The Coxeter graph

Anna Klymenko
University of Primorska

May 23th. 2011

Abstract

Laszlo Lovasz asked whether every finite connected vertex-transitive graph contains a Hamiltonian cycle. This question is still open. However we know five graphs which are finite, connekted and vertex-transitive graphs, but they are not hamiltonian one. They are K_{2}, Petersen graph, Coxeter graph and truncations of the Petersen graph and Coxeter graph.
We will prove that the Coxeter graph has no Hamiltonian cycle. We will also present some well-know properties of this remarkable graph.

Harold Scott MacDonald Coxeter (9.02.1907-31.03. 2003)

Harold Coxeter is one of the great geometers of the 20th century.
Like any great mathematician, he left a deep mark in different fields of mathematics. Besides of geometry he has publications about group theory and grapn theory.

The Coxeter graph

Definition:

The Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. It has chromatic number and chromatic index 3 , radius 4 , diameter 4 and grith 7. It is also a 3-vertex-connected graph and 3-edge-connected graph.

The Coxeter Graph in Frucht's notation

Algebraic properties of the Coxeter graph

- $\operatorname{Aut}(Y)=P G L(2,7),|\operatorname{Aut}(Y)|=336$.
- Y is vertex-transitive, arc-transitive and 3 -regular.
- A vertex-stabilizer is of order $2 \cdot 3^{s-1}=12$ and it is isomorphic to D_{12}.
- A arc-stabilizer is of order $2^{s-1}=4$ and it isomorphic to $Z_{2} \times Z_{2}$.
- A stabilizer of an edge is of order 8 .

Constructing the Coxeter Graph from the Fano Plane

$$
\begin{aligned}
& X=(V, E) \\
& V=\{(P, I) \in \mathcal{P} \times \mathcal{L} \mid P \notin I\} \\
& (P, I) \sim\left(P^{\prime}, I^{\prime}\right) \Leftrightarrow \mathcal{P}=I \bigcup I^{\prime} \bigcup\left\{P, P^{\prime}\right\}
\end{aligned}
$$

The Coxeter graph in distance-transitive format

A 1-factor \mathcal{M} in the Coxeter graph

A complement of a 1-factor \mathcal{M} in the Coxeter graph

The number of 1-factor in the Coxeter graph

Let \mathcal{M}_{0} be a 1-factor in Y.
Let $\mu_{i j}$ be number of edges in \mathcal{M}_{0} which join a vertex in Δ_{i} to one in Δ_{j}.
Then

$$
\begin{gathered}
\mu_{01}=1, \mu_{12}=2, \mu_{23}=4 \\
4+2 \mu_{33}+\mu_{34}=12 ; \\
\mu_{34}+2 \mu_{44}=6 \\
0 \leq \mu_{44} \leq 3
\end{gathered}
$$

The number of 1-factor in the Coxeter graph

Let \mathcal{M}_{0} be a 1-factor in Y.
Let $\mu_{i j}$ be number of edges in \mathcal{M}_{0} which join a vertex in Δ_{i} to one in Δ_{j}. Then

$$
\begin{gathered}
\mu_{01}=1, \mu_{12}=2, \mu_{23}=4 \\
4+2 \mu_{33}+\mu_{34}=12 \\
\mu_{34}+2 \mu_{44}=6 \\
0 \leq \mu_{44} \leq 3 \\
\Rightarrow Y \text { has } 84 \text { 1-factors. }
\end{gathered}
$$

The action of AutY on the set of 1-factors

Let \mathcal{M} be the set of all 1-factors in Y.
Then Aut Y acts on \mathcal{M}.
Let \mathcal{M}_{0} be particular 1-factor.
c1/t1, e1/e4, d1/d3, e2/e5, d6/t6, $\mathrm{c} 6 / \mathrm{c} 7, \mathrm{c} 2 / \mathrm{t} 2, \mathrm{t} 7, \mathrm{e} / 7, \mathrm{t} 3 / \mathrm{c} 3, \mathrm{t} 4 / \mathrm{d} 4$, t5/d5, d2/d7, e3/e6, c4/c5.

Suppose that $\phi \in$ Aut Y fixes \mathcal{M}_{0} setwise. Since \mathcal{M}_{0} contains the three "extreme" edges with respect to $t 1, \mathcal{M}_{0}$ also contain the "extreme" edges with respect to $\phi(t 1)$.

The "extreme" edges

t, i	c, i	d,i	e, i
$c, i-3 / c, i+3$	$t, i-3 / d, i-3$	$t, i-1 / e, i-1$	$t, i-2 / c, i-2$
$d, i-1 / d, i+1$	$t, i+3 / d, i+3$	$t, i+1 / e, i+1$	$t, i+2 / c, i+2$
$\begin{aligned} & e, i-2 / e, i+2 \\ & M= \end{aligned}$	$e, i-2 / e, i+2$	$c, i-3 / c, i+3$	$d, i-1 / d, i+2$
1/t1, e1/e4, d1/	$5 / e 5, d 6 / t 6, c$		$4, t 5 /$

The stabilizer of \mathcal{M}_{0}.

Automorphism fixing an edge from a group of order 8. One of such automorphism is that which is induced by the permutation

$$
(1)(27)(36)(45)
$$

of the numerical parts of the vertex-labels. This automorphism does not fix \mathcal{M}_{0} and so stabilizer of \mathcal{M}_{0} has order at most 4.
But the following automorphism of Y fixes \mathcal{M}_{0} and has order 4:

$$
\begin{aligned}
& \theta=(t 1 c 1)(t 2 d 3 c 6 e 4)(d 1 c 7 e 1 c 2)(d 4 d 7 t 5 c 4) \\
& (e 3 \text { e6) }(\mathrm{d} 6 \mathrm{t} 7 \mathrm{e} 5 \mathrm{c} 3)(\mathrm{t} 3 \mathrm{t} 6 \mathrm{e} 7 \text { e2) }(\mathrm{t} 4 \mathrm{~d} 2 \mathrm{~d} 5 \mathrm{c} 5)
\end{aligned}
$$

The stabilizer of \mathcal{M}_{0}.

Automorphism induced by permutation (1)(27)(36)(45) is not in Stab $_{\mathcal{M}_{0}}$

$$
\begin{gathered}
(t 1 c 1)(t 2 d 3 c 6 e 4)(d 1 c 7 e 1 c 2)(d 4 d 7 t 5 c 4) \\
(\mathrm{e} 3 \mathrm{e} 6)(\mathrm{d} 6 \mathrm{t} 7 \mathrm{e} 5 \mathrm{c} 3)(\mathrm{t} 3 \mathrm{t} 6 \mathrm{e} 7 \mathrm{e} 2)(\mathrm{t} 4 \mathrm{~d} 2 \mathrm{~d} 5 \mathrm{c} 5) \in \text { Stab }_{\mathcal{M}_{0}}
\end{gathered}
$$

The stabilizer of \mathcal{M}_{0}.

By Orbit-Stabilizer property the 1 -factor \mathcal{M}_{0} has exactly

$$
\frac{|\operatorname{Aut}(Y)|}{\left|\operatorname{Stab}_{\mathcal{M}_{0}}\right|}=\left|\operatorname{Orb}_{\operatorname{Aut}(Y)}\left(\mathcal{M}_{0}\right)\right|=\frac{336}{4}=84
$$

distinct images under the action of $\operatorname{Aut} Y$. Since $|M|=84$ it follows that
$\Rightarrow A u t Y$ is transitive on the set of 1-factors.

The stabilizer of \mathcal{M}_{0}.

By Orbit-Stabilizer property the 1-factor \mathcal{M}_{0} has exactly

$$
\frac{|\operatorname{Aut}(Y)|}{\left|\operatorname{Stab}_{\mathcal{M}_{0}}\right|}=\left|\operatorname{Orb}_{A u t(Y)}\left(\mathcal{M}_{0}\right)\right|=\frac{336}{4}=84
$$

distinct images under the action of Aut Y. Since $|M|=84$ it follows that
$\Rightarrow A u t Y$ is transitive on the set of 1-factors.
$\Rightarrow Y$ does not have a Hamiltonian cycle.

Thank you!

