G, 0) and also normalizes R(G). Thus (σφ) maps (G, 1)
to itself. Consider the permutation group 〈R(G), σφ〉(G,1) of (G, 1) obtained by re-
stricting the group 〈R(G), σφ〉 to (G, 1). It follows that this is permutation isomor-
phic to the holomorph Hol(G) (see [18, Exercise 2.5.6]). Therefore, there exist g ∈ G
and α ∈ Aut(G) such that (σφ) : (x, 1) 7→ (gxα, 1) for all x ∈ G. The isomorphism
σφ �xes (1G, 0) and it maps the neighbourhood NΓ((1G, 0) to the neighbourhood
NΓ′((1G, 0), i. e., (T, 1) = (S, 1)σφ = (gSα, 1), from which T = gSα. This completes
the proof of the theorem. �

Let us remark that the condition on the normalizer NAut(Γ)(R(G)) cannot be
omitted from Lemma 3.5(ii). To see this we give the following example.

Example 3.6. We consider the bi-Cayley graph Γ = BCay(G,S), where

G = 〈a, b | a5 = b4 = 1, b−1ab = a2〉 and S = {1, a, b}.

The group G is the unique Frobenius group of order 20, and we �nd by the help
of the computer package Magma [11] that Γ is arc-transitive (see Appendix A.2).
In fact, Γ is the unique arc-transitive cubic graph on 40 points (see [14]). We also
compute that any two subgroups in S(Aut(Γ)), isomorphic to G, are conjugate in
Aut(Γ). However, we show below that Sα 6= gS−1 for any g ∈ G and α ∈ Aut(G),
hence by Lemma 3.3, Γ is not a BCI-graph.

To the contrary assume that Sα = gS−1 for some g ∈ G and α ∈ Aut(G). It
follows at once that g ∈ S. As no element in bS−1 = {b, ba−1, 1} is of order 5, g 6= b.
Since every automorphism of G is inner, α equals to the conjugation by some element
c ∈ G. Let g = 1. Then Sα = gS−1 = S−1, hence ac = aα = a−1 and bc = bα = b−1.
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From the �rst equality c ∈ CG(a)b2 = 〈a〉b2. Thus c = aib2 for some i ∈ {0, . . . , 4}.
Plugging this in the second equality, we get b2a−ibaib2 = b−1, hence a3ib = b−1,
which is impossible. Finally, let g = a. Then Sα = gS−1 = aS−1, hence ac = aα = a
and bc = bα = ab−1. The �rst equality gives that c = ai for some i ∈ {0, . . . , 4}.
Plugging this in the second equality, we get a−ibai = ab−1, hence a2ib = ab−1, which
is again impossible. �

3.3 m-BCI- and BCI-groups

The study ofm-BCI-groups was initiated in [77]. In this paper the authors considered
the 1-BCI- and the 2-BCI-groups and derived some basic properties of BCI-graphs.
Clearly, for every group G and any two elements a and b ∈ G, the bi-Cayley graphs
BCay(G, {a}) and BCay(G, {b}) are isomorphic, since the edge set of both graphs
consists of a perfect matching. In the other hand, we have that ga = b, where
g = ba−1. Therefore, every group is a 1-BCI-group.

It turns out that the class of �nite 2-BCI-groups coincides with the class of �nite
groups in which any two elements of the same order are either fused or inverse-fused.
The formal de�nition is given below.

De�nition 3.7. A group G is called a FIF-group if for any two elements a and b of
the same order there is an automorphism σ of G such that aσ = b or aσ = b−1.

Theorem 3.8. A �nite group G is a 2-BCI-group if and only if G is a FIF-group.

Proof. Suppose �rst that G is a 2-BCI-group. Let a, b ∈ G be of the same order,
say m. Consider the graphs BCay(G, {1, a}) and BCay(G, {1, b}) (here 1 denotes
the identity element of G). It is easily seen that both graphs are isomorphic to |G|/m
disjoint copies of the the cycle of length 2m. Now, since G is a 2-BCI-group, there
is an automorphism σ of G and an element g ∈ G such that g{1, a}σ = {1, b}. Thus
gaσ = b or gaσ = 1. In the �rst case, we have that g = 1 and aσ = b. For the second
case, g = b and aσ = b−1. Therefore, G is a FIF-group.

Now, suppose thatG is a FIF-group. Consider the isomorphic graphs BCay(G,S)
and BCay(G,T ) such that |S| = |T | = 2. Let us write S = {s1, s2} and T = {t1, t2}.
It is not hard to show that the isomorphism of the graphs implies that the elements
s−1

1 s2 and t−1
1 t2 are of the same order in G. Since G is a FIF-group, (s−1

1 s2)σ = t−1
1 t2

or (s−1
1 s2)σ = t−1

2 t1 holds for some automorphism σ of G. Put g = t1(sσ1 )−1 in the
�rst case and g = t2(sσ1 )−1 in the second case. Then in the �rst case

gSσ = t1{1, s−1
1 s2}σ = t1{1, t−1

1 t2} = T,

and in the second case

gSσ = t2{1, s−1
1 s2}σ = t2{1, t−1

2 t1} = T.

Therefore, the group G is a 2-BCI-group. �

The FIF-groups play an analogous rule in the theory of BCI-groups as the F -
groups in the theory of DCI-groups. By an F -group we mean a group in which any
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two elements of the same order are fused, i.e., one can be mapped to the other by
some group automorphism. In [55], Li and Praeger studied the �nite FIF-groups in
details. As the main result, they have derived a relatively short list containing all
possible �nite FIF-groups. Here we do not recall this list in full details, only the
description given in [55, Corollary 1.3]. For this result we need to introduce some
further de�nitions.

A �nite group is called homocyclic if it is direct product of cyclic groups of the
same order. Let k ≥ 2 be an integer and let G(k) denote the class of non-abelian
2-groups G such that

• Z(G) = G′ = Φ(G) = Zk2, and Z(G) \ {1} consists of all involutions of G;

• G/G′ is of order 2k or 22k.

Theorem 3.9 (Li and Praeger [55]). If G is a �nite FIF-group then one of the

following holds:

(i) If G is a nonabelian simple group then G is one of the following groups: PSL(2, q)
where q ∈ {5, 7, 8, 9}, PSL(3, 4), the Suzuki group Sz(8), and the Mathieu groups

M11 and M23.

(ii) If G is nilpotent then each Sylow p-subgroup of G is either homocyclic, Q8, or
a member of G(k) for some k ≥ 2.

(iii) If G is solvable then G = A o B with gcd(|A|, |B|) = 1 where A is a nilpotent

FIF-group and every Sylow subgroups is cyclic or Q8.

(iv) If G is not solvable then G = A×B where A and B have coprime orders, A is

a solvable FIF-group and B is either one of the simple groups in (i), or SL(2, q)
for q ∈ {5, 7, 9}, or (C × Sz(8)) o Z3sm, where m, s ≥ 1 and C is an abelian

group.

The problem of deciding which groups in the above classes (i)-(iv) are really FIF-
groups is still open (see [55, Problem 1.5]).

Now, we turn to m-BCI-groups for m ≥ 3. The concepts of an m-BCI- and
BCI-group are relatively new (2007), and thus there are not so many results have
been proved about these groups. Wiedemann and Zieve [76] proved that every cyclic
group Zn is a 3-BCI-group. The particular case when n = pq, p and q are di�erent
odd primes, was done by Xu et al. [77], and the case when n = 2p, p is a prime,
was done by Jin and Liu [34]. Also, Jin and Liu proved that every �nite p-group is
a (p − 1)-BCI-group. The Sylow p-subgroups of the 3-BCI-groups were considered
in two papers of Jin and Liu [35, 36]. They showed that a Sylow 2-subgroup of
such a group is either cyclic, or elementary abelian, or Q8; and a Sylow p-subgroup
for an odd prime p is homocyclic. As one of my PhD projects I have proved that
the converse of these statements are also true for nilpotent group; i. e., whenever a
group is a direct product of the aforementioned groups, then it is a 3-BCI-group.
This result is presented in Chapter 5. As for non-solvable groups, Jin and Liu [35]
proved the following theorem:
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Theorem 3.10 (Jin and Liu [35]). The alternating group A5 is the only �nite non-

abelian simple 3-BCI-group.

This theorem was obtained after an analysis of the simple groups listed in The-
orem 3.9(i). In their latest paper [37] on BCI-groups, Jin and Liu have determined
the BCI-groups of order up to 8. These are the following groups:

Zn, n ≤ 7, Z2
2, Z3

2, and D6.

In the end of this section we mention two very recent results of Arezoomand and
Taeri:

Theorem 3.11 (Arezoomand and Taeri [3]). Let G be a BCI-group and H be a

characteristic subgroup of G. Then G/H is a BCI-group.

Theorem 3.12 (Arezoomand and Taeri [3]). Every �nite BCI-group is solvable.

Both properties hold also for CI-groups. The CI-group analogue of Theorem 3.11
was proved by Babai and Frankl [6]; while the CI-group analogue of Theorem 3.12 is
due to Li [50]. It is worth to mention that Dobson and Morris [19] proved that every
quotient of a CI-group is also a CI-group. The question arises naturally whether this
property is also shared by BCI-groups.

3.4 BCI-groups versus CI-groups

In this section we compare the class of BCI-groups with the class of CI-groups.
Example 3.1 shows that Z8 is not a BCI-group, while it is a CI-group, see The-

orem 2.11(ii). At present we do not know any BCI-group which is not a CI-group.
Moreover, Arezoomand and Taeri [3] stated the following conjecture:

Conjecture 3.13. Every BCI-group is a CI-group.

A possible way to settle the conjecture would be to construct non-BCI-graphs
from known non-CI-graphs. In this direction we have the following proposition.

Proposition 3.14. Suppose that Γ = BCay(Zn, S) is a connected bi-Cayley graph

such that for some a ∈ Zn, Aut(Γ)(0,0) = Aut(Γ)(a,1). Then the following are equiv-

alent.

(i) BCay(Zn, S) is a BCI-graph.

(ii) Cay(Zn, (S − a) \ {0}) is a CI-graph, where S − a = {s− a | s ∈ S}.

Proof. For sake of simplicity we put A = Aut(Γ) and A+ = A{Zn×{0}}, i. e., the
setwise stabilizer of Zn × {0} in A. Obviously, X ≤ A+ for every group X ∈ S(A).
Observe that, the permutation d of Zn o {0, 1}, de�ned by d : (x, i) 7→ (−x, 1 − i)
where i ∈ {0, 1}, is an automorphism of Γ. Moreover, A = 〈A+, d〉, and d normalizes
R(Zn). It follows that the conjugacy class of subgroups of A containing R(Zn)
is equal to the conjugacy class of subgroups of A+ containing R(Zn). This also
shows that the normalizer of R(Zn) is transitive on the vertex set. Using these and
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Lemma 3.5, we obtain that BCay(Zn, S) is a BCI-graph if and only if every group
in S(A) is conjugate to R(Zn) in A+.

Let W = {(0, 0), (a, 1)} and consider the setwise stabilizer A{W}. Since A(0,0) =
A(a,1), A(0,0) ≤ A{W}. By Theorem 2.5, the orbit of (0, 0) under A{W} is a block for
A. Denote this block by ∆ and the induced system of blocks by δ (i. e., δ = {∆g |
g ∈ A}). Denote by c the generator of R(Zn) acting as

c : (x, i) 7→ (x+ 1, i), x ∈ Zn, i ∈ {0, 1}.

Consider the element g = dca from A. We see that g switches (0, 0) and (a, 1), hence
A{W} = A(0,0)

〈
g
〉
. Therefore, ∆ = (0, 0)A{W} = (0, 0)A0,0)〈g〉 = (0, 0)〈g〉 = W, and so

δ =
{
{(x, 0), (x+ a, 1)} | x ∈ Zn

}
.

De�ne the mapping ϕ : δ → Zn by ϕ : {(x, 0), (x + a, 1)} 7→ x, x ∈ Zn. Now, an
action of A on Zn can be de�ned by letting g ∈ A act as

xg = xϕ
−1gϕ, x ∈ Zn.

For g ∈ A we write ḡ for the image of g under the corresponding permutation
representation, and for a subgroup X ≤ A we let X̄ = {x̄ | x ∈ X}. In this action
of A the subgroup A+ < A is faithful. Also notice that, a subgroup X ≤ A+ is
in S(A) if and only if X̄ is a regular cyclic subgroup of Ā+. In particular, for the
group R(Zn), ¯R(Zn) = (Zn)right ((Zn)right is the group generated by the translation
x 7→ x+ 1, x ∈ Zn).

Pick g ∈ A+ and (x, x+ s− a) ∈ Zn × Zn, where s ∈ S such that s 6= a. Then g
maps the arc ((x, 0), (x+s, 1)) to an arc ((y, 0), (y+r, 1)) for some y ∈ Zn and r ∈ S.
Since δ is a system of blocks for A+, g maps (x+ s− a, 0) to (y+ r− a, 0), and so ḡ
maps the pair (x, x+s−a) to the pair (y, y+r−a). We have just proved that ḡ leaves
the set

{
(x, x+s−a) | x ∈ Zn, s ∈ S\{a}

}
setwise �xed. As the latter set is the arc

set of the Cayley graph Cay(Zn, (S−a)\{0}), Ā+ ≤ Aut(Cay(Zn, (S−a)\{0})). For
an automorphism h of Cay(Zn, (S−a)\{0}), de�ne the permutation g of Zn×{0, 1}
by

g : (x, i) 7→

{
(xh, 0) if i = 0

((x− a)h + a, 1) if i = 1,
x ∈ Zn, i ∈ {0, 1}.

The reader is invited to check that the above permutation g is an automorphism of Γ.
It is clear that g ∈ A+ and ḡ = h; we conclude that Ā+ = Aut(Cay(Zn, (S−a)\{0})).

Now, the proposition follows along the following equivalences:

(i) ⇐⇒ Every group in S(A), isomorphic to Zn, is conjugate
to R(Zn) in A+.

⇐⇒ Every regular cyclic subgroup of Ā+ is conjugate to ¯R(Zn) in Ā+.

⇐⇒ (ii).

The last equivalence is Lemma 2.15. �
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In order to apply Proposition 3.14, one requires the condition Aut(Γ)(0,0) =
Aut(Γ)(a,1), which is not easy to check in general. In fact, this condition is equivalent
to saying that setwise stabilizer Aut(Γ){Zn×{0}} acts equivalently on the right part
Zn × {0} and the left part Zn × {1}. Unfortunately, this is not always the case. A
well-known example comes from �nite geometry.

Example 3.15. Let PG(d, q) the projective space of dimension d over the �nite
�eld with q elements. The incidence graph Γ of the space is the bipartite graph
whose colour classes are identi�ed by the set of points and the set of hyperplanes,
and the edges are de�ned by the incidences between the points and the hyperplanes.
It is well-known that PG(d, q) admits a cyclic group of automorphisms which acts
regularly on both the points and the hyperplanes (called a Singer subgroup). This
also means that Γ is isomorphic to a bi-Cayley graph over the cyclic group Zn,
where n = qd+1−1

q−1 . The automorphism group Aut(Γ) = PΓL(d+1, q)oZ2; its colour
preserving subgroup is PΓL(d + 1, q), the full group of automorphisms of PG(d, 2).
The actions of the latter group on the set points and hyperplanes, respectively, are
inequivalent. �

Let BCay(Zn, S) be an arbitrary bi-Cayley graph. In the above proof we de�ned
the permutation d of Zn o {0, 1} as

d((x, i)) = (−x, 1− i).

It is not hard to check that d is an automorphism of BCay(Zn, S), and that the
group 〈R(Zn), d〉 is isomorphic to the dihedral group D2n. Therefore, BCay(G,S)
is isomorphic to a Cayley graph over D2n. Moreover, if as a Cayley graph over
〈R(Zn), d〉, the graph BCay(G,S) is a CI-graph, then it is a BCI-graph. To deduce
this implication one only needs to observe that the automorphisms of the dihedral
group 〈R(Zn), d〉 act on Zn × {0, 1} as follows

(x, 0) 7→ (ax, 0) and (x, 1) 7→ (ax+ b, 1), x ∈ Zn,

where a ∈ Z∗n and b ∈ Zn. This argument implies the following proposition.

Proposition 3.16. If D2n is a CI-group, then Zn is a BCI-group.

We �nish our comparison of BCI-groups and CI-groups by an example showing
that the converse of the above Proposition 3.16 does not hold. In other words,
the problem of classifying dihedral CI-groups is not equivalent to the problem of
classifying cyclic BCI-groups.
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Example 3.17. Let Γ = BCay(Z10, {0, 1, 3, 4}), see Fig. 3.3.

(5, 0)(5, 1)
(4, 0)

(4, 1)

(3, 0)

(3, 1)

(2, 0)

(2, 1)
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(1, 1)
(0, 0)(0, 1)

(9, 0)

(9, 1)

(8, 0)

(8, 1)

(7, 0)

(7, 1)

(6, 0)

(6, 1)

Figure 3.3: The bi-Cayley graph BCay(Z10, {0, 1, 3, 4}).

It follows that Γ is isomorphic to two Cayley graphs over the dihedral group D20

see Fig. 3.4, where D20 is given by the presentation 〈a, b | a10 = b2 = 1, bab = a−1〉.
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Figure 3.4: The graphs Cay(D20, {b, ba, ba3, ba4}) and Cay(D20, {a, a9, b, ba4}).
.

Is is easy too see that there is no σ ∈ Aut(D20) such that {b, ba, ba3, ba4}σ =
{a, a9, b, ba4}, and therefore, D20 is not a CI-group. On the other hand, we checked
by the help of MAGMA that Z10 is a BCI-group. �



Chapter 4

Isomorphic tetravalent cyclic

bi-Cayley graphs

By a cyclic bi-Cayley graph we simply mean a bi-Cayley graph over a cyclic group.
In this chapter we consider the isomorphism problem for cyclic bi-Cayley graphs, i.
e., given two such graphs, �nd e�ective su�cient and necessary conditions for their
isomorphism.

Wiedemann and Zieve [76] proved that Zn is a 3-BCI-group, and so the isomor-
phism can be tested by bi-Cayley isomorphisms if the valency is at most 3. Also,
we have seen in Example 3.1 that Zn is not a 4-BCI-group, hence bi-Cayley isomor-
phisms are not enough for tetravalent graphs in general (tetravalent means that the
graph is of valency 4). In this chapter we deal with the tetravalent graphs by proving
the following theorem:

Theorem 4.1. Two connected bi-Cayley graphs BCay(Zn, S) and BCay(Zn, T ) with
|S| = |T | = 4 are isomorphic if and only if there exist a1, a2 ∈ Z∗n and b1, b2 ∈ Zn
such that

(i) a1S + b1 = T ; or

(ii) a1S+ b1 = {0, u, v, v+m} and a2T + b2 = {0, u+m, v, v+m}, where n = 2m,
Zn = 〈u, v〉, 2 | u, 2u | m.

It is worth to compare Theorem 4.1 with the solution of the isomorphism problem
for cubic circulant digraphs (i. e., Cayley graphs over cyclic groups). It follows that
similar conditions can be derived from Muzychuk's general algorithm presented in
[64]:

Theorem 4.2. Two connected Cayley graphs Cay(Zn, S) and Cay(Zn, T ) with |S| =
|T | = 3 are isomorphic if and only if there exist a1, a2 ∈ Z∗n such that

(i) a1S = T ; or

(ii) a1S = {u, v, v +m} and a2T = {u+m, v, v +m}, where n = 2m, Zn = 〈u, v〉,
2 | u, and 2u | m.

However, this phenomenon does not hold in general. The group Z9 is not a
DCI-group, see Theorem 2.11(i), but it was proved to be a BCI-group [2].

27
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4.1 Bicyclic bases

Throughout this chapter we use the following notation. Let

Vi = Zn × {i}, i ∈ {0, 1}, and V = V0 ∪ V1.

Furthermore, let c and d be the permutations of V de�ned by

c : (x, i) 7→ (x+ 1, i), i ∈ {0, 1}, x ∈ Zn
d : (x, i) 7→ (x, 1− i), i ∈ {0, 1}, x ∈ Zn.

Also, we let D = 〈c, d〉. As noted before, both c and d will be automorphisms of any
bi-Cayley graph BCay(Zn, S), the group R(Zn) is generated by c, and the group D
acts regularly on V and it is isomorphic to D2n.

We call a permutation group G ≤ Sym(V ) bicyclic if G is a cyclic group with
orbits V0 and V1. In this context, the set S(Aut(BCay(Zn, S)) contains the bicyclic
groups contained in Aut(BCay(Zn, S)). Obviously, R(Zn) is a bicyclic group, and it
will be referred to as the canonical bicyclic group.

For a graph Γ = BCay(Zn, S), we let Iso(Γ) denote the set of all isomorphisms
from Γ to another bi-Cayley graph over Zn. Formally,

Iso(Γ) =
{
f ∈ Sym(V ) | Γf = BCay(Zn, T ) for some T ⊆ Zn

}
.

Furthermore, let Ciso(Γ) denote the isomorphism class of cyclic bi-Cayley graphs over
Zn which contains Γ, i. e., Ciso(Γ) = {Γf | f ∈ Iso(Γ)}.

Lemma 4.3. Let Γ = BCay(Zn, S) be a connected bi-Cayley graph and f be a

permutation of V . Then f ∈ Iso(Γ) if and only if fR(Zn)f−1 is a bicyclic group

contained in Aut(Γ).

Proof. Let f ∈ Iso(Γ). Then fR(Zn)f−1 ≤ Aut(Γ). Clearly, fR(Zn)f−1 is a cyclic
group. Since the sets V0 and V1 are the colour classes of the connected bipartite
graph Γ, f preserves these sets, implying that the orbits of fR(Zn)f−1 are equal to
V0 and V1. Therefore, fR(Zn)f−1 is a bicyclic group.

Conversely, suppose that fR(Zn)f−1 is a bicyclic group which is contained in
Aut(Γ). Then R(Zn) = f−1(fR(Zn)f−1)f ≤ Aut(Γf ). Because V0 and V1 are the
orbits of fR(Zn)f−1, the graph Γf is connected and bipartite whose colour classes
are V0 and V1. This implies that Γf = BCay(Zn, T ) for some T ⊆ Zn, and so
f ∈ Iso(Γ). The lemma is proved. �

Lemma 4.3 shows that the normalizer NSym(V )(R(Zn)) ⊆ Iso(BCay(Zn, S)). It
is known that the group NSym(V )(R(Zn)) consists of the following permutations:

ϕa,b,c : (x, i) 7→

{
(ax+ b, 0) if i = 0

(ax+ c, 1) if i = 1,
(4.1)

and

ψa,b,c : (x, i) 7→

{
(ax+ b, 1) if i = 0

(ax+ c, 0) if i = 1,
(4.2)
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where a ∈ Z∗n and b, c ∈ Zn. Notice that, the equality T = aS + b with some
a ∈ Z∗n and b ∈ Zn can be expressed equivalently as the graphs BCay(Zn, S) and
BCay(Zn, T ) are in the same NSym(V )(R(Zn))-orbit. For a graph Γ = BCay(Zn, S),
we let

Caff(Γ) =
{

Γφ | φ ∈ NSym(V )(R(Zn))
}
.

Clearly, the isomorphism class Ciso(Γ) can be decomposed as follows:

Ciso(Γ) = Caff(Γ1) ∪̇ · · · ∪̇ Caff(Γk).
1

Our goal in this section is to describe the above decomposition with the aid of
bicyclic groups contained in Aut(Γ). We �rst observe that, if Γ is connected, then
for any bicyclic group X < Aut(Γ) and for any g ∈ Aut(Γ), the conjugate group
g−1Xg is also bicyclic. We remark that the conclusion does not hold when the
graph is disconnected, the group g−1Xg might have orbits di�erent from V0 and V1.
Thus the set of all bicyclic groups contained in Aut(Γ) is the union of some Aut(Γ)-
conjugacy classes. We will denote the set of all bicyclic groups contained in Aut(Γ)
by B(Aut(Γ)).

De�nition 4.4. Let Γ = BCay(Zn, S) be a connected bi-Cayley graph. We say that
a subset Ξ ⊆ Iso(Γ) is a bicyclic base of Aut(Γ) if the subgroups ξR(Zn)ξ−1, ξ ∈ Ξ,
form a complete set of representatives of the Aut(Γ)-conjugacy classes contained in
B(Aut(Γ)).

Theorem 4.5. Let Γ = BCay(Zn, S) be a connected bi-Cayley graph and let Ξ be a

bicyclic base of Aut(Γ). Then Ciso(Γ) =
⋃̇
ξ∈ΞCaff(Γξ).

Proof. It follows immediately that,

Ciso(Γ) ⊇
⋃
ξ∈Ξ

Caff(Γξ). (4.3)

We prove that equality holds in (4.3). Pick Σ ∈ Ciso(Γ). Then Σ = Γf for some
f ∈ Iso(Γ). By Lemma 4.3, fR(Zn)f−1 is a bicyclic group of Γ, hence

fR(Zn)f−1 = gξR(Zn)(gξ)−1, ξ ∈ Ξ, g ∈ Aut(Γ).

Thus f−1gξ = h, where h ∈ NSym(V )(R(Zn)). Then

Σ = Γf = Γgξh
−1

=
(
Γξ
)h−1

.

This shows that Σ ∈ Caff(Γξ), and so

Ciso(Γ) ⊆
⋃
ξ∈Ξ

Caff(Γξ).

In view of (4.3) the two sides are equal.

1Here we mean that Ciso(Γ) = Caff(Γ1) ∪ · · · ∪ Caff(Γk) and Caff(Γi) ∩ Caff(Γj) = ∅ for every
i, j ∈ {1, . . . , k}, i 6= j.
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Moreover, if Caff(Γξ1) ∩ Caff(Γξ2) 6= ∅ for ξ1, ξ2 ∈ Ξ, then Γξ1 = Γξ2h for some
h ∈ NSym(V )(R(Zn)). Hence ξ2hξ

−1
1 = g for some g ∈ Aut(Γ), and so

ξ1R(Zn)ξ−1
1 = g−1ξ2hR(Zn)h−1ξ−1

2 g = g−1(ξ2R(Zn)ξ−1
2 )g.

The bicyclic groups ξ1R(Zn)ξ−1
1 and ξ2R(Zn)ξ−1

2 are conjugate in Aut(Γ), hence
ξ1 = ξ2 follows from the de�nition of the bicyclic base Ξ. We obtain that Caff(Γξ1)∩
Caff(Γξ2) = ∅ whenever ξ1, ξ2 ∈ Ξ, ξ1 6= ξ2, and so Ciso(Γ) =

⋃̇
ξ∈ΞCaff(Γξ). The

theorem is proved. �

4.2 Bi-Cayley graphs BCay(Z2m, {0, u, v, v + m})
Theorem 4.1 will follow from the following theorem, which we are going to prove in
the next section.

Theorem 4.6. Two connected bi-Cayley graphs BCay(Zn, S) and BCay(Zn, T ) with
|S| = |T | = 4 are isomorphic if and only if there exist a1, a2 ∈ Z∗n and b1, b2 ∈ Zn
such that

(i) a1S + b1 = T ; or

(ii) a1S+ b1 = {0, u, v, v+m} and a2T + b2 = {0, u+m, v, v+m}, where n = 2m,
Zn = 〈u, v〉, 2 | u, 2u | m and u/2 6≡ v +m/(2u)(mod m/u).

Proof of Theorem 4.1. In view of Theorem 4.6, it is su�cient to prove that, if

a1S + b1 = {0, u, v, v +m} and a2T + b2 = {0, u+m, v, v +m},

where n = 2m, Zn = 〈u, v〉, 2 | u, 2u | m and u/2 ≡ v + m/(2u)(mod m/u), then
BCay(Zn, S) ∼=aff BCay(Zn, T ).2 In fact, we are going to show that there exist
a ∈ Z∗n and b ∈ Zn such that

a · {0, u, v, v +m}+ b = {0, u+m, v, v +m}.

Then (a−1
2 aa1) · S + a−1

2 (ab1 + b − b2) = T, and hence indeed BCay(Zn, S) ∼=aff

BCay(Zn, T ).

Let us consider the following system of congruences:

ux ≡ −u+m(mod n) and vx ≡ −u+ v(mod n). (4.4)

By the �rst congruence, using also that 2u | m, x may be written in the form
x = (n/u)y − 1 + m/u. Plugging this in the second one, we obtain (vn/u)y ≡
2v−u−vm/u(mod n), which has an integer solution in y exactly when gcd(vn/u, n) |
(2v−u−vm/u). Then gcd(vn/u, n) = n/u gcd(u, v), and since Zn = 〈u, v〉, n/u and
gcd(u, v) are coprime. Since gcd(u, v) is clearly a divisor of 2v−u−vm/u, a solution
in y exists if and only if n/u | (2v − u − vm/u), i. e., u ≡ 2v − vm/u(mod 2m/u)

2We write BCay(Zn, S) ∼=aff BCay(Zn, T ) if there is a bi-Cayley isomorphism which maps the
�rst graph to the second, or equivalently, if T = aS + b holds for some a ∈ Z∗n and b ∈ Zn.
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(recall that n = 2m). On the other hand, one of the initial assumptions is u/2 ≡
v + m/(2u)(mod m/u), and so u ≡ 2v + m/u(mod 2m/u). We conclude that (4.4)
has an integer solution if −vm/u ≡ m/u(mod 2m/u). Now, the latter congruence
holds because of the conditions 2 | u, 2 | n, and Zn = 〈u, v〉.

Let a be a solution of (4.4). It follows from the above argument that gcd(a,m/u) =
1. Notice that, since 2u | m, 2 - a. Let d = gcd(a, u). By (4.4), av ≡ −u+v(mod n),
implying that d | v, and so d = 1. We see that gcd(a, 2m) = 1, i. e., a ∈ Z∗n. Choos-
ing b = u + m, we get by (4.4) that a · 0 + b = u + m, au+ b = 0, av + b = v + m,
and a(v +m) + b = v. The theorem is proved. �

In this section we prove Theorem 4.6 for graphs BCay(Zn, S) satisfying certain
additional conditions.

Theorem 4.7. Let n = 2m and S = {0, u, v, v +m} such that

(a) Zn = 〈u, v〉;

(b) 1 < u < m, u | m;

(c) The stabilizer Aut(BCay(Zn, S))(0,0) leaves the set {(0, 1), (u, 1)} setwise �xed.

Then BCay(Zn, S) ∼= BCay(Zn, T ) if and only if there exist a ∈ Z∗n and b ∈ Zn such

that

(i) aT + b = S; or

(ii) aT + b = {0, u+m, v, v+m}, and 2 | u, 2u | m, u/2 6≡ v+m/(2u)(mod m/u).

It follows from Theorem 4.7(b) that 2u ≤ m. We prove �rst the extremal case
when 2u = m. Notice that, in this case the conditions in Theorem 4.7(ii) that
2 | u, 2u | m and u/2 6≡ v + m/(2u)(mod m/u) can be replaced by one condition:
u ≡ 2(mod 4).

Lemma 4.8. Let S be the set de�ned in Theorem 4.7. If 2u = m, then BCay(Zn, S) ∼=
BCay(Zn, T ) if and only if there exist a ∈ Z∗n and b ∈ Zn such that

(i) aT + b = S; or

(ii) aT + b = {0, u+m, v, v +m} and u ≡ 2(mod 4).

Proof. Let d = gcd(n, v). Because of 〈u, v〉 = Zn we have that gcd(u, v, n) = 1,
i. e., gcd(n/4, v) = 1, and this gives that d ∈ {1, 2, 4}. Note that, if d 6= 1, then
necessarily 2 - u. Let us write v = v1d, where gcd(v1, n) = 1. Let v−1

1 denote the
inverse of v1 in the group Z∗n. Then the following hold in Zn (here we use that
u = n/4):

v−1
1 v = d, v−1

1 (v +m) = d+m and v−1
1 u ∈ {u, 3u}.

We conclude that S can be mapped by a bi-Cayley isomorphism to one of the sets
Si(d), i ∈ {1, 2} and d ∈ {1, 2, 4}, where

S1(d) = {0, u, d, d+ 2u} or S2(d) = {0, 3u, d, d+ 2u}.

The lemma follows from the following claims:
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Figure 4.1: Bi-Cayley graphs BCay(Zn, S1(1)) and BCay(Zn, S2(1)).

(i) BCay(Zn, S1(1)) ∼= BCay(Zn, S2(1)).

(ii) BCay(Zn, S1(1)) ∼=aff BCay(Zn, S1(d)) for d ∈ {2, 4};

(iii) BCay(Zn, S1(d)) ∼=aff BCay(Zn, S2(d)) ⇐⇒ d ∈ {2, 4} or (d = 1 and u 6≡
2(mod 4));

(i): De�ne the mapping f : V 7→ V by

f : (x, i) 7→

{
(x, i) if x ∈ {0, 1, . . . .u− 1} ∪ {2u, . . . .3u− 1},
(x+ 2u, i) otherwise.

We leave for the reader to verify that f is an isomorphism from BCay(Zn, S1(1))
to BCay(Zn, S2(1)). Compare the graphs in Figure 4.1. Here the white vertices
represent the colour class V0, while the black ones represent the colour class V1.

(ii): Since d ∈ {2, 4}, u is an odd number. For d ∈ {2, 4} de�ne rd ∈ Z∗n as
follows:

r2 =

{
2 + u if u ≡ 1(mod 4),

2 + 3u if u ≡ 3(mod 4),
r4 =

{
4 + u if u ≡ 3(mod 4),

4 + 3u if u ≡ 1(mod 4).

It can be directly checked that rdS1(1) + u = S1(d), so BCay(Zn, S1(1)) ∼=aff

BCay(Zn, S1(d)) for d ∈ {2, 4}.
(iii): If u is odd, then (2u + 1)S1(d) = S2(d), hence BCay(Zn, S1(d)) ∼=aff

BCay(Zn, S2(d)). Since u is odd whenever d ∈ {2, 4}, we are left with the case
that d = 1 and u is even. If also u ≡ 0(mod 4), then (u+ 1)S1(1) + 3u = S2(1), and
again BCay(Zn, S1(1)) ∼=aff BCay(Zn, S2(1)).

Suppose that d = 1 and u ≡ 2(mod 4). We �nish the proof by showing that
in this case BCay(Zn, S1(1)) 6∼=aff BCay(Zn, S2(1)). Suppose that, there is an a�ne
transformation ψ : x 7→ rx + s, r ∈ Z∗n and s ∈ Zn, which maps the set S1(1) to
S1(2). Then 1ψ− (1 + 2u)ψ = 2u in Zn. This implies that {1, 1 + 2u}ψ = {1, 1 + 2u}
and {0, u}ψ = {0, 3u}, and hence

r + s ∈ {1, 1 + 2u} and r{0, u}+ s = {0, 3u}.
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Figure 4.2: The bi-Cayley graph BCay(Zn, S).

A direct analysis shows that the above equations cannot hold if u ≡ 2(mod 4). Thus
BCay(Zn, S1(1)) 6∼=aff BCay(Zn, S2(1)). This completes the proof of (iii). �

Now, we turn to the case when 2u 6= m. Recall that the canonical bicyclic group
R(Zn) is generated by the permutation c de�ned in the beginning of Section 4.1.
For a divisor ` | n, R(Zn)` will denote the subgroup of R(Zn) generated by c`. It
will be convenient to denote by δ` the partition of V into the orbits of R(Zn)`, i. e.,
δ` = Orb(R(Zn)`, V ). Furthermore, we set ηn,` for the homomorphism ηn,` : Zn → Z`
de�ned by ηn,`(1) = 1.

Let A = Aut(BCay(Zn, R)), where R is an arbitrary subset of Zn. Observe that,
if δ` is, in addition, a system of blocks for A, then we de�ne the action of A on
V (BCay(Z`, ηn,`(R))) by letting g ∈ A act as

(x, i)g = (y, j) ⇐⇒
{

(z, i) | z ∈ η−1
n,`(x)

}g
=
{

(z, j) | z ∈ η−1
n,`(y)

}
. (4.5)

We denote by Aδ` the corresponding kernel, and by gδ` the image of an element
g ∈ A. Note that, if X is a bicyclic group in S(A), then Xδ` = {xδ` : x ∈ X} is a
bicyclic group in S(Aut(BCay(Z`, ηn,`(R))).

Now, let S = {0, u, v, v +m} be the subset of Zn de�ned in Theorem 4.7. Let δ
be the partition of V de�ned by

δ =
{
X ∪Xψ1,0,0 | X ∈ Orb(R(Zn)u, V )

}
, (4.6)

where ψ1,0,0 is de�ned in (4.2). We write δ = {U0, . . . , Uu−1}, where

Ui =
{

(iv + ju, 0), (iv + ju, 1) | j ∈ {0, 1, . . . , (n/u)− 1}
}
.

A part of BCay(Zn, S) is drawn in Figure 4.2 using the partition δ. White
and black colours represent again the colour classes V0 and V1, respectively. For
i ∈ {0, 1, . . . , u− 1} and k ∈ {0, 1}, let ei be the involution of V de�ned by

ei : (x, k) 7→

{
(x+m, k) if (x, k) ∈ Ui
(x, k) otherwise.



34 4.2 Bi-Cayley graphs BCay(Z2m, {0, u, v, v +m})

It is clear that each ei ∈ Aut(BCay(Zn, S)), and also that eiej = ejei for all i, j ∈
{0, 1, . . . , u − 1}. Let E = 〈e0, e1, . . . , eu−1〉. Thus E ≤ Aut(BCay(Zn, S)) and
E ∼= Zu2 . For a subset I ⊆ {0, 1, . . . , u − 1} let eI be the element in E de�ned by
eI =

∏
i∈I ei.

The following lemma will be used throughout the chapter.

Lemma 4.9. Let Γ = BCay(Zn, R) be a bi-Cayley graph and suppose that R∗ ⊆ R
such that the stabilizer Aut(Γ)(0,0) �xes setwise R∗ × {1}, and let d = |〈R∗ − R∗〉|,
where R∗ −R∗ = {r1 − r2 | r1, r2 ∈ R∗}. Then the partition π of V de�ned by

π = {X ∪Xψ1,r,−r | X ∈ Orb(R(Zn)n/d, V )}, where r ∈ R∗,

is a system of blocks for Aut(Γ).3

Proof. We let A = Aut(Γ). Since R∗×{1} is �xed setwise by A(0,0), we may write

R∗ = R1 ∪ · · · ∪Rk,

where Ri×{1} is an A(0,0)-orbit for every i ∈ {1, 2, . . . , k}. For i ∈ {1, . . . , k}, choose
an arc ((0, 0), (ri, 1)) of Γ, where ri ∈ Ri. We claim that the A-orbit of this arc is
equal to the edge set of the bi-Cayley graph BCay(Zn, Ri).

Let A+ be the colour preserving subgroup of A (i. e., A+ is the setwise stabilizer
A{V0}). Then A = A+ o 〈ψ−1,0,0〉. Also, A+ = A(0,0)R(Zn), as R(Zn) is transitive
on V0. Then the A-orbit of the arc ((0, 0), (ri, 1)) can be obtained as follows

((0, 0), (ri, 1))A = ((0, 0), (ri, 1))A0,0R(Zn)〈ψ−1,0,0〉 =

= {((0, 0), (r′i, 1)) | r′i ∈ Ri}R(Zn)〈ψ−1,0,0〉

= {((j, 0), (j + r′i, 1)) | r′i ∈ Ri, j ∈ Zn}〈ψ−1,0,0〉

= {((j, 0), (j + r′i, 1)) | r′i ∈ Ri, j ∈ Zn} ∪
{((−j, 1), (−j − r′i, 0)) | r′i ∈ Ri, j ∈ Zn},

= {(j, 0)(j + r′i, 1) | r′i ∈ Ri, j ∈ Zn}.

This is clearly equal to the edge set of BCay(Zn, Ri).
Now, we can write A ≤ Aut(BCay(Zn, Ri)) for every i ∈ {1, . . . , k}. Since

BCay(Zn, R∗) = ∪ki=1 BCay(Zn, Ri), this gives that A ≤ Aut(BCay(Zn, R∗). It is
easily seen that the connected component of BCay(Zn, R∗) containing (0, 0) is its
subgraph induced by the vertex set X ∪Xψ1,r,−r , where X is the orbit of (0, 0) under
R(Zn)n/d. Clearly, this set is a block for A. The lemma is proved. �

Lemma 4.10. Let S be the set de�ned in Theorem 4.7. If 2u 6= m, then the stabilizer

Aut(BCay(Zn, S))(0,0) is given as follows.

(i) If u 6≡ 2v(mod m/u), then Aut(BCay(Zn, S))(0,0) = E(0,0).

(ii) If u ≡ 2v(mod m/u), then Aut(BCay(Zn, S))(0,0) = E(0,0) × F for a subgroup

F ≤ Aut(BCay(Zn, S))(0,0), |F | = 2.

3Notice that, π does not depend of the choice of the element r ∈ R∗.
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Proof. For short we put Γ = BCay(Zn, S) and A = Aut(Γ). Consider the partition
δ de�ned in (4.6). Applying Lemma 4.9 with R = S, R∗ = {0, u} and r = 0, we
obtain that δ is a system of blocks for A. The quotient graph Γ/δ is a u-cycle if
u > 2 and a 2-path if u = 2. Let g ∈ A(0,0). Then g �xes the arc (U0, U1) of Γ/δ,
hence it must �x all sets Ui. Thus A(0,0) ≤ Aδ, where Aδ is the kernel of the action
of A on δ.

Consider the action of A on U0. The corresponding kernel is AU0 , the pointwise
stabilizer of U0 in A, and the corresponding image is a subgroup of Aut(Γ[U0]),
where Γ[U0] is the subgraph of Γ induced by the set U0. Using that 2u 6= m, we
show next that AU0 = E(0,0). It is clear that AU0 ≥ E(0,0). We are going to prove
that AU0 ≤ E(0,0) also holds. Let g ∈ AU0 . Then for a suitable element e ∈ 〈e1〉, the
product ge �xes pointwise U0 and �x the vertex (v, 1) from block U1 (see Figure 4.2).
Thus ge acts on U1 as the identity or the unique re�ection of the cycle Γ[U1] that �xes
(v, 1). If this action is not the identity, then ge switches (v, 0) and (v+n−u, 0), and
so it must switch (v+ u, 1) and (v+ n− u, 1). On the other hand, since (v+ u, 1) is
connected to (u, 0) ∈ U0, it follows that (v+u, 1) can only be mapped to (v+u+m, 1),
and so (v+n− u, 1) = (v+ u+m, 1), contradicting that 2u 6= m. We conclude that
ge acts as the identity also on U1. Continuing in this way, we �nd that ge′ is the
identity with a suitable choice of e′ ∈ E(0,0), hence g = e′.

The equality AU0 = E(0,0) together with Aut(Γ[U0]) ∼= D4u imply that |A(0,0) :
E(0,0)| ≤ 2. Moreover, |A(0,0) : E(0,0)| = 2 holds exactly when A(0,0) contains an
involution g for which g : (0, 1)↔ (u, 1). In the latter case A(0,0) = E(0,0) × 〈g〉 as g
centralizes E (to see this, observe that g is in the kernel Aδ, and acts on every block
Ui as an element of D2n/u, whereas E acts on Ui as the center Z(D2n/u).) We settle
the lemma by proving the following equivalence :

A(0,0)
∼= E(0,0) × Z2 ⇐⇒ u ≡ 2v(mod m/u). (4.7)

Suppose �rst that A(0,0) = E(0,0) × 〈g〉, where g ∈ A(0,0) and g : (0, 1) ↔
(u, 1). By Theorem 4.7(c), {(v, 1), (v + m, 1)}A(0,0) = {(v, 1), (v + m, 1)}. Apply-
ing Lemma 4.9 with R = S, R∗ = {v, v + m} and r = v, we obtain that the set
B = {(0, 0), (m, 0), (v, 1), (v + m, 1)} is a block for A. The induced graph Γ[B] is a
4-cycle (see Figure 4.2). Denote by A{B} the setwise stabilizer of B in A, and by
AB{B} the permutation group of B induced by A{B}. As Γ[B] is a 4-cycle, AB{B} ≤ D8.
This gives that {(0, 0), (m, 0)} is a block for AB{B}, and therefore it is also a block for
A. We conclude that δm = {X | X ∈ Orb(R(Zn)m, V )} is a system of blocks for A.
Consider the action of A on BCay(Zm, ηn,m(S)) de�ned in (4.5). Then E ≤ Aδm ,
while g /∈ Aδm . This implies that gδm is an automorphism of BCay(Zm, ηn,m(S))
which normalizes its canonical bicyclic group. This means that gδm = ϕr,s,t for some
r ∈ Z∗m and s, t ∈ Zm. Using that gδm : (0, 0) 7→ (0, 0) and (0, 1) 7→ (ηn,m(u), 1), we
�nd that s = 0 and t = ηn,m(u), and so

Aδm = 〈Dδm , ϕr,0,ηn,m(u)〉. (4.8)

Also, gδm : (ηn,m(u), 1) 7→ (0, 1) and (ηn,m(v), 1) 7→ (ηn,m(v), 1), hence rηn,m(u) =
−ηn,m(u) and rηn,m(v) = ηn,m(v − u) hold in Zm. From these r ≡ −1(mod m/u)
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and rv ≡ v − u(mod m/u), i. e., u ≡ 2v(mod m/u). The implication �⇒� in (4.7) is
now proved.

Suppose next that u ≡ 2v(mod m/u). De�ne the permutation g of V by

g : (iv + ju, 0) 7→

{
(iv − (i+ j)u, 0) if i = 0

(iv − (i+ j − 1)u, 1) if i = 1,

where i ∈ {0, 1, . . . , u − 1} and j ∈ {0, 1, . . . , n/u − 1}. We complete the proof by
verifying that g ∈ A(0,0). Since (0, 0) g = (0, 0) and g : (0, 1)↔ (u, 1), this will imply
that A(0,0) = E(0,0) × 〈g〉. Thus part �⇐� of (4.7) is also proved.

Choose an arbitrary vertex w ∈ V0 such that w = (iv+ju, 0), i ∈ {0, 1, . . . , u−1}
and j ∈ {0, 1, . . . , n/u− 1}, and suppose for the moment that i < u− 1. Then w has
the following neighbours:

(iv + ju, 1), (iv + (j + 1)u, 1), ((i+ 1)v + ju, 1), ((i+ 1)v + (j +m/u)u, 1),

where v + 1 ∈ {0, 1, . . . , u− 1}, and j + 1 and j +m/u are from {0, 1, . . . , n/u− 1}.
Thus these vertices are mapped by g to

(iv−(i+j−1)u, 1), (iv−(i+j)u, 1), ((i+1)v−(i+j)u, 1), ((i+1)v−(i+j+m/u)u, 1).

A direct check shows that these are just the neighbours of wg = (iv − (i + j)u, 0).
Let i = u− 1. Then the neighbours of w are:

(iv + ju, 1), (iv + (j + 1)u, 1), ((j + v)u, 1), ((j + v +m/u)u, 1),

where j+v and j+v+m/u are from {0, ..., n/u−1}. Then these vertices are mapped
by g to

(iv − (i+ j − 1)u, 1), (iv − (i+ j)u, 1), (−(j + v − 1)u, 1), (−(j + v +m/u− 1)u, 1).

The �rst two are clearly connected with wg = (iv− (i+ j)u, 0); whereas the rest two
are connected with wg if and only if the following equality holds in Zn:

{iv − (i+ j)u+ v, iv − (i+ j)u+ v +m} = {−(j + v − 1)u,−(j + v +m/u− 1)u}.

Using that v = u−1, this reduces to {−(u−v)u,−(u−v)u+m} = {−vu,−vu+m}.
Finally, observe that this equality holds if (u − v)u ≡ vu(mod m), and the latter
congruence follows from the initial assumption that u ≡ 2v(mod m/u). The lemma
is proved. �

Lemma 4.11. Let S be the set de�ned in Theorem 4.7, and let us write A =
Aut(BCay(Zn, S)). If 2u 6= m, then for the normalizer NA(R(Zn)) of R(Zn) in

A,

∣∣A : NA(R(Zn))
∣∣ =


2u−2 if 2 | u and

(
u 6≡ 2v(mod m/u) or

u/2 ≡ v(mod m/u)
)

2u−1 otherwise.

(4.9)
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Proof. For short we set N = NA(R(Zn)). Recall that D = 〈c, d〉, see the beginning
of Section 4.1. Since A = DA(0,0) and D ≤ N, N = D(N ∩A(0,0)). The two cases of
Lemma 4.10 are considered separately.

Case 1. u 6≡ 2v(mod m/u).

In this case, from Lemma 4.10, A(0,0) = E(0,0), hence |A| = 2un. Let g ∈
N ∩A(0,0). Since g ∈ E(0,0), it follows quickly that g is the identity element, or 2 | u
and g = e1e3 · · · eu−1. Combining this with N = D(N ∩A(0,0)) we �nd that |N | = 4n
if 2 | u, and |N | = 2n if 2 - u. Formula (4.9) follows.

Case 2. u ≡ 2v(mod m/u).

From Lemma 4.10, A(0,0) = E(0,0) × F for a subgroup F ≤ A(0,0), |F | = 2, hence
|A| = 2u+1n. It follows from the proof of Lemma 4.10 that, there exists r ∈ Z∗m such
that the following hold:

rηn,m(u) = −ηn,m(u) and rηn,m(v) = ηn,m(v − u).

Let s ∈ Z∗n such that ηn,m(s) = r. Then

su ∈ {−u,−u+m} and sv ∈ {v − u, v − u+m}. (4.10)

Suppose that 2 - u. Then we get as before that N ∩ E(0,0) is trivial. Notice
also that, u ≡ 2v + m/u(mod n/u), which follows from the assumption that u ≡
2v(mod m/u) and that 2 - u. Thus 2 - m and 2 | (u+m), implying that in (4.10) we
have su = −u. We obtain that ϕs,u,0 ∈ N ∩ (A(0,0) \E(0,0)), and so |N ∩A(0,0)| = 2.

Suppose next that 2 | u. Then |N∩E(0,0)| = 2. It is easily seen that |N∩A(0,0)| =
4 if and only if there exists r ∈ Z∗n such that ru = −u and rv = v − u hold in Zn.
Consider the following system of linear congruences:

xu ≡ u(mod n), xv ≡ v − u(mod n). (4.11)

From the �rst congruence we can write x in the form x = yn/u− 1. Substitute this
into the second congruence. We obtain that yvn/u ≡ 2v − u(mod n). This has a
solution if and only if gcd(vn/u, n) | (2v − u). Suppose that gcd(v, n) 6= 1. Using
that 〈u, v〉 = Zn and that 2 | u, we obtain that gcd(v,m/u) 6= 1. However, then
from the assumption that u ≡ 2v(mod m/u) it follows that also gcd(v, u) 6= 1, which
contradicts that 〈u, v〉 = Zn. Hence gcd(v, n) = 1, gcd(vn/u, n) = n/u, and so (4.11)
has a solution if and only if u ≡ 2v(mod n/u), or equivalently, u/2 ≡ v(mod m/u)
(recall that 2 | u and u | m). It is not hard to show that any solution to (4.11) is
necessarily prime to n, hence is in Z∗n. The above arguments can be summarized as
follows: |N | = 8n if 2 | u and u/2 ≡ v(mod m/u), and |N | = 4n otherwise. This is
consistent with (4.9). The lemma is proved. �

Lemma 4.12. Let r ∈ Z∗n, r 6= 1 and s ∈ Zn such that the permutation ϕr,0,s is of
order 2. Then the group 〈c, d, ϕr,0,s〉 contains a bicyclic group di�erent from R(Zn)
if and only if 8 | n, r = n/2 + 1, and s = 0 or s = n/2.

Proof. Suppose that 〈c, d, ϕr,0,s〉 contains a bicyclic group X such that X 6= R(Zn).
Then X is generated by a permutation in the form ciϕr,0,s. Since ϕ2

r,0,s is the identity
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mapping, r2 = 1 in Zn, and we calculate that (ciϕr,0,s)
2 sends (x, 0) to (x+r(r+1)i, 0)

for every x ∈ Zn. That V0 is an orbit of X is equivalent to the condition that
gcd(n, r + 1) = 2. Using this and that r2 − 1 = (r − 1)(r + 1) ≡ 0(mod n), we �nd
that n/2 divides r−1, so r = 1 or r = n/2+1. Since r 6= 1, we have that r = n/2+1
and 8 | n. Then (ϕr,0,s)

2 sends (x, 1) to (x + (n/2 + 2)s, 1). Since (ϕr,0,s)
2 is the

identity mapping, we obtain that s = 0 or s = n/2.
On the other hand, it can be directly checked that, if 8 | n, r = n/2 + 1 and

s ∈ {0, n/2}, then the permutation cϕr,0,s generates a bicyclic group in 〈c, d, ϕr,0,s〉.
Obviously, this bicyclic subgroup cannot be R(Zn). The lemma is proved. �

Everything is prepared to prove the main result of the section.

Proof of Theorem 4.7. The case that 2u = m is settled already in Lemma 4.8,
hence let 2u 6= m. We consider the action of A = Aut(BCay(Zn, S)) on the system
of blocks δm de�ned in (4.5). We claim that the corresponding image Aδm has a
unique bicyclic group (which is, of course, R(Zn)δm).

This is easy to see if A(0,0) = E(0,0), because in this case Aδm = (DA(0,0))
δm =

Dδm .
Let A(0,0) 6= E(0,0). Then A(0,0) = E(0,0) × F for some subgroup F, |F | = 2.

By (4.8), Aδm = 〈Dδm , ϕr,0,ηn,m(u)〉. Also, r ≡ −1(mod m/u), hence r 6= 1 in Zm.
By Lemma 4.12, Aδm contains more than one bicyclic group if and only if 8 | m,
r = m/2 + 1 and ηn,m(u) ∈ {0,m/2}. In the latter case u ∈ {m,m/2}, which is
impossible as u < m/2. Hence Aδm contains indeed a unique bicyclic group.

We calculate next the number of bicyclic groups contained in A, and we denote
this number by B. In fact, we are going to derive the following formula:

B =

{
2u−2 if 2 | u and 2 - (m/u)

2u−1 otherwise.
(4.12)

Let g ∈ G such that 〈g〉 ≤ A is a bicyclic group. Since A = DA(0,0), g can
be written as g = xy with x ∈ D and y ∈ A(0,0). Since 〈g〉 is a bicyclic group, g
�xes the colour classes setwise, implying that x ∈ R(Zn). The image 〈g〉δm is also
a bicyclic group in Aδm , hence by the previous paragraph, 〈g〉δm = R(Zn)δm . Now,
since x ∈ R(Zn), yδm ∈ R(Zn)δm , from which yδm is the identity mapping. We
conclude that x = ci for some i ∈ {1, . . . , n− 1} with gcd(i,m) = 1, and y ∈ E(0,0),
and so y = eI for a subset I ⊆ {1, . . . , u− 1}.

Obviously, the product ϕ(n)B calculates the number of elements g ∈ G such that
〈g〉 is a bicyclic group in A, where ϕ denotes Euler's totient function. Therefore,
ϕ(n)B is equal to the number of elements in the form cieI that i ∈ {1, . . . , n −
1}, gcd(i,m) = 1, I ⊆ {1, . . . , u− 1}, and 〈cieI〉 is a bicyclic group contained in A.

Let us pick cieI with i ∈ {1, . . . , n− 1}, gcd(i,m) = 1, and I ⊆ {1, . . . , u− 1}. It
is easily seen that eIci = cieI+i, where I + i = {x+ i | x ∈ I}, here the addition is
taken modulo u. Using this and induction on u, it follows that

(cieI)
u = cuieIeI+i · · · eI+(u−1)i.

Since gcd(i,m) = 1 and u | m, gcd(i, u) = 1, from which

eIeI+i · · · eI+(u−1)i = (e0e1 · · · eu−1)|I| = cm|I|.
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Thus (cieI)
u = cu( i+m

u
|I| ). This and gcd(i, u) = 1 show that 〈cieI〉 is a semiregular

group. Therefore, 〈cieI〉 is a bicyclic group if and only if cieI is of order n, or
equivalently,

gcd
(
i+

m

u
|I|, 2m

u

)
= 1. (4.13)

Notice that, since gcd(i,m) = 1, the greatest common divisor above is always
equal to 1 or 2. Suppose at �rst that 2 | (m/u). Then 2 | m and i is odd. Hence
(4.13) always holds. We obtain that the number of elements in A which generate a
bicyclic group is ϕ(n)2u−1, and so B = 2u−1, as claimed in (4.12). Suppose next that
2 - (m/u). Now, if 2 | u, then 2 | m, hence 2 - i, and so (4.13) holds if and only if |I|
is even. We deduce from this that B = 2u−2, as claimed in (4.12). Finally, if 2 - u,
then 2 - m, and in this case (4.13) holds if and only if gcd(i, n) = 1 and |I| is even,
or gcd(i, n) = 2 and |I| is odd. We calculate that B = 2u−1, and this completes the
proof of (4.12).

Let Ξ be a bicyclic base of A. By (4.9) and (4.12) we obtain that, |Ξ| > 1 if and
only if

|A : NA(R(Zn))| = 2u−2 and B = 2u−1.

This happens exactly when(
2 | u and (u 6≡ 2v(mod m/u) or u/2 ≡ v(mod m/u))

)
and

(
2 - u or 2u | m

)
.

After some simpli�cation,

|Ξ| > 1 ⇐⇒ 2 | u, 2u | m and u/2 6≡ v +m/(2u)(mod m/u).

Suppose that |Ξ| > 1. Then A contains exactly 2n−1 bicyclic groups, 2n−2 of
which are conjugate to R(Zn). These 2n−1 subgroups are enumerated as: 〈ceI〉, I ⊆
{1, . . . , u− 1}. For i ∈ {1, . . . , u− 2}, eicei = ce{i,i+1}. We can conclude that the set
of bicyclic groups split into two conjugacy classes:{
〈ceI〉 | I ⊆ {1, . . . , u−1}, |I| is even

}
and

{
〈ceI〉 | I ⊆ {1, . . . , u−1}, |I| is odd

}
.

In particular, |Ξ| = 2.
Choose ξ from Sym(V ) which satis�es

ξcξ−1 = ce1 and ξ : (0, 0) 7→ (0, 0), (0, 1) 7→ (0, 1).

Then Ξ can be chosen as Ξ = {idV , ξ}, where idV is the identity mapping of V .
Also, {(v, 1), (v + m, 1)}ξ = {(v, 1), (v + m, 1)}, and since (ce1)u+m = cu, (u, 1)ξ =
(0, 1)(ce1)u+mξ = (0, 1)ξc

u+m
= (u + m, 1). Thus BCay(Zn, S) ξ = BCay(Zn, {0, u +

m, v, v +m}). The theorem follows from Theorem 4.5. �

4.3 Proof of Theorem 4.6

Theorem 4.6 follows from Theorem 4.7 and the following theorem.
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Theorem 4.13. Let BCay(Zn, S) be a connected bi-Cayley graph such that |S| = 4
and BCay(Zn, S) is not a BCI-graph. Then n = 2m, and there exist a ∈ Z∗n and

b ∈ Zn such that aS + b = {0, u, v, v + m} and the conditions Theorem 4.7(a)-(c)

hold.

Before we prove Theorem 4.13 it is necessary to give three preparatory lemmas.
For an element i ∈ Zn, we denote by o(i) the order of i viewed as an element of the
additive group Zn. Thus we have o(i) = n/ gcd(n, i).

Lemma 4.14. If R = {i, n− i, j} is a generating subset of Zn and o(i) is odd, then
Cay(Zn, R) is a CI-graph.

Proof. For short we set A = Aut(Cay(Zn, R)) and denote by A0 the stabilizer of
0 ∈ Zn in A. Clearly, A0 leaves R setwise �xed. If A0 acts on R trivially, then
A ∼= Zn, and the lemma follows from Lemma 2.15. If A0 acts on R transitively, then
Cay(Zn, R) is edge-transitive. This condition forces that Cay(Zn, R) is a CI-graph
(see [53, page 320]).

We are left with the case that R consists of two orbits under A0. These orbits
must be {i, n − i} and {j}. It is clear that A0 leaves the subgroups 〈i〉 and 〈j〉
�xed; moreover, the latter set is �xed pointwise, and since o(i) is odd, 〈i〉 consists of
(o(i)−1)/2 orbits under A0, each of length 2, and one orbit of length 1. We conclude
that Zn = 〈i〉 × 〈j〉, and also that A is permutation isomorphic to the permutation
direct product

(
(Zo(i))righto 〈π〉

)
× (Zo(j))right, where for ` ∈ {o(i), o(j)}, (Z`)right is

generated by the translation x 7→ x+ 1, and π is the permutation x 7→ −x. We leave
for the reader to verify that the above group has a unique regular cyclic subgroup.
The lemma follows from Lemma 2.15. �

Lemma 4.15. Let n = 2m and R = {i, n− i, j, j +m} be a subset of Zn such that

(a) R generates Zn;

(b) o(i) is odd;

(c) the stabilizer Aut(Cay(Zn, R))0 leaves the set {i, n− i} setwise �xed.

Then Cay(Zn, R) is a CI-graph.

Proof. For short we set A = Aut(Cay(Zn, R)). Let T be a subset of Zn such
that Cay(Zn, R) ∼= Cay(Zn, T ) and let f be an isomorphism from Cay(Zn, R) to
Cay(Zn, T ) such that f(0) = 0. Let us consider the subgraphs

Γ1 = Cay(Zn, {i, n− i}) and Γ2 = Cay(Zn, {j, j +m}).

By condition (c), the group A preserves both of these subgraphs, that is, A ≤ Aut(Γ`)
for ` ∈ {1, 2}. As f is an isomorphism between two Cayley graphs, f(Zn)rightf

−1 ≤
A. Then f(Zn)rightf

−1 ≤ A ≤ Aut(Γ`), implying that f maps Γ` to a Cayley graph
Cay(Zn, T`) for both ` ∈ {1, 2}. Clearly, T = T1 ∪T2. It was proved by Sun [73] (see
also [53]) that every Cayley graph over Zn of valency 2 is a CI-graph. Using this, it
follows from Cay(Zn, {i, n− i}) ∼= Cay(Zn, T1) that T1 = a{i, n− i} for some a ∈ Z∗n.
Letting t1 = ai, we have T1 = {t1, n − t1} such that o(i) = o(t1). In the same way,
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T2 = a′{j, j + m} for some a′ ∈ Z∗n, and letting t2 = a′j, we have T2 = {t2, t2 + m}
with o(t2) = o(j). Since f(0) = 0, f maps {i, n−i} to T1 = {t1, n−t1} and {j, j+m}
to T2 = {t2, t2 +m}.

We claim that the partition of Zn into the cosets of 〈m〉 is a system of blocks
for Aut(Γ2), hence also for the group A ≤ Aut(Γ2). Let us put Ā = Aut(Γ2).
Then Ā0 leaves the set T = {j, j + m} setwise �xed. Thus the setwise stabilizer
Ā{T} of the set T in Ā can be written as Ā{T} = Ā{T} ∩ Ā = Ā{T} ∩ Ā0(Zn)right =
Ā0(Ā{T}∩(Zn)right) = Ā0〈mright〉. Heremright is the permutation x 7→ x+m, x ∈ Zn.
Thus Ā0〈mright〉 is a subgroup of Ā which clearly contains Ā0. By Theorem 2.5, the
orbit of 0 under the group Ā0〈mright〉 is a block for Ā. Now, the required statement
follows as the latter orbit is equal to 0Ā0〈mright〉 = 0〈mright〉 = 〈m〉.

Since the partition of Zn into the cosets of 〈m〉 is a system of blocks for A, f
induces an isomorphism from Cay(Zm, ηn,m(R)) to Cay(Zm, ηn,m(T )), we denote this
isomorphism by f̄ . Note that, f̄(0) = 0 for the identity element 0 ∈ Zm.

The set ηn,m(R) satis�es the conditions (a)-(c) of Lemma 4.14, hence it de�nes
a CI-graph. This means that f̄ is equal to a permutation x 7→ rx for some r ∈ Z∗m.
Let s ∈ Z∗n such that ηn,m(s) = r. Then ηn,m(si) = ηn,m(s)ηn,m(i) = ηn,m(t1), and
so the following holds in Zn:

si = t1 or si = t1 +m. (4.14)

The order o(t1) = o(i) is odd by (b), implying that o(t1) 6= o(t1 +m), and so si = t1
holds in (4.14). We conclude that sR = T, so Cay(Zn, R) is a CI-graph. The lemma
is proved. �

Lemma 4.16. Let n = 2m and S = {0, u, v, v +m} such that

(a) S generates Zn;

(b) 1 < u < n, u | n but u - m;

(c) the stabilizer Aut(BCay(Zn, S))(0,0) leaves the set {(0, 1), (u, 1)} setwise �xed.

Then BCay(Zn, S) is a BCI-graph.

Proof. Let δ be the partition of V de�ned in (4.6). Applying Lemma 4.9 with
R = S, R∗ = {0, u} and r = 0, we obtain that δ is a system of blocks for A =
Aut(BCay(Zn, S)). Thus the stabilizer A(0,0) leaves the set V0 setwise �xed, and we
may consider the action of A(0,0) on V0. The subgraph of BCay(Zn, S) induced by
the set V0 is a cycle of length 2n/u, thus A(0,0) �xes also the vertex on this cycle
antipodal to (0, 0). We �nd that this antipodal vertex is (u/2 + m, 1). Therefore,
A(0,0) = A(m+u/2,1). By Proposition 3.14, BCay(Zn, S) is a BCI-graph if and only if
Cay(Zn, S − u/2 +m) is a CI-graph. The latter set is

S − u/2 +m =
{
u/2 +m,−u/2 +m, v − u/2, v − u/2 +m

}
.

Since u - m, u is even and the order |u/2+m| is odd. Thus we can apply Lemma 4.15
to the set S − u/2 + m (choose i = u/2 + m and j = v − u/2). This gives us that
S − u/2 +m de�nes a CI-graph. This completes the proof of the lemma. �
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0 0 s s 2s 2s

m m s+m s+m 2s+m 2s+m

Figure 4.3: The lexicographical product Cn[Kc
2].

Proof of Theorem 4.6. Let S be the subset of Zn given in Theorem 4.6. We
deal �rst with the case when the canonical bicyclic group R(Zn) is normal in A =
Aut(BCay(Zn, S)).

Case 1. R(Zn) E A.

By Theorem 4.5, there is a bicyclic group X of A such that X 6= R(Zn). Since
R(Zn) E A, X is generated by a permutation in the form ciϕr,0,s, r ∈ Z∗n, s ∈ Zn,
and the order of ϕr,0,s is at least 2. The permutation ϕr,0,s acts on both V0 and V1 as
an a�ne transformation. This fact together with the connectedness of BCay(Zn, S)
imply that, ϕr,0,s acts faithfully on S × {1}. Thus the order of ϕr,0,s is at most 4.
Let o denote this order.

Suppose that o = 4. We may assume without loss of generality that S × {1}
can be obtained as S × {1} = {(0, 1)ϕ

j
r,0,s | j ∈ {0, 1, 2, 3}}, and so S = {0, s, (r +

1)s, (r2 + r + 1)s} and (r3 + r2 + r + 1)s = 0. Since BCay(Zn, S) is connected,
gcd(s, n) = 1, and (r + 1)(r2 + 1) = 0. We �nd that (ciϕr,0,s)

4 sends (x, 0) to
(x + r(r + 1)(r2 + 1)i), 0) = (x, 0). Since X =

〈
ciϕr,0,s

〉
is a bicyclic group, n = 4,

and so BCay(Zn, S) ∼= K4,4. This, however, contradicts that R(Zn) E A.
Now, suppose that o = 3. If A(0,0) is transitive on S × {1}, then it must be

regular, see [44, Theorem 4.3]. This implies that S×{1} splits into two orbits under
A(0,0) with length 1 and 3, respectively. Let s ∈ S such that {(s, 1)} is an orbit
under A(0,0). Then A(0,0) = A(s,1), and by Proposition 3.14, S − s does not de�ne
a CI-graph. However, in this case the graph Cay(Zn, S − s) is edge-transitive, and
thus it is a CI-graph (see [53, page 320]), which is a contradiction.

Finally, suppose that o = 2. If r = 1, then 2 | n and s = m, where n = 2m.
This implies that S × {1} is a union of two orbits of R(Zn)m, we may write S =
{0,m, s, s + m}. The graph BCay(Zn, S) is then isomorphic to the lexicographical
product Cn[Kc

2] of an n-cycle Cn with the graph Kc
2, see Figure 4.3. It is easily seen

that then A(0,0) is not faithful on the set S × {1}, which is a contradiction.
Let r 6= 1. By Lemma 4.12, 8 | n, r = m+ 1 and s ∈ {0,m}, where n = 2m. We

consider only the case when s = 0 (the case when s = m can be treated in the same
manner). Then V1 splits into the following orbits under ϕr,0,s:

{(2i, 1)}, {(2i+ 1, 1), (2i+ 1 +m, 1)}, where i ∈ {0, 1, . . . ,m− 1}.

Since BCay(Zn, S) is connected and cannot be the union R(Zn)m-orbits (see above),
S×{1} contains one orbit under ϕr,0,s of length 2, and two orbits of length 1. Let S1

denote the orbit of length 2 and let S2 = S \S1. Then we may write S1 = {s, s+m},
and S2 = {s′, s′′}, where both s′ and s′′ are even. Let u = gcd(s′ − s′′, n). Then u is
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a divisor of n and also 2 | u. There exist a ∈ Z∗n such that a(s′ − s′′) ≡ u(mod n).
Choosing b = −as′′ (all arithmetic is done in Zn), we �nd that aS2 + b = {u, 0}.
Now, letting v = as + b, we get aS1 + b = {v, v + m}. We �nish the proof of this
case by showing that the set R = aS + b = {0, u, v, v + m} satis�es the conditions
Theorem 4.6(a)-(c).

(a): As BCay(Zn, S) is connected, BCay(Zn, R) is also connected. This implies
that {u, v} is a generating set of Zn.

(c): Since R(Zn) E A, R(Zn) E Aut(BCay(Zn, R)). To the contrary assume that
the stabilizer Aut(BCay(Zn, R))(0,0) does not leave {(0, 1), (u, 1)} setwise �xed. Thus
there exists some g ∈ A(0,0) and thus the image of (v, 1) under g is in {(0, 1), (u, 1)}.
Letting (w1, 1) = (v, 1)g and (w2, 1) = ((v +m), 1)g, we �nd that w1 −w2 = m, and
from this that u = m. However, then BCay(Zn, R) ∼= Cn[Kc

2], which we have already
excluded above. Thus Aut(BCay(Zn, R))(0,0) �xes setwise {(0, 1), (u, 1)}.

(b): We have already showed (see previous paragraph) that u 6= m and 1 < u.
Since S does not de�ne a BCI-graph, neither does R. This also implies that u | m
by Lemma 4.12, and we conclude that 1 < u < m and u | m, as required.

Case 2. R(Zn) 6E A.

Let A(0,0) act transitively on S × {1}. This gives that BCay(Zn, S) is edge-
transitive. Since R(Zn) 6E A, D 6E A, in other words, BCay(Zn, S) is non-normal
as a Cayley graph over the dihedral group D, where D = 〈c, d〉. We apply [45,
Theorem 1.2], and obtain that BCay(Zn, S) is either isomorphic to Kn[Kc

2], or to
one of 5 graphs of orders 10, 14, 26, 28 and 30, respectively. Suppose that the former
case holds. Then n = 2m, and we obtain quickly that S consists of two R(Zn)m-
orbits. Then S can be mapped by an a�ne transformation to a set {0,m, v, v+m},
where 〈m, v〉 ∼= Zn. Then v or v + m is a generating element of Zn, and so S can
actually be mapped by an a�ne transformation to {0,m, 1, 1 +m}. Now, the same
holds for any set T with BCay(Zn, T ) ∼= BCay(Zn, S) ∼= Kn[Kc

2], contradicting that
BCay(Zn, S) is not a BCI-graph. In the latter case, a direct computation by the
computer package Magma [11] shows that none of these graphs is possible (in fact,
in each case the corresponding subset S de�nes a BCI-graph).

The set S × {1} cannot split into two orbits under A(0,0) having size 1 and
3, respectively (see the argument above). Thus we are left with the case that S =
S1∪S2, |S1| = |S2|, and A(0,0) leaves both sets S1 and S2 setwise �xed. For i ∈ {1, 2},
let ni = |〈Si − Si〉|, n1 ≤ n2, where Si − Si = {a− b | a, b ∈ Si}.

We claim that n1 = 2. To the contrary assume that n1 > 2. We prove �rst that
R(Zn)n/n1 E A. Apply Lemma 4.9 with R = S, R∗ = S1 and r = s1 ∈ S1. We
obtain that the partition

δ =
{
X ∪Xψ1,s1,−s1 | X ∈ Orb(R(Zn)n/n1 , V )

}
,

is a system of blocks for A. Let us consider the action of A(δ) (the kernel of A
acting on δ) on the block of δ which contains (0, 0). Denote this block by ∆, and
by ∆′ the block which contains (s, 1) for some s ∈ S2. Notice that, the subgraph of
BCay(Zn, S) induced by any block of δ is a cycle of length 2n1, and when deleting
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these cycles, the rest splits into pairwise disjoint cycles of length 2n2. Let Σ denote
the unique (2n2)-cycle through (s, 1). Now, suppose that g ∈ A(δ) which �xes ∆
pointwise. If V (Σ) ∩∆ = {(0, 0)}, then g must �x the edge (0, 0)(s, 1), and so �xes
also (s, 1). If V (Σ) ∩∆ 6= {(0, 0)}, then |V (Σ) ∩∆| = n2 > 2. This implies that g
�xes every vertex on Σ, in particular, also (s, 1). The block ∆′ has at least n1 vertices
having a neighbour in ∆, hence by the previous argument we �nd that all are �xed
by g. Since n1 > 2, ∆′ is �xed pointwise by g. It follows, using the connectedness of
BCay(Zn, S), that g is the identity mapping, hence that A(δ) is faithful on ∆. Thus
R(Zn)n/n1 is a characteristic subgroup of A(δ), and since A(δ) E A, R(Zn)n/n1 E A.

Let A+ be the subgroup of A that �xes setwise the colour classes V0 and V1. We
consider N = A+ ∩ ZA(R(Zn)n/n1). Then R(Zn) ≤ N and N E A. Pick g ∈ N(0,0)

such that g acts non-trivially on S × {1}. Since N centralizes R(Zn)n/n1 , g �xes
pointwise the orbit of (0, 0) under R(Zn)n/n1 , and hence also ∆. Then g2 �xes
S × {1} pointwise, and so also ∆′. We conclude that g2 is the identity mapping,
and thus that either N = R(Zn), or N = R(Zn) o 〈g〉. The case N = R(Zn) is
impossible because R(Zn) 6E A. Let N = R(Zn)o 〈g〉. Then (Si × {1})g = Si × {1}
(for both i ∈ {1, 2}), hence Si is a union of 〈g〉-orbits. As g normalizes R(Zn) and
�xes (0, 0), g = ϕr,0,s. Recall that the order of g is equal to 2. If r 6= 1, then by
Lemma 4.12, either R(Zn) is the unique cyclic subgroup of N, or 8 | n, r = n/2 + 1
and s = 0 or s = n/2. In the former case R(Zn) is characteristic in N, and since
N E A, R(Zn) E A, a contradiction. Therefore, we are left with the case that r = 1
(and so s = n/2), or 8 | n, r = n/2 + 1 and s = 0 or s = n/2. Then every 〈g〉-orbit
is of length 1 or 2, and if it is of length 2, then is in the form {(j, 0), (j + m, 0)} or
{(j, 1), (j + m, 1)} as we have proved in Case 1. Since ni > 2, we see that Si × {1}
must be �xed pointwise by g for both i ∈ {1, 2}. This, however, contradicts that g
was assumed to act non-trivially on S × {1}; and so n1 = 2.

This means that 2 | n, say n = 2m, and the group generated by the set S1−S1 =
{x − y : x, y ∈ S1} is equal to {0,m}. Then we can write S1 = {s, s + m}. It can
be proved as before that there exist a ∈ Z∗n and b ∈ Zn such that aS2 + b = {0, u}
for some divisor u of n. Then, letting v = as+ b, we get aS1 + b = {v, v +m}. We
�nish the proof of this case by showing that the set R = aS + b = {0, u, v, v + m}
satis�es the conditions Theorem 4.6(a)-(c).

(a): As BCay(Zn, S) is connected, BCay(Zn, R) is also connected. This implies
that {u, v} is a generating set of Zn.

(c): Since S1 and S2 are left �xed setwise by A, Aut(BCay(Zn, R))(0,0) leaves the
set {(0, 1), (u, 1)} setwise �xed.

(b): If u = 1, then Aut(BCay(Zn, {0, u})) ≤ D4n. But then R(Zn) E A, which
is a contradiction. We conclude that 1 < u, and by Lemma 4.16, u | m also holds, i.
e., 1 < u < m and u | m, as required. �



Chapter 5

Nilpotent 3-BCI-groups

Let G be a 3-BCI-group, i. e., every bi-Cayley graph over G valency at most 3 has
the BCI-property. Jin and Liu [35] proved a Sylow 2-subgroup of G is Z2r , or Z4

2

or Q8; and they also proved in [36] that a Sylow p-subgroup for an odd prime is
homocyclic, i. e., a direct product of cyclic groups of the same order. Therefore, if
G is nilpotent, then it is necessarily a direct product of the groups described above.
In this chapter we prove that the converse implication also holds.

Theorem 5.1. Every �nite group G = U × V is a 3-BCI-group, if U is an abelian

group of odd order whose Sylow p-subgroups are homocyclic, and V is trivial or one

of the following groups: Z2r , Zr2 and Q8.

Throughout this chapter C will denote the set of all groups G = U ×V , where U
is an abelian group of odd order whose Sylow p-subgroups are homocyclic, and V is
either trivial or one of the groups Z2r , Zr2 and Q8. Furthermore, Csub will denote set
of all groups that have an overgroup in C.

5.1 Preparatory lemmas

Our �rst lemma generalizes Lemma 3.14.

Lemma 5.2. Let Γ = BCay(G,S) such that there exists an involution τ ∈ Aut(Γ)
which normalizes R(G) and (1G, 0)τ = (1G, 1). Suppose, in addition, that Aut(Γ)(1G,0)

= Aut(Γ)(1G,1). Then BCay(G,S) is a BCI-graph whenever Cay(G,S) is a CI-graph.

Proof. Set A = Aut(Γ) and A+ = A{G×{0})}, and let us suppose that Cay(G,S)
is a CI-graph. Recall that, by S(A) we denote the set of all semiregular groups in
A with orbits G × {0} and G × {1}. Let X ∈ S(A) such that X ∼= G. Obviously,
X,R(G) ≤ A+. The normalizer NA(R(G)) ≥ 〈R(G), τ〉, hence it is transitive on
V (Γ). Thus, by Lemma 3.5, we are done if we show that X and R(G) are conjugate
in A+.

In order to prove this we de�ne a faithful action of A+ on G as follows. Let ∆ =
{(1G, 0), (1G, 1)} and consider the setwise stabilizer A{∆}. Since A(1G,0) = A(1G,1),
A(1G,0) ≤ A{∆}. By Theorem 2.5, the orbit of (1G, 0) under A{∆} is a block for A.
Since τ switches (1G, 0) and (1G, 1), this orbit is equal to ∆, and the system of blocks

45
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induced by ∆ is δ = {∆R(x) | x ∈ G} =
{
{(x, 0), (x, 1)} | x ∈ G

}
. Now, de�ne

the action of A+ on G by letting xσ = x′, where x ∈ G and σ ∈ A+, if σ maps the
block {(x, 0), (x, 1)} to the block {(x′, 0), (x′, 1)}. We will write σ̄ for the image of
σ under the corresponding permutation representation, and let B̄ = {σ̄ : σ ∈ B}
for a subgroup B ≤ A+. It is easily seen that this action is faithful. Therefore,
X and R(G) are conjugate in A+ exactly when X̄ and ¯R(G) are conjugate in Ā+.
Also, ¯R(G) = Gright, and X̄ is regular on G. We �nish the proof by showing that
Ā+ = Aut(Cay(G,S)). Then the conjugacy of X̄ and ¯R(G) follows by Lemma 2.15
and the assumption that Cay(G,S) is a CI-graph.

Pick an automorphism σ ∈ A+ and an arc (x, sx) of Cay(G,S). Then the
edge {(x, 0), (sx, 1)} of Γ is mapped by σ to an edge {(x′, 0), (s′x′, 1)} for some
x′ ∈ G and s′ ∈ S. Hence σ̄ : x 7→ x′ and sx 7→ s′x′, i.e., it maps the arc
(x, sx) to the arc (x′, s′x′). We have just proved that σ̄ ∈ Aut(Cay(G,S)), and
hence Ā+ ≤ Aut(Cay(G,S)). In order to establish the relation �≥", for an arbi-
trary automorphism ρ ∈ Aut(Cay(G,S)), de�ne the permutation π of G× {0, 1} by
(x, i)π = (xρ, i) for all x ∈ G and i ∈ {0, 1}. Repeating the previous argument we
obtain that π ∈ A. It is clear that π ∈ A+ and π̄ = ρ. Thus Ā+ ≥ Aut(Cay(G,S)),
and so Ā+ = Aut(Cay(G,S)). The lemma is proved. �

Lemma 5.3. Let Γ be a cubic bipartite graph with bipartition classes ∆i, i = 1, 2, and
X ≤ Aut(Γ) be a semiregular subgroup whose orbits are ∆i, i = 1, 2, and X ∈ Csub.

Then Aut(Γ) has an element τX which satis�es:

(i) every subgroup of X is normal in 〈X, τX〉;

(ii) 〈X, τX〉 is regular on V (Γ).

Proof. It is straightforward to show that Γ ∼= BCay(X,S) for some subset S ⊆ X
with 1X ∈ S and |S| = 3. Moreover, there is an isomorphism from Γ to BCay(X,S)
which induces a permutation isomorphism from X to R(X). Therefore, it is su�-
cient to �nd τ ∈ Aut(BCay(X,S)) for which every subgroup of R(X) is normal in
〈R(X), τ〉; and 〈R(X), τ〉 is regular on V (BCay(X,S)).

Since X ∈ Csub, X = U × V , where U is an abelian group of odd order, and V is
trivial or one of Z2r , Zr2 and Q8. We prove below the existence of an automorphism
ι ∈ Aut(X), which maps the set S to its inverse S−1. Let πU and πV denote the
projections U × V → U and U × V → V respectively. It is su�cient to �nd an
automorphism ι1 ∈ Aut(U) which maps πU (S) to πU (S)−1, and an automorphism
ι2 ∈ Aut(V ) which maps πV (S) to πV (S)−1. Since U is abelian, we are done by
choosing ι1 to be the automorphism x 7→ x−1. If V is abelian, then let ι2 : x 7→ x−1.
Otherwise, V ∼= Q8, and since |πV (S) \ {1V }| ≤ 2, it follows that πV (S) is conjugate
to πV (S)−1 in V . This ensures that ι2 can be chosen to be some inner automorphism.
Now, de�ne ι by setting its restriction ι|U to U as ι|U = ι1, and its restriction ι|V to
V as ι|V = ι2. De�ne the permutation τ of X × {0, 1} by

(x, i)τ =

{
(xι, 1) if i = 0,

(xι, 0) if i = 1.
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The vertex (x, 0) of BCay(X,S) has neighbourhood (Sx, 1). This is mapped by τ to
the set (S−1xι, 0), which is equal to the neighbourhood of (xι, 1). We have proved
that τ ∈ Aut(BCay(X,S)).

It follows from its construction that τ is an involution. Fix an arbitrary subgroup
Y ≤ X, and pick y ∈ Y . We may write y = yUyV for some yU ∈ U and yV ∈ V . Then
〈yU , yV 〉 ≤ Y , since yU and yV commute and gcd(|U |, |V |) = 1. Also, (yU )ι1 = y−1

U

and (yV )ι2 ∈ 〈yV 〉, implying that yι = (yU )ι1(yV )ι2 ∈ 〈yU , uV 〉 ≤ Y . We conclude
that ι maps Y to itself. Thus τ−1R(y)τ = τR(y)τ = R(yι) is in R(Y ), and τ
normalizes R(Y ). Since X ∈ Csub, R(Y ) is also normal in R(X), and part (i) follows.

For part (ii), observe that |〈R(X), τ〉| = 2|X| = |V (BCay(X,S))|. Clearly,
〈R(X), τ〉 is transitive on V (BCay(X,S)), so it is regular. �

In the next lemma we recall some properties of normal quotients of cubic bi-
Cayley graphs. The proof of the lemma is rather straightforward, and thus it is
omitted. For instance, it can be deduced from [58, Theorem 9]).

Lemma 5.4. Let Γ = BCay(G,S) be a connected arc-transitive graph, G be any

�nite group, |S| = 3, and let N < R(G) be a subgroup which is normal in Aut(Γ).
Then the following hold for the normal quotient ΓN :

(i) ΓN is a connected cubic arc-transitive graph. Moreover, if Γ is (Aut(Γ), s)-
transitive, then ΓN is (Aut(Γ)/N, s)-arc-transitive.1

(ii) ΓN is isomorphic to the bi-Cayley graph BCay(G/M, πG/M (S)), where M < G
is the subgroup that N = {R(x) | x ∈M}, and πG/M is the natural projection

from G to G/M (clearly, M E G as R(M) = N E R(G)).

(iii) N is equal to the kernel of Aut(Γ) acting on the set of N -orbits.

5.2 The proof of Theorem 5.1

The proof of Theorem 5.1 in the case of arc-transitive graphs will be based on three
lemmas about cubic connected arc-transitive bi-Cayley graphs to be proved below.
In these lemmas we we keep the following notation:

(∗) Γ = BCay(G,S) is a connected arc-transitive graph, where G ∈ Csub and
|S| = 3.

Recall that, S(Aut(Γ)) is the set of all semiregular subgroups of Aut(Γ) whose
orbits are G× {0} and G× {1}.

Lemma 5.5. With notation (∗), let δ be a system of blocks for Aut(Γ) induced by

a block properly contained in G × {0}, and X be in S(Aut(Γ)) such that X ∈ Csub.

Then the kernel Aut(Γ)δ < X. Moreover, if δ is non-trivial, then Aut(Γ)δ is also

non-trivial.

1The group Aut(Γ) acts on the set of N -orbits which is, by de�nition, coincides with the vertex
set V (ΓN ). By part (iii) of the lemma, the image of the action is isomorphic to Aut(Γ)/N . In
what follows, by some abuse of notation, this image will also be denoted by Aut(Γ)/N, and in this
context we shall write Aut(Γ)/N ≤ Aut(ΓN ).
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Proof. Set A = Aut(Γ). Let Y = X ∩A{∆}, where ∆ ∈ δ with ∆ ⊂ G×{0}. Then
∆ is equal to an orbit of Y , and |Y | = |∆| because ∆ ⊂ G × {0} and X is regular
on G× {0}. Formally, ∆ = Orb(Y, v) for some vertex v ∈ ∆.

Let τX ∈ A be the automorphism de�ned in Lemma 5.3, and set L = 〈X, τX〉.
The group L is regular on V (Γ), and Y E L. These yield

δ = {∆l | l ∈ L} = {Orb(Y, v)l | l ∈ L} = {Orb(Y, vl) | l ∈ L}.

From this Y ≤ Aδ. This shows that, if |Y | = |∆| 6= 1, then Aδ is non-trivial. Since δ
has more than 2 blocks, and Γ is a connected and cubic graph, it is known that Aδ
is semiregular. These imply that Aδ = Y < X. �

Corollary 5.6. With notation (∗), let N < R(G) be normal in Aut(Γ), and X be

in S(Aut(Γ)) such that X ∈ Csub. Then N < X.

Proof. Let δ be the system of blocks for Aut(Γ) consisting of the N -orbits, see
Theorem 2.6. Then Aδ = N because of Lemma 5.4(iii). The corollary follows
directly from Lemma 5.5. �

We denote by Q3 the graph of the cube and by H the Heawood graph. The latter
is graph is the incidence graph of the Fano plane, it is the unique arc-transitive cubic
graph on 14 points [14]. Recall that, the core of a subgroup H ≤ K in the group K
is the largest normal subgroup of K contained in H.

Lemma 5.7. With notation (∗), suppose that R(G) is not normal in Aut(Γ), and
let N be the core of R(G) in Aut(Γ). Then (R(G)/N,ΓN ) is isomorphic to one of

the pairs (Z3,K3,3), (Z4, Q3) and (Z7,H).

Proof. Set A = Aut(Γ). Consider the normal quotient ΓN , and suppose that
M ≤ R(G) such that N ≤M andM/N E Aut(ΓN ) (hereM/N ≤ A/N ≤ Aut(ΓN ),
see Footnote 1 in the previous page). This in turn implies that, M/N E A/N ,
M E A, and M = N . We conclude that, ΓN is a bi-Cayley graph of R(G)/N ,
R(G)/N is in Csub, and R(G)/N has trivial core in Aut(ΓN ). This shows that it is
su�cient to prove Lemma 5.7 in the particular case when N is trivial. For the rest
of the proof we assume that the core N is trivial, and we write N = 1.

By Theorem 2.7, Γ is k-regular for some k ≤ 5. Set A+ = A{G×{0}}. It fol-
lows from the connectedness of Γ that A = 〈A+, τR(G)〉, where τR(G) ∈ A is the
automorphism de�ned in Lemma 5.3. Let M be the core of R(G) in A+. Then
M E A, since M is normalized by τR(G), see Lemma 5.3(i), and A = 〈A+, τR(G)〉.
Thus M ≤ N = 1, hence M is also trivial.

Let us consider A+ acting on the set [A+ : R(G)] of right R(G)-cosets in A+.
This action is faithful because M is trivial. The corresponding degree is equal to
|A+ : R(G)|, which is 3 · 2k−1 because Γ is k-regular. Since R(G) acts as a point
stabilizer in this action, we have an embedding of G into S3·2k−1−1. We will write
below that G ≤ S3·2k−1−1.

It is well-known that A(1G,0) is determined uniquely by k, namely, A(1G,0)
∼= Z3,

or S3, or D12, or S4, or S4×Z2 correspondingly to k = 1, 2, 3, 4 or 5. We go through
each case.
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Case 1. k = 1.

This case can be excluded at once by observing that we have G ≤ S2 by the
above discussion, which contradicts the obvious bound |G| ≥ 3.

Case 2. k = 2.

In this case G ≤ S5. Using also that G ∈ Csub, we see that G is abelian, hence
|G| ≤ 6, |V (Γ)| ≤ 12. We obtain by [14, Table] that Γ ∼= Q3, and G ∼= Z4.

Case 3. k = 3.

Then A+ = R(G)A(1G,0) = R(G)D12, a product of a nilpotent and a dihedral
subgroup. By Theorem 2.2, A+ is solvable. Assume for the moment that A+ is
imprimitive on G × {0}. This implies that A is also imprimitive on V (Γ) and it
has a non-trivial block system δ which has a block properly contained in G × {0}.
Lemma 5.5 gives that Aδ < R(G), and Aδ is non-trivial. This, however, contradicts
that the core N = 1. Thus A+ is primitive on G × {0}. Using that A+ is also
solvable, we �nd that G is a p-group. We see that G is either abelian or it is Q8.
In the latter case |V (Γ)| = 16, and Γ is isomorphic to the Moebius-Kantor graph,
which is, however, 2-regular, see [14, Table]. Therefore, G is an abelian p-group. Let
S = {s1, s2, s3}. Since G is abelian, in Γ we �nd the closed walk:(

(1G, 0), (s1, 1), (s−1
2 s1, 0), (s3s

−1
2 s1, 1) = (s1s

−1
2 s3, 1), (s−1

2 s3, 0), (s3, 1)
)
.

Thus the girth of Γ is equal to 4 or 6 (3 and 5 are impossible as the graph is bipartite).
It was proved in [15, Theorem 2.3] that the Pappus graph on 18 points and the

Desargues graph on 20 points are the only 3-regular cubic graphs of girth 6. For the
latter graph |G| = 10, contradicting that G is a p-group. We can exclude the former
graph by the help of Magma, namely, we computed that the Pappus graph has no
abelian semiregular automorphism group of order 9 which has trivial core in the full
automorphism group.

Thus Γ is of girth 4. It is well-known that there are only three cubic connected
arc-transitive graphs of girth 4 (e. g., see [47, page 163]): K4, K3,3 and Q3. We get
at once that Γ ∼= K3,3 and G ∼= Z3.

Case 4. k = 4.

It is su�cient to show that G is abelian. Then by the above reasoning Γ is of
girth 6, and as the Heawood graph is the only cubic 4-regular graph of girth 6 (see
[15, Theorem 2.3]), we get at once that Γ ∼= H and G ∼= Z7.

Assume, towards a contradiction, that G is non-abelian. Thus G = U×V , where
U is an abelian group of odd order, and V ∼= Q8. We have already shown above that
A+ is primitive on G × {0}. In other words, Γ is a 4-transitive bi-primitive cubic
graph. Two possibilities can be deduced from the list of 4-transitive bi-primitive
graphs given in [52, Theorem 1.4]:

• Γ is the standard double cover of a connected vertex-primitive cubic 4-regular
graph, in which case A = A+ × 〈η〉 for an involution η; or

• Γ isomorphic to the sextet graph S(p) [9], where p ≡ ±7(mod 16), in which
case A ∼= PGL(2,p), and A+ ∼= PSL(2, p).
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The second possibility cannot occur, because then A+ ∼= PSL(2, p), whose Sylow
2-subgroup is a dihedral group (cf. [33, Satz 8.10]), which contradicts that R(V ) ≤
R(G) ≤ A+, and V ∼= Q8.

It remains to exclude the �rst possibility. We may assume, by replacing S with
xS for a suitable x ∈ G if necessary, that η switches (1G, 0) and (1G, 1). Since η
commutes with R(G), we �nd (x, 1)η = (1G, 1)R(x)η = (1G, 1)ηR(x) = (1G, 0)R(x) =
(x, 0) for every x ∈ G. Let s ∈ S. Then (1G, 0) ∼ (s, 1), hence (1G, 1) = (1G, 0)η ∼
(s, 1)η = (s, 0), which shows that s ∈ S−1, and thus S = S−1. Thus there exists
s ∈ S of order o(s) ≤ 2. Put T = s−1S = sS. Then 1G ∈ T , and since Γ is connected,
G = 〈T 〉. Notice that s ∈ Z(G). This implies that T−1 = S−1s = sS = T , and thus
πV (T ) satis�es 1V ∈ πV (T ) and πV (T ) = πV (T )−1. Since V ∼= Q8, this implies that
〈πV (T )〉 6= V , a contradiction to G = 〈T 〉. This completes the proof of this case.

Case 5. k = 5.

In this case Γ is a 5-transitive bi-primitive cubic graph. It was proved in [52,
Corollary 1.5] that Γ is isomorphic to either the PΓL(2, 9)-graph on 30 points (also
known as Tutte's 8-Cage), or the standards double cover of the PSL(3, 3).Z2-graph
on 468 points. These graphs are of girth 8 and 12 respectively (see [14, Table]). Also,
in both cases 8 - |G|, hence G is abelian, which, however, implies that Γ cannot be
of girth larger than 6. This proves that this case does not occur. �

For a group A and a prime p dividing |A|, we let Ap denote a Sylow p-subgroup
of A.

Lemma 5.8. With notation (∗), let X ∈ S(Aut(Γ)) such that X ∈ Csub and X2
∼=

G2. Then X and R(G) are conjugate in Aut(Γ).

Remark 5.9. We remark that, the assumption X2
∼= G2 cannot be deleted. The

Möbius-Kantor graph is a bi-Cayley graph of the group Q8, which has a semiregular
cyclic group of automorphisms of order 8 which preserves the bipartition classes.

Proof. Set A = Aut(Γ). The proof is split into two parts according to whether
R(G) is normal in A.

Case 1. R(G) is not normal in A.

Let N be the core of R(G) in A. By Corollary 5.6, N < X ∩ R(G). Therefore,
it is su�cient to show that

X/N and R(G)/N are conjugate in A/N. (5.1)

Recall that, the group A/N ≤ Aut(ΓN ), where ΓN is the normal quotient of Γ
induced by N (see Lemma 5.4). Both groups X/N and R(G)/N are semiregular
whose orbits are the bipartition classes of ΓN . Also notice that, R(G)/N cannot be
normal in A/N , otherwise R(G) will be normal in A.

According to Lemma 5.7, (R(G)/N,ΓN ) ∼= (Z3,K3,3), or (Z4, Q3), or (Z7,H).
Thus (5.1) follows immediately from Sylow Theorems when (R(G)/N,ΓN ) ∼= (Z7,H).

Let (R(G)/N,ΓN ) ∼= (Z3,K3,3). Since R(G)/N is not normal in A/N, and ΓN
is (A/N, 1)-arc-transitive, we compute by Magma that either A/N = Aut(ΓN ), or
it is a subgroup of Aut(ΓN ) of index 2. In both cases A/N has one conjugacy class
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of semiregular subgroups whose orbits are the bipartition classes of ΓN . Thus (5.1)
holds.

Let (R(G)/N,ΓN ) ∼= (Z4, Q3). Since X2
∼= G2, X/N ∼= R(G)/N ∼= Z4. Using

this and that ΓN is (A/N, 1)-arc-transitive, we compute by Magma that A/N =
Aut(ΓN ), and that Aut(ΓN ) has one conjugacy class of semiregular cyclic subgroups
whose orbits are the bipartition classes of ΓN . Thus (5.1) holds also in this case.

Case 2. R(G) is normal in A.
We have to show that X = R(G). Notice that, X contains every proper subgroup

K < R(G) which is characteristic in R(G). Indeed, since R(G) E A, we have that
K E A, and hence K < X follows from Corollary 5.6. This property will be used
often below.

In particular, R(G)p ≤ R(G) is characteristic for every prime p dividing |R(G)|.
If G is not a p-group, then R(G)p < R(G), and by the above observation R(G)p < X.
This gives that X = R(G) if G is not a p-group. Let G be a p-group. If p > 3, then
both R(G) and X are Sylow p-subgroups of A, and the statement follows from Sylow
Theorems. Notice that, since Γ is connected, G is generated by the set s−1S for some
s ∈ S, hence it is generated by two elements.

Let p = 2. Assume for the moment that G is cyclic. Then R(G) has a charac-
teristic subgroup K such that R(G)/K ∼= Z4. Then K E A, ΓK ∼= Q3. Moreover,
ΓK is a bi-Cayley graph of R(G)/K, and R(G)/K is normal in A/K ≤ Aut(ΓK). A
simple computation, using Magma, shows that this situation does not occur. Let
G be a non-cyclic 2-group in Csub. Also using the fact that G is generated by two
elements, we conclude that either G ∼= Z2

2 and Γ ∼= Q3, or G ∼= Q8 and Γ is the
Möbius-Kantor graph. Now, X = X2

∼= G2 = G. The equality X = R(G) can be
veri�ed by the help of Magma in either case.

Let p = 3. Observe �rst that |G| > 3. For otherwise, Γ ∼= K3,3, but no semiregu-
lar automorphism group of order 3 is normal in Aut(K3,3). Since G is generated by
two elements, we may write G ∼= Z3e × Z3f , where e ≥ 1 and 0 ≤ f ≤ e. If e = 1,
then f = 1, G ∼= Z2

3, and Γ is the Pappus graph. However, this graph has no auto-
morphism group which is isomorphic to Z2

3 and also normal in the full automorphism
group. Therefore, e ≥ 2. De�ne K = {R(x) | x ∈ G and o(x) ≤ 3e−2}. Then K
is a characteristic subgroup of R(G). Thus K / A, and ΓK is a Bi-Cayley graph of
R(G)/K.

Let f ≤ e − 2. Then R(G)/K ∼= Z9, and ΓK is the Pappus graph. This graph,
however, does not have a cyclic semiregular automorphism group of order 9. We
conclude that f ∈ {e− 1, e}.

Let f = e− 1. Then R(G)/K ∼= Z9 × Z3. It follows that ΓK is the unique cubic
arc-transitive graph on 54 points (see [14, Table]). We have checked byMagma that
this graph has a unique semiregular abelian automorphism group whose orbits are the
bipartition classes. Therefore, X/K = R(G)/K. This together with K < X ∩R(G)
yield that X = R(G).

Finally, let f = e. Then R(G)/K ∼= Z9 × Z9. It follows that ΓK is the unique
cubic arc-transitive graph on 162 points (see [14, Table]). A direct computation,
using Magma, gives that X/K = R(G)/K, which together with K < X ∩ R(G)
yield that X = R(G). �
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Recall that, a group H is homogeneous if every isomorphism between two sub-
groups of H can be extended to an automorphism of H. A �nite group G is called
an m-DCI-group if every Cayley graph over G of valency at most m is a CI-graph.
The following result is [51, Proposition 3.2]:

Proposition 5.10. Every 2-DCI-group is homogeneous.

Since every group in C is a 2-DCI-group (see [51, Theorem 1.3]), we have the
corollary that every group in C is homogeneous.

Everything is prepared to prove Theorem 5.1.

Proof of Theorem 5.1. Let G ∈ C and Γ = BCay(G,S) such that |S| ≤ 3. We
have to show that Γ is a BCI-graph. This holds trivially when |S| = 1, and follows
from the homogeneity of G when |S| = 2. Let |S| = 3.

Case 1. Γ is arc-transitive.

Let BCay(G,S) ∼= BCay(G,T ) for some subset T ⊆ G. We may assume with-
out loss of generality that 1G ∈ S ∩ T . Let H = 〈S〉 and K = 〈T 〉. Then
H,K ∈ Csub, both bi-Cayley graphs BCay(H,S) and BCay(K,T ) are connected,
and BCay(H,S) ∼= BCay(K,T ). We claim that BCay(H,S) is a BCI-graph. In view
of Lemma 3.5, this holds if the normalizer of R(H) in Aut(BCay(H,S)) is transitive
on the vertex-set V (BCay(H,S)), and for every X ∈ S(Aut(BCay(H,S))), isomor-
phic to H, X and R(H) are conjugate in Aut(BCay(H,S)). Now, the �rst part
follows from Lemma 5.3, while the second part follows from Lemma 5.8.

Let φ be an isomorphism from BCay(K,T ) to BCay(H,S), and consider the
groupX = φ−1R(K)φ ≤ Sym(H). Since φmaps the bipartition classes of BCay(K,T )
to the bipartition classes of BCay(H,S), we have X ∈ S(Aut(BCay(H,S))). Also,
X2
∼= R(H)2, because X ∼= K, |H| = |K| and H and K are both contained in

the group G from C. Thus Lemma 5.8 is applicable, as a result, X and R(H) are
conjugate in Aut(BCay(H,S)). In particular, H ∼= K. Since G is homogeneous,
there exists α1 ∈ Aut(G) such that Kα1 = H. This α1 induces an isomorphism from
BCay(K,T ) to BCay(H,Tα1). Therefore, BCay(H,S) ∼= BCay(H,Tα1), and since
BCay(H,S) is a BCI-graph, Tα1 = gSα2 for some g ∈ H and α2 ∈ Aut(H). By the
homogeneity of G, α2 extends to an automorphism of G, implying that BCay(G,S)
is a BCI-graph.

Case 2. Γ is not arc-transitive

Since Γ is vertex-transitive (see Lemma 5.3), but not arc-transitive, we have
A(1G,0) = A(s,1) for some s ∈ S. We show below that BCay(G, s−1S) is a BCI-graph,
this obviously yields that the same holds for BCay(G,S). De�ne the permutation
φ of G × {0, 1} by (x, i)φ = (x, 0) if i = 0, and (x, i)φ = (s−1x, 1) if i = 1. The
vertex (x, 0) of BCay(G,S) has neighbourhood (Sx, 1). This is mapped by φ to the
set (s−1Sx, 1). This shows that φ is an isomorphism from Γ to Γ′ = BCay(G, s−1S).
Then Aut(Γ′)(1G,0) = φ−1A(1G,0)φ = φ−1A(s,1)φ = Aut(Γ′)(1G,1). Let τR(G) be the
automorphism of Γ′ de�ned in Lemma 5.3. It follows that τR(G) is an involution (see
the proof of Lemma 5.3), which normalizes R(G) and maps (1G, 0) to (1G, 1). Now,
we can apply Lemma 5.2 to Γ′, as a result, it is su�cient to show that Cay(G, s−1S \
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{1G}) is a CI-graph. This follows because |s−1S \ {1G}| = 2 and that G is a 2-DCI-
group (see [51, Theorem 1.3]). This completes the proof of the theorem. �
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Chapter 6

Connected arc-transitive cubic

bi-Cayley graphs

In this chapter we turn to the class of connected arc-transitive cubic bi-Cayley graphs
BCay(G,R,L, S). As a �rst result, we give a classi�cation of these graphs in the
case when G is an abelian group. For sake of simplicity we call such a graph also an
abelian bi-Cayley graph. We start with a de�nition.

De�nition 6.1. We say that a bi-Cayley graph BCay(G,R,L, S) is of type s if
|R| = |L| = s.

Clearly, if BCay(G,R,L, S) is cubic, then it is of s-type for s ∈ {0, 1, 2}. The
classi�cation in the cases of 0- and 2-type graphs follows from results in [15, 24, 46,
47]. The 0-type graphs are listed in Table 6.1.

no. G S k-reg. other name

1. Zrm × Zm = 〈a, b | arm = brm =
1, bm = am(u+1)〉, r = 3spe11 · · · p

et
t ,

r > 3 and r ≥ 11 if m = 1,

s ∈ {0, 1}, every pi ≡ 1(mod 3), and

u2 + u+ 1 ≡ 0(mod r)

{1, a, b} 1 −

2. Z8 = 〈a〉 {1, a2, a3} 2 Möbius-Kantor graph

3. Z2
m = 〈a, b〉, m > 1,m 6= 3 {1, a, b} 2 −

4. Z3m × Zm = 〈a, b | a3m = b3m =
1, am = bm〉, m > 1

{1, a, b} 2 −

5. Z3 = 〈a〉 {1, a, a−1} 3 K3,3

6. Z2
3 = 〈a, b〉 {1, a, b} 3 Pappus graph

7. Z7 = 〈a〉 {1, a, a3} 4 Heawood graph

Table 6.1: Connected arc-transitive cubic abelian 0-type bi-Cayley graphs.

In deriving Table 6.1, the key observation is that each 0-type graph is of girth
4 or 6, which we have already deduced in the proof of Lemma 5.7. Let Γ be a
connected arc-transitive cubic bi-Cayley graph over an abelian group G. If the girth
of Γ is 4, then the it is isomorphic to K3,3 or Q3. The graph K3,3 is isomorphic to
the bi-Cayley graph given in row no. 5 of Table 6.1, and Q3 is isomorphic to the

55
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bi-Cayley graph given in row no. 3 of Table 6.1 with m = 2. Assume that Γ is of
girth 6. Then by Theorem 2.8, Γ is k-regular for some k ≤ 4. We consider each case
of the theorem separately.

Case 1. k = 1.

In this case Aut(Γ) contains a regular normal subgroup K isomorphic to Dih(L),
where L ∼= Zrm × Zm, r = 3spe11 · · · p

et
t , r > 3 and r ≥ 11 if m = 1, s ∈ {0, 1},

and every pi ≡ 1(mod 3). Consequently, the subgroup G ≤ K that G ∼= L is
semiregular and has two orbits on V (Γ). Notice that, the group L is characteristic
in Dih(L). Thus G is characteristic in K, and since K E Aut(Γ) we conclude that
G E Aut(Γ). Using this and that Γ is arc-transitive, we �nd that Γ is bipartite, and
the bipartition classes are equal to the orbits of G. Therefore, Γ ∼= BCay(G,S) for a
subset S of G. We may assume without loss of generality that 1 ∈ S, here 1 denotes
the identity element of G. Since Γ is arc-transitive and G is normal in Aut(Γ), there
exist σ ∈ Aut(G) and h ∈ G with the property that S is equal to the orbit of 1
under the mapping ϕ : x 7→ xσh, x ∈ G. Thus we may write S = {1, a, b} such that
1ϕ = a, aϕ = b and bϕ = 1. It follows from this that h = a, aσ = a−1b and bσ = a−1.
This shows that both elements a and b are of the same order. On the other hand
Γ is connected, hence 〈a, b〉 = G ∼= Zrm × Zm, and thus a and b are of order rm,
and 〈am〉 = 〈bm〉. Then we can write 〈am〉σ = 〈bm〉σ = 〈(bσ)m〉 = 〈am〉, and thus
(am)σ = (am)u for some integer u, gcd(u, r) = 1. From this (am)u = (am)σ = a−mbm,
hence bm = am(u+1). Also, (am)u

2
= (am)σ

2
= (a−mbm)σ = (am)−u−1, and this gives

that u2+u+1 ≡ 0(mod r). To sum up, BCay(G, {1, a, b}) is one the graphs described
in row no. 1 of Table 6.1. In fact, any graph in that row is arc-transitive, the proof
of this claim we leave for the reader.

Case 2. k = 2. In this case Γ ∼= GP (8, 3), or Aut(Γ) contains a regular normal
subgroup isomorphic to Dih(L), where L ∼= Zrm × Zm, r ∈ {1, 3}, m > 1, and
if r = 1, then m 6= 3. We have checked by Magma that GP (8, 3) admits a bi-
Cayley representation given in row no. 2 of Table 6.1. Otherwise, copying the same
argument as in Case 1, we derive that Γ ∼= BCay(G,S), where S = {1, a, b}, and
either G = 〈a, b〉 ∼= Zm × Zm, m > 1 and m 6= 3, or G = 〈a, b | a3m = b3m =
1, am = bm〉 ∼= Z3m × Zm, m > 1. Therefore, BCay(G, {1, a, b}) is one of the graphs
described in row no. 3 of Table 6.1 in the former case, while it is one of the graphs
described in row no. 4 of Table 6.1 in the latter case. In fact, any graph in these
rows is arc-transitive, the proof is again left for the reader.

Case 3. k = 3. In this case Γ ∼= F18 (the Pappus graph) or GP (10, 3) (the Desargues
graph). The Pappus graph admits a bi-Cayley representation given in row no. 6 of
Table 6.1, and we have checked by Magma that the Desargues graph cannot be
represented as a 0-type abelian bi-Cayley graph.

Case 4. k = 4. In this case Γ ∼= F14 (the Heawood graph), which admits a bi-Cayley
representation given in row no. 7 of Table 6.1.

The 2-type connected arc-transitive cubic abelian bi-Cayley graphs are listed in
Table 6.2.

Table 6.2 follows directly from the classi�cation of connected arc-transitive abelian
bi-Cayley graphs BCay(G,R,L, S) with |S| = 1 given in [46, Theorem 1.1].
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G R L S k-trans other name

〈a, b〉 = Z2
2 {a, b} {a, b} {1} 2 GP (4, 1)

〈a〉 × 〈b〉 = Z2 × Z10 {ab3, ab−3} {b, b−1} {1} 2 −
〈a〉 = Zn {a} {ak} {1} 2 GP (n, k), (n, k) =

(4, 1), (8, 3), (10, 2),

(12, 5), (24, 5)

〈a〉 = Zn {a} {ak} {1} 3 GP (n, k), (n, k) =

(5, 2), (10, 3)

Table 6.2: Connected arc-transitive cubic abelian 2-type bi-Cayley graphs.

In Section 6.1 we complete the classi�cation by proving the following theorem:

Theorem 6.2. There are exactly four connected arc-transitive cubic 1-type abelian

bi-Cayley graphs: K4, Q3, GP (8, 3) and GP (12, 5).

In Section 6.2 we turn to the BCI-property of cubic bi-Cayley graphs BCay(G,S)
where G is a �nite abelian group. We have seen in the previous chapter that G is a 3-
BCI-group if and only if G = U×V , where U is an abelian group of odd order whose
Sylow subgroups are homocyclic and V is trivial, Z2r or Zr2 (see Theorem 5.1 and
the preceding paragraph). Consequently, the class of abelian 3-BCI groups is quite
restricted. As our second main result in this chapter, we prove that the situation
changes completely when one considers only connected arc-transitive graphs.

Theorem 6.3. Let G be a �nite abelian group. Then every connected arc-transitive

cubic bi-Cayley graph BCay(G,S) is a BCI-graph.

6.1 Proof of Theorem 6.2

Till the end of the section we keep the following notation:

Γ = BCay(G, {r}, {s}, {1, t})

is a cubic symmetric graph, G = 〈r, s, t〉 is an abelian group and, r and s are
involutions.

The core of a subgroup A in a group B is the largest normal subgroup of B
contained in A. In order to derive Theorem 6.2, we analyse the core of R(G) in
Aut(Γ).

Lemma 6.4. If R(G) has trivial core in Aut(Γ), then one of the following holds:

(i) G ∼= Z2, s = r = t, and Γ ∼= K4.

(ii) G ∼= Z2
2, s 6= r, t = sr and Γ ∼= Q3.

Proof. If Γ is of girth 4, then it is isomorphic to K4, or K3,3, or Q3. In the �rst case
we get at once (i), and it is not hard to see that K3,3 is impossible. Furthermore,
we compute by Magma that Q3 is possible, G ∼= Z2

2, and r, s, t must be as given in
(ii).
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For the rest of the proof we assume that the girth of Γ is larger than 4. Then
r 6= s, for otherwise, we �nd the 4-circuit ((1, 0), (1, 1), (r, 1), (r, 0)). Then either
〈r, s〉 ∩ 〈t〉 is trivial, and

G = 〈r, s〉 × 〈t〉 ∼= Z2
2 × Zn; (6.1)

or t is of even order, say 2n, tn ∈ 〈r, s〉, and

G = 〈r, s, t〉 ∼= Z2 × Z2n. (6.2)

Note that, we have |G| = 4n.
By Tutte's Theorem (Theorem 2.7), Γ is k-regular for some k ≤ 5. The order

|Aut(Γ)| = |V (Γ)| · 3 · 2k−1 = |G| · 3 · 2k, and thus |Aut(Γ) : R(G)| = 3 · 2k. Consider
the action of Aut(Γ) on the set of its right R(G)-cosets. Since R(G) has trivial core
in Aut(Γ), this action is faithful. Using this and that R(G) acts as a point stabilizer,
we have an embedding of R(G) into S3·2k−1. We shall write below G ≤ S3·2k−1.
It was proved in [12, Theorem 1] that, if n = 3m + 2 and A ≤ Sn is an abelian
subgroup, then

|A| ≤ 2 · 3m, (6.3)

and equality holds if and only if A ∼= Z2 × Zm3 .

Case 1. k = 1. In this case Z2
2 ≤ G ≤ S5. This implies that |G| = 4, Γ ∼= Q3 (see

[14, Table]), which contradicts that the girth is larger than 4.

Case 2. k = 2. In this case G ≤ S11. Since |G| = 4n, we obtain by (6.3) that
n ≤ 13. We compute by Magma that, if G is given as in (6.1) and n ≤ 13, then Γ
is not edge-transitive. Furthermore, if G is given as in (6.2) and n ≤ 13, then Γ is
edge-transitive only if n = 2 or n = 3. Consequently, Γ ∼= GP (8, 3) or GP (12, 5) (see
[14, Table]). However, we have checked by Magma that in both cases the possible
semiregular subgroups have a non-trivial core in the full automorphism group, and
thus this case is excluded.

Case 3. k ≥ 3. We may assume that n > 13, see the previous paragraph. We �nd in
Γ the 8-cycle ( (1, 0), (r, 0), (r, 1), (rs, 1), (rs, 0), (s, 0), (s, 1), (1, 1)). Thus there must
be an 8-cycle, say C, starting with the 3-arc ((1, 0), (t, 1), (t, 0), (t2, 1)), let this be
written in the form:

C =
(

(1, 0), (t, 1), (t, 0), (t2, 1), (δt2, x), (γδt2, x′), (βγδt2, x′′), (αβγδt2, x′′′)
)
,

where x, x′, x′′, x′′′′ ∈ {0, 1} and α, β, γ, δ ∈ {1, r, s, t, t−1}. Put η = αβγδt2. Observe
that, η = tirjsk for some integers i, j, k ≥ 0. Moreover, i ≤ 4 and i = 0 if and only if

C = ( (1, 0), (t, 1), (t, 0), (t2, 1), (t2s, 1), (ts, 0), (ts, 1), (s, 0) ),

and so η = s. On the other hand, since 10 ∼ ηx′′′ and ηx′′′ 6= t1, η ∈ {1, r}, and
we conclude that i > 0 (recall that r 6= s). Now, 1 = η2 = t2ir2js2k = t2i, which
implies that the order of t is at most 8, and hence n ≤ 8 (see (6.1) and (6.2)), which
contradicts that n > 13. This completes the proof of the lemma. �
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Lemma 6.5. Let R(N) be the core of R(G) in Aut(Γ). Then one of the following

holds:

(i) G = N × 〈r〉, and Nr = Ns = Nt.

(ii) G = N × 〈r, s〉, r 6= s, and Nt = Nrs.

Proof. By Lemma 5.4(iii), the quotient graph ΓR(N) can be written in the form

ΓR(N) = BCay(G/N, {Nr}, {Ns}, {N,Nt}).

We claim that R(G/N) has trivial core in Aut(ΓR(N)). This and Lemma 6.4 will
yield (i) and (ii).

Let ρ be the permutation representation of Aut(Γ) derived from its action on the
set of R(N)-orbits. By Lemma 5.4(ii), the kernel ker ρ = R(N), ρ(R(G)) = R(G/N),
and any subgroup of R(G/N) is in the form ρ(R(K)) for some N ≤ K ≤ G. Assume
that ρ(R(K)) E Aut(ΓR(N)). Then ρ(R(K)) E ρ(Aut(Γ)), and hence R(K) E
Aut(Γ). Thus R(K) = R(N), because R(N) is the core. We �nd that ρ(R(K)) is
trivial, and the claim is proved. �

In the next lemma we deal with case (i) of Lemma 6.5.

Lemma 6.6. Let R(N) be the core of R(G) in Aut(Γ), and suppose that N 6= 1 and

case (i) of Lemma 6.5 holds. Then one of the following holds:

(i) G ∼= Z2
2, r = s 6= t, and Γ ∼= Q3.

(ii) G = 〈r〉 × 〈t〉 ∼= Z2 × Z4, and Γ ∼= BCay(G, {r}, {rt2}, {1, t}) ∼= GP (8, 3).

Proof. In this case G = N × 〈r〉, and Nr = Ns = Nt. Thus s = n1r, and t = n2r
for some n1, n2 ∈ N . Furthermore, n1 is an involution, and since G = 〈r, s, t〉,
N = 〈n1, n2〉.

Assume for the moment that N is not a 2-group, and let p be an odd prime
divisor of |N |. ThenM = 〈n1, n

p
2〉 is the unique subgroup in N of index p, hence it is

characteristic inN . Using also that R(N) E Aut(Γ), this gives that R(M) E Aut(Γ).
The quotient graph ΓR(M) is a cubic symmetric graph on 4p points admitting a 1-
type bi-Cayley representation over G/M . It was proved in [23, Theorem 6.2] that
ΓR(M) is isomorphic to one of the graphs: GP (10, 3), GP (10, 5), and the Coxeter
graph F28. We compute by Magma that none of the these graphs has a 1-type
bi-Cayley representation.We conclude that N is a 2-group.

Notice that, N ∼= Z2m or Z2 × Z2m−1 . If |N | ≥ 8, then N has a characteristic
subgroupM such that |N : M | = 8. Using also that R(N) E Aut(Γ), we �nd in turn
that, R(M) E Aut(Γ), and ΓR(M) is a cubic symmetric graph on 32 points which
admits a 1-type bi-Cayley representation over G/M . Thus Γ is isomorphic to the
Dyck graph F32 (see [14, Table]), which can be excluded by the help of Magma.
Therefore, |N | ∈ {2, 4}, and these yield easily cases (i) and (ii) respectively. �

In the next lemma we deal with case (ii) of Lemma 6.5.

Lemma 6.7. Let R(N) be the core of R(G) in Aut(Γ), and suppose that N 6=
1 and case (ii) of Lemma 6.6 holds. Then G = 〈r〉 × 〈t〉 ∼= Z2 × Z6, and Γ ∼=
BCay(G, {r}, {rt3}, {1, t}) ∼= GP (12, 5).
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(N, 0)

(N, 1)

(Ns, 1)

(Nr, 0)
(Nrs, 1)

(Nrs, 0)

(Ns, 0)

(Nr, 1)

n1

n11

n1

n1

Figure 6.1: Voltage assignment ζ of ΓR(N).

Proof. In this case G = N × 〈r, s〉, r 6= s, and Nt = Nrs. Thus t = n1rs for some
n1 ∈ N . Since G = 〈r, s, t〉, N = 〈n1〉. Now, by Lemma 5.4(iii) we may write

ΓR(N) = BCay(G/N, {Nr}, {Ns}, {N,Nrs}) ∼= Q3.

We proceed by de�ning an N -voltage assignment of the quotient graph ΓR(N).
For this purpose we have depicted ΓR(N) in Fig. 6.1, where we have also �xed the
spanning tree T speci�ed by the dashed edges. Now, let ζ : A(ΓR(N)) → N be
the T -reduced N -voltage assignment with its voltages being given in Fig. 6.1. To
simplify notation we set Γ̂ = ΓR(N) ×ζ N . Recall that N̂ is a subgroup of Aut(Γ̂)
(see Subsection 2.2.3). Next, we prove the following properties:

Γ ∼= Γ̂, and N̂ E Aut(Γ̂). (6.4)

De�ne the mapping f : V (Γ̂)→ V (Γ) by

f : ((Nx, 0), n) 7→ (nx, 0) and ((Nx, 1), n) 7→ (nx, 1), x ∈ {1, r, s, rs}, n ∈ N.

Notice that, f is well-de�ned because {1, r, s, rs} is a complete set of coset represen-
tatives of N in G. We prove below that f is an isomorphism from Γ̂ to Γ. Let v̂1

and v̂2 be two adjacent vertices of Γ̂. This means that v̂1 = ((Nx, i), n) and v̂2 =
((Ny, j), ζ(a)n), where a = ((Nx, i), (Ny, j)) is an arc of ΓR(N). Thenf(v̂1) = (xn, i)
and f(v̂2) = (yζ(a)n, j).

Let i = j = 0. Then it can be seen in Fig. 6.1 that y = rx and ζ(a) = 1. Thus
in Γ we �nd f(v̂1) = (nx, 0) ∼ (rnx, 0) = (yζ(a)n, 0) = f(v̂2). Let i = j = 1. Then
y = sx, ζ(a) = 1, and so f(v̂1) = (nx, 1) ∼ (snx, 1) = (yζ(a)n, 1) = f(v̂2). Finally,
let i = 0 and j = 1. Then y = x or y = rsx. In the former case ζ(a) = 1, and
f(v̂1) = (nx, 0) ∼ (nx, 1) = (yζ(a)n, 1) = f(v̂2). In the latter case ζ(a) = n1, and

f(v̂1) = (nx, 0) ∼ (tnx, 1) = (n1rsnx, 1) = (yζ(a)n, 1) = f(v̂2).

By these we have proved that f is indeed an isomorphism.
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For the second part of (6.4), compute that fR(m)f−1 maps ((Nx, i), n) to
((Nx, i), nm) for every m ∈ N . Thus fR(m)f−1 = m̂, and so fR(N)f−1 = N̂ .
Since R(N) E Aut(Γ), N̂ = fR(N)f−1 E f Aut(Γ)f−1 = Aut(Γ̂), as claimed.

Now, (6.4) holds, implying that Aut(Γ̂) projects to an edge-transitive subgroup
of Aut(ΓR(N)). We obtain from this that the automorphism α ∈ Aut(ΓR(N)) lifts,
where

α = ( (Nr, 0), (Nrs, 1), (N, 1))( (Nr, 1), (Nrs, 0), (Ns, 1) ).

Apply Theorem 2.10 to Γ̂ with σ = α and the following directed base circuits relative
to T :

~C = ((Ns, 0), (Nrs, 0), (N, 1), (Ns, 1)) and ~C ′ = ((N, 0), (Nr, 0), (Ns, 1), (N, 1)).

Let σ∗ be the automorphism of N given in Theorem 2.10. Since ζ(~C) = ζ(~C ′) = n1,
ζ(~C α) = σ∗(n1) = ζ(~C ′α), which gives n−2

1 = n1. Thus |N | = 3, and this yields
easily the statement of the lemma. �

Proof of Theorem 6.2. The theorem follows directly from Lemmas 6.4 - 6.7.

6.2 Proof of Theorem 6.3

Till the end of the section we keep the following notation:

Γ = BCay(G, {1, a, b})

is a cubic arc-transitive graph, where G = 〈a, b〉 is an abelian group.

Recall that, S(Aut(Γ)) denotes the set of all semiregular subgroups of Aut(Γ)
whose orbits are G×{0} and G×{1}. The next lemma is a special case of Lemma 5.3.

Lemma 6.8. For every abelian group X ∈ S(Aut(Γ)), there exists an involution

τX ∈ Aut(Γ) which satis�es the following properties:

(i) Every subgroup Y ≤ X is normalized by τX .

(ii) The group 〈X, τX〉 is regular on V (Γ).

Lemma 6.9. Let N ≤ Aut(Γ) be a normal subgroup such that there exists an N -

orbit properly contained in G× {0}, and let X be an abelian group from S(Aut(Γ)).
Then N < X.

Proof. We copy the argument in the proof of Corollary 5.6. Let ∆ be an N -orbit
such that ∆ ⊂ G× {0}, and let us consider Y = X ∩Aut(Γ){∆}. Since ∆ is a block
contained in an X-orbit, we obtain that ∆ is an Y -orbit. We write ∆ = Orb(Y, v).
Moreover, as X is semiregular, Y is regular on ∆, and by this and Lemma 5.4(ii) we
have

|Y | = |∆| = |N |. (6.5)
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Let τX ∈ Aut(Γ) be the automorphism de�ned in Lemma 6.8, and set L =
〈X, τX〉. According to Lemma 6.8 the group L is transitive on V (Γ), and also Y E L.
Denote by δ the system of blocks induced by ∆. Then we may write

δ = {∆l | l ∈ L} = {Orb(Y, v)l | l ∈ L} = {Orb(Y, vl) | l ∈ L}.

From this Y ≤ Aut(Γ)δ, where Aut(Γ)δ is the kernel of Aut(Γ) acting on δ. Since
Aut(Γ)δ = N (see Lemma 5.4(ii)), we have that Y ≤ N . This and (6.5) imply that
N = Y < X. �

For a group G and a prime p dividing |G|, we let Gp denote a Sylow p-subgroup
of G.

Proof of Theorem 6.3. We have to show that Γ is a BCI-graph. Let X ∈
S(Aut(Γ)) such that X ∼= G. By Lemma 3.5 and Lemma 6.8, it is su�cient to show
the following

X and R(G) are conjugate in Aut(Γ). (6.6)

Recall that the girth of Γ is 4 or 6, and if it is 4, then Γ is isomorphic to K3,3

or Q3. It is easy to see that (6.6) holds when Γ ∼= K3,3, and we have checked by the
help of Magma that it also holds when Γ ∼= Q3. Thus assume that Γ is of girth 6.
By Theorem 2.8, Γ is k-regular for some k ≤ 4.

Case 1. k = 1. In this case Aut(Γ) contains a regular normal subgroup K isomor-
phic to Dih(L), where L ∼= Zrm × Zm, r = 3spe11 · · · p

et
t , r > 3 and r ≥ 11 if m = 1,

s ∈ {0, 1}, and every pi ≡ 1(mod 3). We have proved in the second paragraph fol-
lowing Table 6.1 that Aut(Γ) contains a semiregular normal subgroup N such that
N ∼= L, and the orbits of N are G×{0} and G×{1}. Notice that, X contains every
proper characteristic subgroup K of N . Indeed, since N E Aut(Γ), K E Aut(Γ),
and Lemma 6.9 can be applied for N , implying that K < X. In particular, if N is
not a p-group, then Np < X for every prime p dividing |N |, and thus N = X. Since
this holds for every X ∈ S(Aut(Γ)) with X ∼= G, it holds also for X = R(G), and we
get R(G) = N = X. In this case (6.6) holds trivially. Let N be a p-group for a prime
p. Then it follows from the fact that N ∼= L that p > 3, and thus both R(G) and X
are Sylow p-subgroups of Aut(Γ). In this case (6.6) follows from Sylow's Theorem.

Case 2. k = 2. In this case Γ ∼= GP (8, 3), or Aut(Γ) contains a regular normal
subgroup isomorphic to Dih(L), where L ∼= Zrm × Zm, r ∈ {1, 3}, m > 1, and if
r = 1, then m 6= 3. If Γ ∼= GP (8, 3), then we have checked by Magma that G ∼= Z8

and (6.6) holds. Assume that Γ � GP (8, 3). We have proved in the third paragraph
following Table 6.1 that Aut(Γ) contains a semiregular normal subgroup N such that
N ∼= L, and the orbits of N are G×{0} and G×{1}. Now, repeating the argument
in Case 1 above, we obtain that N = X = R(G) if N is not a p-group. Let N be
a p-group for a prime p. If p > 3, then both R(G) and X are Sylow p-subgroups
of Aut(Γ), and (6.6) follows from Sylow's Theorem. We are left with the case that
p ∈ {2, 3}.

Let p = 2. Since N ∼= L, we �nd that N ∼= Z2e × Z2e , e ≥ 1. De�ne K =
{x ∈ N | o(x) ≤ 2e−1}. Then K is characteristic in N and thus K E Aut(Γ). By
Lemma 6.9, K ≤ X ∩ R(G). By Lemma 5.4(iii), the quotient graph ΓK is a 0-type
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Bi-Cayley graph over the group N/K ∼= Z2
2. Then ΓK ∼= Q3 and both N/K and

R(G)/K are semiregular on V (ΓK) having orbits the two bipartition classes of ΓK .
Since X ∼= R(G), X/K ∼= R(G)/K. A direct computation, usingMagma, gives that
there are two possibilities: X/K ∼= R(G)/K ∼= Z2

2 or Z4. Furthermore, In the former
case X/K = R(G)/K, which together with K < X∩R(G) yield that X = R(G), and
(6.6) holds trivially. Suppose that the latter case holds and consider Aut(Γ) acting
on the set of K-orbits. The kernel of this action is equal to K, see Lemma 5.4.(ii),
and thus the image Aut(Γ)/K is a subgroup of Aut(ΓK) which is transitive on the
set of 2-arcs of ΓK . However, ΓK is 2-regular (it is, in fact, isomorphic to Q3), and
we obtain that Aut(Γ)/K = Aut(ΓK). We compute by Magma that X/K and
R(G)/K are conjugate in Aut(ΓK) = Aut(Γ)/K, and so (6.6) follows from this and
the fact that K < X ∩R(G).

Let p = 3. Observe �rst that |N | > 3. For otherwise, Γ ∼= K3,3, contradicting
that the girth is 6. Since N ∼= L, we �nd that N ∼= Z3e+ε × Z3e , e ≥ 1, ε ∈ {0, 1},
and if ε = 0, then e ≥ 2. Let ε = 0. De�ne K = {x ∈ N : o(x) ≤ 3e−2}. Then
K is characteristic in N and thus K E Aut(Γ). By Lemma 6.9, K ≤ X ∩ R(G).
By Lemma 5.4(iii), the quotient graph ΓK is a 0-type Bi-Cayley graph of the group
N/K ∼= Z2

9. It follows that ΓK is the unique cubic symmetric graph on 162 points
of girth 6 (see [14, Table]). A direct computation, using Magma, gives that X/K =
R(G)/K = N/K, which together with K < X ∩ R(G) yield that X = R(G), and
(6.6) holds trivially. Let ε = 1. De�ne K = {x ∈ N | o(x) ≤ 3e−1}. Then K is
characteristic in N and thus K E Aut(Γ). By Lemma 6.9, K ≤ X ∩ R(G). By
Lemma 5.4(iii), the quotient graph ΓK is a 0-type Bi-Cayley graph of the group
N/K ∼= Z9 × Z3. It follows that ΓK is the unique cubic symmetric graph on 54
points (see [14, Table]). A direct computation, using Magma, gives that X/K =
R(G)/K = N/K, which together with K < X ∩ R(G) yield that X = R(G), and
(6.6) holds also in this case.

Case 3. k = 3. In this case Γ ∼= F18 (the Pappus graph) or GP (10, 3) (the
Desargues graph). We have checked by Magma that in the former case G ∼= Z2

3 and
(6.6) holds, and the latter case cannot occur.

Case 4. k = 4. In this case Γ ∼= F14 (the Heawood graph), and (6.6) follows at
once because X and R(G) are Sylow 7-subgroups of Aut(Γ). �
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Chapter 7

CI-property of cyclic balanced

con�gurations

An incidence geometry (P,B) consists of a set of v points P = {p1, ..., pv} and
a collection of b lines (or blocks) B = {B1, ..., Bb} such that Bi ⊆ P for every
i ∈ {1, ..., b}, and |Bi ∩ Bj | ≤ 1 for every i, j ∈ {1, ..., b} and i 6= j. The incidence
geometry (P,B) is called a con�guration of type (vr, bk) (combinatorial con�guration
in the sense of [29]) if

• |{Bj ∈ B : pi ∈ Bj}| = r for every i ∈ {1, .., v}; and

• |Bj | = k for every j ∈ {1, .., b} with k ≥ 3.

A con�guration with v = b (and therefore r = k) is called balanced, or a k-
con�guration, and its type is simply denoted by (vk).

A con�guration (P,B) is called decomposable if it is the disjoint union of two
con�gurations (Pr,Br), r = 1, 2, i. e., P = P1 ∪ P2, P1 ∩ P2 = ∅, and B = B1 ∪ B2.
Indecomposable con�gurations are also called connected. An isomorphism between
two incidence geometries (Pr,Br), r = 1, 2, is a bijective mapping σ : P1 → P2

which maps B1 onto B2. Here a line B ∈ B1 with B = {p1, ..., pk} is mapped onto
Bσ = {pσ1 , ..., pσk}. If (P1,B1) = (P2,B2), then σ is called an automorphism, and the
group of all automorphisms will be denoted by Aut(P,B).

Let (P,B) be an incidence geometry with v points. We say that (P,B) is cyclic
if it has an automorphism which permutes its points in a full cycle. From now on we
identify the point set P with the cyclic group Zv and also assume that (Zv)right ≤
Aut(P,B). Thus (Zv,B) can be regarded as a Cayley object of Zn where B de�nes
the k-ary relation consisting of all k-tuples (x1, . . . , xk) for which {x1, . . . , xk} is
a line in B. Thus two cyclic con�gurations are isomorphic if and only if they are
isomorphic as Cayley objects. In this chapter we study the CI-property of cyclic
con�gurations. It follows at once from Pálfy's Theorem 2.16 that the CI-property is
guaranteed provided that the number of points is v = 4 or it satis�es (v, ϕ(v)) = 1,
where ϕ is Euler's totient function. Another special when the con�guration is a
projective plane was considered by Jungnickel.
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Theorem 7.1 (Jungnickel [39]). Every projective plane with a regular abelian auto-

morphism group has the CI-property

Projective planes are examples of balanced con�gurations. As for an example of a
cyclic con�guration which does not have the CI-property, we refer to [68]; in this
paper Phelps gave an example of cyclic 2-(v, 3, 1) design which does not have the
CI-property. It is worth to note that the latter con�guration is not balanced. In this
thesis we restrict our attention exclusively to the balanced case.

In Section 7.1, we make the simple observation that the incidence graph of a cyclic
balanced con�guration is a bi-Cayley graph over Zv; moreover, the con�guration has
the CI-property if and only if the incidence graph is a BCI-graph. In fact, this idea
occurred in several papers [10, 30, 66, 67], see also the monograph [69]. Some easy
corollaries of this equivalence will be also derived, namely, we give a short proof for
the fact that all cyclic balanced 3- and 4-con�gurations have the CI-property.

In Section 7.2, we give more examples of cyclic balanced con�gurations having
the CI-property. The main result will be the following theorem:

Theorem 7.2. Every cyclic balanced con�guration with v-points has the CI-property
if v = pq or v = pn, where p, q are primes.

Finally, in Section 7.3, we turn to the enumeration problem for con�gurations.
This problem, both for geometrical and combinatorial con�gurations, attracted con-
siderable attention, see the monograph [29, Chapters 2-3]. Betten et al. [8] produced
the list of all con�gurations of type (v3). Here we are going to derive a close formula
for the number of connected cyclic con�gurations of type (v3).

Theorem 7.3. Let v > 4 be an integer with prime factorization v = pn1
1 · · · p

nk
k . Then

the number of connected cyclic con�gurations of type (v3) is given by the following

formula:
v
6

∏k
i=1

(
1 + 1

pi

)
+ α2k − 2 if v is odd,

v
6

∏k
i=1

(
1 + 1

pi

)
+ β2k − 3 if v is even,

(7.1)

where α is de�ned for v odd by

α =


5/6 if every pi ≡ 1(mod 3),

2/3 if pn1
1 = 3 and if i > 1, then pi ≡ 1(mod 3),

1/2 otherwise,

and β is de�ned for v even by

β =


1/4 if v ≡ 2(mod 8) or v ≡ 6(mod 8),

1/2 if v ≡ 4(mod 8),

1 if v ≡ 0(mod 8).
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7.1 Balanced con�gurations and bi-Cayley graphs

Let C = (P,B) be an arbitrary con�guration. The incidence graph Γ(C) of C is
the bipartite graph whose colour classes are identi�ed with the point set P and the
line set B, and the vertex associated with a point p ∈ P is adjacent to the vertex
associated with a line B ∈ B if and only if p ∈ B.

Example 7.4. We depicted in Fig. 7.1 the Fano plane F , the unique projective
plane of order 2, and its incidence graph. The point set of F is the set {1, 2, . . . , 7},
and it has 7 lines each having 3 points. These lines correspond to the 3 sides, the 3
altitudes, and the inner circle of the triangle.

1 4

6

3

7

5

2 1 3 52 4 6 7

{1, 2, 4}{2, 3, 5}{3, 4, 6}{4, 5, 7}{1, 5, 6}{2, 6, 7}{1, 3, 7}

Figure 7.1: The Fano plane F and its incidence graph Γ(F).

It can be checked directly that the cycle π = (1 2 3 4 5 6 7) is an automorphism
of F which permutes the lines in a 7-cycle. Thus the group G := 〈π〉 induces an
automorphism group of the graph Γ(F) such that G is semiregular on the vertex
set, and its orbits coincide with the point set and the line set. By de�nition, Γ(F)
is a bi-Cayley graph of G. A possible bi-Cayley representation of Γ(F) is shown in
Fig. 7.2.

(0, 0) (2, 0) (4, 0)(1, 0) (3, 0) (5, 0) (6, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

Figure 7.2: A bi-Cayley representation BCay(Z7, {0, 4, 6}) of the graph Γ(F).

�

In the following lemma we generalize the above example.

Lemma 7.5. Let C = (Zv,B) be a balanced con�guration such that (Zv)right ≤
Aut(C). Then the following hold.
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(i) There exists a subset S of Zv such that B consists of the sets in the form S+ i,
i ∈ Zv.

(ii) The incidence graph Γ(C) is isomorphic to BCay(Zv, S).

Proof. For sake of simplicity we put G = (Zv)right. Choose a line B ∈ B such that
0 ∈ B, where 0 is the zero element of Zv. Assume for the moment that B satis�es
the following property:

Bg = B or Bg ∩B = ∅ for every g ∈ G. (7.2)

In other words, B is a block for G. Since G is regular on Zv, B is an orbit of a
subgroup of G of size k, where k is the size of the lines. Since G is a cyclic group,
the set B is uniquely determined. Choose next a line B′ ∈ B for which 0 ∈ B′ and
B′ 6= B. Then (7.2) does not hold for B′, i. e., there exists g ∈ G such that B′ and
B′ g have a nonempty intersection. Since B and B′ are two lines they intersect at a
unique point, let i ∈ Zv be this point.

Consider the action of G on the set B. The stabilizer GB′ of the line B′ in this
action is de�ned as GB′ = {g ∈ G | B′ g = B′}. Then GB′ g = g−1GB′g, |GB′ g | =
|GB′ |, and so GB′ g = GB′ as G is a cyclic group. Clearly, every element in GB′∩GB′ g
�xes the point i. Since G is regular on the points, we get GB′ = GB′ ∩GB′ g = 1. By
Theorem 2.3, the orbit of B′ under G is of length |G| = |P | = |B|. Letting S = B′,
the part (i) of the lemma follows.

In order to prove part (ii), we associate the point set Zv with Zv × {1} by
associating the point i ∈ Zv with (i, 1); and the line set B with Zv×{0} by associating
the line S + i ∈ B with (i, 0). It follows from part (i) that the bi-Cayley graph
BCay(Zv, S) is isomorphic to the incidence graph Γ(C). �

We shall refer to the set S in Lemma 7.5 as a base line of C, and use the symbol
Con(Zv, S) for C. Base lines are characterized in the next lemma.

Lemma 7.6 (Hladnik et al. [30]). The following (i)-(ii) are equivalent for every

subset S of Zv.

(i) S is a base line of a cyclic con�guration of type (vk).

(ii) |S| = k and |S − S| = k2 − k + 1, where S − S = {s1 − s2 : s1, s2 ∈ S}.

Suppose that S is a base line such that 0 ∈ S (clearly, every con�guration admits
base lines with this property). The set S generates a subgroup of Zv, say of order d,
and denote it by Zd. Then Con(Zd, S) is a connected con�guration. Also, Con(Zv, S)
decomposes to the union of v/d copies of Con(Zd, S):

Con(Zv, S) ∼= Con(Zd, S) ∪ · · · ∪ Con(Zd, S). (7.3)

Note that, if S is an arbitrary base line (0 is not necessarily in S), then it holds:

Con(Zv, S) is connected ⇐⇒ 〈S − S〉 = Zv. (7.4)

The following necessary condition, which follows from Lemma 7.6(ii), for a set to
be a base line will be used frequently through the chapter.
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Corollary 7.7. If a subset S of Zv is a base line of a cyclic con�guration, then S
contains no H-coset for every nontrivial subgroup H ≤ Zv.

For positive integers v and k denote by B(v, k) the set of all base lines of Zv
of size k, and by Bcon(v, k) the set of those which de�ne connected con�gurations.
More formally,

B(v, k) =
{
X ⊆ Zv : |X| = k and |X −X| = k2 − k + 1

}
,

Bcon(v, k) =
{
X ∈ B(v, k) : 〈X −X〉 = Zv

}
.

Notice that, if X ∈ B(v, k), a ∈ Z∗v and b ∈ Zv, then the set aX+b is also in B(v, k).
Hence the mapping X 7→ aX+b de�nes an action of the group AGL(1, v) on B(v, k).
Clearly, the subset Bcon(v, k) of B(v, k) is invariant with respect to this action.

Next, we review the de�nition of a circulant matrix. Let A be an v-by-v matrix.
The matrix A is a permutation matrix if it is a (0, 1)-matrix, and every row and
column contains exactly one 1's. Furthermore, A = (ai,j) is a circulant matrix if
ai+1,j+1 = ai,j holds for every i, j ∈ {0, 1, ..., v−1}, where the additions in subscripts
are modulo v. Here we label rows and columns by elements of Zv. We let Zv =
{0, 1, ..., v−1}, the leftmost column is labelled 0, the next is 1 and so on. If A = (ai,j)
is an v-by-v (0, 1) circulant matrix, then denote by SA the subset of Zv de�ned by

SA = {i ∈ Zv : a0, i = 1}.

The cardinality |SA| is also called the weight of A. Also, AT denotes the transpose
of the matrix A.

Let S ∈ B(v, k), and let A be the circulant (0, 1)-matrix de�ned by SA = S. It
follows immediately from the de�nitions that, A is a line-point incidence matrix of
the cyclic con�guration Con(Zv, S) (see [29]).

Lemma 7.8. For r = 1, 2, let Sr ∈ B(v, k), and let Ar be the (0, 1) circulant matrix
de�ned by SAr = Sr.

(i) The following are equivalent:

(i1) Con(Zv, S1) ∼= Con(Zv, S2)

(i2) A1 = PA2Q for some v-by-v permutation matrices P and Q.

(i3) BCay(Zv, S1) ∼= BCay(Zv, S2).

(ii) The con�guration Con(Zv, S) has the CI-property if and only if BCay(Zv, S) is
a BCI-graph.

Proof. Let P and Q arbitrary v-by-v permutation matrices. Associate the permu-
tation π of Zv with P and the permutation σ of Zv with Q as follows:

iπ = j
def⇐⇒ Pi,j = 1 and iσ = j

def⇐⇒ Qj,i = 1 for evey i, j ∈ Zv.

Then

(PA2Q)i,j =

v−1∑
k,l=0

Pi,k(A2)k,lQl,j = (A2)iπ ,jσ .
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Now, A1 = PA2Q can be interpreted as the permutation σ maps the line S1 + i
to the line S2 + iπ. Equivalently, σ induces an isomorphism from Con(Zv, S1) to
Con(Zv, S2). The equivalence (i1)⇔ (i2) follows.

We �nish the proof of (i) by showing the equivalence (i1)⇔ (i3). It is easy seen
that (i1) ⇒ (i3) holds. For (i1) ⇐ (i3), suppose that the graph BCay(Zv, S1) ∼=
BCay(Zv, S2). We have shown in the proof of Lemma 3.5 that there exists an isomor-
phism φ from the �rst graph to the second one which, as a permutation of Zv×{0, 1},
�xes setwise Zv × {0} (and thus Zv × {1} as well). By Lemma 7.5(ii), there also
exists an isomorphism σ from the incidence graph of Con(Zv, S1) to the incidence
graph of Con(Zv, S2) such that σ preserves the colour classes de�ned by the two
point sets. This gives immediately that σ induces an isomorphism between the two
con�gurations, and so (i1)⇐ (i3) holds too.

By de�nition, the con�guration Con(Zv, S) has the CI-property if whenever
Con(Zv, S) ∼= Con(Zv, T ) for some T ∈ B(v, |S|), there is some a ∈ Z∗v such that

a · {S + i | i ∈ Zv} = {T + i | i ∈ Zv}.

Clearly, this is equivalent to the condition that T = aS + b for some b ∈ Zv. On the
other hand, BCay(Zv, S) is a BCI-graph if whenever BCay(Zv, S) ∼= BCay(Zv, R)
for some subset R, then there is some c ∈ Z∗v and d ∈ Zv such that R = cS + d.
Because of these and part (i) we are done if show the following: if BCay(Zv, S) ∼=
BCay(Zv, R) for some subset R, then R ∈ B(v, |S|). This follows by the observation
that R ∈ B(v, |S|) if and only if the graph BCay(Zv, R) has girth larger than 4. This
completes the proof of part (ii). �

Lemma 7.8(i2) brings us to the following result of Wiedemann and Zieve:

Theorem 7.9 (Wiedemann and Zieve [76]). The following (i)-(iv) are equivalent for
every two v-by-v (0, 1) circulant matrices A1 and A2 of weight at most 3.

(i) There is a ∈ Z∗v and b ∈ Zv such that SA1 = aSA2 + b.

(ii) There are v-by-v permutation matrices P,Q such that A1 = PA2Q.

(iii) There is an v-by-v permutation matrix P such that A1A
T
1 = PA2A

T
2 P
−1.

(iv) The complex matrices A1A
T
1 and A2A

T
2 are similar.

The above theorem and Lemma 7.8 give us the following corollary:

Corollary 7.10. Every cyclic 3-con�guration has the CI-property.

Our description of isomorphic tetravalent circulant bi-Cayley graphs in Theo-
rem 4.1 allows us to extend the above statement to 4-con�gurations. We �nish the
section with this statement.

Proposition 7.11. Every cyclic 4-con�guration has the CI-property.
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Proof. We prove the proposition for connected con�gurations. The general case
follows then by using the decomposition in (7.3) and induction on the number of
points.

Let Con(Zv, S) be a connected 4-con�guration. Then 〈S − S〉 = Zv, see (7.4),
and hence BCay(Zv, S) is a connected graph. By Lemma 7.8, it is su�cient to show
that BCay(Zv, S) is a BCI-graph. For this purpose we apply Theorem 4.1. This
implies that, if BCay(Zv, S) is not a BCI-graph, then there exist a ∈ Z∗v and b ∈ Zv
such that

aS + b = {0, u, v, v +m},

where v = 2m, Zv = 〈u, v〉, 2 | u and 2u | m. However, in this case S contains
a coset of the nontrivial subgroup 〈m〉 ≤ Zv. This is impossible by Corollary 7.7,
hence BCay(Zv, S) is indeed a BCI-graph. �

7.2 Proof of Theorem 7.2

Recall that, Obj(Zv) denotes the set of all cyclic objects of the group Zv, and given
a class K of cyclic objects in Obj(Zv), a solving set for K is a set ∆ of permutations
of Zv satisfying the following property:

(∀X ∈ K) (∀Y ∈ Obj(Zv) (X ∼= Y ⇐⇒ Xσ = Y for some σ ∈ ∆).

In this context Lemma 2.15 implies the following equivalence:

Lemma 7.12. The following are equivalent for every object X ∈ Obj(Zv).

(i) Z∗v is a solving set for X.

(ii) Every two regular cyclic subgroup of Aut(X) are conjugate in Aut(X).

Proof of Theorem 7.2. Obviously, the theorem can be rephrased as follows: Z∗v
is a solving set for the class of cyclic con�gurations on v points if v = pq or v = pn,
where p and q are primes.

The case v = pq: We prove the above statement for connected con�gurations.
The general case follows then by using the decomposition in (7.3) and the fact that
the statement is true for con�gurations with a prime number of points, so let C =
Con(Zpq, S) be a connected cyclic con�guration.

Towards a contradiction assume that Z∗pq is not a solving set for C. Because of
Theorem 2.16 we may also assume that q divides p − 1. In the rest of the proof
we follow the notations set in page 14 and 15: τ0, a, b, α and ν0, ν1, ..., νq−1. Let
P = {0, q, ..., (p−1)q}, i.e., the subgroup of Zpq of order p. Replace S with a suitable
line S + i if necessary to ensure that S ∩ P 6= ∅. Also, S 6⊆ P by the connectedness
of X, i.e., there exists t ∈ {1, ..., q − 1} such that

S ∩ P 6= ∅ and S ∩ (P + t) 6= ∅. (7.5)

Suppose for the moment that τ0 ∈ Aut(C). Using that τ0 �xes every point outside
P , (7.5) and that |S| ≥ 3, we conclude |Sτk0 ∩ S| ≥ 2 for some k ∈ {1, ..., q − 1}.
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Hence Sτ
k
0 = S. As P is an orbit of τk0 , P ⊆ S, which contradicts Corollary 7.7.

Thus τ0 /∈ Aut(C).
Therefore, Theorems 2.17 and 2.18, together with the assumption that Z∗pq is not

a solving set, imply that C admits a solving set ∆ de�ned in (2.3). Consider the
permutation σ =

∏q−1
l=0 τ

b(l+1)k

l , k ∈ {0, 1, ..., q − 1}. If k = 0, then σ = τ q which is
clearly in Aut(C). The corresponding permutations in ∆ are µia ν0 µ

−1
j = µia µaα µ

−1
j .

Since ∆ 6⊆ Z∗v, there must exist k > 0 for which σ =
∏q−1
l=0 τ

b(l+1)k

l belongs to Aut(C).
Notice that,

∀i, j ∈ {0, 1, ..., q − 1} : i 6= j =⇒ bik 6≡ bjk(mod p). (7.6)

For otherwise, b(i−j)k ≡ 1(mod p). Since ordm(a) = p − 1, a ≡ 1(mod q) and
b = a(p−1)/q, we �nd from a(p−1)(i−j)k/q = b(i−j)k ≡ 1(mod p) that p − 1 divides
(p− 1)(i− j)k/q, and so q divides (i− j)k, a contradiction.

Consider the product σ′ = στ−b
k
. Now, σ′ �xes each point in P , but because of

(7.6) it permutes the points of P + t in a p-cycle. Unless |S ∩ (P + x)| ≤ 1 for every
x ∈ {0, 1, ..., q − 1}, we may also assume that |S ∩ P | ≥ 2. However, if |S ∩ P | ≥ 2,
then σ′ �xes S, implying that (P + t) ⊆ S, which is impossible.

We are left with the case that |S ∩ (P + x)| ≤ 1 for every x ∈ {0, 1, ..., q − 1}.
Note that, then the same holds for all lines S + i. It is obvious that |S| ≤ q. Let
{s} = S∩P . As C is balanced, there are exactly |S| lines through s. Now, each of the
lines S, Sσ

′
, ..., Sσ

′p−1
contains s, while they intersect P + t at distinct points. These

imply in turn that, they are pairwise distinct, hence |S| ≥ p, and so p ≤ |S| ≤ q, a
contradiction. This completes the proof of case v = pq.

We turn next to the case v = pn. Now, we cannot relay on a list of solving sets
covering all cyclic objects as such list is available only when v = p2 (see [32]). The
argument below will be a combination of Lemma 7.12 with Sylow's theorems.

The case v = pn: Again, it is su�cient to consider connected con�gurations, the
general case follows then by using the decomposition in (7.3) and induction on n.
Let C = Con(Zpn , S) be a connected cyclic con�guration, G = Aut(C) and C be the
group generated by τ : x 7→ x + 1. Let Gp be a Sylow p-subgroup of G such that
C ≤ Gp. By Lemma 7.12 and Sylow's theorems it is su�cient to prove that Gp = C.

Towards a contradiction assume that C < Gp. Then the normalizer NGp(C) > C.
Let us putN = NGp(C) and letN0 be the stabilizer of 0 inN . ThenN0 is non-trivial,
and we may choose σ from N0 of order p. Since σ normalizes the regular subgroup
C and �xes 0, σ = µa for some a ∈ Z∗pn (see [18, Exercise 2.5.6]). Then ordm(a) = p.
Using the well-known structure of Z∗pn (cf. [38, Theorem 6.7 and Exercise 6.12]) we
deduce that n ≥ 2, and either

a = a′pn−1 + 1 for some a′ ∈ {1, . . . , p− 1},

or n ≥ 3, p = 2 and a ∈ {2n − 1, 2n−1 − 1}.
Assume for the moment that the latter case holds. Let Q = 〈C, σ〉. It is a

routine exercise to show that C is the only cyclic subgroup of Q of order 2n. This
implies that the normalizer NG2(Q) ≤ NG2(C) = N . Let H be an arbitrary regular
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cyclic subgroup of G. If Q = G2, then, by Sylow's theorems, Hg < Q for some
g ∈ G, and so Hg = C, and we are done by Lemma 7.12. Thus we may assume
that Q < G2. Then Q < NG2(Q) ≤ N . Choose an element σ′ ∈ N0 such that
σ′ 6= σ. It is well-known that 52n−3 ≡ 2n−1 + 1(mod 2n) (see [38, Lemma 6.9]),
and that Z∗2n = 〈5〉 × 〈−1〉 ∼= Z2n−2 ×Z2 (see [38, Theorem 6.10]). These imply that
µ2n−1+1 ∈ 〈σ, σ′〉, and so µ2n−1+1 ∈ N0. Therefore, we may assume that µa ∈ Aut(C)
where a = a′pn−1 + 1 for some a′ ∈ {1, . . . , p− 1}.

Now, µa maps S to a line of C, hence we may write aS+ b = S for some b ∈ Zpn .
Equivalently, S is a union of orbits of the a�ne transformation ϕ : x 7→ ax+b. Then
ϕp is equal to the translation x 7→ x + (1 + a + · · · + ap−1)b. By Corollary 7.7, S
contains no non-trivial cosets. Form this and that S is a union orbits of ϕp, we �nd
that (1 + a + · · · + ap−1)b ≡ 0(mod pn). This quickly implies that pn−1 divides b,
hence we may write b = b′pn−1 for some b′ ∈ {0, 1, ..., p− 1}. Also,

ϕ : x 7→ ax+ b = x+ (a′x+ b′)pn−1.

From this we easily �nd the orbits of ϕ. For x ∈ Zv, let O be the orbit which contains
x. Then

O =

{
{x} if a′x+ b′ ≡ 0(mod p),

P + x otherwise,

where P = {0, pn−1, ..., (p − 1)pn−1}, i.e., the subgroup of Zpn of order p. Since X
is connected, 〈S − S〉 = Zpn . This implies that a′s+ b′ 6≡ 0(mod p) for some s ∈ S.
But then the coset (P + s) ⊆ S, contradicting Corollary 7.7. This completes the
proof of the theorem. �

7.3 Proof of Theorem 7.3

From now on we denote by #C(v3) the total number cyclic balanced con�gurations
of type (v3). Corollary 7.10 implies that the number #C(v3) is equal to the number
of orbits of AGL(1, v) acting on Bcon(v, 3).

Lemma 7.13. Let v and k be integers such that k ≥ 3 and v ≥ k2 − k + 1, and
denote by N the number of orbits of AGL(1, v) acting on Bcon(v, k). Then

N =
1

kφ(v)

∑
l∈Z∗v

N(v, k, l),

where N(v, k, l) =
{
X ∈ Bcon(v, k) : 0 ∈ X and lX = X − x for some x ∈ X

}
.

Proof.For short we put B0 = {X ∈ Bcon(v, k) : 0 ∈ X}, and for X ∈ B0 with
X = {x1, x2, ..., xk}, de�ne the set

X̂ = {X − x1, X − x2, ..., X − xk}.

It is easily seen that for every set Y = X − xi it holds Ŷ = X̂. It follows from this
that the sets X̂, X ∈ B0, form a partition of B0. This partition will be denoted by
π. Notice also that |X̂| = k holds for every class X̂ ∈ π because |X−X| = k2−k+1
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(see (2) in Lemma 7.6). Let us consider the action of Z∗v on B0 de�ned by X l =
l X = {lx : x ∈ X} for every l ∈ Z∗v and X ∈ B0. The partition π is preserved by Z∗v
in this action, denote by Orb(Z∗v, π) the set of the corresponding orbits. For X ∈ B0,
denote by O(X) the orbit of X under AGL(1, v), and by O(X̂) the orbit of X̂ under
Z∗v.

We claim that the mapping f : O(X̂) 7→ O(X) establishes a bijection from
Orb(Z∗v, π) to the set of orbits of AGL1(v) acting on Bcon(v, k) (notice that, the
mapping f is well-de�ned). It is clear that f is surjective. To settle that it is
also injective choose X,Y ∈ Bcon(v, k) such that O(X) = O(Y ). We may assume
without loss of generality that 0 ∈ X ∩ Y . By de�nition, Y = aX + b for some
a ∈ Z∗v and b ∈ Zv. Since 0 ∈ Y, b = −ax for some x ∈ X. Thus a′Y = X − x,
where aa′ ≡ 1(mod v), implying that O(X̂) = O(Ŷ ), and so f is also injective,
hence bijective. We obtain that the required number N = |Orb(Z∗v, π)|. Then the
Lemma 2.4 applied to Orb(Z∗v, π) yields the formula:

N =
1

φ(v)

∑
l∈Z∗v

∣∣{X̂ ∈ π : X̂l = X̂
}∣∣.

In order to �nish the proof one only needs to observe that X̂l = X̂ happens
exactly when lX = X − x for some x ∈ X; and if this is so, then every set Y ∈ X̂
satis�es lY = Y − y for some y ∈ Y .This gives us

|{X̂ ∈ π : X̂l = X̂}| = N(v, k, l)

k
.

The lemma is proved. �
By Corollary 7.10 and Lemma 7.13, we �nd that,

#C(v3) =
1

3φ(v)

∑
l∈Z∗v

N(v, 3, l). (7.7)

We compute next the parameters N(v, 3, l) in (7.7).

De�ne �rst the function Φ : N→ N by Φ(1) = 1, and for v > 1 let

Φ(v) = v
(

1 +
1

p1

)
· · ·
(

1 +
1

pk

)
,

where v has prime factorization v = pn1
1 · · · p

nk
k . Obviously, Φ is a multiplicative

function, i.e., Φ(v1v2) = Φ(v1)Φ(v2) whenever gcd(v1, v2) = 1.

Lemma 7.14. If v > 4, then

N(v, 3, 1) =

{
1
2φ(v)(Φ(v)− 6) if v is odd,

1
2φ(v)(Φ(v)− 6)− 3φ(v/2) if v is even.

Proof.De�ne the sets:

S(v) = {(x, y) ∈ Zv × Zv : 〈x, y〉 = Zv},

S∗(v) = {(x, y) ∈ S(v) : |{0, x, y,−x,−y, x− y, y − x}| < 7}.
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We leave for the reader to verify that the function v 7→ |S(v)| is multiplicative.
Let v = pn, p is a prime. Then two elements x, y generate Zv if and only if one of them
is a generator. By this we calculate that |S(v)| = 2φ(v)v−φ(v)2 = φ(v)(2v−φ(v)) =
φ(v) Φ(v). We �nd, using that all functions φ,Φ and v 7→ |S(v)| are multiplicative,
that |S(v)| = φ(v) Φ(v) for every number v.

Now, for every x, y ∈ Zv, {0, x, y} ∈ Bcon(v, 3) if and only if (x, y) ∈ S(v)\S∗(v).
Therefore,

N(v, 3, 1) =
|S(v)| − |S∗(v)|

2
=

1

2

(
φ(v)Φ(v)− |S∗(v)|

)
. (7.8)

It remains to calculate |S∗(v)|. Let v be odd. Then S∗(v) can be expressed as

S∗(v) = {(0, x), (x, 0), (x, x), (x,−x), (x, 2x), (2x, x) : x ∈ Z∗v}.

Since v > 4, there is no coincidence between the above pairs, and so |S∗(v)| = 6φ(v).
The formula for N(v, 3, 1) follows by this and (7.8).

Let v be even, say v = 2u. In this case

S∗(v) = {(0, x), (x, 0), (x, x), (x,−x), (x, 2x), (2x, x) : x ∈ Z∗v} ∪

{(u, x), (x, u), (x, x+ u) : x ∈ Zv and 〈x, u〉 = Zv}.

Again, since v > 4, there is no coincidence between the above pairs. A quick com-
putation gives that |S∗(v)| = 6φ(v) + 6φ(u). The formula for N(v, 3, 1) follows by
this and (7.8). The lemma is proved. �

For l ∈ Z∗v, denote by ordm(l) the order of l as an element of Z∗v. Furthermore,
O(l) denotes the set of orbits of Zv under l, i.e.,

O(l) =
{
{x, lx, ..., lm−1x} : x ∈ Zv

}
where m = ordm(l).

Lemma 7.15. Let l ∈ Z∗v, l 6= 1.

(i) If ordm(l) > 3, then N(v, 3, l) = 0.

(ii) If ordm(l) = 2, then

N(v, 3, l) =

{
0 if l + 1 ≡ 0(mod v), or v ≡ 0(mod 4) and l ≡ 1(mod v/2),

3φ(v)
2 otherwise.

(iii) If ordm(l) = 3, then

N(v, 3, l) =

{
0 if l2 + l + 1 6≡ 0(mod v),

φ(v) otherwise.

Proof. Put again B0 = {X ∈ Bcon(v, 3) : 0 ∈ X}, and let X ∈ B0 such that
X = {0, x, y} and

lX = X or lX = X − x. (7.9)
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We consider step-by-step all cases (i)-(iii).

(i): Assume by contradiction that (7.9) holds for some l ∈ Z∗v with ordm(l) > 3.
If Xl = X, then l2x = x and l2y = y. This together with 〈x, y〉 = Zv imply
that l2 ≡ 1(mod v), a contradiction to ordm(l) > 2. Let Xl = X − x, and so
{lx, ly} = {−x, y − x}. Now, if lx = −x and ly = y − x, then l2x = x and l2y = y
which is impossible. If lx = y − x and ly = −x, then l3x = x and l3y = y, implying
that l3 ≡ 1(mod v), which is in contradiction with ordm(l) > 3.

(ii): Assume that (7.9) holds with ordm(l) = 2. If lX = X, then lx = y and
ly = x and so we �nd X as X = {0, x, lx}, x ∈ Z∗v. Let lX = X − x. Then it
follows that lx = −x and ly = y − x (otherwise l3 ≡ 1(mod v), a contradiction to
ordm(l) = 2), and so X = {0, y,−ly + y} where y ∈ Z∗v. Since X ∈ B0, the elements
0, 1, −1, l, −l, l − 1 and 1 − l must be pairwise distinct. We conclude from these
that, N(v, 3, l) = 0 if l + 1 = 0(mod v) or l ≡ 1(mod v/2), and otherwise N(v, 3, l)
is the size of the following set:{

{0, x, lx} : x ∈ Z∗v
}
∪
{
{0, x,−lx+ x} : x ∈ Z∗v

}
.

We observe in turn that, the two sets above are disjoint, the �rst has size φ(v)/2,
while the second has cardinality φ(v). Then (ii) follows.

(iii): Assume that (7.9) holds with ordm(l) = 3. Then X = lX − x, lx = y − x
and ly = −x (otherwise l2 ≡ 1(mod v), see above). Thus X = {0, x, x+ lx}, x ∈ Z∗v
and l2 + l ≡ −1(mod v). We conclude that, N(v, 3, l) = 0 if l2 + l + 1 6≡ 0(mod v),
and otherwise N(v, 3, l) =

∣∣{{0, x, lx+ x} : x ∈ Z∗v
}∣∣ = φ(v). Thus (iii) follows, and

this completes the proof of the lemma. �

Proof of Theorem 7.2. By Lemmas 7.13 and 7.14, the sum in (7.7) reduces to

#C(v3) =


1
6Φ(v)− 1 + 1

2γ1 + 1
3γ2 if v is odd,

1
6Φ(v)− φ(v/2)

φ(v) − 1 + 1
2γ1 + 1

3γ2 if v is even,
(7.10)

where γ1 and γ2 are de�ned by

γ1 = |{l ∈ Z∗v : ordm(l) = 2, l + 1 6≡ 0(mod v) and l 6≡ 1(mod v/2) if
v ≡ 0(mod 4)}|,

γ2 = |{l ∈ Z∗v : ordm(l) = 3 and l2 + l + 1 ≡ 0(mod v)}|.

In calculating γ1 and γ2 below we shall use the fact Z∗v can be written as Z∗v =
Z∗
p
n1
1
× · · · × Z∗

p
nk
k

, and every l ∈ Z∗v can be expressed as

l = (l1, ..., lk), where li ∈ Z∗pnii for every i ∈ {1, ..., k}. (7.11)

Note that, we may assume that li ≡ l(mod pnii ) for every i ∈ {1, ..., k}.

Case 1. v is odd.

Since v is odd, there are exactly 2k − 1 elements l ∈ Z∗v such that ordm(l) = 2,
and all but one contributes to γ1 (namely, l = v − 1 is excluded in the de�nition of
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γ1). Thus γ1 = 2k − 2. The value of γ2 depends solely on the residue of v modulo 9
and the reside of prime factors pi modulo 3. Let l ∈ Z∗v such that ordm(l) = 3 and
write l = (l1, ..., lk) as described in (7.11). Thus li is of order 1 or 3 in Z∗

p
ni
i

.

Case 1.1. pi ≡ 1(mod 3) for every i ∈ {1, ..., k}.

If li is of order 1 in Z∗
p
ni
i

, then l ≡ li ≡ 1(mod pnii ), from which l2 + l + 1 ≡
3(mod pnii ), hence l2 + l+1 6≡ 0(mod v), so l cannot contribute to γ2. If li is of order
3 in Z∗

p
ni
i

, then l2 + l + 1 ≡ l2i + li + 1 ≡ 0(mod pnii ) for every i ∈ {1, ..., k}, hence
l2+l+1 ≡ 0(mod v). Since there are exactly two elements in Zpnii of order 3, γ2 = 2k.

Substitute this and γ1 = 2k−2 in (7.10). We obtain that #C(v3) = 1
6Φ(v)+ 5

62k−2.

Case 1.2. v ≡ 3(mod 9) and pi ≡ 0/1(mod 3) for every i ∈ {1, ..., k} .

We may write pn1
1 = 3. We obtain, by the same argument as in the previous case,

that l contributes to γ2 if and only if l1 is of order 1 in Zpn1
1
, and li is of order 3 in

Z∗
p
ni
i

if i ≥ 2. Thus γ2 = 2k−1, which together with γ1 = 2k − 2 yield in (7.10) that

#C(v3) = 1
6Φ(v) + 2

32k − 2.

Case 1.3. v ≡ 0(mod 9) or pi ≡ 2(mod 3) for some i ∈ {1, ..., k} .

We show that in this case l2 + l + 1 6≡ 0(mod v) independently of the choice l.
Thus γ2 = 0, and so #C(v3) = 1

6Φ(v) + 1
22k − 2.

Suppose �rst that v ≡ 0(mod 9). We may write p1 = 3, now n1 ≥ 2. Since
ordm(l) = 3, l1 ≡ 1(mod 3n1−1). We claim that l21 + l1 + 1 ≡ 3(mod 3n1). Indeed,
l1 ≡ 3n1−1k + 1(mod 3n1) for some k ∈ {0, 1, 2}. Hence

l21 + l1 + 1 ≡ (k + 2k)3n1−1 + 3 ≡ 3(mod 3n1).

Therefore, l2 + l + 1 ≡ l21 + l1 + 1 ≡ 3(mod 3n1), and since n1 ≥ 2, l2 + l + 1 6≡
0(mod 3n1

1 ), and so l2 + l + 1 6≡ 0(mod v).
Suppose next that pi ≡ 2(mod 3) for some i ∈ {1, ..., k}. Then li must be of order

1 in Zpnii , and hence l2 + l+1 ≡ l2i + li+1 ≡ 3(mod pnii ), and so l2 + l+1 6≡ 0(mod v).

Case 2. v is even.

Since v is even, l is odd, and thus l2 + l+ 1 6≡ 0(mod v). We obtain that γ2 = 0.
The value of γ1 depends on the residue of n modulo 8. The number of elements of
order 2 in Z∗v is 2k−1 − 1 if v ≡ 2/6(mod 8), 2k − 1 if v ≡ 4(mod 8), and 2k+1 − 1 if
v ≡ 0(mod 8) (see [38, Exercise 6.12]). Thus

γ1 =


2k−1 − 2 if v ≡ 2/6(mod 8),

2k − 3 if v ≡ 4(mod 8),

2k+1 − 3 if v ≡ 0(mod 8).

(7.12)

Obviously, φ(v/2)/φ(v) = 1 if v ≡ 2(mod 4) and it is 1/2 if v ≡ 0(mod 4).
Substituting this, (7.12) and γ2 = 0 in (7.10) yields formula (7.1). The theorem is
proved. �
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Chapter 8

Conclusions

A number of research problems in algebraic graph theory were solved and are pre-
sented in this work. In particular, the isomorphism problem of tetravalent cyclic
bi-Cayley graphs was solved, the classi�cation of nilpotent 3-BCI-groups and of con-
nected arc-transitive cubic abelian BCI-graphs were obtained; the CI-problems of
balanced cyclic con�gurations on pn and pq points, where p and q are primes, were
solved, and the enumeration of balanced cyclic con�gurations of type (v3) was ob-
tained.

These results represent a contribution to open research problems previously
posted in the literature, such as the classi�cation of m-BCI-groups, the CI-problem
of combinatorial objects and the enumeration problem for con�gurations.

The general tools used in this research work range from group theory, alge-
braic methods in graph theory and purely combinatorial techniques. Computer-
implemented algebraic tools, such as Magma, were used for particular cases, exam-
ples and testing results.

In addition to the results presented in this thesis, this work discusses directions
of future research work, such as the relation between the BCI-problem for bi-Cayley
graphs and the CI-problem for Cayley graphs, the CI-problem for cyclic con�gura-
tions or other combinatorial objects, and the study of the automorphism groups of
balanced cyclic con�gurations.

79



80



Appendix A

Magma calculations

This Appendix contains two calculations we did in the PhD Thesis using the com-
puter package Magma.

A.1 BCI-graphs of Zn
The following procedure checks the BCI-property of all possible cyclic bi-Cayley
graphs with connection set {0, u, v, w} of Zn for a �xed n. As an output, it prints
all bi-Cayley graphs BCay(Zn, {0, u, v, w}), and for each it tells if it is a BCI-graph
or not. Notice that, this procedure can be easily modi�ed to check larger valencies.

procedure checkBCI(n)

Cs:={ {0,u,v,w} : u in {1..(n-1)}, v in {1..(n-1)}, w in {1..n-1}|

(u ne v) and (u ne w) and (v ne w)};

for S in Cs do

l:=2*n -1;

V:={0..l};

Vp:={1..n-1};

c:=0;

E:={ {a,((a+x) mod n) + n} : a in Vp , x in S};

X:= Graph< V | E >;

A:= AutomorphismGroup(X);

L:= Subgroups(A: IsCyclic:=true, OrderEqual:=n);

for i in {1..#L} do

if (Orbit(L[i]`subgroup,1) eq {1..n}) and

(Orbit(L[i]`subgroup,(n+1))

eq {n+1..2*n}) then

c:=c+1;

end if;

end for;
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if c eq 1 then

"BCay(", n, B, ")", "is BCI";

else

"BCay(", n, B, ")", "is non-BCI";

end if;

end for;

end procedure;

A.2 Example 3.6

In the Example 3.6, we considered the bi-Cayley graph Γ = BCay(G, {1, a, b}), where
G = 〈a, b | a5 = b4, b−1ab = a2〉. In the program below we computed that, there is
only one conjugacy classes of subgroups of Aut(Γ) isomorphic to G and with orbits
equal to the bipartition classes.

a:=Sym(5)!id;

b:=Sym(5)!(1,2,3,4,5);

c:=Sym(5)!(1,2,4,3);

G:=PermutationGroup<20|(1,2,3,4,5),(1,2,4,3)>;

V:=SetToSequence({x: x in G});

S:={a,b,c};

E:={{i,j+20}: i,j in {1..20} | V[j]*Inverse(V[i]) in S};

X:=Graph<40|E>;

A:=AutomorphismGroup(X);

L:=Subgroups(A:OrderEqual := 20);

for i in {1..#L} do

if (Orbit(L[i]`subgroup,1) eq {1..20}) and

(Orbit(L[i]`subgroup,2) eq {21..40}) then

i;

end if;

end for;

>4

H:=L[4]`subgroup;

IsIsomorphic(H,G);

>true



Bibliography

[1] A. Ádám. `research problems 2�10'. J. Combin. Theory, 2:393, 1967.

[2] M. Arezoomand and B. Taeri. Finite BCI-groups are solvable. To appear in Int.

J. Group Theory.

[3] M. Arezoomand and B. Taeri. Isomorphisms of �nite semi-Cayley graphs. To
appear in Acta Math. Sin. (Engl. Ser.).

[4] M. Arezoomand and B. Taeri. Normality of 2-Cayley digraphs. Discrete Math.,
338(3):41�47, 2015.

[5] L. Babai. Isomorphism problem for a class of point-symmetric structures. Acta
Math. Acad. Sci. Hungar., 29:329�336, 1977.

[6] L. Babai and P. Frankl. Isomorphisms of Cayley graphs. I. In Combinatorics

(Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, volume 18 of Colloq.
Math. Soc. János Bolyai, pages 35�52. North-Holland, Amsterdam-New York,
1978.

[7] S. Bays. Sur les systèmes cycliques des triples de steiner di�érents pour n
premier (ou puissance du nombre premier) de la forme 6n + 1. I. Comment.

Math. Helv., 2:294�305, 1930.

[8] A. Betten, G. Brinkmann, and T. Pisanski. Counting symmetric con�gurations
v3. Discrete Appl. Math., 99:331�338, 2000.

[9] N. Biggs and M. Hoare. The sextet construction for cubic graphs. Combinator-
ica, 8:153�165, 1983.

[10] M. Boben, T. Pisanski, and A. �itnik. I-graphs and the corresponding con�gu-
rations. J. Combin. Designs, 13:406�424, 2005.

[11] W. Bosma, J. Cannon, and C. Playoust. The magma Algebra System I: The
User Language. J. Symbolic Comput., 24:235�265, 1997.

[12] J. M. Burns and B. Goldsmith. Maximal order abelian subgroups of symmetric
groups. Bull. London Math. Soc., 21:70�72, 1989.

[13] M. D. E. Conder. https://www.math.auckland.ac.nz/~conder/

symmcubic10000list.txt. August 2012.

83



84 BIBLIOGRAPHY

[14] M. D. E. Conder and P. Dobcsányi. Trivalent symmetric graphs on up to 768
vertices. J. Combin. Math. & Combin. Comp., 40:41�63, 2002.

[15] M. D. E. Conder and R. Nedela. Symmetric cubic graphs of small girth. J.

Combin. Theory Ser. B, 97:757�768, 2007.

[16] H. S. M. Coxeter. Self-dual con�gurations and regular graphs. Bul. Amer. Math.

Soc., 56:413�435, 1950.

[17] M. J. de Resmini and D. Jungnickel. Strongly regular semi-Cayley graphs. J.

Algebraic Combin., 1:171�195, 1992.

[18] J. D. Dixon and B. Mortimer. Permutation groups, volume 163 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1996.

[19] E. Dobson and J. Morris. Quotients of CI-groups are CI-groups. Graphs and

Combin., 7:1�4, 2013.

[20] E. Dobson, J. Morris, and P. Spiga. A comment on: �Further restrictions on
the structure of �nite DCI-groups�. arXiv:1402.4373v1 [math.CO] (2014).

[21] S. F. Du and D. Maru²i£. An in�nite family of biprimitive semysimmetric graphs.
J. Graph Theory, 32:217�228, 1999.

[22] B. Elspas and J. Turner. Graphs with circulants adjacency matrices. J. Combin.
Theory, 9:297�307, 1970.

[23] Y. Q. Feng and J. H. Kwak. Cubic symmetric graphs of order a small number
time a prime or a prime square. J. Combin. Theory Ser. B, 97:627�646, 2007.

[24] Y. Q. Feng and R. Nedela. Symmetric cubic graphs of girth at most 7,. Acta

Univ. M. Belii Math., 13:33�55, 2006.

[25] Y. Q. Feng and J. X. Zhou. Cubic bi-Cayley graphs over abelian groups. Europ.
J. Combin., 36:679�693, 2014.

[26] R. Foster. The Foster census. Charles Babbage Research Centre, Winnipeg, MB,
1988. Foster's census of connected symmetric trivalent graphs, with a foreword
by H. S. M. Coxeter, with a biographical preface by Seymour Schuster, with an
introduction by I. Z. Bouwer, W. W. Cherno�, B. Monson and Z. Star, edited
and with a note by Bouwer.

[27] C. Godsil and G. Royle. Algebraic graph theory, volume 207 of Graduate Texts

in Mathematics. Springer-Verlag, New York, 2001.

[28] J. L. Gross and T. W. Tucker. Topological graph theory. Wiley-Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York,
1987.

[29] B. Grünbaum. Con�gurations of points and lines, volume 103 of Graduate Stud-
ies in Mathematics. American Mathematical Society, Providence, RI, 2009.



BIBLIOGRAPHY 85

[30] M. Hladnik, D. Maru²i£, and T. Pisanski. Cyclic Haar graphs. Discrete Math.,
244:137�152, 2002.

[31] W. C. Hu�man. The equivalence of two cyclic objects on pq elements. Discrete
Math., 154:103�127, 1996.

[32] W. C. Hu�man, V. Job, and V. Pless. Multipliers and generalized multipliers of
cyclic objects and cyclic codes. J. Combin. Theory Ser. A, 62:183�215, 1993).

[33] B. Huppert. Endliche Gruppen. I. Die Grundlehren der Mathematischen Wis-
senschaften, Band 134. Springer-Verlag, Berlin, 1967.

[34] W. Jin and W. Liu. Two results on BCI-subset of �nite groups. Ars Combin.,
93:169�173, 2009.

[35] W. Jin and W. Liu. A classi�cation of nonabelian simple 3-BCI-groups. Euro-
pean J. Combin., 31:1257�1264, 2010.

[36] W. Jin and W. Liu. On sylow subgroups of BCI-groups. Util. Math., 86:313�320,
2011.

[37] W. Jin and W. Liu. On isomorphisms of small order bi-Cayley graphs. Util.

Math., 92:317�327, 2013.

[38] G. A. Jones and J. M. Jones. Elementary number theory. Springer Undergrad-
uate Mathematics Series. Springer-Verlag London Ltd., London, 1998.

[39] D. Jungnickel. The isomorphism problem for Abelian projective planes. Appli-
cable Algebra in Eng., Comm. and Comp., 19:195�200, 2008.

[40] H. Koike and I. Kovács. Arc-transitive cubic abelian bi-cayley graphs and BCI-
graphs. to appear in FILOMAT.

[41] H. Koike and I. Kovács. A classi�cation of nilpotent 3-BCI groups. submitted.

[42] H. Koike and I. Kovács. Isomorphic tetravalent circulant Haar graphs. Ars

Math. Contemporanea, 7(2):215�235, 2014.

[43] H. Koike, I. Kovács, and T. Pisanski. The number of cyclic con�gurations of
type (v3) and the isomorphism problem. J. Combin. Des., 22(5):216�229, 2014.

[44] I. Kovács, B. Kuzman, A. Malni£, and S. Wilson. Characterization of edge-
transitive 4-valent bicirculants. J. Graph Theory, 69(4):441�463, 2012.

[45] I. Kovács, B. Kuzman, and A. Malni£. On non-normal arc transitive 4-valent
dihedrants. Acta Math. Sinica (Engl. ser.), 26(8):1485�1498, 2010.

[46] I. Kovács, A. Malni£, D. Maru²i£, and �. Miklavi£. One-mathcing bi-Cayley
graph over Abelian groups. Europ. J. Combin, 30:602�616, 2009.

[47] K. Kutnar and D. Maru²i£. A complete classi�cation of cubic symmetric graphs
of girth 6. J. Combin. Theory Ser. B, 99:162�184, 2009.



86 BIBLIOGRAPHY

[48] P. Lambossy. Sur une manière de di�érentcier les fonctions cycliques de 'une
forme donnée. I. Comment. Math. Helv., 3:69�102, 1931.

[49] K. H. Leung and S. L. Ma. Partial di�erence triples. J. Algebraic Combin.,
2:397�409, 1993.

[50] C. H. Li. Finite CI-groups are soluble. Bull. London Math. Soc., 31(4):419�423,
1999.

[51] C. H. Li. Isomorphism of �nite Cayley digraphs of bounded valency, II. J.

Combin. Theory. Ser. A, 87:333�346, 1999.

[52] C. H. Li. The �nite vertex-primitive and vertex-biprimitive s-transitive graphs
for s ≥ 4. Trans. Amer. Math. Soc., 353:3511�3529, 2001.

[53] C. H. Li. On isomorphisms of �nite Cayley graphs - a survey. Discrete Math.,
256:301�334, 2002.

[54] C. H. Li, Z. P. Lu, and P. Pálfy. Further restrictions on the structure of �nite
CI-groups. J. Algebraic Combin., 26(2):161�181, 2007.

[55] C. H. Li and C. E. Praeger. Finite groups in which any two elements of the
same order are either fused or inverse fused. Comm. Algebra, 25(10):3081�3118,
1997.

[56] C. H. Li and C. E. Praeger. On the isomorphism problem for �nite Cayley
graphs of bounded valency. European J. Combin., 20(4):279�292, 1999.

[57] C. H. Li, C. E. Praeger, and M. Y. Xu. Isomorphisms of �nite Cayley digraphs
of bounded valency. J. Combin. Theory. Ser. B, 73:164�183, 1998.

[58] P. Lorimer. Vertex-transitive graphs: symmetric graphs of prime valency. J.

Graph Theory, 8:55�68, 1984.

[59] A. Malni£. Group actions, coverings and lifts of automorphisms. Discrete Math.,
182:203�218, 1998.

[60] A. Malni£, D. Maru²i£, and P. �parl. On strongly regular bicirculants. Europ.
J. Combin., 28:891�900, 2007.

[61] M. Muzychuk. Ádám's conjecture is true in the square-free case. J. Combin

Theory Ser. A, 72:118�134, 1995.

[62] M. Muzychuk. Corrigendum: On Ádám's conjecture for circulant graphs. Dis-
crete Math., 176:285�298, 1997.

[63] M. Muzychuk. On the isomorphism problem for cyclic combinatorial objects.
Discrete Math., 197, 198:589�606, 1999.

[64] M. Muzychuk. A solution of the isomorphism problem for circulant graphs.
London Math. Soc., 88(3):1�41, 2004.



BIBLIOGRAPHY 87

[65] P. Pálfy. Isomorphism problem for relational structures with a cyclic automor-
phism. Eur. J. Combin., 8:35�43, 1987.

[66] M. Petkov²ek and T. Pisanski. Counting disconnected structures: chemical
trees, fullerenes, I-graphs, and others. Croat. Chem. Acta., 78:563�567, 2005.

[67] M. Petkov²ek and H. Zakraj²ek. Enumeration of I-graphs: Burnside does it
again. Ars Math. Contemp., 2:241�262, 2009.

[68] K. T. Phelps. Isomorphism problems for cyclic block designs. Ann. Discrete

Math., 34:385�392, 1987.

[69] T. Pisanski and B. Servatius. Con�gurations from a graphical viewpoint.
Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser/Springer, New
York, 2013.

[70] D. J. S. Robinson. A course in the theory of groups, volume 80 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1996.

[71] G. Sabidussi. On a class of �xed-point-free graphs. Proc. Amer. Math. Soc.,
9:800�804, 1958.

[72] W. R. Scott. Group Theory. Dover Publications Inc., New York, 1987.

[73] L. Sun. Isomorphisms of circulants with degree 2. J. Beijing Ins. Technol.,
9:42�46, 1984.

[74] W. T. Tutte. A family of cubical graphs. Proc. Cambr. Philosoph. Soc., 43:459�
474, 1947.

[75] M. E. Warkins. A theorem on Tait colorings with application to generalized
petersen graphs. J. Combin. Theory, 6:152�164, 1969.

[76] D. Wiedemann and M. E. Zieve. Equivalence of sparse circulants: the bipartite
Ádám problem. arXiv:0706.1567v1 [math. CO] (2007).

[77] S. J. Xu, W. Jin, Q. Shi, and J. J. Li. The BCI-property of the Bi-Cayley
graphs. J. Guangxi Norm. Univ.: Nat. Sci. Edition, 26:33�36, 2008.



88 BIBLIOGRAPHY



List of Figures

2.1 The graph Γ and its normal quotient ΓN . . . . . . . . . . . . . . . . 8
2.2 The Cayley graphs Cay(Z8, {1, 2, 5}) and Cay(Z8, {1, 6, 5}). . . . . . 10

3.1 The generalized Petersen graph GP (12, 5). . . . . . . . . . . . . . . 16
3.2 BCay(Z8, {0, 1, 2, 5}) and BCay(Z8, {0, 1, 6, 5}) . . . . . . . . . . . . 17
3.3 The bi-Cayley graph BCay(Z10, {0, 1, 3, 4}). . . . . . . . . . . . . . . 26
3.4 The graphs Cay(D20, {b, ba, ba3, ba4}) and Cay(D20, {a, a9, b, ba4}). . 26

4.1 Bi-Cayley graphs BCay(Zn, S1(1)) and BCay(Zn, S2(1)). . . . . . . . 32
4.2 The bi-Cayley graph BCay(Zn, S). . . . . . . . . . . . . . . . . . . . 33
4.3 The lexicographical product Cn[Kc

2]. . . . . . . . . . . . . . . . . . . 42

6.1 Voltage assignment ζ of ΓR(N). . . . . . . . . . . . . . . . . . . . . . 60

7.1 The Fano plane F and its incidence graph Γ(F). . . . . . . . . . . . 67
7.2 A bi-Cayley representation BCay(Z7, {0, 4, 6}) of the graph Γ(F). . . 67

89





Povzetek v slovenskem jeziku

V doktorski disertaciji obravnavamo problem izomorfnosti bi-Cayleyjevih grafov in
z njim povezano vpra²anje klasi�kacije kon£nih BCI-grup. Obravnavani so naslednji
konkretni problemi oz. vpra²anja:

(i) Poiskati u£inkovite potrebne in zadostne pogoje za izomorfnost dveh cikli£nih
bi-Cayleyjevih grafov.

(ii) Katere grupe so 3-BCI-grupe?

(iii) Kateri kubi£ni bi-Cayleyjevi gra� so BCI-gra�?

(iv) Katere cikli£ne uravnoteºene kon�guracije imajo CI-lastnost?

(v) Analiti£no o²tevil£enje uravnoteºenih cikli£nih kon�guracij.

V doktorski disertaciji je Problem (i) re²en za tetravalentne grafe, Problem (ii) pa
za nilpotentne grupe. Prispevek k re²itvi Problema (iii) je dokaz, da je vsak povezan
kubi£en lo£no-tranzitiven bi-Cayleyjev graf BCI-graf. Kar se ti£e Problema (iv),
je v doktorski disertaciji dokazano, da ima CI-lastnost vsaka cikli£na uravnoteºena
kon�guracija, katere ²tevilo to£k je bodisi enako produktu dveh razli£nih pra²tevil
ali pa je enako potenci nekega pra²tevila. Za Problem (v) je izpeljana formula za
²tevilo povezanih cikli£nih kon�guracij tipa (v3).

BCI-gra� in BCI-grupe

Na podlagi koncepta CI-grafov, m-CI-grup in CI-grup so leta 2008 Xu in ostali
[77] predstavili koncept BCI-grafov, m-BCI-grup in BCI-grup. Bi-Cayleyjev graf
BCay(G,S) je BCI-graf, £e iz BCay(G,S) ∼= BCay(G,T ) za neko podmnoºico T
grupe G sledi, da je T = gSσ za nek element g ∈ G in nek avtomor�zem σ ∈ Aut(G).
Grupa G je m-BCI-grupa, £e je vsak bi-Cayleyjev graf grupe G, ki je stopnje najve£
m, BCI-graf. Grupa G je BCI-grupa, £e je vsak bi-Cayleyjev graf grupe G BCI-
graf. Teorija BCI-grafov in BCI-grup je precej manj razvita kot teorija CI-grafov
in CI-grup. Nekatere osnovne lastnosti BCI-grafov in BCI-grup sta obravnavala Jin
in Liu v seriji £lankov [34, 35, 36, 37], ne dolgo nazaj pa tudi Arezoomand in Taeri
v £lankih [3, 2]. V naslednji lemi karakteriziramo BCI-grafe s stali²£a teorije grup
na podoben na£in, kot je Babai [5] karakteriziral CI-objekte. V tej lemi z R(G)
ozna£imo grupo vseh permutacij R(g), g ∈ G, kjer je permutacija R(g) de�nirana
kot R(g) : (x, i) 7→ (xg, i) za vsak x ∈ G in i ∈ {0, 1}.
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Lema 1. Za vsak bi-Cayleyjev graf Γ = BCay(G, S) sta naslednji izjavi ekvivalentni.

(i) BCay(G,S) je BCI-graf.

(ii) Normalizator NAut(Γ)(R(G)) je tranzitiven na mnoºici V (Γ) in je vsaka semireg-

ularna podgrupa grupe avtomor�zmov Aut(Γ) z orbitama G× {0} in G× {1},
ki je izomorfna grupi G, v grupi Aut(Γ) konjugirana podgrupi R(G).

Bolj podrobno obravnavamo povezavo med BCI-grupami in CI-grupami. Med
drugim dokaºemo naslednjo trditev:

Trditev 1. Naj bo Γ = BCay(G,S) tak graf, da obstaja involucija τ ∈ Aut(Γ), ki
normalizira grupo R(G), in da velja enakost (1G, 0)τ = (1G, 1). Predpostavimo ²e,

da je Aut(Γ)(1G,0) = Aut(Γ)(1G,1). Potem je BCay(G,S) BCI-graph, £e je Cay(G,S)
CI-graf.

V bistvu je na²a primarna motivacija za obravnavanje BCI-grafov in BCI-grup ta,
da nam lahko poznavanje teh objektov prinese nov vpogled v ºe znan in obravnavan
problem klasi�kacije CI-grup.

Izomorfni tetravalentni cikli£ni bi-Cayleyjevi gra�

Problem izomorfnosti grafov, ki jih imenujemo cirkulanti, je bil obdelan s strani
mnogih raziskovalcev, popolno re²itev tega problema pa je podal Muzychuk [64]. V
doktorski disertacije je obravnavan enak problem za razred cikli£nih bi-Cayleyjevih

grafov (to so bi-Cayleyjevi gra� cikli£nih grup). Kolikor je znano, je edini rezultat v
smeri re²itve tega problema rezultat Wiedemanna in Zieveja [76], ki sta dokazala, da
je vsak cikli£en bi-Cayleyjev graf stopnje najve£ 3 BCI-graf. Poleg tega sta podala
primere ne-BCI-grafov stopnje 4, zato tetravalentni bi-Cayleyjevi gra� predstavl-
jajo prvi naslednji netrivialen primer, ki ga je smiselno obravnavati. V doktorski
disertaciji je dokazan naslednji izrek:

Izrek 1. Povezana bi-Cayleyjeva grafa BCay(Zn, S) in BCay(Zn, T ), kjer je |S| =
|T | = 4, sta izomorfna natanko tedaj, ko obstajajo taki elementi a1, a2 ∈ Z∗n in

b1, b2 ∈ Zn, da velja

(i) a1S + b1 = T ; ali

(ii) a1S + b1 = {0, u, v, v +m} in a2T + b2 = {0, u+m, v, v +m}, kjer je n = 2m,
Zn = 〈u, v〉, 2 | u, 2u | m.

Zanimivo je, da pogoji za aritmetiko v zgornjem izreku popolnoma sovpadajo s pogoji
v rezultatu za kubi£ne cirkulante, ki jih lahko dobimo iz splo²nega algoritma, ki ga
je podal Muzychuk [64].

Nilpotentne 3-BCI-grupe

V doktorski disertaciji so oravnavani BCI-gra� in 3-BCI-grupe. Trivialno je
videti, da je vsaka grupa 1-BCI-grupa, medtem ko so 2-BCI-grupe v smislu teorije



grup opisane v [77]. Klasi�kacija 3-BCI-grup je ²e vedno odprt problem, nekatere
delne rezultate, pa lahko najdemo v [34, 35, 36]. V teoriji CI-grup je tovrsten prob-
lem obdelan v [53, Problem 9.6]. V doktorski disertaciji je dokazan naslednji izrek,
ki predstavja delno re²itev klasi�kacije nilpotentnih 3-BCI-grup:

Izrek 2. Vsaka kon£na grupa U × V , kjer je U grupa lihega reda tako da so vse

p-Sylowke od grupe U homocikli£ne (to je direktni produkt cikli£nih grup istega reda),

grupa V pa je trivialna, ali pa je ena izmed grup Z2r , Zr2 ali grupa kvaternionov Q8,

je 3-BCI-grupa.

Povezani lo£no-tranzitivni kubi£ni bi-Cayleyjevi gra� so BCI-gra�

V doktorski disertaciji so podani ²e nekateri novi primeri kubi£nih BCI-grafov.

Izrek 3. Naj bo G kon£na abelska grupa. Potem je vsak povezan lo£no-tranzitiven

kubi£en bi-Cayleyjev graf BCay(G,S) BCI-graf.

Poleg tega je v doktorski disertaciji podan popoln opis grafov iz Izreka 3, ki so
zanimivi iz razli£nih razlogov. Ta rezultat je naprimer primerljiv z nedavno klasi-
�kacijo to£kovno-tranzitivnih kubi£nih bi-Cayleyjevih grafov abelskih grup, ki sta
jo naredila Feng in Zhou [25]. Gra� iz Izreka 3 so zanimivi tudi zaradi klasi�kacije
povezanih lo£no-tranzitivnih grafov oºine 6, ki sta jo naredila Kutnar in Maru²i£
[47]. Izkaºe se, da ima vsak od grafov iz njunega rezultata semiregularno abelsko
grupo avtomor�zmov z dvema orbitama.

CI-lastnost cikli£nih uravnoteºenih kon�guracij

V tem delu raziskovanja je pozornost usmerjena h kon�guracijam. Cikli£na kon-

�guracija (P,B) je sestavljena iz mnoºice to£k P in mnoºice premic B, katere elementi
so dolo£ene podmnoºice mnoºice P, poleg tega pa predpostavljamo, da cikli£na grupa
avtomor�zmov G deluje regularno na mnoºici P . V tem primeru lahko na kanoni£en
na£in identi�ciramo mnoºico P z grupo G in lahko zato na (P,B) gledamo kot na
Cayleyjev-objekt grupe G. �e je poleg tega kon�guracija (G,B) tudi uravnoteºena
(to pomeni, da je |G| = |B|), potem je pripadajo£i inciden£ni graf kon�guracije (G,B)
bi-Cayleyjev graf grupe G in ima kon�guracija (G,B) CI-lastnost natanko tedaj, ko
je pripadajo£i bi-Cayleyjev graf BCI-graf. Z upo²tevanjem vseh teh dejstev, je v
dokotrski disertaciji dokazan naslednji izrek:

Izrek 4. Vsaka cikli£na uravnoteºena kon�guracija z v-to£kami ima CI-lastnost, £e

je v = pq ali v = pn, kjer sta p in q razli£ni pra²tevili.

Poleg tega je v doktorski disertaciji podana zaprta formula za izra£un ²tevila ne-
izomorfnih povezanih cikli£nih kon�guracij tipa (v3) (to so uravnoteºene kon�guracije
na v to£kah, v katerih ima vsaka premica 3 to£ke):

Izrek 5. Naj bo v > 4 celo ²tevilo s pra²tevilsko faktorizacijo v = pn1
1 · · · p

nk
k . Potem

lahko ²tevilo povezanih cikli£nih kon�guracij tipa (v3) izra£unamo po naslednji for-

muli:



v
6

∏k
i=1

(
1 + 1

pi

)
+ α2k − 2 £e je v lih,

v
6

∏k
i=1

(
1 + 1

pi

)
+ β2k − 3 £e je v sod,

kjer je ²tevilo α de�nirano za lihe v z

α =


5/6 £e je vsak pi ≡ 1(mod 3),

2/3 £e je pn1
1 = 3 in £e je i > 1, potem je pi ≡ 1(mod 3),

1/2 sicer,

in je ²tevilo β de�nirano za sode v z

β =


1/4 £e je v ≡ 2(mod 8) ali v ≡ 6(mod 8),

1/2 £e je v ≡ 4(mod 8),

1 £e je v ≡ 0(mod 8).

Naj omemimo ²e, da so rezultati disertacije objavlejni v naslednjih znanstvenih
£lankih:

• H. Koike, I.Kovács, Isomorphic tetravalent circulant Haar graphs, Ars Math.

Contemporanea 7 (2014), 215�235.

• H. Koike, I. Kovács, T. Pisanski, The number of cyclic con�gurations of type
(v3) and the isomorphism problem, J. Combin. Designs 22 (2014), 216�229.

• H. Koike, I. Kovács, Arc-transitive cubic abelian bi-Cayley graphs and BCI-
graphs, Filomat, v tisku.

• H. Koike, I. Kovács, A classi�cation of nilpotent 3-BCI groups, poslano v ob-
javo.
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