Order Statistic Problems on Suffixes

Gianni Franceschini

University of Pisa
francesc@di.unipi.it

Order Statistic Problems

Order Statistic Problems

Generic Order Statistic Problem:

Order Statistic Problems

Generic Order Statistic Problem:

- Given a set \mathcal{S} of n elements (drawn from a total order $(\mathcal{U},<)$),

Order Statistic Problems

Generic Order Statistic Problem:

- Given a set \mathcal{S} of n elements (drawn from a total order $(\mathcal{U},<)$),
- and a rank set \mathcal{R} (i.e. $k \in\{1,2, \ldots, n\}$, for any $k \in \mathcal{R}$)

Order Statistic Problems

Generic Order Statistic Problem:

- Given a set \mathcal{S} of n elements (drawn from a total order $(\mathcal{U},<)$),
- and a rank set \mathcal{R} (i.e. $k \in\{1,2, \ldots, n\}$, for any $k \in \mathcal{R}$)
- find the k-th smallest element in S, for any $k \in \mathcal{R}$.

Order Statistic Problems

Generic Order Statistic Problem:

- Given a set \mathcal{S} of n elements (drawn from a total order $(\mathcal{U},<)$),
- and a rank set \mathcal{R} (i.e. $k \in\{1,2, \ldots, n\}$, for any $k \in \mathcal{R}$)
- find the k-th smallest element in S, for any $k \in \mathcal{R}$.

Classical order statistic problems:

Order Statistic Problems

Generic Order Statistic Problem:

- Given a set \mathcal{S} of n elements (drawn from a total order $(\mathcal{U},<)$),
- and a rank set \mathcal{R} (i.e. $k \in\{1,2, \ldots, n\}$, for any $k \in \mathcal{R}$)
- find the k-th smallest element in S, for any $k \in \mathcal{R}$.

Classical order statistic problems:

- Sorting: extreme case where $\mathcal{R}=\{1,2, \ldots n\}$.

Order Statistic Problems

Generic Order Statistic Problem:

- Given a set \mathcal{S} of n elements (drawn from a total order $(\mathcal{U},<)$),
- and a rank set \mathcal{R} (i.e. $k \in\{1,2, \ldots, n\}$, for any $k \in \mathcal{R}$)
- find the k-th smallest element in S, for any $k \in \mathcal{R}$.

Classical order statistic problems:

- Sorting: extreme case where $\mathcal{R}=\{1,2, \ldots n\}$.
- Selection of the smallest (largest) element: $\mathcal{R}=\{1\}(\mathcal{R}=\{n\})$.

Order Statistic Problems

Generic Order Statistic Problem:

- Given a set \mathcal{S} of n elements (drawn from a total order $(\mathcal{U},<)$),
- and a rank set \mathcal{R} (i.e. $k \in\{1,2, \ldots, n\}$, for any $k \in \mathcal{R}$)
- find the k-th smallest element in S, for any $k \in \mathcal{R}$.

Classical order statistic problems:

- Sorting: extreme case where $\mathcal{R}=\{1,2, \ldots n\}$.
- Selection of the smallest (largest) element: $\mathcal{R}=\{1\}(\mathcal{R}=\{n\})$.
- Selection of the smallest AND largest elements: $\mathcal{R}=\{1, n\}$.

Order Statistic Problems

Generic Order Statistic Problem:

- Given a set \mathcal{S} of n elements (drawn from a total order $(\mathcal{U},<)$),
- and a rank set \mathcal{R} (i.e. $k \in\{1,2, \ldots, n\}$, for any $k \in \mathcal{R}$)
- find the k-th smallest element in S, for any $k \in \mathcal{R}$.

Classical order statistic problems:

- Sorting: extreme case where $\mathcal{R}=\{1,2, \ldots n\}$.
- Selection of the smallest (largest) element: $\mathcal{R}=\{1\}(\mathcal{R}=\{n\})$.
- Selection of the smallest AND largest elements: $\mathcal{R}=\{1, n\}$.
- Selection of the median(s) element(s): $\mathcal{R}=\{\lfloor n / 2\rfloor,\lceil n / 2\rceil\}$.

Order Statistic Problems

Generic Order Statistic Problem:

- Given a set \mathcal{S} of n elements (drawn from a total order $(\mathcal{U},<)$),
- and a rank set \mathcal{R} (i.e. $k \in\{1,2, \ldots, n\}$, for any $k \in \mathcal{R}$)
- find the k-th smallest element in S, for any $k \in \mathcal{R}$.

Classical order statistic problems:

- Sorting: extreme case where $\mathcal{R}=\{1,2, \ldots n\}$.
- Selection of the smallest (largest) element: $\mathcal{R}=\{1\}(\mathcal{R}=\{n\})$.
- Selection of the smallest AND largest elements: $\mathcal{R}=\{1, n\}$.
- Selection of the median(s) element(s): $\mathcal{R}=\{\lfloor n / 2\rfloor,\lceil n / 2\rceil\}$.
- Generic selection: $\mathcal{R}=\{k\}$, for any k.

Order Statistic Problems

Generic Order Statistic Problem:

- Given a set \mathcal{S} of n elements (drawn from a total order $(\mathcal{U},<)$),
- and a rank set \mathcal{R} (i.e. $k \in\{1,2, \ldots, n\}$, for any $k \in \mathcal{R}$)
- find the k-th smallest element in S, for any $k \in \mathcal{R}$.

Classical order statistic problems:

- Sorting: extreme case where $\mathcal{R}=\{1,2, \ldots n\}$.
- Selection of the smallest (largest) element: $\mathcal{R}=\{1\}(\mathcal{R}=\{n\})$.
- Selection of the smallest AND largest elements: $\mathcal{R}=\{1, n\}$.
- Selection of the median(s) element(s): $\mathcal{R}=\{\lfloor n / 2\rfloor,\lceil n / 2\rceil\}$.
- Generic selection: $\mathcal{R}=\{k\}$, for any k.
- Generic multi-selection: $\mathcal{R} \subset\{1,2, \ldots, n\}$.

Order Statistic Problems

Usual settings for Order Statistic Problems:

Order Statistic Problems

Usual settings for Order Statistic Problems:

- \mathcal{S} is a set...

Order Statistic Problems

Usual settings for Order Statistic Problems:

- \mathcal{S} is a set. . . but it can also be a multi-set (i.e. multiple occurrences of an element allowed), if the rank of an element is well-defined (usually by considering \mathcal{S} as a sequence).

Order Statistic Problems

Usual settings for Order Statistic Problems:

- \mathcal{S} is a set. . . but it can also be a multi-set (i.e. multiple occurrences of an element allowed), if the rank of an element is well-defined (usually by considering \mathcal{S} as a sequence).
- The input elements are unidimensional objects (comparable in $O(1)$ time)...

Order Statistic Problems

Usual settings for Order Statistic Problems:

- \mathcal{S} is a set. . . but it can also be a multi-set (i.e. multiple occurrences of an element allowed), if the rank of an element is well-defined (usually by considering \mathcal{S} as a sequence).
- The input elements are unidimensional objects (comparable in $O(1)$ time)...
- ... but results can be easily extended to multidimensional objects, like strings and vectors, and the lexicographical order.

Order Statistic Problems

Usual settings for Order Statistic Problems:

- \mathcal{S} is a set. . . but it can also be a multi-set (i.e. multiple occurrences of an element allowed), if the rank of an element is well-defined (usually by considering \mathcal{S} as a sequence).
- The input elements are unidimensional objects (comparable in O(1) time)...
- . . . but results can be easily extended to multidimensional objects, like strings and vectors, and the lexicographical order.
- Not so easy when the input objects are the suffixes of a sequence T.

Order Statistic Problems

Usual settings for Order Statistic Problems:

- \mathcal{S} is a set. . . but it can also be a multi-set (i.e. multiple occurrences of an element allowed), if the rank of an element is well-defined (usually by considering \mathcal{S} as a sequence).
- The input elements are unidimensional objects (comparable in O(1) time)...
- ... but results can be easily extended to multidimensional objects, like strings and vectors, and the lexicographical order.
- Not so easy when the input objects are the suffixes of a sequence T.
- In all cases, the comparison model is considered: the input objects (or for the cases of strings, vectors and suffixes, the elements they are made of) can only be compared.

Generic Suffix Selection

Generic Selection

Given a set \mathcal{S} of n elements and an integer $k \in$ $\{1, \ldots, n\}$, find the k-th smallest element of \mathcal{S}.

Generic Selection

Given a set \mathcal{S} of n elements and an integer $k \in$ $\{1, \ldots, n\}$, find the k-th smallest element of \mathcal{S}.

- Simple solution: sort \mathcal{S} in $\Theta(n \log n)$ time and select the k-th smallest element in $O(1)$ time.

Generic Selection

Given a set \mathcal{S} of n elements and an integer $k \in$ $\{1, \ldots, n\}$, find the k-th smallest element of \mathcal{S}.

- Simple solution: sort \mathcal{S} in $\Theta(n \log n)$ time and select the k-th smallest element in $O(1)$ time.
- Is this optimal? Are the asymptotic complexities of sorting and selection the same?

Generic Selection

Given a set \mathcal{S} of n elements and an integer $k \in$ $\{1, \ldots, n\}$, find the k-th smallest element of \mathcal{S}.

- Simple solution: sort \mathcal{S} in $\Theta(n \log n)$ time and select the k-th smallest element in $O(1)$ time.
- Is this optimal? Are the asymptotic complexities of sorting and selection the same?
- That was unknown until the early '70s:

Generic Selection

Given a set \mathcal{S} of n elements and an integer $k \in$ $\{1, \ldots, n\}$, find the k-th smallest element of \mathcal{S}.

- Simple solution: sort \mathcal{S} in $\Theta(n \log n)$ time and select the k-th smallest element in $O(1)$ time.
- Is this optimal? Are the asymptotic complexities of sorting and selection the same?
- That was unknown until the early '70s:
- famous "textbook" results [Blum, Floyd, Pratt, Rivest, Tarjan, STOC 1972, JCSS 7, 1973],

Generic Selection

Given a set \mathcal{S} of n elements and an integer $k \in$ $\{1, \ldots, n\}$, find the k-th smallest element of \mathcal{S}.

- Simple solution: sort \mathcal{S} in $\Theta(n \log n)$ time and select the k-th smallest element in $O(1)$ time.
- Is this optimal? Are the asymptotic complexities of sorting and selection the same?
- That was unknown until the early '70s:
- famous "textbook" results [Blum, Floyd, Pratt, Rivest, Tarjan, STOC 1972, JCSS 7, 1973],
- generic selection requires $O(n)$ time in the worst case.

Generic Selection

Given a set \mathcal{S} of n elements and an integer $k \in$ $\{1, \ldots, n\}$, find the k-th smallest element of \mathcal{S}.

- Simple solution: sort \mathcal{S} in $\Theta(n \log n)$ time and select the k-th smallest element in $O(1)$ time.
- Is this optimal? Are the asymptotic complexities of sorting and selection the same?
- That was unknown until the early '70s:
- famous "textbook" results [Blum, Floyd, Pratt, Rivest, Tarjan, STOC 1972, JCSS 7, 1973],
- generic selection requires $O(n)$ time in the worst case.
- classic example of divide et impera approach.

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).
3. Recursively find the median x of the $n / 5$ medians found in step 2.

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).
3. Recursively find the median x of the $n / 5$ medians found in step 2.
4. Partition the input into two subsets \mathcal{L} and \mathcal{R} according to x ($y<x$, for any $y \in \mathcal{L})$.

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).
3. Recursively find the median x of the $n / 5$ medians found in step 2.
4. Partition the input into two subsets \mathcal{L} and \mathcal{R} according to x ($y<x$, for any $y \in \mathcal{L})$.
5. Recursively select

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).
3. Recursively find the median x of the $n / 5$ medians found in step 2.
4. Partition the input into two subsets \mathcal{L} and \mathcal{R} according to x ($y<x$, for any $y \in \mathcal{L})$.
5. Recursively select

- the k-th smallest element in \mathcal{L}, if $k \leq|\mathcal{L}|$,

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).
3. Recursively find the median x of the $n / 5$ medians found in step 2.
4. Partition the input into two subsets \mathcal{L} and \mathcal{R} according to x ($y<x$, for any $y \in \mathcal{L})$.
5. Recursively select

- the k-th smallest element in \mathcal{L}, if $k \leq|\mathcal{L}|$,
- or the $(k-|\mathcal{L}|)$-th smallest element in \mathcal{R}, if $k>|\mathcal{L}|$.

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).
3. Recursively find the median x of the $n / 5$ medians found in step 2.
4. Partition the input into two subsets \mathcal{L} and \mathcal{R} according to x ($y<x$, for any $y \in \mathcal{L})$.
5. Recursively select

- the k-th smallest element in \mathcal{L}, if $k \leq|\mathcal{L}|$,
- or the $(k-|\mathcal{L}|)$-th smallest element in \mathcal{R}, if $k>|\mathcal{L}|$.

Simple analysis:

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).
3. Recursively find the median x of the $n / 5$ medians found in step 2.
4. Partition the input into two subsets \mathcal{L} and \mathcal{R} according to x ($y<x$, for any $y \in \mathcal{L})$.
5. Recursively select

- the k-th smallest element in \mathcal{L}, if $k \leq|\mathcal{L}|$,
- or the $(k-|\mathcal{L}|)$-th smallest element in \mathcal{R}, if $k>|\mathcal{L}|$.

Simple analysis:

- At least half of the $n / 5$ groups have 3 elements greater than $x \ldots$

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).
3. Recursively find the median x of the $n / 5$ medians found in step 2.
4. Partition the input into two subsets \mathcal{L} and \mathcal{R} according to x ($y<x$, for any $y \in \mathcal{L})$.
5. Recursively select

- the k-th smallest element in \mathcal{L}, if $k \leq|\mathcal{L}|$,
- or the $(k-|\mathcal{L}|)$-th smallest element in \mathcal{R}, if $k>|\mathcal{L}|$.

Simple analysis:

- At least half of the $n / 5$ groups have 3 elements greater than $x \ldots$
- ... we have a lower bound on the size of $\mathcal{R}:|\mathcal{R}| \geq \frac{3}{10} n$.

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).
3. Recursively find the median x of the $n / 5$ medians found in step 2.
4. Partition the input into two subsets \mathcal{L} and \mathcal{R} according to x ($y<x$, for any $y \in \mathcal{L})$.
5. Recursively select

- the k-th smallest element in \mathcal{L}, if $k \leq|\mathcal{L}|$,
- or the $(k-|\mathcal{L}|)$-th smallest element in \mathcal{R}, if $k>|\mathcal{L}|$.

Simple analysis:

- At least half of the $n / 5$ groups have 3 elements greater than $x \ldots$
- ... we have a lower bound on the size of $\mathcal{R}:|\mathcal{R}| \geq \frac{3}{10} n$.
- Therefore $T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7}{10} n\right)+O(n)$

Selection in $O(n)$ time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into $n / 5$ groups of 5 elements each.
2. Find the median of each group (e.g. by insertion sorting).
3. Recursively find the median x of the $n / 5$ medians found in step 2.
4. Partition the input into two subsets \mathcal{L} and \mathcal{R} according to x ($y<x$, for any $y \in \mathcal{L})$.
5. Recursively select

- the k-th smallest element in \mathcal{L}, if $k \leq|\mathcal{L}|$,
- or the $(k-|\mathcal{L}|)$-th smallest element in \mathcal{R}, if $k>|\mathcal{L}|$.

Simple analysis:

- At least half of the $n / 5$ groups have 3 elements greater than $x \ldots$
- ... we have a lower bound on the size of $\mathcal{R}:|\mathcal{R}| \geq \frac{3}{10} n$.
- Therefore $T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7}{10} n\right)+O(n)=O(n)$.

The Lexicographical Order

Given two sequences x, y we denote with $l c p(x, y)$ the length of the longest common prefix of x and y.

The Lexicographical Order

Given two sequences x, y we denote with $l c p(x, y)$ the length of the longest common prefix of x and y.

$$
\begin{gathered}
x \text { is lexicographically smaller than } y \\
\text { if and only if } \\
x[l+1]<y[l+1] \text {, where } l=l c p(x, y)
\end{gathered}
$$

The Lexicographical Order

Given two sequences x, y we denote with $l c p(x, y)$ the length of the longest common prefix of x and y.

$$
\begin{gathered}
x \text { is lexicographically smaller than } y \\
\text { if and only if } \\
x[l+1]<y[l+1] \text {, where } l=l c p(x, y) \\
\text { or } x \text { is a proper prefix of } y
\end{gathered}
$$

The Lexicographical Order

Given two sequences x, y we denote with $l c p(x, y)$ the length of the longest common prefix of x and y.

$$
\begin{gathered}
x \text { is lexicographically smaller than } y \\
\text { if and only if } \\
x[l+1]<y[l+1] \text {, where } l=l c p(x, y) \\
\text { or } x \text { is a proper prefix of } y
\end{gathered}
$$

- When working with suffixes of a sequence T, it is customary to assume that
- T has $n+1$ elements and
- $T[n+1]$ is smaller than any other $T[j]$.

The Lexicographical Order

Given two sequences x, y we denote with $l c p(x, y)$ the length of the longest common prefix of x and y.

$$
\begin{gathered}
x \text { is lexicographically smaller than } y \\
\text { if and only if } \\
x[l+1]<y[l+1] \text {, where } l=l c p(x, y) \\
\text { or } x \text { is a proper prefix of } y
\end{gathered}
$$

- When working with suffixes of a sequence T, it is customary to assume that
- T has $n+1$ elements and
- $T[n+1]$ is smaller than any other $T[j]$.
- We represent $T[n+1]$ with \bullet.

Generic Suffix Selection

This time we deal with

- suffixes, i.e. $\mathcal{S}=\left\{T_{1}, T_{2}, \ldots T_{n}\right\}$, where $T_{i}=T[i \cdots n]$

Generic Suffix Selection

This time we deal with

- suffixes, i.e. $\mathcal{S}=\left\{T_{1}, T_{2}, \ldots T_{n}\right\}$, where $T_{i}=T[i \cdots n]$
- the lexicographical order.

Generic Suffix Selection

This time we deal with

- suffixes, i.e. $\mathcal{S}=\left\{T_{1}, T_{2}, \ldots T_{n}\right\}$, where $T_{i}=T[i \cdots n]$
- the lexicographical order.

> Given a sequence of n elements T and an integer $k \in\{1, \ldots, n\}$, find the k-th lexicographically smallest suffix of T.

Generic Suffix Selection

This time we deal with

- suffixes, i.e. $\mathcal{S}=\left\{T_{1}, T_{2}, \ldots T_{n}\right\}$, where $T_{i}=T[i \cdots n]$
- the lexicographical order.

> Given a sequence of n elements T and an integer $k \in\{1, \ldots, n\}$, find the k-th lexicographically smallest suffix of T.

It is well known that the suffixes of T can be sorted in $O(n \log n)$ time in the worst case:

Generic Suffix Selection

This time we deal with

- suffixes, i.e. $\mathcal{S}=\left\{T_{1}, T_{2}, \ldots T_{n}\right\}$, where $T_{i}=T[i \cdots n]$
- the lexicographical order.

> | Given a sequence of n elements T and an inte- |
| :--- |
| ger $k \in\{1, \ldots, n\}$, find the k-th lexicographically |
| smallest suffix of T. |

It is well known that the suffixes of T can be sorted in $O(n \log n)$ time in the worst case:

- Directly, by building the Suffix Array [Manber, Myers, SICOMP 22, 1993].

Generic Suffix Selection

This time we deal with

- suffixes, i.e. $\mathcal{S}=\left\{T_{1}, T_{2}, \ldots T_{n}\right\}$, where $T_{i}=T[i \cdots n]$
- the lexicographical order.

> Given a sequence of n elements T and an integer $k \in\{1, \ldots, n\}$, find the k-th lexicographically smallest suffix of T.

It is well known that the suffixes of T can be sorted in $O(n \log n)$ time in the worst case:

- Directly, by building the Suffix Array [Manber, Myers, SICOMP 22, 1993].
- Indirectly, through the Suffix Tree [Farach, FOCS 1997].

Generic Suffix Selection

This time we deal with

- suffixes, i.e. $\mathcal{S}=\left\{T_{1}, T_{2}, \ldots T_{n}\right\}$, where $T_{i}=T[i \cdots n]$
- the lexicographical order.

> Given a sequence of n elements T and an integer $k \in\{1, \ldots, n\}$, find the k-th lexicographically smallest suffix of T.

It is well known that the suffixes of T can be sorted in $O(n \log n)$ time in the worst case:

- Directly, by building the Suffix Array [Manber, Myers, SICOMP 22, 1993].
- Indirectly, through the Suffix Tree [Farach, FOCS 1997].

Natural question:
Are the complexities of Suffix Sorting and Suffix Selection the same?

Generic Suffix Selection

- Practical motivations: a fast suffix selection has potential applications in bioinformatics, information retrieval...

Generic Suffix Selection

- Practical motivations: a fast suffix selection has potential applications in bioinformatics, information retrieval...
- ... but the problem has mainly a theoretical appealing.

Generic Suffix Selection

- Practical motivations: a fast suffix selection has potential applications in bioinformatics, information retrieval. . .
- ... but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Generic Suffix Selection

- Practical motivations: a fast suffix selection has potential applications in bioinformatics, information retrieval. . .
- ... but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:
Suffix Selection requires $O(n)$ time in the worst case

Generic Suffix Selection

- Practical motivations: a fast suffix selection has potential applications in bioinformatics, information retrieval. . .
- ... but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Suffix Selection requires $O(n)$ time in the worst case

- The divide and conquer approach used in [Blum et al, JCSS 7, 1973] is not viable for suffix selection.

Generic Suffix Selection

- Practical motivations: a fast suffix selection has potential applications in bioinformatics, information retrieval. . .
- ... but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Suffix Selection requires $O(n)$ time in the worst case

- The divide and conquer approach used in [Blum et al, JCSS 7, 1973] is not viable for suffix selection.
- If the approach was applied to suffixes, the two recursive subproblems (the finding of the median of medians and the recursive application on \mathcal{L} or \mathcal{R}) would not be instances of the Suffix Selection problem anymore. . .

Generic Suffix Selection

- Practical motivations: a fast suffix selection has potential applications in bioinformatics, information retrieval. . .
- ... but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Suffix Selection requires $O(n)$ time in the worst case

- The divide and conquer approach used in [Blum et al, JCSS 7, 1973] is not viable for suffix selection.
- If the approach was applied to suffixes, the two recursive subproblems (the finding of the median of medians and the recursive application on \mathcal{L} or \mathcal{R}) would not be instances of the Suffix Selection problem anymore. . .
- ... same sequence T but only a fraction of the n suffixes would be considered in the sub-problems.

Generic Suffix Selection

- Practical motivations: a fast suffix selection has potential applications in bioinformatics, information retrieval. . .
- ... but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Suffix Selection requires $O(n)$ time in the worst case

- The divide and conquer approach used in [Blum et al, JCSS 7, 1973] is not viable for suffix selection.
- If the approach was applied to suffixes, the two recursive subproblems (the finding of the median of medians and the recursive application on \mathcal{L} or \mathcal{R}) would not be instances of the Suffix Selection problem anymore. . .
- ... same sequence T but only a fraction of the n suffixes would be considered in the sub-problems.
- However, we will use the selection algorithm in [Blum et al, JCSS 7, 1973] as a basic tool for suffix selection.

Suffix selection, first attempt

Phase-based approach.

Suffix selection, first attempt

Phase-based approach.

For each phase t we have the following.

Suffix selection, first attempt

Phase-based approach.

For each phase t we have the following.

- A prefix σ_{t} of the k-th smallest suffix. This represents our current knowledge about the wanted suffix.

Suffix selection, first attempt

Phase-based approach.

For each phase t we have the following.

- A prefix σ_{t} of the k-th smallest suffix. This represents our current knowledge about the wanted suffix.
- A set of active suffixes \mathcal{A}_{t}. It contains all the suffixes with σ_{t} as a prefix (that is all the suffixes that could still be the k-th smallest suffix at that point)

Suffix selection, first attempt

Phase-based approach.

For each phase t we have the following.

- A prefix σ_{t} of the k-th smallest suffix. This represents our current knowledge about the wanted suffix.
- A set of active suffixes \mathcal{A}_{t}. It contains all the suffixes with σ_{t} as a prefix (that is all the suffixes that could still be the k-th smallest suffix at that point)
- A set of inactive suffixes \mathcal{I}_{t} with the suffixes that do not have σ_{t} as a prefix.

Suffix selection, first attempt

Phase-based approach.

For each phase t we have the following.

- A prefix σ_{t} of the k-th smallest suffix. This represents our current knowledge about the wanted suffix.
- A set of active suffixes \mathcal{A}_{t}. It contains all the suffixes with σ_{t} as a prefix (that is all the suffixes that could still be the k-th smallest suffix at that point)
- A set of inactive suffixes \mathcal{I}_{t} with the suffixes that do not have σ_{t} as a prefix.
- The number l_{t} of the suffixes lexicographically less than any of the active suffixes of phase t.

Suffix selection, first attempt

Phase-based approach.

For each phase t we have the following.

- A prefix σ_{t} of the k-th smallest suffix. This represents our current knowledge about the wanted suffix.
- A set of active suffixes \mathcal{A}_{t}. It contains all the suffixes with σ_{t} as a prefix (that is all the suffixes that could still be the k-th smallest suffix at that point)
- A set of inactive suffixes \mathcal{I}_{t} with the suffixes that do not have σ_{t} as a prefix.
- The number l_{t} of the suffixes lexicographically less than any of the active suffixes of phase t.

Our knowledge about the k-th smallest suffix is increased during Phase Transitions.

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

- Phase 0: σ_{0} is void and all the suffixes are active.

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

- Phase 0: σ_{0} is void and all the suffixes are active.
- Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find the k-th smallest element α_{1} of T.

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

- Phase 0: σ_{0} is void and all the suffixes are active.
- Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find the k-th smallest element α_{1} of T.
- Phase 1: $\sigma_{1}=\alpha_{1}$ and the active suffixes are the ones starting with α_{1}.

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

- Phase 0: σ_{0} is void and all the suffixes are active.
- Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find the k-th smallest element α_{1} of T.
- Phase 1: $\sigma_{1}=\alpha_{1}$ and the active suffixes are the ones starting with α_{1}.

$$
(t+1) \text {-th Phase Transition: from phase } t \text { to phase } t+1
$$

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

- Phase 0: σ_{0} is void and all the suffixes are active.
- Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find the k-th smallest element α_{1} of T.
- Phase 1: $\sigma_{1}=\alpha_{1}$ and the active suffixes are the ones starting with α_{1}.
$(t+1)$-th Phase Transition: from phase t to phase $t+1$
- Let's consider the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$.

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

- Phase 0: σ_{0} is void and all the suffixes are active.
- Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find the k-th smallest element α_{1} of T.
- Phase 1: $\sigma_{1}=\alpha_{1}$ and the active suffixes are the ones starting with α_{1}.
$(t+1)$-th Phase Transition: from phase t to phase $t+1$
- Let's consider the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$.
- Using [Blum et al. 1973], we select from \mathcal{D}_{t} the $\left(k-l_{t}\right)$-th smallest element α_{t+1}.

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

- Phase 0: σ_{0} is void and all the suffixes are active.
- Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find the k-th smallest element α_{1} of T.
- Phase 1: $\sigma_{1}=\alpha_{1}$ and the active suffixes are the ones starting with α_{1}.
$(t+1)$-th Phase Transition: from phase t to phase $t+1$
- Let's consider the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$.
- Using [Blum et al. 1973], we select from \mathcal{D}_{t} the $\left(k-l_{t}\right)$-th smallest element α_{t+1}.
- We set $\sigma_{t+1}=\sigma_{t} \alpha_{t+1}$.

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

- Phase 0: σ_{0} is void and all the suffixes are active.
- Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find the k-th smallest element α_{1} of T.
- Phase 1: $\sigma_{1}=\alpha_{1}$ and the active suffixes are the ones starting with α_{1}.
$(t+1)$-th Phase Transition: from phase t to phase $t+1$
- Let's consider the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$.
- Using [Blum et al. 1973], we select from \mathcal{D}_{t} the $\left(k-l_{t}\right)$-th smallest element α_{t+1}.
- We set $\sigma_{t+1}=\sigma_{t} \alpha_{t+1}$.
- \mathcal{A}_{t+1} contains all the suffixes in \mathcal{A}_{t} having α_{t+1} as their $(t+1)$-th element.

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

- Phase 0: σ_{0} is void and all the suffixes are active.
- Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find the k-th smallest element α_{1} of T.
- Phase 1: $\sigma_{1}=\alpha_{1}$ and the active suffixes are the ones starting with α_{1}.
$(t+1)$-th Phase Transition: from phase t to phase $t+1$
- Let's consider the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$.
- Using [Blum et al. 1973], we select from \mathcal{D}_{t} the $\left(k-l_{t}\right)$-th smallest element α_{t+1}.
- We set $\sigma_{t+1}=\sigma_{t} \alpha_{t+1}$.
- \mathcal{A}_{t+1} contains all the suffixes in \mathcal{A}_{t} having α_{t+1} as their $(t+1)$-th element.

The computation ends when a phase transition leaves us with only one active suffix.

Suffix selection, first attempt

Suffix selection, first attempt

Suffix selection, first attempt

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

$$
\text { it takes } O\left(n^{2}\right) \text { time in the worst case. }
$$

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes $O\left(n^{2}\right)$ time in the worst case.

- We have not exploited the basic fact that suffixes overlaps.

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes $O\left(n^{2}\right)$ time in the worst case.

- We have not exploited the basic fact that suffixes overlaps.
- The elements of T are unnecessarily accessed multiple times.

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes $O\left(n^{2}\right)$ time in the worst case.

- We have not exploited the basic fact that suffixes overlaps.
- The elements of T are unnecessarily accessed multiple times.
- The phase-based approach can be improved in two ways:

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes $O\left(n^{2}\right)$ time in the worst case.

- We have not exploited the basic fact that suffixes overlaps.
- The elements of T are unnecessarily accessed multiple times.
- The phase-based approach can be improved in two ways:
- By exploiting collisions of active suffixes.

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes $O\left(n^{2}\right)$ time in the worst case.

- We have not exploited the basic fact that suffixes overlaps.
- The elements of T are unnecessarily accessed multiple times.
- The phase-based approach can be improved in two ways:
- By exploiting collisions of active suffixes.
- By reusing the work done on inactive suffixes.

Suffix selection: collisions of active suffixes

Suffix selection, second attempt: exploiting collisions

Some terminology:

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

- The extent of a suffix T_{i} (active or inactive) is the longest common prefix with σ_{t}.

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

- The extent of a suffix T_{i} (active or inactive) is the longest common prefix with σ_{t}.
- Two suffixes T_{i}, T_{j} collide when their extents are either adjacent (i.e. the last element of the extent of T_{i} is adjacent to the first element of the extent of T_{j} or vice versa) or overlapping.

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

- The extent of a suffix T_{i} (active or inactive) is the longest common prefix with σ_{t}.
- Two suffixes T_{i}, T_{j} collide when their extents are either adjacent (i.e. the last element of the extent of T_{i} is adjacent to the first element of the extent of T_{j} or vice versa) or overlapping.

In the first attempt, with any phase transition

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

- The extent of a suffix T_{i} (active or inactive) is the longest common prefix with σ_{t}.
- Two suffixes T_{i}, T_{j} collide when their extents are either adjacent (i.e. the last element of the extent of T_{i} is adjacent to the first element of the extent of T_{j} or vice versa) or overlapping.

In the first attempt, with any phase transition

- we tried to enlarge by just one element the extent of each active suffix

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

- The extent of a suffix T_{i} (active or inactive) is the longest common prefix with σ_{t}.
- Two suffixes T_{i}, T_{j} collide when their extents are either adjacent (i.e. the last element of the extent of T_{i} is adjacent to the first element of the extent of T_{j} or vice versa) or overlapping.

In the first attempt, with any phase transition

- we tried to enlarge by just one element the extent of each active suffix
- while completely ignoring the emerging of collisions.

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

$k=10, l_{5}=8$, Phase 5

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Let's consider a Phase Transition from phase t to $t+1$.

Suffix selection, second attempt: exploiting collisions

Let's consider a Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in phase t, the transition proceeds as before (we try to enlarge by just one element the extents).

Suffix selection, second attempt: exploiting collisions

Let's consider a Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in phase t, the transition proceeds as before (we try to enlarge by just one element the extents).
- Otherwise, it can be proven that the extents of the colliding active suffixes are simply adjacent and do not overlap.

Suffix selection, second attempt: exploiting collisions

Let's consider a Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in phase t, the transition proceeds as before (we try to enlarge by just one element the extents).
- Otherwise, it can be proven that the extents of the colliding active suffixes are simply adjacent and do not overlap.

Let the prospective extent of an active suffix T_{i} be composed by the following:

- The subsequence of extents following it (just T_{i} 's extent, in case T_{i} does not collide).
- The element c_{i} next to the extent of the rightmost suffix in the collision.

Suffix selection, second attempt: exploiting collisions

Let's consider a Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in phase t, the transition proceeds as before (we try to enlarge by just one element the extents).
- Otherwise, it can be proven that the extents of the colliding active suffixes are simply adjacent and do not overlap.

Let the prospective extent of an active suffix T_{i} be composed by the following:

- The subsequence of extents following it (just T_{i} 's extent, in case T_{i} does not collide).
- The element c_{i} next to the extent of the rightmost suffix in the collision.
- Since the extent of an active suffix T_{i} is σ_{t}, the prospective extent of T_{i} is the periodic sequence

for an integer r_{i}.

Suffix selection, second attempt: exploiting collisions

Let's consider a Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in phase t, the transition proceeds as before (we try to enlarge by just one element the extents).
- Otherwise, it can be proven that the extents of the colliding active suffixes are simply adjacent and do not overlap.

Let the prospective extent of an active suffix T_{i} be composed by the following:

- The subsequence of extents following it (just T_{i} 's extent, in case T_{i} does not collide).
- The element c_{i} next to the extent of the rightmost suffix in the collision.
- Since the extent of an active suffix T_{i} is σ_{t}, the prospective extent of T_{i} is the periodic sequence

for an integer r_{i}.
- Therefore, the prospective extents of any two active suffixes can be compared in O (1) time.

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Let's go back to the Phase Transition from phase t to $t+1$.

Suffix selection, second attempt: exploiting collisions

Let's go back to the Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in Phase t,

Suffix selection, second attempt: exploiting collisions

Let's go back to the Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in Phase t,
- We select from the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$ the $\left(k-l_{t}\right)$-th smallest element α_{t+1}, using [Blum et al. 1973].

Suffix selection, second attempt: exploiting collisions

Let's go back to the Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in Phase t,
- We select from the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$ the $\left(k-l_{t}\right)$-th smallest element α_{t+1}, using [Blum et al. 1973].
- We set $\sigma_{t+1}=\sigma_{t} \alpha_{t+1}$.

Suffix selection, second attempt: exploiting collisions

Let's go back to the Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in Phase t,
- We select from the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$ the $\left(k-l_{t}\right)$-th smallest element α_{t+1}, using [Blum et al. 1973].
- We set $\sigma_{t+1}=\sigma_{t} \alpha_{t+1}$.
- \mathcal{A}_{t+1} contains all the suffixes in \mathcal{A}_{t} having α_{t+1} as their $(t+1)$-th element.

Suffix selection, second attempt: exploiting collisions

Let's go back to the Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in Phase t,
- We select from the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$ the $\left(k-l_{t}\right)$-th smallest element α_{t+1}, using [Blum et al. 1973].
- We set $\sigma_{t+1}=\sigma_{t} \alpha_{t+1}$.
- \mathcal{A}_{t+1} contains all the suffixes in \mathcal{A}_{t} having α_{t+1} as their $(t+1)$-th element.
- Otherwise,

Suffix selection, second attempt: exploiting collisions

Let's go back to the Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in Phase t,
- We select from the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$ the $\left(k-l_{t}\right)$-th smallest element α_{t+1}, using [Blum et al. 1973].
- We set $\sigma_{t+1}=\sigma_{t} \alpha_{t+1}$.
- \mathcal{A}_{t+1} contains all the suffixes in \mathcal{A}_{t} having α_{t+1} as their $(t+1)$-th element.
- Otherwise,
- We select the $\left(k-l_{t}\right)$-th smallest subsequence π_{t+1}. from the multiset

$$
\mathcal{F}_{t}=\left\{\left(\sigma_{t}\right)^{r_{i}} c_{i} \mid \quad T_{i} \in \mathcal{A}_{t}\right.
$$

$$
\text { and } \left.\left(\sigma_{t}\right)^{r_{i}} c_{i} \text { is the prosp. ext. of } T_{i}\right\}
$$

using [Blum et al. 1973] (two subsequences in \mathcal{F}_{t} can be compared in $O(1)$).

Suffix selection, second attempt: exploiting collisions

Let's go back to the Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in Phase t,
- We select from the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$ the $\left(k-l_{t}\right)$-th smallest element α_{t+1}, using [Blum et al. 1973].
- We set $\sigma_{t+1}=\sigma_{t} \alpha_{t+1}$.
- \mathcal{A}_{t+1} contains all the suffixes in \mathcal{A}_{t} having α_{t+1} as their $(t+1)$-th element.
- Otherwise,
- We select the $\left(k-l_{t}\right)$-th smallest subsequence π_{t+1}. from the multiset

$$
\mathcal{F}_{t}=\left\{\left(\sigma_{t}\right)^{r_{i}} c_{i} \mid \quad T_{i} \in \mathcal{A}_{t}\right.
$$

$$
\text { and } \left.\left(\sigma_{t}\right)^{r_{i}} c_{i} \text { is the prosp. ext. of } T_{i}\right\}
$$

using [Blum et al. 1973] (two subsequences in \mathcal{F}_{t} can be compared in $O(1)$).

- We set $\sigma_{t+1}=\pi_{t+1}$.

Suffix selection, second attempt: exploiting collisions

Let's go back to the Phase Transition from phase t to $t+1$.

- If there are no collisions of active suffixes in Phase t,
- We select from the multiset $\mathcal{D}_{t}=\left\{T_{i}[t+1] \mid T_{i} \in \mathcal{A}_{t}\right\}$ the $\left(k-l_{t}\right)$-th smallest element α_{t+1}, using [Blum et al. 1973].
- We set $\sigma_{t+1}=\sigma_{t} \alpha_{t+1}$.
- \mathcal{A}_{t+1} contains all the suffixes in \mathcal{A}_{t} having α_{t+1} as their $(t+1)$-th element.
- Otherwise,
- We select the $\left(k-l_{t}\right)$-th smallest subsequence π_{t+1}. from the multiset

$$
\mathcal{F}_{t}=\left\{\left(\sigma_{t}\right)^{r_{i}} c_{i} \mid \quad T_{i} \in \mathcal{A}_{t}\right.
$$

$$
\text { and } \left.\left(\sigma_{t}\right)^{r_{i}} c_{i} \text { is the prosp. ext. of } T_{i}\right\}
$$

using [Blum et al. 1973] (two subsequences in \mathcal{F}_{t} can be compared in $O(1)$).

- We set $\sigma_{t+1}=\pi_{t+1}$.
- \mathcal{A}_{t+1} contains all the suffixes in \mathcal{A}_{t} having π_{t+1} as their extent.

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

How do we compare the prospective extents in multiset \mathcal{F}_{t} ?

Suffix selection, second attempt: exploiting collisions

How do we compare the prospective extents in multiset \mathcal{F}_{t} ?

- Each subsequence $\left(\sigma_{t}\right)^{r_{i}} c_{i}$ can be represented by the pair $\left(r_{i}, c_{i}\right)$ (integer/element pair).

Suffix selection, second attempt: exploiting collisions

How do we compare the prospective extents in multiset \mathcal{F}_{t} ?

- Each subsequence $\left(\sigma_{t}\right)^{r_{i}} c_{i}$ can be represented by the pair $\left(r_{i}, c_{i}\right)$ (integer/element pair).
- To compare two subsequences in \mathcal{F}_{t} we can just use their pairs.

Suffix selection, second attempt: exploiting collisions

Suffix selection, second attempt: exploiting collisions

Now we want the active suffix with the prosp ext. of rank $\left(k-l_{5}\right)=2 \ldots$

Suffix selection, second attempt: exploiting collisions

Now we want the active suffix with the prosp ext. of rank $\left(k-l_{5}\right)=2 \ldots$
... exploiting the collisions in \mathcal{A}_{5}, we find it in just one Phase Transition.

Suffix selection, second attempt: exploiting collisions
How well did we do?

Suffix selection, second attempt: exploiting collisions

How well did we do?

- In the example we went from the 11 phases of the first attempt to just 6.

Suffix selection, second attempt: exploiting collisions

How well did we do?

- In the example we went from the 11 phases of the first attempt to just 6.
- The complexity of the second algorithm is $O(n \log n)$ in the worst case.

Suffix selection, second attempt: exploiting collisions

How well did we do?

- In the example we went from the 11 phases of the first attempt to just 6.
- The complexity of the second algorithm is $O(n \log n)$ in the worst case.
- Let us group the phases into macro-phases $m_{0}, m_{1}, \ldots, m_{w}$ such that, for any m_{i} and any phase $t \in m_{i}$, we have that

$$
2^{i} \leq\left|\sigma_{t}\right|<2^{i+1}
$$

Suffix selection, second attempt: exploiting collisions

How well did we do?

- In the example we went from the 11 phases of the first attempt to just 6.
- The complexity of the second algorithm is $O(n \log n)$ in the worst case.
- Let us group the phases into macro-phases $m_{0}, m_{1}, \ldots, m_{w}$ such that, for any m_{i} and any phase $t \in m_{i}$, we have that

$$
2^{i} \leq\left|\sigma_{t}\right|<2^{i+1}
$$

- For any phase t, the extents of the active suffixes do not overlap...

Suffix selection, second attempt: exploiting collisions

How well did we do?

- In the example we went from the 11 phases of the first attempt to just 6.
- The complexity of the second algorithm is $O(n \log n)$ in the worst case.
- Let us group the phases into macro-phases $m_{0}, m_{1}, \ldots, m_{w}$ such that, for any m_{i} and any phase $t \in m_{i}$, we have that

$$
2^{i} \leq\left|\sigma_{t}\right|<2^{i+1}
$$

- For any phase t, the extents of the active suffixes do not overlap. . .
${ }^{\circ} \ldots$ and phase t has at most n / σ_{t} active suffixes.

Suffix selection, second attempt: exploiting collisions

How well did we do?

- In the example we went from the 11 phases of the first attempt to just 6.
- The complexity of the second algorithm is $O(n \log n)$ in the worst case.
- Let us group the phases into macro-phases $m_{0}, m_{1}, \ldots, m_{w}$ such that, for any m_{i} and any phase $t \in m_{i}$, we have that

$$
2^{i} \leq\left|\sigma_{t}\right|<2^{i+1}
$$

- For any phase t, the extents of the active suffixes do not overlap...
- ... and phase t has at most n / σ_{t} active suffixes.
- Therefore, the cost of each macro-phase is $O(n)$ and the final $O(n \log n)$ bound follows immediately.

Suffix selection, second attempt: exploiting collisions

- So, while we improved the $O\left(n^{2}\right)$ of the first, simple algorithm...

Suffix selection, second attempt: exploiting collisions

- So, while we improved the $O\left(n^{2}\right)$ of the first, simple algorithm...
- ... we have not yet answered our original question
$\operatorname{Comp}($ Suffix Sorting) $\neq \operatorname{Comp}($ Suffix Selection)?, since Suffix Sorting can be done in $O(n \log n)$ time as well.

Suffix selection, second attempt: exploiting collisions

- So, while we improved the $O\left(n^{2}\right)$ of the first, simple algorithm...
- ... we have not yet answered our original question
$\operatorname{Comp}($ Suffix Sorting) $\neq \operatorname{Comp}($ Suffix Selection)?, since Suffix Sorting can be done in $O(n \log n)$ time as well.

We need one last step:

We have to be able to reuse the work done on inactive suffixes.

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:
They do not fully exploit the available information about inactive suffixes
(i.e. their extents).

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

They do not fully exploit the available information about inactive suffixes

 (i.e. their extents).- The central issue is how much the extent of an active suffix T_{i} in phase $t+1$ is enlarged during the transition from phase t.

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

They do not fully exploit the available information about inactive suffixes

 (i.e. their extents).- The central issue is how much the extent of an active suffix T_{i} in phase $t+1$ is enlarged during the transition from phase t.
- What do we add to the extent of T_{i} in the second solution?

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

They do not fully exploit the available information about inactive suffixes

 (i.e. their extents).- The central issue is how much the extent of an active suffix T_{i} in phase $t+1$ is enlarged during the transition from phase t.
- What do we add to the extent of T_{i} in the second solution?
(a) All the extents of the active suffixes that follow T_{i} and collide with it.

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

They do not fully exploit the available information about inactive suffixes (i.e. their extents).

- The central issue is how much the extent of an active suffix T_{i} in phase $t+1$ is enlarged during the transition from phase t.
- What do we add to the extent of T_{i} in the second solution?
(a) All the extents of the active suffixes that follow T_{i} and collide with it.
(b) The element c next to the extent of the rightmost suffix in the collision.

Suffix selection, third attempt: reusing inactive suffixes

This "limited" way to enlarge the extents implies that c may be accessed again $\omega(1)$ times in the subsequent phase transitions:

Suffix selection, third attempt: reusing inactive suffixes

This "limited" way to enlarge the extents implies that c may be accessed again $\omega(1)$ times in the subsequent phase transitions:
(1) T_{i} can later become inactive, c can then be accessed again and added to the extent of another active suffix $T_{i^{\prime}}$.

Suffix selection, third attempt: reusing inactive suffixes

This "limited" way to enlarge the extents implies that c may be accessed again $\omega(1)$ times in the subsequent phase transitions:
(1) T_{i} can later become inactive, c can then be accessed again and added to the extent of another active suffix $T_{i^{\prime}}$.
(2) $T_{i^{\prime}}$ can then become inactive in its turn, c can later be accessed once again and added to $T_{i^{\prime \prime}}$.

Suffix selection, third attempt: reusing inactive suffixes

This "limited" way to enlarge the extents implies that c may be accessed again $\omega(1)$ times in the subsequent phase transitions:
(1) T_{i} can later become inactive, c can then be accessed again and added to the extent of another active suffix $T_{i^{\prime}}$.
(2) $T_{i^{\prime}}$ can then become inactive in its turn, c can later be accessed once again and added to $T_{i^{\prime \prime}}$.

Suffix selection, third attempt: reusing inactive suffixes

This "limited" way to enlarge the extents implies that c may be accessed again $\omega(1)$ times in the subsequent phase transitions:
(1) T_{i} can later become inactive, c can then be accessed again and added to the extent of another active suffix $T_{i^{\prime}}$.
(2) $T_{i^{\prime}}$ can then become inactive in its turn, c can later be accessed once again and added to $T_{i^{\prime \prime}}$.
(?) Over time, this causes the extra $\log n$ factor in the complexity bound of the second solution.

Suffix selection, third attempt: reusing inactive suffixes

This "limited" way to enlarge the extents implies that c may be accessed again $\omega(1)$ times in the subsequent phase transitions:
(1) T_{i} can later become inactive, c can then be accessed again and added to the extent of another active suffix $T_{i^{\prime}}$.
(2) $T_{i^{\prime}}$ can then become inactive in its turn, c can later be accessed once again and added to $T_{i^{\prime \prime}}$.
(?) Over time, this causes the extra $\log n$ factor in the complexity bound of the second solution.

The challenge now is to avoid these multiple accesses.

Suffix selection, third attempt: reusing inactive suffixes

Let's consider an active suffix T_{i} in phase t that remains active after the transition to phase $t+1$.

Suffix selection, third attempt: reusing inactive suffixes

Let's consider an active suffix T_{i} in phase t that remains active after the transition to phase $t+1$.

The forward suffix of a suffix T_{j}
is the inactive suffix starting within the extent of T_{j} or right after it whose extent goes the farthest from the right end of T_{j} 's extent.

Suffix selection, third attempt: reusing inactive suffixes

Let's consider an active suffix T_{i} in phase t that remains active after the transition to phase $t+1$.

The forward suffix of a suffix T_{j}

is the inactive suffix starting within the extent of T_{j} or right after it whose extent goes the farthest from the right end of T_{j} 's extent.

In the third solution the prospective extent of T_{i} is composed by the following:

Suffix selection, third attempt: reusing inactive suffixes

Let's consider an active suffix T_{i} in phase t that remains active after the transition to phase $t+1$.

The forward suffix of a suffix T_{j}

is the inactive suffix starting within the extent of T_{j} or right after it whose extent goes the farthest from the right end of T_{j} 's extent.

In the third solution the prospective extent of T_{i} is composed by the following:
(a) All the extents of the active suffixes following T_{i} and colliding with it

Suffix selection, third attempt: reusing inactive suffixes

Let's consider an active suffix T_{i} in phase t that remains active after the transition to phase $t+1$.

The forward suffix of a suffix T_{j}

is the inactive suffix starting within the extent of T_{j} or right after it whose extent goes the farthest from the right end of T_{j} 's extent.

In the third solution the prospective extent of T_{i} is composed by the following:
(a) All the extents of the active suffixes following T_{i} and colliding with
it (although they don't collide as nicely as in the second solution, as we will see).

Suffix selection, third attempt: reusing inactive suffixes

Let's consider an active suffix T_{i} in phase t that remains active after the transition to phase $t+1$.

The forward suffix of a suffix T_{j}

is the inactive suffix starting within the extent of T_{j} or right after it whose extent goes the farthest from the right end of T_{j} 's extent.

In the third solution the prospective extent of T_{i} is composed by the following:
(a) All the extents of the active suffixes following T_{i} and colliding with
it (although they don't collide as nicely as in the second solution, as we will see).
(b) The extent of the forward suffix f of the rightmost suffix r in collision with T_{i} (r is T_{i} itself if T_{i} is not in a collision).

Suffix selection, third attempt: reusing inactive suffixes

Let's consider an active suffix T_{i} in phase t that remains active after the transition to phase $t+1$.

The forward suffix of a suffix T_{j}

is the inactive suffix starting within the extent of T_{j} or right after it whose extent goes the farthest from the right end of T_{j} 's extent.

In the third solution the prospective extent of T_{i} is composed by the following:
(a) All the extents of the active suffixes following T_{i} and colliding with
it (although they don't collide as nicely as in the second solution, as we will see).
(b) The extent of the forward suffix f of the rightmost suffix r in collision with T_{i} (r is T_{i} itself if T_{i} is not in a collision).
(c) The element c next to the extent of f

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

Suffix selection, third attempt: reusing inactive suffixes

- By reusing the work done on inactive suffixes, the computation ended in 5 phases...

Suffix selection, third attempt: reusing inactive suffixes

- By reusing the work done on inactive suffixes, the computation ended in 5 phases... one phase less than the second attempt.

Suffix selection, third attempt: reusing inactive suffixes

- By reusing the work done on inactive suffixes, the computation ended in 5 phases... one phase less than the second attempt.
- This is a particularly lucky example...

Suffix selection, third attempt: reusing inactive suffixes

- By reusing the work done on inactive suffixes, the computation ended in 5 phases... one phase less than the second attempt.
- This is a particularly lucky example... in the general case the exploiting of collisions of active suffixes and the reuse of the extents of inactive suffixes do not play along so nicely, as we will see.

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently (i.e. in $O(1)$ time).

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently (i.e. in $O(1)$ time).
(ii) Assuming that we can find the forward suffixes efficiently (that is with a total cost $O(n)$ for the entire computation).

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently (i.e. in $O(1)$ time).
(ii) Assuming that we can find the forward suffixes efficiently (that is with a total cost $O(n)$ for the entire computation).
(iii) Assuming that all the above "querying machineries" can be maintained efficiently (again, with a total cost $O(n)$).

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently (i.e. in $O(1)$ time).
(ii) Assuming that we can find the forward suffixes efficiently (that is with a total cost $O(n)$ for the entire computation).
(iii) Assuming that all the above "querying machineries" can be maintained efficiently (again, with a total cost $O(n)$).

The new way to enlarge extents guarantees that $O(n)$ comparisons are made during the computation.

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently (i.e. in $O(1)$ time).
(ii) Assuming that we can find the forward suffixes efficiently (that is with a total cost $O(n)$ for the entire computation).
(iii) Assuming that all the above "querying machineries" can be maintained efficiently (again, with a total cost $O(n)$).

The new way to enlarge extents guarantees that $O(n)$ comparisons are made during the computation.

- An element c of T will not be accessed again once it is inside an extent (i.e. c is not in the rightmost position of the extent).

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently (i.e. in $O(1)$ time).
(ii) Assuming that we can find the forward suffixes efficiently (that is with a total cost $O(n)$ for the entire computation).
(iii) Assuming that all the above "querying machineries" can be maintained efficiently (again, with a total cost $O(n)$).

The new way to enlarge extents guarantees that $O(n)$ comparisons are made during the computation.

- An element c of T will not be accessed again once it is inside an extent (i.e. c is not in the rightmost position of the extent).
- As long as an element c of T is in the rightmost position of an extent, there can be multiple accesses to it...

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently (i.e. in $O(1)$ time).
(ii) Assuming that we can find the forward suffixes efficiently (that is with a total cost $O(n)$ for the entire computation).
(iii) Assuming that all the above "querying machineries" can be maintained efficiently (again, with a total cost $O(n)$).

The new way to enlarge extents guarantees that $O(n)$ comparisons are made during the computation.

- An element c of T will not be accessed again once it is inside an extent (i.e. c is not in the rightmost position of the extent).
- As long as an element c of T is in the rightmost position of an extent, there can be multiple accesses to it. . .
- ... but any of those accesses to c can be charged on an active suffix becoming inactive during the current phase transition.

Suffix selection, third attempt: reusing inactive suffixes

Let's deal with the prospective extents first.

Suffix selection, third attempt: reusing inactive suffixes

Let's deal with the prospective extents first.

```
During any phase t, two suffixes }\mp@subsup{T}{i}{},\mp@subsup{T}{j}{}\mathrm{ collide when their extents are either adja- cent or overlapping.
```


Suffix selection, third attempt: reusing inactive suffixes

Let's deal with the prospective extents first.

```
During any phase t, two suffixes }\mp@subsup{T}{i}{},\mp@subsup{T}{j}{}\mathrm{ collide when their extents are either adja-
``` cent or overlapping.
In the second solution the extents of colliding suffixes are always adjacent.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Let's deal with the prospective extents first.
During any phase \(t\), two suffixes \(T_{i}, T_{j}\) collide when their extents are either adjacent or overlapping.
In the second solution the extents of colliding suffixes are always adjacent.
- The prospective extent of \(T_{i}\) has a simple periodic form: \(\left(\sigma_{t}\right)^{r_{i}} c\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Let's deal with the prospective extents first.
During any phase \(t\), two suffixes \(T_{i}, T_{j}\) collide when their extents are either adjacent or overlapping.
In the second solution the extents of colliding suffixes are always adjacent.
- The prospective extent of \(T_{i}\) has a simple periodic form: \(\left(\sigma_{t}\right)^{r_{i}} c\).
- Thus, it can be represented by the pair integer/element (\(r_{i}, c\)), no matter how many suffixes are in collision with \(T_{i}\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Let's deal with the prospective extents first.
During any phase \(t\), two suffixes \(T_{i}, T_{j}\) collide when their extents are either adjacent or overlapping.
In the second solution the extents of colliding suffixes are always adjacent.
- The prospective extent of \(T_{i}\) has a simple periodic form: \(\left(\sigma_{t}\right)^{r_{i}} c\).
- Thus, it can be represented by the pair integer/element \(\left(r_{i}, c\right)\), no matter how many suffixes are in collision with \(T_{i}\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

In the third solution the extents of colliding suffixes overlap in generic ways.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

In the third solution the extents of colliding suffixes overlap in generic ways.
- The prospective extent of \(T_{i}\) is a sequence \(\sigma_{t} w_{d_{1}} w_{d_{2}} \ldots w_{d_{l-1}} w u_{d_{l}} c\)

\section*{Suffix selection, third attempt: reusing inactive suffixes}

In the third solution the extents of colliding suffixes overlap in generic ways.
- The prospective extent of \(T_{i}\) is a sequence \(\sigma_{t} w_{d_{1}} w_{d_{2}} \ldots w_{d_{l-1}} w u_{d_{l}} c\)
\({ }^{\circ} w_{d_{j}}\) is the \(d_{j}\)-th suffix of \(\sigma_{t}\),
- \(u_{d_{l}}\) is the \(d_{l}\)-th suffix of the extent of the forward suffix,
- \(c\) is the element following \(u_{d_{l}}\) in \(T\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

In the third solution the extents of colliding suffixes overlap in generic ways.
- The prospective extent of \(T_{i}\) is a sequence \(\sigma_{t} w_{d_{1}} w_{d_{2}} \ldots w_{d_{l-1}} w u_{d_{l}} c\)
- \(w_{d_{j}}\) is the \(d_{j}\)-th suffix of \(\sigma_{t}\),
- \(u_{d_{l}}\) is the \(d_{l}\)-th suffix of the extent of the forward suffix,
- \(c\) is the element following \(u_{d_{l}}\) in \(T\).
- The overlapping is limited: \(1 \leq w_{d_{j}} \leq\left|\sigma_{t}\right| / 2\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

In the third solution the extents of colliding suffixes overlap in generic ways.
- The prospective extent of \(T_{i}\) is a sequence \(\sigma_{t} w_{d_{1}} w_{d_{2}} \ldots w_{d_{l-1}} w u_{d_{l}} c\)
- \(w_{d_{j}}\) is the \(d_{j}\)-th suffix of \(\sigma_{t}\),
- \(u_{d_{l}}\) is the \(d_{l}\)-th suffix of the extent of the forward suffix,
- \(c\) is the element following \(u_{d_{l}}\) in \(T\).
- The overlapping is limited: \(1 \leq w_{d_{j}} \leq\left|\sigma_{t}\right| / 2\).
- The pros. ext. must be represented by \(l\) integers and one element: \(\left(d_{1}, \ldots, d_{l}, c\right)\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

In the third solution the extents of colliding suffixes overlap in generic ways.
- The prospective extent of \(T_{i}\) is a sequence \(\sigma_{t} w_{d_{1}} w_{d_{2}} \ldots w_{d_{l-1}} w u_{d_{l}} c\)
- \(w_{d_{j}}\) is the \(d_{j}\)-th suffix of \(\sigma_{t}\),
- \(u_{d_{l}}\) is the \(d_{l}\)-th suffix of the extent of the forward suffix,
- \(c\) is the element following \(u_{d_{l}}\) in \(T\).
- The overlapping is limited: \(1 \leq w_{d_{j}} \leq\left|\sigma_{t}\right| / 2\).
- The pros. ext. must be represented by \(l\) integers and one element: \(\left(d_{1}, \ldots, d_{l}, c\right)\).
- \(l\) is the number of suffixes following \(T_{i}\) in the collision plus the forward suffix and is not \(O(1)\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

In the third solution the extents of colliding suffixes overlap in generic ways.
- The prospective extent of \(T_{i}\) is a sequence \(\sigma_{t} w_{d_{1}} w_{d_{2}} \ldots w_{d_{l-1}} w u_{d_{l}} c\)
- \(w_{d_{j}}\) is the \(d_{j}\)-th suffix of \(\sigma_{t}\),
- \(u_{d_{l}}\) is the \(d_{l}\)-th suffix of the extent of the forward suffix,
- \(c\) is the element following \(u_{d_{l}}\) in \(T\).
- The overlapping is limited: \(1 \leq w_{d_{j}} \leq\left|\sigma_{t}\right| / 2\).
- The pros. ext. must be represented by \(l\) integers and one element: \(\left(d_{1}, \ldots, d_{l}, c\right)\).
- \(l\) is the number of suffixes following \(T_{i}\) in the collision plus the forward suffix and is not \(O(1)\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

In the third solution the extents of colliding suffixes overlap in generic ways.
- The prospective extent of \(T_{i}\) is a sequence \(\sigma_{t} w_{d_{1}} w_{d_{2}} \ldots w_{d_{l-1}} w u_{d_{l}} c\)
- \(w_{d_{j}}\) is the \(d_{j}\)-th suffix of \(\sigma_{t}\),
- \(u_{d_{l}}\) is the \(d_{l}\)-th suffix of the extent of the forward suffix,
- \(c\) is the element following \(u_{d_{l}}\) in \(T\).
- The overlapping is limited: \(1 \leq w_{d_{j}} \leq\left|\sigma_{t}\right| / 2\).
- The pros. ext. must be represented by \(l\) integers and one element: \(\left(d_{1}, \ldots, d_{l}, c\right)\).
- \(l\) is the number of suffixes following \(T_{i}\) in the collision plus the forward suffix and is not \(O\) (1).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

In the third solution the extents of colliding suffixes overlap in generic ways.
- The prospective extent of \(T_{i}\) is a sequence \(\sigma_{t} w_{d_{1}} w_{d_{2}} \ldots w_{d_{l-1}} w u_{d_{l}} c\)
- \(w_{d_{j}}\) is the \(d_{j}\)-th suffix of \(\sigma_{t}\),
- \(u_{d_{l}}\) is the \(d_{l}\)-th suffix of the extent of the forward suffix,
\({ }^{\circ} c\) is the element following \(u_{d_{l}}\) in \(T\).
- The overlapping is limited: \(1 \leq w_{d_{j}} \leq\left|\sigma_{t}\right| / 2\).
- The pros. ext. must be represented by \(l\) integers and one element: \(\left(d_{1}, \ldots, d_{l}, c\right)\).
- \(l\) is the number of suffixes following \(T_{i}\) in the collision plus the forward suffix and is

\section*{Suffix selection, third attempt: reusing inactive suffixes}

We have the following problem to solve for any phase \(t\) :

\section*{Suffix selection, third attempt: reusing inactive suffixes}

We have the following problem to solve for any phase \(t\) :
- We have \(q_{t}\) sequences of integers \(G_{1}, \ldots, G_{q_{t}}\) :

\section*{Suffix selection, third attempt: reusing inactive suffixes}

We have the following problem to solve for any phase \(t\) :
- We have \(q_{t}\) sequences of integers \(G_{1}, \ldots, G_{q_{t}}\) :
- One sequence for each collision of active suffixes of phase \(t\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

We have the following problem to solve for any phase \(t\) :
- We have \(q_{t}\) sequences of integers \(G_{1}, \ldots, G_{q_{t}}\) :
- One sequence for each collision of active suffixes of phase \(t\).
- Each sequence represents the overlapping pattern of its collision.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

We have the following problem to solve for any phase \(t\) :
- We have \(q_{t}\) sequences of integers \(G_{1}, \ldots, G_{q_{t}}\) :
- One sequence for each collision of active suffixes of phase \(t\).
- Each sequence represents the overlapping pattern of its collision.
- For any two suffixes \(h_{i}\) of \(G_{i}\) and \(h_{j}\) of \(G_{j}\), we want to be able to retrieve lcp \(\left(h_{i}, h_{j}\right)\) in \(O(1)\) time.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

We have the following problem to solve for any phase \(t\) :
- We have \(q_{t}\) sequences of integers \(G_{1}, \ldots, G_{q_{t}}\) :
- One sequence for each collision of active suffixes of phase \(t\).
- Each sequence represents the overlapping pattern of its collision.
- For any two suffixes \(h_{i}\) of \(G_{i}\) and \(h_{j}\) of \(G_{j}\), we want to be able to retrieve \(l_{c p}\left(h_{i}, h_{j}\right)\) in \(O(1)\) time.

If we can solve this problem then
The comparison of any two prospective extents of phase \(t\) is reduced to one lcp query and one element comparison.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{A partial solution to the problem.}

Before the phase transition from \(t\) to \(t+1\) we do the following:

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{A partial solution to the problem.}

Before the phase transition from \(t\) to \(t+1\) we do the following:
(1) We concatenate the \(G_{p}\) 's into a single sequence
\[
G=G_{1} 0 G_{2} 0 \ldots 0 G_{q_{t}}
\]
of \(O\left(\left|\mathcal{A}_{t}\right|\right)\) integers.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{A partial solution to the problem.}

Before the phase transition from \(t\) to \(t+1\) we do the following:
(1) We concatenate the \(G_{p}\) 's into a single sequence
\[
G=G_{1} 0 G_{2} 0 \ldots 0 G_{q_{t}}
\]
of \(O\left(\left|\mathcal{A}_{t}\right|\right)\) integers.
(2) We sort the suffixes of \(G\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{A partial solution to the problem.}

Before the phase transition from \(t\) to \(t+1\) we do the following:
(1) We concatenate the \(G_{p}\) 's into a single sequence
\[
G=G_{1} 0 G_{2} 0 \ldots 0 G_{q_{t}}
\]
of \(O\left(\left|\mathcal{A}_{t}\right|\right)\) integers.
(2) We sort the suffixes of \(G\).

Since we are dealing with a sequence of integers, we can use a linear-time integer
suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{A partial solution to the problem.}

Before the phase transition from \(t\) to \(t+1\) we do the following:
(1) We concatenate the \(G_{p}\) 's into a single sequence
\[
G=G_{1} 0 G_{2} 0 \ldots 0 G_{q_{t}}
\]
of \(O\left(\left|\mathcal{A}_{t}\right|\right)\) integers.
(2) We sort the suffixes of \(G\).

Since we are dealing with a sequence of integers, we can use a linear-time integer
suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]).
(3) We process the suffix array of \(G\) so that lcp queries on the suffixes of \(G\) can be answered in \(O(1)\) time.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{A partial solution to the problem.}

Before the phase transition from \(t\) to \(t+1\) we do the following:
(1) We concatenate the \(G_{p}\) 's into a single sequence
\[
G=G_{1} 0 G_{2} 0 \ldots 0 G_{q_{t}}
\]
of \(O\left(\left|\mathcal{A}_{t}\right|\right)\) integers.
(2) We sort the suffixes of \(G\).

Since we are dealing with a sequence of integers, we can use a linear-time integer
suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]).
(3) We process the suffix array of \(G\) so that lcp queries on the suffixes of \(G\) can be answered in \(O(1)\) time.
We can use [Kasai, et al, CPM 2001] and [Harel, Tarjan, SICOMP 13, 1984].

Suffix selection, third attempt: reusing inactive suffixes
Why is it a partial solution?

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{Why is it a partial solution?}
- In order to have a total cost \(O(n)\), the cost of the preprocessing for phase \(t\) has to be \(O\left(\left|\mathcal{A}_{t}\right|\right)\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{Why is it a partial solution?}
- In order to have a total cost \(O(n)\), the cost of the preprocessing for phase \(t\) has to be \(O\left(\left|\mathcal{A}_{t}\right|\right)\).
- Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]) requires the size of the alphabet of \(G\) to be linear in the length of \(G\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{Why is it a partial solution?}
- In order to have a total cost \(O(n)\), the cost of the preprocessing for phase \(t\) has to be \(O\left(\left|\mathcal{A}_{t}\right|\right)\).
- Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]) requires the size of the alphabet of \(G\) to be linear in the length of \(G\).
- Unfortunately, the integers in \(G\) are suffix indexes of \(\sigma_{t}\) (requiring \(\log n\) bits to be represented) while \(|G|=O\left(\left|\mathcal{A}_{t}\right|\right)\) and tends to 1 over time.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{Why is it a partial solution?}
- In order to have a total cost \(O(n)\), the cost of the preprocessing for phase \(t\) has to be \(O\left(\left|\mathcal{A}_{t}\right|\right)\).
- Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]) requires the size of the alphabet of \(G\) to be linear in the length of \(G\).
- Unfortunately, the integers in \(G\) are suffix indexes of \(\sigma_{t}\) (requiring \(\log n\) bits to be represented) while \(|G|=O\left(\left|\mathcal{A}_{t}\right|\right)\) and tends to 1 over time.

\section*{The complete solution}

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{Why is it a partial solution?}
- In order to have a total cost \(O(n)\), the cost of the preprocessing for phase \(t\) has to be \(O\left(\left|\mathcal{A}_{t}\right|\right)\).
- Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]) requires the size of the alphabet of \(G\) to be linear in the length of \(G\).
- Unfortunately, the integers in \(G\) are suffix indexes of \(\sigma_{t}\) (requiring \(\log n\) bits to be represented) while \(|G|=O\left(\left|\mathcal{A}_{t}\right|\right)\) and tends to 1 over time.

\section*{The complete solution}
- Before we proceed with the second and third step, we change the range of the integers in \(G\) from \([1 \ldots n]\) to \(\left[1 \ldots\left|\mathcal{A}_{t}\right|\right]\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{Why is it a partial solution?}
- In order to have a total cost \(O(n)\), the cost of the preprocessing for phase \(t\) has to be \(O\left(\left|\mathcal{A}_{t}\right|\right)\).
- Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]) requires the size of the alphabet of \(G\) to be linear in the length of \(G\).
- Unfortunately, the integers in \(G\) are suffix indexes of \(\sigma_{t}\) (requiring \(\log n\) bits to be represented) while \(|G|=O\left(\left|\mathcal{A}_{t}\right|\right)\) and tends to 1 over time.

\section*{The complete solution}
- Before we proceed with the second and third step, we change the range of the integers in \(G\) from \([1 \ldots n]\) to \(\left[1 \ldots\left|\mathcal{A}_{t}\right|\right]\).
- This is possible because the range change does not need to maintain the lexicographical order of the suffixes of \(G\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

\section*{Why is it a partial solution?}
- In order to have a total cost \(O(n)\), the cost of the preprocessing for phase \(t\) has to be \(O\left(\left|\mathcal{A}_{t}\right|\right)\).
- Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]) requires the size of the alphabet of \(G\) to be linear in the length of \(G\).
- Unfortunately, the integers in \(G\) are suffix indexes of \(\sigma_{t}\) (requiring \(\log n\) bits to be represented) while \(|G|=O\left(\left|\mathcal{A}_{t}\right|\right)\) and tends to 1 over time.

\section*{The complete solution}
- Before we proceed with the second and third step, we change the range of the integers in \(G\) from \([1 \ldots n]\) to \(\left[1 \ldots\left|\mathcal{A}_{t}\right|\right]\).
- This is possible because the range change does not need to maintain the lexicographical order of the suffixes of \(G\).
- We only need to preserve the length of the longest common prefix of any two suffixes of \(G\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Finally, let's deal with the forward suffixes.
The forward suffix of a suffix \(T_{j}\) is the inactive suffix starting within the extent of \(T_{j}\) or right after it whose extent goes the farthest from the right end of \(T_{j}\) 's extent.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Finally, let's deal with the forward suffixes.
The forward suffix of a suffix \(T_{j}\) is the inactive suffix starting within the extent of \(T_{j}\) or right after it whose extent goes the farthest from the right end of \(T_{j}\) 's extent.
We want to maintain the following invariant:
During any phase \(t\), for any suffix \(T_{i}\), active or inactive, the forward suffix of \(T_{i}\) is known (i.e. its index is explicitly stored and accessible in \(O(1)\) time).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Finally, let's deal with the forward suffixes.
The forward suffix of a suffix \(T_{j}\) is the inactive suffix starting within the extent of \(T_{j}\) or right after it whose extent goes the farthest from the right end of \(T_{j}\) 's extent.
We want to maintain the following invariant:
During any phase \(t\), for any suffix \(T_{i}\), active or inactive, the forward suffix of \(T_{i}\) is known (i.e. its index is explicitly stored and accessible in \(O(1)\) time).
For any phase \(t\), during the phase transition from \(t\) to \(t+1\) we have the following:

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Finally, let's deal with the forward suffixes.
The forward suffix of a suffix \(T_{j}\) is the inactive suffix starting within the extent of \(T_{j}\) or right after it whose extent goes the farthest from the right end of \(T_{j}\) 's extent.
We want to maintain the following invariant:
During any phase \(t\), for any suffix \(T_{i}\), active or inactive, the forward suffix of \(T_{i}\) is known (i.e. its index is explicitly stored and accessible in \(O(1)\) time).

For any phase \(t\), during the phase transition from \(t\) to \(t+1\) we have the following:
- The forward suffix of any \(T_{i} \in \mathcal{I}_{t}\) does not change.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Finally, let's deal with the forward suffixes.
The forward suffix of a suffix \(T_{j}\) is the inactive suffix starting within the extent of \(T_{j}\) or right after it whose extent goes the farthest from the right end of \(T_{j}\) 's extent.
We want to maintain the following invariant:
During any phase \(t\), for any suffix \(T_{i}\), active or inactive, the forward suffix of \(T_{i}\) is known (i.e. its index is explicitly stored and accessible in \(O(1)\) time).

For any phase \(t\), during the phase transition from \(t\) to \(t+1\) we have the following:
- The forward suffix of any \(T_{i} \in \mathcal{I}_{t}\) does not change.
- The extent of any suffix \(T_{i} \in \mathcal{A}_{t}\) is enlarged and so the forward suffix of \(T_{i}\) must be updated.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Finally, let's deal with the forward suffixes.
The forward suffix of a suffix \(T_{j}\) is the inactive suffix starting within the extent of \(T_{j}\) or right after it whose extent goes the farthest from the right end of \(T_{j}\) 's extent.
We want to maintain the following invariant:
During any phase \(t\), for any suffix \(T_{i}\), active or inactive, the forward suffix of \(T_{i}\) is known (i.e. its index is explicitly stored and accessible in \(O(1)\) time).

For any phase \(t\), during the phase transition from \(t\) to \(t+1\) we have the following:
- The forward suffix of any \(T_{i} \in \mathcal{I}_{t}\) does not change.
- The extent of any suffix \(T_{i} \in \mathcal{A}_{t}\) is enlarged and so the forward suffix of \(T_{i}\) must be updated.

Therefore:
To maintain the forward suffixes, we have to solve a Dynamic Range Maximum Query problem

\section*{Suffix selection, third attempt: reusing inactive suffixes}

According to the length of \(\sigma_{t}\), the computation is divided into two epochs:

\section*{Suffix selection, third attempt: reusing inactive suffixes}

According to the length of \(\sigma_{t}\), the computation is divided into two epochs:

Early Phases, where \(\left|\sigma_{t}\right|=O\left(\log ^{2} n\right)\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

According to the length of \(\sigma_{t}\), the computation is divided into two epochs:

Early Phases, where \(\left|\sigma_{t}\right|=O\left(\log ^{2} n\right)\).
- For the early phases we develop a Dynamic Range Maximum

Query structure that can be
- built in linear time
- queried in \(O(1)\) time
- updated in \(O(1)\) time.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

According to the length of \(\sigma_{t}\), the computation is divided into two epochs:

Early Phases, where \(\left|\sigma_{t}\right|=O\left(\log ^{2} n\right)\).
- For the early phases we develop a Dynamic Range Maximum

Query structure that can be
- built in linear time
- queried in \(O(1)\) time
- updated in \(O(1)\) time.
- The structure exploits the following crucial fact:

> Both the integer values stored in the structure and the length of the query intervals are \(O\left(\log ^{2} n\right)\).

Suffix selection, third attempt: reusing inactive suffixes
Late Phases, where \(\left|\sigma_{t}\right|=\Omega\left(\log ^{2} n\right)\).

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Late Phases, where \(\left|\sigma_{t}\right|=\Omega\left(\log ^{2} n\right)\).
- For the late phases we use a much simpler Dynamic Range Maximum Query structure that can be
- built in linear time,
- queried in \(O\left(\log ^{2} n\right)\) time
- updated in \(O(\log n)\) time.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Late Phases, where \(\left|\sigma_{t}\right|=\Omega\left(\log ^{2} n\right)\).
- For the late phases we use a much simpler Dynamic Range Maximum Query structure that can be
- built in linear time,
- queried in \(O\left(\log ^{2} n\right)\) time
- updated in \(O(\log n)\) time.
- In the late phases we cannot exploit the hypothesis on the length of \(\sigma_{t} \ldots\)

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Late Phases, where \(\left|\sigma_{t}\right|=\Omega\left(\log ^{2} n\right)\).
- For the late phases we use a much simpler Dynamic Range Maximum Query structure that can be
- built in linear time,
- queried in \(O\left(\log ^{2} n\right)\) time
- updated in \(O(\log n)\) time.
- In the late phases we cannot exploit the hypothesis on the length of \(\sigma_{t} \ldots\)
- . . . but we know that from the first late phase \(t^{\prime}\) to the last one there will be \(O\left(n /\left|\sigma_{t^{\prime}}\right|\right)=O\left(n / \log ^{2} n\right)\) active suffixes.

\section*{Suffix selection, third attempt: reusing inactive suffixes}

Late Phases, where \(\left|\sigma_{t}\right|=\Omega\left(\log ^{2} n\right)\).
- For the late phases we use a much simpler Dynamic Range Maximum Query structure that can be
- built in linear time,
- queried in \(O\left(\log ^{2} n\right)\) time
- updated in \(O(\log n)\) time.
- In the late phases we cannot exploit the hypothesis on the length of \(\sigma_{t} \ldots\)
- . . . but we know that from the first late phase \(t^{\prime}\) to the last one there will be \(O\left(n /\left|\sigma_{t^{\prime}}\right|\right)=O\left(n / \log ^{2} n\right)\) active suffixes.

Therefore,
The total cost for maintaining the forward suffixes during both early and late phases is \(O(n)\).

\section*{Selection of Extreme Suffixes}

\section*{Selection of Extreme Suffixes}
- Same settings seen in the Suffix Selection problem (sequence \(T\), each \(T[i]\) drawn from \((\mathcal{U},<)\), comparison model, lexicographical order...)

\section*{Selection of Extreme Suffixes}
- Same settings seen in the Suffix Selection problem (sequence \(T\), each \(T[i]\) drawn from \((\mathcal{U},<)\), comparison model, lexicographical order...)
- But this time we want to find...
- maximum suffix
- minimum suffix
- maximum suffix AND minimum suffix (i.e. simultaneously).

\section*{Selection of Extreme Suffixes}
- Same settings seen in the Suffix Selection problem (sequence \(T\), each \(T[i]\) drawn from \((\mathcal{U},<)\), comparison model, lexicographical order...)
- But this time we want to find...
- maximum suffix
- minimum suffix
- maximum suffix AND minimum suffix (i.e. simultaneously).
- ... and we want the exact complexities (i.e. including the constant factors).

\section*{Selection of Extreme Suffixes}
- Same settings seen in the Suffix Selection problem (sequence \(T\), each \(T[i]\) drawn from \((\mathcal{U},<)\), comparison model, lexicographical order...)
- But this time we want to find...
- maximum suffix
- minimum suffix
- maximum suffix AND minimum suffix (i.e. simultaneously).
- ... and we want the exact complexities (i.e. including the constant factors).
- Surprisingly, the exact complexities of such basic problems were not known. . .

\section*{Selection of Extreme Suffixes}
- Same settings seen in the Suffix Selection problem (sequence \(T\), each \(T[i]\) drawn from \((\mathcal{U},<)\), comparison model, lexicographical order...)
- But this time we want to find...
- maximum suffix
- minimum suffix
- maximum suffix AND minimum suffix (i.e. simultaneously).
- ... and we want the exact complexities (i.e. including the constant factors).
- Surprisingly, the exact complexities of such basic problems were not known. . .
- ... and still aren't, since we don't have matching lower bounds for the new upper bounds.

\section*{Selection of Extreme Suffixes}

Previous best upper bounds:

\section*{Selection of Extreme Suffixes}

\section*{Previous best upper bounds:}
- For finding the maximum suffix or the minimum suffix
\[
\leq \frac{3}{2} n \text { comparisons }
\]

\section*{Selection of Extreme Suffixes}

\section*{Previous best upper bounds:}
- For finding the maximum suffix or the minimum suffix
\[
\leq \frac{3}{2} n \text { comparisons }
\]
[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]

\section*{Selection of Extreme Suffixes}

\section*{Previous best upper bounds:}
- For finding the maximum suffix or the minimum suffix
\[
\leq \frac{3}{2} n \text { comparisons }
\]
[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]
- Maximum AND minimum: \(\leq 3 n\) (just apply two times).

\section*{Selection of Extreme Suffixes}

\section*{Previous best upper bounds:}
- For finding the maximum suffix or the minimum suffix
\[
\leq \frac{3}{2} n \text { comparisons }
\]
[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]
- Maximum AND minimum: \(\leq 3 n\) (just apply two times).

New upper bounds:

\section*{Selection of Extreme Suffixes}

\section*{Previous best upper bounds:}
- For finding the maximum suffix or the minimum suffix
\[
\leq \frac{3}{2} n \text { comparisons }
\]
[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]
- Maximum AND minimum: \(\leq 3 n\) (just apply two times).

New upper bounds:
- Maximum or minimum:
\[
\leq \frac{4}{3} n \text { comparisons }
\]

\section*{Selection of Extreme Suffixes}

\section*{Previous best upper bounds:}
- For finding the maximum suffix or the minimum suffix
\[
\leq \frac{3}{2} n \text { comparisons }
\]
[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]
- Maximum AND minimum: \(\leq 3 n\) (just apply two times).

New upper bounds:
- Maximum or minimum:
\[
\leq \frac{4}{3} n \text { comparisons }
\]
[Franceschini, Hagerup, 2007]

\section*{Selection of Extreme Suffixes}

\section*{Previous best upper bounds:}
- For finding the maximum suffix or the minimum suffix
\[
\leq \frac{3}{2} n \text { comparisons }
\]
[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]
- Maximum AND minimum: \(\leq 3 n\) (just apply two times).

New upper bounds:
- Maximum or minimum:
\[
\leq \frac{4}{3} n \text { comparisons }
\]

> [Franceschini, Hagerup, 2007]
- Maximum AND minimum: \(\leq \frac{5}{2} n\).

\section*{Selection of the Maximum Suffix}

\section*{Selection of the Maximum Suffix}

Let's focus on finding the maximum suffix and let's consider Duval's algorithm:

\section*{Selection of the Maximum Suffix}

Let's focus on finding the maximum suffix and let's consider Duval's algorithm:
- The algorithm does one pass over \(T\) from left to right, going through phases and transitions where the knowledge about the maximum suffix is increased/changed.

\section*{Selection of the Maximum Suffix}

Let's focus on finding the maximum suffix and let's consider Duval's algorithm:
- The algorithm does one pass over \(T\) from left to right, going through phases and transitions where the knowledge about the maximum suffix is increased/changed.
- At any phase we have the following:
\(T\)

\section*{Selection of the Maximum Suffix}

Let's focus on finding the maximum suffix and let's consider Duval's algorithm:
- The algorithm does one pass over \(T\) from left to right, going through phases and transitions where the knowledge about the maximum suffix is increased/changed.
- At any phase we have the following:
- The candidate suffix \(m\).

\section*{Selection of the Maximum Suffix}

Let's focus on finding the maximum suffix and let's consider Duval's algorithm:
- The algorithm does one pass over \(T\) from left to right, going through phases and transitions where the knowledge about the maximum suffix is increased/changed.
- At any phase we have the following:
- The candidate suffix \(m\).
- A prefix \(\alpha\) of \(m\), the known zone.

\section*{Selection of the Maximum Suffix}

Let's focus on finding the maximum suffix and let's consider Duval's algorithm:
- The algorithm does one pass over \(T\) from left to right, going through phases and transitions where the knowledge about the maximum suffix is increased/changed.
- At any phase we have the following:
- The candidate suffix m.
- A prefix \(\alpha\) of \(m\), the known zone.
- The period \(p\) of \(\alpha\) (i.e. \(\alpha=p^{l}\) for an integer \(l\)).

\section*{Selection of the Maximum Suffix}

Let's focus on finding the maximum suffix and let's consider Duval's algorithm:
- The algorithm does one pass over \(T\) from left to right, going through phases and transitions where the knowledge about the maximum suffix is increased/changed.
- At any phase we have the following:
- The candidate suffix \(m\).
- A prefix \(\alpha\) of \(m\), the known zone.
- The period \(p\) of \(\alpha\) (i.e. \(\alpha=p^{l}\) for an integer \(l\)).
- A prefix \(\beta\) of \(p\), the expansion zone.

\section*{Selection of the Maximum Suffix}

Let's focus on finding the maximum suffix and let's consider Duval's algorithm:
- The algorithm does one pass over \(T\) from left to right, going through phases and transitions where the knowledge about the maximum suffix is increased/changed.
- At any phase we have the following:
- The candidate suffix \(m\).
- A prefix \(\alpha\) of \(m\), the known zone.
- The period \(p\) of \(\alpha\) (i.e. \(\alpha=p^{l}\) for an integer \(l\)).
- A prefix \(\beta\) of \(p\), the expansion zone.
- The currently examined element e.

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\). We have three types of transitions:

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\). We have three types of transitions:
(1) \(e=e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\). We have three types of transitions:
(1) \(e=e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\). We have three types of transitions:
(1) \(e=e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\). We have three types of transitions:
(1) \(e=e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\). We have three types of transitions:
(1) \(e=e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\).
We have three types of transitions:
(1) \(e=e^{\prime}\)

(2) \(e<e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\). We have three types of transitions:
(1) \(e=e^{\prime}\)

(2) \(e<e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\). We have three types of transitions:
(1) \(e=e^{\prime}\)

(2) \(e<e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\).
We have three types of transitions:
(1) \(e=e^{\prime}\)

(2) \(e<e^{\prime}\)

(3) \(e>e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\).
We have three types of transitions:
(1) \(e=e^{\prime}\)

(2) \(e<e^{\prime}\)

(3) \(e>e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Then, \(e\) is compared to the corresponding element \(e^{\prime}\) in \(p\).
We have three types of transitions:
(1) \(e=e^{\prime}\)

(2) \(e<e^{\prime}\)

(3) \(e>e^{\prime}\)

\section*{Selection of the Maximum Suffix}

Duval's algorithm finds the maximum suffix with at most
\(\frac{3}{2} n\) comparisons

\section*{Selection of the Maximum Suffix}

\section*{Duval's algorithm finds the maximum suffix with at most \(\frac{3}{2} n\) comparisons}

Why?
- During any transition element \(e\) is compared one time.

\section*{Selection of the Maximum Suffix}

\section*{Duval's algorithm finds the maximum suffix with at most \(\frac{3}{2} n\) comparisons}

Why?
- During any transition element \(e\) is compared one time.
- During transitions of type 1 and 2 we move to the next unseen element. . .

\section*{Selection of the Maximum Suffix}

\section*{Duval's algorithm finds the maximum suffix with at most \(\frac{3}{2} n\) comparisons}

Why?
- During any transition element \(e\) is compared one time.
- During transitions of type 1 and 2 we move to the next unseen element...
- ... but that does not happen with type 3 transitions in which we stay on the current e.

\section*{Selection of the Maximum Suffix}

\section*{Duval's algorithm finds the maximum suffix with at most \(\frac{3}{2} n\) comparisons}

Why?
- During any transition element \(e\) is compared one time.
- During transitions of type 1 and 2 we move to the next unseen element...
- ... but that does not happen with type 3 transitions in which we stay on the current e.
- However, there cannot be two consecutive type 3 transitions. . .

\section*{Selection of the Maximum Suffix}

\section*{Duval's algorithm finds the maximum suffix with at most \(\frac{3}{2} n\) comparisons}

\section*{Why?}
- During any transition element \(e\) is compared one time.
- During transitions of type 1 and 2 we move to the next unseen element...
- ... but that does not happen with type 3 transitions in which we stay on the current e.
- However, there cannot be two consecutive type 3 transitions. .
- ... unless e has been compared to the first element of a the period \(p\) but this is a particular case that does not need the extra comparison.

\section*{Selection of the Maximum Suffix}

\section*{Duval's algorithm finds the maximum suffix with at most \(\frac{3}{2} n\) comparisons}

Why?
- During any transition element \(e\) is compared one time.
- During transitions of type 1 and 2 we move to the next unseen element...
- ...but that does not happen with type 3 transitions in which we stay on the current e.
- However, there cannot be two consecutive type 3 transitions. . .
- ... unless e has been compared to the first element of a the period \(p\) but this is a particular case that does not need the extra comparison.

Worst case scenario for Duval's algorithm:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 9 & 1 & 9 & 2 & 9 & 3 & 9 & 4 & 9 & 5 & 9 & 6 & 9 & 7 & 9 & 8 & 9 & 9 \\
\hline
\end{tabular}

\section*{Maximum Suffix Selection: Uncertainty Approach}

The reasons for remaining on \(e\) after a type 3 transition:

\section*{Maximum Suffix Selection: Uncertainty Approach}

The reasons for remaining on \(e\) after a type 3 transition:

\section*{Maximum Suffix Selection: Uncertainty Approach}

The reasons for remaining on \(e\) after a type 3 transition:

- e could be the start of the actual maximum suffix.

\section*{Maximum Suffix Selection: Uncertainty Approach}

The reasons for remaining on \(e\) after a type 3 transition:

- e could be the start of the actual maximum suffix.
- the actual maximum suffix could start somewhere within \(\beta\) (thanks to \(e\) being greater than \(e^{\prime}\)).

\section*{Maximum Suffix Selection: Uncertainty Approach}

The reasons for remaining on \(e\) after a type 3 transition:

- e could be the start of the actual maximum suffix.
- the actual maximum suffix could start somewhere within \(\beta\) (thanks to \(e\) being greater than \(e^{\prime}\)).

The uncertainty approach:

\section*{Maximum Suffix Selection: Uncertainty Approach}

The reasons for remaining on \(e\) after a type 3 transition:

- e could be the start of the actual maximum suffix.
- the actual maximum suffix could start somewhere within \(\beta\) (thanks to \(e\) being greater than \(e^{\prime}\)).

The uncertainty approach:

- Obviously, we still move \(m\) (the current \(m\) cannot be the maximum suffix)...

\section*{Maximum Suffix Selection: Uncertainty Approach}

The reasons for remaining on \(e\) after a type 3 transition:

- e could be the start of the actual maximum suffix.
- the actual maximum suffix could start somewhere within \(\beta\) (thanks to \(e\) being greater than \(e^{\prime}\)).

The uncertainty approach:

- Obviously, we still move \(m\) (the current \(m\) cannot be the maximum suffix)...
- ... but we move e too and we keep an uncertainty area within which the current maximum suffix starts (but we don't know where exactly).

\section*{Maximum Suffix Selection: Uncertainty Approach}
- The uncertainty area has a fixed size.

\section*{Maximum Suffix Selection: Uncertainty Approach}
- The uncertainty area has a fixed size.
- When, during the computation, new uncertainties appear outside the uncertainty area we need
- to break the uncertainty
- and find where the current maximum suffix actually starts.

\section*{Maximum Suffix Selection: Uncertainty Approach}
- The uncertainty area has a fixed size.
- When, during the computation, new uncertainties appear outside the uncertainty area we need
- to break the uncertainty
- and find where the current maximum suffix actually starts.
- But the time we waited in uncertainty allows us to save comparisons in the final count.

\section*{Maximum Suffix Selection: Uncertainty Approach}
- The uncertainty area has a fixed size.
- When, during the computation, new uncertainties appear outside the uncertainty area we need
- to break the uncertainty
- and find where the current maximum suffix actually starts.
- But the time we waited in uncertainty allows us to save comparisons in the final count.

Unfortunately,

> this approach does not seem to work with uncertainty areas larger than two positions

\section*{Maximum Suffix Selection: Uncertainty Approach}
- The uncertainty area has a fixed size.
- When, during the computation, new uncertainties appear outside the uncertainty area we need
- to break the uncertainty
- and find where the current maximum suffix actually starts.
- But the time we waited in uncertainty allows us to save comparisons in the final count.

Unfortunately,
this approach does not seem to work with uncertainty areas larger than two positions

But this is enough to deal with Duval's worst case scenarios

with less than \(\frac{4}{3} n\) comparisons.```

