
Order Statistic Problems on
Suffixes

Gianni Franceschini

University of Pisa

francesc@di.unipi.it

Order Statistic Problems on Suffixes – p. 1

Order Statistic Problems

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

• Given a set S of n elements (drawn from a total order (U , <)),

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

• Given a set S of n elements (drawn from a total order (U , <)),

• and a rank set R (i.e. k ∈ {1, 2, . . . , n}, for any k ∈ R)

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

• Given a set S of n elements (drawn from a total order (U , <)),

• and a rank set R (i.e. k ∈ {1, 2, . . . , n}, for any k ∈ R)

• find the k-th smallest element in S, for any k ∈ R.

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

• Given a set S of n elements (drawn from a total order (U , <)),

• and a rank set R (i.e. k ∈ {1, 2, . . . , n}, for any k ∈ R)

• find the k-th smallest element in S, for any k ∈ R.

Classical order statistic problems:

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

• Given a set S of n elements (drawn from a total order (U , <)),

• and a rank set R (i.e. k ∈ {1, 2, . . . , n}, for any k ∈ R)

• find the k-th smallest element in S, for any k ∈ R.

Classical order statistic problems:

• Sorting: extreme case where R = {1, 2, . . . n}.

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

• Given a set S of n elements (drawn from a total order (U , <)),

• and a rank set R (i.e. k ∈ {1, 2, . . . , n}, for any k ∈ R)

• find the k-th smallest element in S, for any k ∈ R.

Classical order statistic problems:

• Sorting: extreme case where R = {1, 2, . . . n}.

• Selection of the smallest (largest) element : R = {1} (R = {n}).

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

• Given a set S of n elements (drawn from a total order (U , <)),

• and a rank set R (i.e. k ∈ {1, 2, . . . , n}, for any k ∈ R)

• find the k-th smallest element in S, for any k ∈ R.

Classical order statistic problems:

• Sorting: extreme case where R = {1, 2, . . . n}.

• Selection of the smallest (largest) element : R = {1} (R = {n}).

• Selection of the smallest AND largest elements: R = {1, n}.

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

• Given a set S of n elements (drawn from a total order (U , <)),

• and a rank set R (i.e. k ∈ {1, 2, . . . , n}, for any k ∈ R)

• find the k-th smallest element in S, for any k ∈ R.

Classical order statistic problems:

• Sorting: extreme case where R = {1, 2, . . . n}.

• Selection of the smallest (largest) element : R = {1} (R = {n}).

• Selection of the smallest AND largest elements: R = {1, n}.

• Selection of the median(s) element(s): R = {⌊n/2⌋ , ⌈n/2⌉}.

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

• Given a set S of n elements (drawn from a total order (U , <)),

• and a rank set R (i.e. k ∈ {1, 2, . . . , n}, for any k ∈ R)

• find the k-th smallest element in S, for any k ∈ R.

Classical order statistic problems:

• Sorting: extreme case where R = {1, 2, . . . n}.

• Selection of the smallest (largest) element : R = {1} (R = {n}).

• Selection of the smallest AND largest elements: R = {1, n}.

• Selection of the median(s) element(s): R = {⌊n/2⌋ , ⌈n/2⌉}.

• Generic selection: R = {k}, for any k.

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Generic Order Statistic Problem:

• Given a set S of n elements (drawn from a total order (U , <)),

• and a rank set R (i.e. k ∈ {1, 2, . . . , n}, for any k ∈ R)

• find the k-th smallest element in S, for any k ∈ R.

Classical order statistic problems:

• Sorting: extreme case where R = {1, 2, . . . n}.

• Selection of the smallest (largest) element : R = {1} (R = {n}).

• Selection of the smallest AND largest elements: R = {1, n}.

• Selection of the median(s) element(s): R = {⌊n/2⌋ , ⌈n/2⌉}.

• Generic selection: R = {k}, for any k.

• Generic multi-selection: R ⊂ {1, 2, . . . , n}.

Order Statistic Problems on Suffixes – p. 2

Order Statistic Problems

Usual settings for Order Statistic Problems:

Order Statistic Problems on Suffixes – p. 3

Order Statistic Problems

Usual settings for Order Statistic Problems:

• S is a set . . .

Order Statistic Problems on Suffixes – p. 3

Order Statistic Problems

Usual settings for Order Statistic Problems:

• S is a set . . . but it can also be a multi-set (i.e. multiple
occurrences of an element allowed), if the rank of an element is
well-defined (usually by considering S as a sequence).

Order Statistic Problems on Suffixes – p. 3

Order Statistic Problems

Usual settings for Order Statistic Problems:

• S is a set . . . but it can also be a multi-set (i.e. multiple
occurrences of an element allowed), if the rank of an element is
well-defined (usually by considering S as a sequence).

• The input elements are unidimensional objects (comparable in
O(1) time). . .

Order Statistic Problems on Suffixes – p. 3

Order Statistic Problems

Usual settings for Order Statistic Problems:

• S is a set . . . but it can also be a multi-set (i.e. multiple
occurrences of an element allowed), if the rank of an element is
well-defined (usually by considering S as a sequence).

• The input elements are unidimensional objects (comparable in
O(1) time). . .

• . . . but results can be easily extended to multidimensional objects,
like strings and vectors, and the lexicographical order .

Order Statistic Problems on Suffixes – p. 3

Order Statistic Problems

Usual settings for Order Statistic Problems:

• S is a set . . . but it can also be a multi-set (i.e. multiple
occurrences of an element allowed), if the rank of an element is
well-defined (usually by considering S as a sequence).

• The input elements are unidimensional objects (comparable in
O(1) time). . .

• . . . but results can be easily extended to multidimensional objects,
like strings and vectors, and the lexicographical order .

• Not so easy when the input objects are the suffixes of a sequence
T .

Order Statistic Problems on Suffixes – p. 3

Order Statistic Problems

Usual settings for Order Statistic Problems:

• S is a set . . . but it can also be a multi-set (i.e. multiple
occurrences of an element allowed), if the rank of an element is
well-defined (usually by considering S as a sequence).

• The input elements are unidimensional objects (comparable in
O(1) time). . .

• . . . but results can be easily extended to multidimensional objects,
like strings and vectors, and the lexicographical order .

• Not so easy when the input objects are the suffixes of a sequence
T .

• In all cases, the comparison model is considered: the input
objects (or for the cases of strings, vectors and suffixes, the
elements they are made of) can only be compared .

Order Statistic Problems on Suffixes – p. 3

Generic Suffix Selection

Order Statistic Problems on Suffixes – p. 4

Generic Selection

Order Statistic Problems on Suffixes – p. 5

Generic Selection

Given a set S of n elements and an integer k ∈

{1, . . . , n}, find the k-th smallest element of S.

Order Statistic Problems on Suffixes – p. 5

Generic Selection

Given a set S of n elements and an integer k ∈

{1, . . . , n}, find the k-th smallest element of S.

• Simple solution: sort S in Θ (n log n) time and select the k-th
smallest element in O(1) time.

Order Statistic Problems on Suffixes – p. 5

Generic Selection

Given a set S of n elements and an integer k ∈

{1, . . . , n}, find the k-th smallest element of S.

• Simple solution: sort S in Θ (n log n) time and select the k-th
smallest element in O(1) time.

• Is this optimal? Are the asymptotic complexities of sorting and
selection the same?

Order Statistic Problems on Suffixes – p. 5

Generic Selection

Given a set S of n elements and an integer k ∈

{1, . . . , n}, find the k-th smallest element of S.

• Simple solution: sort S in Θ (n log n) time and select the k-th
smallest element in O(1) time.

• Is this optimal? Are the asymptotic complexities of sorting and
selection the same?

• That was unknown until the early ’70s:

Order Statistic Problems on Suffixes – p. 5

Generic Selection

Given a set S of n elements and an integer k ∈

{1, . . . , n}, find the k-th smallest element of S.

• Simple solution: sort S in Θ (n log n) time and select the k-th
smallest element in O(1) time.

• Is this optimal? Are the asymptotic complexities of sorting and
selection the same?

• That was unknown until the early ’70s:
◦ famous “textbook” results [Blum, Floyd, Pratt, Rivest, Tarjan,

STOC 1972, JCSS 7, 1973],

Order Statistic Problems on Suffixes – p. 5

Generic Selection

Given a set S of n elements and an integer k ∈

{1, . . . , n}, find the k-th smallest element of S.

• Simple solution: sort S in Θ (n log n) time and select the k-th
smallest element in O(1) time.

• Is this optimal? Are the asymptotic complexities of sorting and
selection the same?

• That was unknown until the early ’70s:
◦ famous “textbook” results [Blum, Floyd, Pratt, Rivest, Tarjan,

STOC 1972, JCSS 7, 1973],
◦ generic selection requires O(n) time in the worst case.

Order Statistic Problems on Suffixes – p. 5

Generic Selection

Given a set S of n elements and an integer k ∈

{1, . . . , n}, find the k-th smallest element of S.

• Simple solution: sort S in Θ (n log n) time and select the k-th
smallest element in O(1) time.

• Is this optimal? Are the asymptotic complexities of sorting and
selection the same?

• That was unknown until the early ’70s:
◦ famous “textbook” results [Blum, Floyd, Pratt, Rivest, Tarjan,

STOC 1972, JCSS 7, 1973],
◦ generic selection requires O(n) time in the worst case.
◦ classic example of divide et impera approach.

Order Statistic Problems on Suffixes – p. 5

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

3. Recursively find the median x of the n/5 medians found in step 2.

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

3. Recursively find the median x of the n/5 medians found in step 2.

4. Partition the input into two subsets L and R according to x (y < x, for any
y ∈ L).

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

3. Recursively find the median x of the n/5 medians found in step 2.

4. Partition the input into two subsets L and R according to x (y < x, for any
y ∈ L).

5. Recursively select

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

3. Recursively find the median x of the n/5 medians found in step 2.

4. Partition the input into two subsets L and R according to x (y < x, for any
y ∈ L).

5. Recursively select
• the k-th smallest element in L, if k ≤ |L|,

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

3. Recursively find the median x of the n/5 medians found in step 2.

4. Partition the input into two subsets L and R according to x (y < x, for any
y ∈ L).

5. Recursively select
• the k-th smallest element in L, if k ≤ |L|,
• or the (k − |L|)-th smallest element in R, if k > |L|.

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

3. Recursively find the median x of the n/5 medians found in step 2.

4. Partition the input into two subsets L and R according to x (y < x, for any
y ∈ L).

5. Recursively select
• the k-th smallest element in L, if k ≤ |L|,
• or the (k − |L|)-th smallest element in R, if k > |L|.

Simple analysis:

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

3. Recursively find the median x of the n/5 medians found in step 2.

4. Partition the input into two subsets L and R according to x (y < x, for any
y ∈ L).

5. Recursively select
• the k-th smallest element in L, if k ≤ |L|,
• or the (k − |L|)-th smallest element in R, if k > |L|.

Simple analysis:

• At least half of the n/5 groups have 3 elements greater than x. . .

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

3. Recursively find the median x of the n/5 medians found in step 2.

4. Partition the input into two subsets L and R according to x (y < x, for any
y ∈ L).

5. Recursively select
• the k-th smallest element in L, if k ≤ |L|,
• or the (k − |L|)-th smallest element in R, if k > |L|.

Simple analysis:

• At least half of the n/5 groups have 3 elements greater than x. . .

• . . . we have a lower bound on the size of R: |R| ≥ 3

10
n.

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

3. Recursively find the median x of the n/5 medians found in step 2.

4. Partition the input into two subsets L and R according to x (y < x, for any
y ∈ L).

5. Recursively select
• the k-th smallest element in L, if k ≤ |L|,
• or the (k − |L|)-th smallest element in R, if k > |L|.

Simple analysis:

• At least half of the n/5 groups have 3 elements greater than x. . .

• . . . we have a lower bound on the size of R: |R| ≥ 3

10
n.

• Therefore T (n) ≤ T
(

n
5

)
+ T

(
7

10
n
)

+ O(n)

Order Statistic Problems on Suffixes – p. 6

Selection in O(n) time: [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

1. Divide the input into n/5 groups of 5 elements each.

2. Find the median of each group (e.g. by insertion sorting).

3. Recursively find the median x of the n/5 medians found in step 2.

4. Partition the input into two subsets L and R according to x (y < x, for any
y ∈ L).

5. Recursively select
• the k-th smallest element in L, if k ≤ |L|,
• or the (k − |L|)-th smallest element in R, if k > |L|.

Simple analysis:

• At least half of the n/5 groups have 3 elements greater than x. . .

• . . . we have a lower bound on the size of R: |R| ≥ 3

10
n.

• Therefore T (n) ≤ T
(

n
5

)
+ T

(
7

10
n
)

+ O(n)= O(n).

Order Statistic Problems on Suffixes – p. 6

The Lexicographical Order

Order Statistic Problems on Suffixes – p. 7

The Lexicographical Order

Given two sequences x, y we denote with lcp(x, y) the length of the
longest common prefix of x and y.

Order Statistic Problems on Suffixes – p. 7

The Lexicographical Order

Given two sequences x, y we denote with lcp(x, y) the length of the
longest common prefix of x and y.

x is lexicographically smaller than y

if and only if
x[l + 1] < y[l + 1], where l = lcp(x, y)

Order Statistic Problems on Suffixes – p. 7

The Lexicographical Order

Given two sequences x, y we denote with lcp(x, y) the length of the
longest common prefix of x and y.

x is lexicographically smaller than y

if and only if
x[l + 1] < y[l + 1], where l = lcp(x, y)

or x is a proper prefix of y

Order Statistic Problems on Suffixes – p. 7

The Lexicographical Order

Given two sequences x, y we denote with lcp(x, y) the length of the
longest common prefix of x and y.

x is lexicographically smaller than y

if and only if
x[l + 1] < y[l + 1], where l = lcp(x, y)

or x is a proper prefix of y

• When working with suffixes of a sequence T , it is customary to
assume that
◦ T has n + 1 elements and
◦ T [n + 1] is smaller than any other T [j].

Order Statistic Problems on Suffixes – p. 7

The Lexicographical Order

Given two sequences x, y we denote with lcp(x, y) the length of the
longest common prefix of x and y.

x is lexicographically smaller than y

if and only if
x[l + 1] < y[l + 1], where l = lcp(x, y)

or x is a proper prefix of y

• When working with suffixes of a sequence T , it is customary to
assume that
◦ T has n + 1 elements and
◦ T [n + 1] is smaller than any other T [j].

• We represent T [n + 1] with •.

Order Statistic Problems on Suffixes – p. 7

Generic Suffix Selection

Order Statistic Problems on Suffixes – p. 8

Generic Suffix Selection

This time we deal with
• suffixes, i.e. S = {T1, T2, . . . Tn}, where Ti = T [i · · ·n]

Order Statistic Problems on Suffixes – p. 8

Generic Suffix Selection

This time we deal with
• suffixes, i.e. S = {T1, T2, . . . Tn}, where Ti = T [i · · ·n]

• the lexicographical order.

Order Statistic Problems on Suffixes – p. 8

Generic Suffix Selection

This time we deal with
• suffixes, i.e. S = {T1, T2, . . . Tn}, where Ti = T [i · · ·n]

• the lexicographical order.

Given a sequence of n elements T and an inte-
ger k ∈ {1, . . . , n}, find the k-th lexicographically
smallest suffix of T .

Order Statistic Problems on Suffixes – p. 8

Generic Suffix Selection

This time we deal with
• suffixes, i.e. S = {T1, T2, . . . Tn}, where Ti = T [i · · ·n]

• the lexicographical order.

Given a sequence of n elements T and an inte-
ger k ∈ {1, . . . , n}, find the k-th lexicographically
smallest suffix of T .

It is well known that the suffixes of T can be sorted in O(n log n) time
in the worst case:

Order Statistic Problems on Suffixes – p. 8

Generic Suffix Selection

This time we deal with
• suffixes, i.e. S = {T1, T2, . . . Tn}, where Ti = T [i · · ·n]

• the lexicographical order.

Given a sequence of n elements T and an inte-
ger k ∈ {1, . . . , n}, find the k-th lexicographically
smallest suffix of T .

It is well known that the suffixes of T can be sorted in O(n log n) time
in the worst case:

• Directly, by building the Suffix Array [Manber, Myers, SICOMP 22, 1993].

Order Statistic Problems on Suffixes – p. 8

Generic Suffix Selection

This time we deal with
• suffixes, i.e. S = {T1, T2, . . . Tn}, where Ti = T [i · · ·n]

• the lexicographical order.

Given a sequence of n elements T and an inte-
ger k ∈ {1, . . . , n}, find the k-th lexicographically
smallest suffix of T .

It is well known that the suffixes of T can be sorted in O(n log n) time
in the worst case:

• Directly, by building the Suffix Array [Manber, Myers, SICOMP 22, 1993].

• Indirectly, through the Suffix Tree [Farach, FOCS 1997].

Order Statistic Problems on Suffixes – p. 8

Generic Suffix Selection

This time we deal with
• suffixes, i.e. S = {T1, T2, . . . Tn}, where Ti = T [i · · ·n]

• the lexicographical order.

Given a sequence of n elements T and an inte-
ger k ∈ {1, . . . , n}, find the k-th lexicographically
smallest suffix of T .

It is well known that the suffixes of T can be sorted in O(n log n) time
in the worst case:

• Directly, by building the Suffix Array [Manber, Myers, SICOMP 22, 1993].

• Indirectly, through the Suffix Tree [Farach, FOCS 1997].

Natural question:

Are the complexities of Suffix Sorting and Suffix Selection
the same?

Order Statistic Problems on Suffixes – p. 8

Generic Suffix Selection

Order Statistic Problems on Suffixes – p. 9

Generic Suffix Selection

• Practical motivations: a fast suffix selection has potential applications in
bioinformatics, information retrieval . . .

Order Statistic Problems on Suffixes – p. 9

Generic Suffix Selection

• Practical motivations: a fast suffix selection has potential applications in
bioinformatics, information retrieval . . .

• . . . but the problem has mainly a theoretical appealing.

Order Statistic Problems on Suffixes – p. 9

Generic Suffix Selection

• Practical motivations: a fast suffix selection has potential applications in
bioinformatics, information retrieval . . .

• . . . but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Order Statistic Problems on Suffixes – p. 9

Generic Suffix Selection

• Practical motivations: a fast suffix selection has potential applications in
bioinformatics, information retrieval . . .

• . . . but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Suffix Selection requires O(n) time in the worst case

Order Statistic Problems on Suffixes – p. 9

Generic Suffix Selection

• Practical motivations: a fast suffix selection has potential applications in
bioinformatics, information retrieval . . .

• . . . but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Suffix Selection requires O(n) time in the worst case

• The divide and conquer approach used in [Blum et al, JCSS 7, 1973] is not viable
for suffix selection.

Order Statistic Problems on Suffixes – p. 9

Generic Suffix Selection

• Practical motivations: a fast suffix selection has potential applications in
bioinformatics, information retrieval . . .

• . . . but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Suffix Selection requires O(n) time in the worst case

• The divide and conquer approach used in [Blum et al, JCSS 7, 1973] is not viable
for suffix selection.
◦ If the approach was applied to suffixes, the two recursive subproblems (the

finding of the median of medians and the recursive application on L or R)
would not be instances of the Suffix Selection problem anymore. . .

Order Statistic Problems on Suffixes – p. 9

Generic Suffix Selection

• Practical motivations: a fast suffix selection has potential applications in
bioinformatics, information retrieval . . .

• . . . but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Suffix Selection requires O(n) time in the worst case

• The divide and conquer approach used in [Blum et al, JCSS 7, 1973] is not viable
for suffix selection.
◦ If the approach was applied to suffixes, the two recursive subproblems (the

finding of the median of medians and the recursive application on L or R)
would not be instances of the Suffix Selection problem anymore. . .

◦ . . . same sequence T but only a fraction of the n suffixes would be considered
in the sub-problems.

Order Statistic Problems on Suffixes – p. 9

Generic Suffix Selection

• Practical motivations: a fast suffix selection has potential applications in
bioinformatics, information retrieval . . .

• . . . but the problem has mainly a theoretical appealing.

Complexity established in [Franceschini, Muthukrishnan, STOC 2007]:

Suffix Selection requires O(n) time in the worst case

• The divide and conquer approach used in [Blum et al, JCSS 7, 1973] is not viable
for suffix selection.
◦ If the approach was applied to suffixes, the two recursive subproblems (the

finding of the median of medians and the recursive application on L or R)
would not be instances of the Suffix Selection problem anymore. . .

◦ . . . same sequence T but only a fraction of the n suffixes would be considered
in the sub-problems.

• However, we will use the selection algorithm in [Blum et al, JCSS 7, 1973] as a
basic tool for suffix selection.

Order Statistic Problems on Suffixes – p. 9

Suffix selection, first attempt

Order Statistic Problems on Suffixes – p. 10

Suffix selection, first attempt

Phase-based approach.

Order Statistic Problems on Suffixes – p. 10

Suffix selection, first attempt

Phase-based approach.
For each phase t we have the following.

Order Statistic Problems on Suffixes – p. 10

Suffix selection, first attempt

Phase-based approach.
For each phase t we have the following.

• A prefix σt of the k-th smallest suffix . This represents our current
knowledge about the wanted suffix.

Order Statistic Problems on Suffixes – p. 10

Suffix selection, first attempt

Phase-based approach.
For each phase t we have the following.

• A prefix σt of the k-th smallest suffix . This represents our current
knowledge about the wanted suffix.

• A set of active suffixes At. It contains all the suffixes with σt as a
prefix (that is all the suffixes that could still be the k-th smallest
suffix at that point)

Order Statistic Problems on Suffixes – p. 10

Suffix selection, first attempt

Phase-based approach.
For each phase t we have the following.

• A prefix σt of the k-th smallest suffix . This represents our current
knowledge about the wanted suffix.

• A set of active suffixes At. It contains all the suffixes with σt as a
prefix (that is all the suffixes that could still be the k-th smallest
suffix at that point)

• A set of inactive suffixes It with the suffixes that do not have σt as
a prefix.

Order Statistic Problems on Suffixes – p. 10

Suffix selection, first attempt

Phase-based approach.
For each phase t we have the following.

• A prefix σt of the k-th smallest suffix . This represents our current
knowledge about the wanted suffix.

• A set of active suffixes At. It contains all the suffixes with σt as a
prefix (that is all the suffixes that could still be the k-th smallest
suffix at that point)

• A set of inactive suffixes It with the suffixes that do not have σt as
a prefix.

• The number lt of the suffixes lexicographically less than any of the
active suffixes of phase t.

Order Statistic Problems on Suffixes – p. 10

Suffix selection, first attempt

Phase-based approach.
For each phase t we have the following.

• A prefix σt of the k-th smallest suffix . This represents our current
knowledge about the wanted suffix.

• A set of active suffixes At. It contains all the suffixes with σt as a
prefix (that is all the suffixes that could still be the k-th smallest
suffix at that point)

• A set of inactive suffixes It with the suffixes that do not have σt as
a prefix.

• The number lt of the suffixes lexicographically less than any of the
active suffixes of phase t.

Our knowledge about the k-th smallest suffix is increased during
Phase Transitions.

Order Statistic Problems on Suffixes – p. 10

Suffix selection, first attempt

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

• Phase 0: σ0 is void and all the suffixes are active.

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

• Phase 0: σ0 is void and all the suffixes are active.

• Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find
the k-th smallest element α1 of T .

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

• Phase 0: σ0 is void and all the suffixes are active.

• Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find
the k-th smallest element α1 of T .

• Phase 1: σ1 = α1 and the active suffixes are the ones starting with α1.

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

• Phase 0: σ0 is void and all the suffixes are active.

• Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find
the k-th smallest element α1 of T .

• Phase 1: σ1 = α1 and the active suffixes are the ones starting with α1.

(t + 1)-th Phase Transition: from phase t to phase t + 1

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

• Phase 0: σ0 is void and all the suffixes are active.

• Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find
the k-th smallest element α1 of T .

• Phase 1: σ1 = α1 and the active suffixes are the ones starting with α1.

(t + 1)-th Phase Transition: from phase t to phase t + 1

• Let’s consider the multiset Dt = {Ti[t + 1]|Ti ∈ At}.

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

• Phase 0: σ0 is void and all the suffixes are active.

• Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find
the k-th smallest element α1 of T .

• Phase 1: σ1 = α1 and the active suffixes are the ones starting with α1.

(t + 1)-th Phase Transition: from phase t to phase t + 1

• Let’s consider the multiset Dt = {Ti[t + 1]|Ti ∈ At}.

• Using [Blum et al. 1973], we select from Dt the (k− lt)-th smallest element αt+1.

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

• Phase 0: σ0 is void and all the suffixes are active.

• Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find
the k-th smallest element α1 of T .

• Phase 1: σ1 = α1 and the active suffixes are the ones starting with α1.

(t + 1)-th Phase Transition: from phase t to phase t + 1

• Let’s consider the multiset Dt = {Ti[t + 1]|Ti ∈ At}.

• Using [Blum et al. 1973], we select from Dt the (k − lt)-th smallest element αt+1.

• We set σt+1 = σtαt+1.

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

• Phase 0: σ0 is void and all the suffixes are active.

• Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find
the k-th smallest element α1 of T .

• Phase 1: σ1 = α1 and the active suffixes are the ones starting with α1.

(t + 1)-th Phase Transition: from phase t to phase t + 1

• Let’s consider the multiset Dt = {Ti[t + 1]|Ti ∈ At}.

• Using [Blum et al. 1973], we select from Dt the (k − lt)-th smallest element αt+1.

• We set σt+1 = σtαt+1.

• At+1 contains all the suffixes in At having αt+1 as their (t + 1)-th element .

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

1-st Phase Transition: from phase 0 to phase 1

• Phase 0: σ0 is void and all the suffixes are active.

• Transition: we apply the selection algorithm in [Blum et al., JCSS 7, 1973] and find
the k-th smallest element α1 of T .

• Phase 1: σ1 = α1 and the active suffixes are the ones starting with α1.

(t + 1)-th Phase Transition: from phase t to phase t + 1

• Let’s consider the multiset Dt = {Ti[t + 1]|Ti ∈ At}.

• Using [Blum et al. 1973], we select from Dt the (k − lt)-th smallest element αt+1.

• We set σt+1 = σtαt+1.

• At+1 contains all the suffixes in At having αt+1 as their (t + 1)-th element .

The computation ends when a phase transition leaves us with only one
active suffix .

Order Statistic Problems on Suffixes – p. 11

Suffix selection, first attempt

A0

k = 10, l0 = 0, Phase 0

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A0

k = 10, l0 = 0, Phase 0

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A1

k = 10, l1 = 8, Phase 1

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A1

k = 10, l1 = 8, Phase 1

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A2

k = 10, l2 = 8, Phase 2

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A3

k = 10, l3 = 8, Phase 3

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A4

k = 10, l4 = 8, Phase 4

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A6

k = 10, l6 = 9, Phase 6

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A7

k = 10, l7 = 9, Phase 7

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A8

k = 10, l8 = 9, Phase 8

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A9

k = 10, l9 = 9, Phase 9

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A10

k = 10, l10 = 9, Phase 10

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A10

k = 10, l10 = 9, Phase 10

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

A11

k = 10, l11 = 9, Phase 11

Order Statistic Problems on Suffixes – p. 12

Suffix selection, first attempt

Order Statistic Problems on Suffixes – p. 13

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

Order Statistic Problems on Suffixes – p. 13

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes O (n2) time in the worst case.

Order Statistic Problems on Suffixes – p. 13

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes O (n2) time in the worst case.

• We have not exploited the basic fact that suffixes overlaps.

Order Statistic Problems on Suffixes – p. 13

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes O (n2) time in the worst case.

• We have not exploited the basic fact that suffixes overlaps.

• The elements of T are unnecessarily accessed multiple times.

Order Statistic Problems on Suffixes – p. 13

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes O (n2) time in the worst case.

• We have not exploited the basic fact that suffixes overlaps.

• The elements of T are unnecessarily accessed multiple times.

• The phase-based approach can be improved in two ways:

Order Statistic Problems on Suffixes – p. 13

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes O (n2) time in the worst case.

• We have not exploited the basic fact that suffixes overlaps.

• The elements of T are unnecessarily accessed multiple times.

• The phase-based approach can be improved in two ways:

◦ By exploiting collisions of active suffixes.

Order Statistic Problems on Suffixes – p. 13

Suffix selection, first attempt

Clearly, this simple approach is not optimal:

it takes O (n2) time in the worst case.

• We have not exploited the basic fact that suffixes overlaps.

• The elements of T are unnecessarily accessed multiple times.

• The phase-based approach can be improved in two ways:

◦ By exploiting collisions of active suffixes.
◦ By reusing the work done on inactive suffixes.

Order Statistic Problems on Suffixes – p. 13

Suffix selection: collisions of active suffixes

A10

k = 10, l10 = 9, Phase 10

Order Statistic Problems on Suffixes – p. 14

Suffix selection: collisions of active suffixes

A10

Order Statistic Problems on Suffixes – p. 14

Suffix selection: collisions of active suffixes

A10

Collisions

Order Statistic Problems on Suffixes – p. 14

Suffix selection: collisions of active suffixes

A10

Collisions

Unnecessary work

︸ ︷︷ ︸

︸ ︷︷ ︸

Order Statistic Problems on Suffixes – p. 14

Suffix selection, second attempt: exploiting collisions

Some terminology:

Order Statistic Problems on Suffixes – p. 15

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

Order Statistic Problems on Suffixes – p. 15

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

• The extent of a suffix Ti (active or inactive) is the longest common
prefix with σt.

Order Statistic Problems on Suffixes – p. 15

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

• The extent of a suffix Ti (active or inactive) is the longest common
prefix with σt.

• Two suffixes Ti, Tj collide when their extents are either adjacent
(i.e. the last element of the extent of Ti is adjacent to the first element of the extent

of Tj or vice versa) or overlapping.

Order Statistic Problems on Suffixes – p. 15

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

• The extent of a suffix Ti (active or inactive) is the longest common
prefix with σt.

• Two suffixes Ti, Tj collide when their extents are either adjacent
(i.e. the last element of the extent of Ti is adjacent to the first element of the extent

of Tj or vice versa) or overlapping.

In the first attempt, with any phase transition

Order Statistic Problems on Suffixes – p. 15

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

• The extent of a suffix Ti (active or inactive) is the longest common
prefix with σt.

• Two suffixes Ti, Tj collide when their extents are either adjacent
(i.e. the last element of the extent of Ti is adjacent to the first element of the extent

of Tj or vice versa) or overlapping.

In the first attempt, with any phase transition

• we tried to enlarge by just one element the extent of each active
suffix

Order Statistic Problems on Suffixes – p. 15

Suffix selection, second attempt: exploiting collisions

Some terminology:

For any phase t,

• The extent of a suffix Ti (active or inactive) is the longest common
prefix with σt.

• Two suffixes Ti, Tj collide when their extents are either adjacent
(i.e. the last element of the extent of Ti is adjacent to the first element of the extent

of Tj or vice versa) or overlapping.

In the first attempt, with any phase transition

• we tried to enlarge by just one element the extent of each active
suffix

• while completely ignoring the emerging of collisions.

Order Statistic Problems on Suffixes – p. 15

Suffix selection, second attempt: exploiting collisions

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 16

Suffix selection, second attempt: exploiting collisions

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 16

Suffix selection, second attempt: exploiting collisions

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 16

Suffix selection, second attempt: exploiting collisions

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 16

Suffix selection, second attempt: exploiting collisions

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 16

Suffix selection, second attempt: exploiting collisions

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 16

Suffix selection, second attempt: exploiting collisions

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 16

Suffix selection, second attempt: exploiting collisions

A5

Collisions

Order Statistic Problems on Suffixes – p. 16

Suffix selection, second attempt: exploiting collisions

Let’s consider a Phase Transition from phase t to t + 1.

Order Statistic Problems on Suffixes – p. 17

Suffix selection, second attempt: exploiting collisions

Let’s consider a Phase Transition from phase t to t + 1.

• If there are no collisions of active suffixes in phase t, the transition proceeds as
before (we try to enlarge by just one element the extents).

Order Statistic Problems on Suffixes – p. 17

Suffix selection, second attempt: exploiting collisions

Let’s consider a Phase Transition from phase t to t + 1.

• If there are no collisions of active suffixes in phase t, the transition proceeds as
before (we try to enlarge by just one element the extents).

• Otherwise, it can be proven that the extents of the colliding active suffixes are
simply adjacent and do not overlap.

Order Statistic Problems on Suffixes – p. 17

Suffix selection, second attempt: exploiting collisions

Let’s consider a Phase Transition from phase t to t + 1.

• If there are no collisions of active suffixes in phase t, the transition proceeds as
before (we try to enlarge by just one element the extents).

• Otherwise, it can be proven that the extents of the colliding active suffixes are
simply adjacent and do not overlap.

Let the prospective extent of an active suffix Ti be composed by the following:
◦ The subsequence of extents following it (just Ti’s extent, in case Ti does not

collide).
◦ The element ci next to the extent of the rightmost suffix in the collision.

Order Statistic Problems on Suffixes – p. 17

Suffix selection, second attempt: exploiting collisions

Let’s consider a Phase Transition from phase t to t + 1.

• If there are no collisions of active suffixes in phase t, the transition proceeds as
before (we try to enlarge by just one element the extents).

• Otherwise, it can be proven that the extents of the colliding active suffixes are
simply adjacent and do not overlap.

Let the prospective extent of an active suffix Ti be composed by the following:
◦ The subsequence of extents following it (just Ti’s extent, in case Ti does not

collide).
◦ The element ci next to the extent of the rightmost suffix in the collision.

◦ Since the extent of an active suffix Ti is σt, the prospective extent of Ti is the
periodic sequence

ri
︷ ︸︸ ︷
σtσtσt · · · σt ci

for an integer ri.

Order Statistic Problems on Suffixes – p. 17

Suffix selection, second attempt: exploiting collisions

Let’s consider a Phase Transition from phase t to t + 1.

• If there are no collisions of active suffixes in phase t, the transition proceeds as
before (we try to enlarge by just one element the extents).

• Otherwise, it can be proven that the extents of the colliding active suffixes are
simply adjacent and do not overlap.

Let the prospective extent of an active suffix Ti be composed by the following:
◦ The subsequence of extents following it (just Ti’s extent, in case Ti does not

collide).
◦ The element ci next to the extent of the rightmost suffix in the collision.

◦ Since the extent of an active suffix Ti is σt, the prospective extent of Ti is the
periodic sequence

ri
︷ ︸︸ ︷
σtσtσt · · · σt ci

for an integer ri.
◦ Therefore, the prospective extents of any two active suffixes can be compared

in O (1) time.

Order Statistic Problems on Suffixes – p. 17

Suffix selection, second attempt: exploiting collisions

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 18

Suffix selection, second attempt: exploiting collisions

A5

Collisions

Order Statistic Problems on Suffixes – p. 18

Suffix selection, second attempt: exploiting collisions

A5

Collisions

Extents

︸ ︷︷ ︸

︸ ︷︷ ︸

︸ ︷︷ ︸

︸ ︷︷ ︸

Order Statistic Problems on Suffixes – p. 18

Suffix selection, second attempt: exploiting collisions

A5

Collisions

Prospective Extents

︸ ︷︷ ︸

︸ ︷︷ ︸

︸ ︷︷ ︸

︸ ︷︷ ︸

Order Statistic Problems on Suffixes – p. 18

Suffix selection, second attempt: exploiting collisions

Let’s go back to the Phase Transition from phase t to t + 1.

Order Statistic Problems on Suffixes – p. 19

Suffix selection, second attempt: exploiting collisions

Let’s go back to the Phase Transition from phase t to t + 1.
• If there are no collisions of active suffixes in Phase t,

Order Statistic Problems on Suffixes – p. 19

Suffix selection, second attempt: exploiting collisions

Let’s go back to the Phase Transition from phase t to t + 1.
• If there are no collisions of active suffixes in Phase t,

◦ We select from the multiset Dt = {Ti[t + 1] | Ti ∈ At} the (k − lt)-th
smallest element αt+1, using [Blum et al. 1973].

Order Statistic Problems on Suffixes – p. 19

Suffix selection, second attempt: exploiting collisions

Let’s go back to the Phase Transition from phase t to t + 1.
• If there are no collisions of active suffixes in Phase t,

◦ We select from the multiset Dt = {Ti[t + 1] | Ti ∈ At} the (k − lt)-th
smallest element αt+1, using [Blum et al. 1973].

◦ We set σt+1 = σtαt+1.

Order Statistic Problems on Suffixes – p. 19

Suffix selection, second attempt: exploiting collisions

Let’s go back to the Phase Transition from phase t to t + 1.
• If there are no collisions of active suffixes in Phase t,

◦ We select from the multiset Dt = {Ti[t + 1] | Ti ∈ At} the (k − lt)-th
smallest element αt+1, using [Blum et al. 1973].

◦ We set σt+1 = σtαt+1.
◦ At+1 contains all the suffixes in At having αt+1 as their (t + 1)-th element .

Order Statistic Problems on Suffixes – p. 19

Suffix selection, second attempt: exploiting collisions

Let’s go back to the Phase Transition from phase t to t + 1.
• If there are no collisions of active suffixes in Phase t,

◦ We select from the multiset Dt = {Ti[t + 1] | Ti ∈ At} the (k − lt)-th
smallest element αt+1, using [Blum et al. 1973].

◦ We set σt+1 = σtαt+1.
◦ At+1 contains all the suffixes in At having αt+1 as their (t + 1)-th element .

• Otherwise,

Order Statistic Problems on Suffixes – p. 19

Suffix selection, second attempt: exploiting collisions

Let’s go back to the Phase Transition from phase t to t + 1.
• If there are no collisions of active suffixes in Phase t,

◦ We select from the multiset Dt = {Ti[t + 1] | Ti ∈ At} the (k − lt)-th
smallest element αt+1, using [Blum et al. 1973].

◦ We set σt+1 = σtαt+1.
◦ At+1 contains all the suffixes in At having αt+1 as their (t + 1)-th element .

• Otherwise,
◦ We select the (k − lt)-th smallest subsequence πt+1. from the multiset

Ft =
n

(σt)rici

˛
˛
˛ Ti ∈ At

and (σt)rici is the prosp. ext. of Ti

o

using [Blum et al. 1973] (two subsequences in Ft can be compared in O(1)).

Order Statistic Problems on Suffixes – p. 19

Suffix selection, second attempt: exploiting collisions

Let’s go back to the Phase Transition from phase t to t + 1.
• If there are no collisions of active suffixes in Phase t,

◦ We select from the multiset Dt = {Ti[t + 1] | Ti ∈ At} the (k − lt)-th
smallest element αt+1, using [Blum et al. 1973].

◦ We set σt+1 = σtαt+1.
◦ At+1 contains all the suffixes in At having αt+1 as their (t + 1)-th element .

• Otherwise,
◦ We select the (k − lt)-th smallest subsequence πt+1. from the multiset

Ft =
n

(σt)rici

˛
˛
˛ Ti ∈ At

and (σt)rici is the prosp. ext. of Ti

o

using [Blum et al. 1973] (two subsequences in Ft can be compared in O(1)).
◦ We set σt+1 = πt+1.

Order Statistic Problems on Suffixes – p. 19

Suffix selection, second attempt: exploiting collisions

Let’s go back to the Phase Transition from phase t to t + 1.
• If there are no collisions of active suffixes in Phase t,

◦ We select from the multiset Dt = {Ti[t + 1] | Ti ∈ At} the (k − lt)-th
smallest element αt+1, using [Blum et al. 1973].

◦ We set σt+1 = σtαt+1.
◦ At+1 contains all the suffixes in At having αt+1 as their (t + 1)-th element .

• Otherwise,
◦ We select the (k − lt)-th smallest subsequence πt+1. from the multiset

Ft =
n

(σt)rici

˛
˛
˛ Ti ∈ At

and (σt)rici is the prosp. ext. of Ti

o

using [Blum et al. 1973] (two subsequences in Ft can be compared in O(1)).
◦ We set σt+1 = πt+1.
◦ At+1 contains all the suffixes in At having πt+1 as their extent .

Order Statistic Problems on Suffixes – p. 19

Suffix selection, second attempt: exploiting collisions

A0

k = 10, l0 = 0, Phase 0

Order Statistic Problems on Suffixes – p. 20

Suffix selection, second attempt: exploiting collisions

A0

k = 10, l0 = 0, Phase 0

Order Statistic Problems on Suffixes – p. 20

Suffix selection, second attempt: exploiting collisions

A1

k = 10, l1 = 8, Phase 1

Order Statistic Problems on Suffixes – p. 20

Suffix selection, second attempt: exploiting collisions

A1

k = 10, l1 = 8, Phase 1

Order Statistic Problems on Suffixes – p. 20

Suffix selection, second attempt: exploiting collisions

A2

k = 10, l2 = 8, Phase 2

Order Statistic Problems on Suffixes – p. 20

Suffix selection, second attempt: exploiting collisions

A3

k = 10, l3 = 8, Phase 3

Order Statistic Problems on Suffixes – p. 20

Suffix selection, second attempt: exploiting collisions

A4

k = 10, l4 = 8, Phase 4

Order Statistic Problems on Suffixes – p. 20

Suffix selection, second attempt: exploiting collisions

A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 20

Suffix selection, second attempt: exploiting collisions

A5

Collisions

Order Statistic Problems on Suffixes – p. 21

Suffix selection, second attempt: exploiting collisions

A5

Collisions

Extents

︸ ︷︷ ︸

︸ ︷︷ ︸

︸ ︷︷ ︸

︸ ︷︷ ︸

Order Statistic Problems on Suffixes – p. 21

Suffix selection, second attempt: exploiting collisions

A5

Collisions

Prospective Extents

︸ ︷︷ ︸

︸ ︷︷ ︸

︸ ︷︷ ︸

︸ ︷︷ ︸

Order Statistic Problems on Suffixes – p. 21

Suffix selection, second attempt: exploiting collisions

A5

Collisions

σ5 =

Order Statistic Problems on Suffixes – p. 21

Suffix selection, second attempt: exploiting collisions

σ5 =

How do we compare the prospective extents in multiset Ft?

Order Statistic Problems on Suffixes – p. 21

Suffix selection, second attempt: exploiting collisions

σ5 =

= (1, •)

= (2, •)

= (3, •)

= (4, •)

How do we compare the prospective extents in multiset Ft?

• Each subsequence (σt)
rici can be represented by the pair (ri, ci)

(integer/element pair).

Order Statistic Problems on Suffixes – p. 21

Suffix selection, second attempt: exploiting collisions

σ5 =

= (1, •)

= (2, •)

= (3, •)

= (4, •)

1

2

3

4

How do we compare the prospective extents in multiset Ft?

• Each subsequence (σt)
rici can be represented by the pair (ri, ci)

(integer/element pair).

• To compare two subsequences in Ft we can just use their pairs.

Order Statistic Problems on Suffixes – p. 21

Suffix selection, second attempt: exploiting collisions
A5

k = 10, l5 = 8, Phase 5

Order Statistic Problems on Suffixes – p. 22

Suffix selection, second attempt: exploiting collisions
A5

k = 10, l5 = 8, Phase 5

Now we want the active suffix with the prosp ext. of rank (k− l5) = 2. . .

Order Statistic Problems on Suffixes – p. 22

Suffix selection, second attempt: exploiting collisions
A6

k = 10, l6 = 9, Phase 6

Now we want the active suffix with the prosp ext. of rank (k− l5) = 2. . .
. . . exploiting the collisions in A5, we find it in just one Phase Transition.

Order Statistic Problems on Suffixes – p. 22

Suffix selection, second attempt: exploiting collisions

How well did we do?

Order Statistic Problems on Suffixes – p. 23

Suffix selection, second attempt: exploiting collisions

How well did we do?

• In the example we went from the 11 phases of the first attempt to
just 6.

Order Statistic Problems on Suffixes – p. 23

Suffix selection, second attempt: exploiting collisions

How well did we do?

• In the example we went from the 11 phases of the first attempt to
just 6.

• The complexity of the second algorithm is O (n log n) in the worst
case.

Order Statistic Problems on Suffixes – p. 23

Suffix selection, second attempt: exploiting collisions

How well did we do?

• In the example we went from the 11 phases of the first attempt to
just 6.

• The complexity of the second algorithm is O (n log n) in the worst
case.
◦ Let us group the phases into macro-phases m0, m1, . . . , mw

such that, for any mi and any phase t ∈ mi, we have that

2i ≤ |σt| < 2i+1.

Order Statistic Problems on Suffixes – p. 23

Suffix selection, second attempt: exploiting collisions

How well did we do?

• In the example we went from the 11 phases of the first attempt to
just 6.

• The complexity of the second algorithm is O (n log n) in the worst
case.
◦ Let us group the phases into macro-phases m0, m1, . . . , mw

such that, for any mi and any phase t ∈ mi, we have that

2i ≤ |σt| < 2i+1.
◦ For any phase t, the extents of the active suffixes do not

overlap. . .

Order Statistic Problems on Suffixes – p. 23

Suffix selection, second attempt: exploiting collisions

How well did we do?

• In the example we went from the 11 phases of the first attempt to
just 6.

• The complexity of the second algorithm is O (n log n) in the worst
case.
◦ Let us group the phases into macro-phases m0, m1, . . . , mw

such that, for any mi and any phase t ∈ mi, we have that

2i ≤ |σt| < 2i+1.
◦ For any phase t, the extents of the active suffixes do not

overlap. . .
◦ . . . and phase t has at most n/σt active suffixes.

Order Statistic Problems on Suffixes – p. 23

Suffix selection, second attempt: exploiting collisions

How well did we do?

• In the example we went from the 11 phases of the first attempt to
just 6.

• The complexity of the second algorithm is O (n log n) in the worst
case.
◦ Let us group the phases into macro-phases m0, m1, . . . , mw

such that, for any mi and any phase t ∈ mi, we have that

2i ≤ |σt| < 2i+1.
◦ For any phase t, the extents of the active suffixes do not

overlap. . .
◦ . . . and phase t has at most n/σt active suffixes.
◦ Therefore, the cost of each macro-phase is O (n) and the final

O (n log n) bound follows immediately.

Order Statistic Problems on Suffixes – p. 23

Suffix selection, second attempt: exploiting collisions

Order Statistic Problems on Suffixes – p. 24

Suffix selection, second attempt: exploiting collisions

• So, while we improved the O
(
n2

)
of the first, simple algorithm. . .

Order Statistic Problems on Suffixes – p. 24

Suffix selection, second attempt: exploiting collisions

• So, while we improved the O
(
n2

)
of the first, simple algorithm. . .

• . . . we have not yet answered our original question

Comp(Suffix Sorting) 6= Comp(Suffix Selection)?,

since Suffix Sorting can be done in O (n log n) time as well.

Order Statistic Problems on Suffixes – p. 24

Suffix selection, second attempt: exploiting collisions

• So, while we improved the O
(
n2

)
of the first, simple algorithm. . .

• . . . we have not yet answered our original question

Comp(Suffix Sorting) 6= Comp(Suffix Selection)?,

since Suffix Sorting can be done in O (n log n) time as well.

We need one last step:

We have to be able to reuse the work done on
inactive suffixes.

Order Statistic Problems on Suffixes – p. 24

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 25

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

Order Statistic Problems on Suffixes – p. 25

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

They do not fully exploit the available
information about inactive suffixes

(i.e. their extents).

Order Statistic Problems on Suffixes – p. 25

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

They do not fully exploit the available
information about inactive suffixes

(i.e. their extents).

• The central issue is how much the extent of an active suffix Ti in
phase t + 1 is enlarged during the transition from phase t.

Order Statistic Problems on Suffixes – p. 25

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

They do not fully exploit the available
information about inactive suffixes

(i.e. their extents).

• The central issue is how much the extent of an active suffix Ti in
phase t + 1 is enlarged during the transition from phase t.

• What do we add to the extent of Ti in the second solution?

Order Statistic Problems on Suffixes – p. 25

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

They do not fully exploit the available
information about inactive suffixes

(i.e. their extents).

• The central issue is how much the extent of an active suffix Ti in
phase t + 1 is enlarged during the transition from phase t.

• What do we add to the extent of Ti in the second solution?

(a) All the extents of the active suffixes that follow Ti and collide
with it.

Order Statistic Problems on Suffixes – p. 25

Suffix selection, third attempt: reusing inactive suffixes

The first two solutions have one aspect in common:

They do not fully exploit the available
information about inactive suffixes

(i.e. their extents).

• The central issue is how much the extent of an active suffix Ti in
phase t + 1 is enlarged during the transition from phase t.

• What do we add to the extent of Ti in the second solution?

(a) All the extents of the active suffixes that follow Ti and collide
with it.

(b) The element c next to the extent of the rightmost suffix in the
collision.

Order Statistic Problems on Suffixes – p. 25

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 26

Suffix selection, third attempt: reusing inactive suffixes

This “limited” way to enlarge the extents implies that c may be
accessed again ω(1) times in the subsequent phase transitions:

Order Statistic Problems on Suffixes – p. 26

Suffix selection, third attempt: reusing inactive suffixes

This “limited” way to enlarge the extents implies that c may be
accessed again ω(1) times in the subsequent phase transitions:

(1) Ti can later become inactive, c can then be accessed again and
added to the extent of another active suffix Ti′ .

Order Statistic Problems on Suffixes – p. 26

Suffix selection, third attempt: reusing inactive suffixes

This “limited” way to enlarge the extents implies that c may be
accessed again ω(1) times in the subsequent phase transitions:

(1) Ti can later become inactive, c can then be accessed again and
added to the extent of another active suffix Ti′ .

(2) Ti′ can then become inactive in its turn, c can later be accessed
once again and added to Ti′′ .

Order Statistic Problems on Suffixes – p. 26

Suffix selection, third attempt: reusing inactive suffixes

This “limited” way to enlarge the extents implies that c may be
accessed again ω(1) times in the subsequent phase transitions:

(1) Ti can later become inactive, c can then be accessed again and
added to the extent of another active suffix Ti′ .

(2) Ti′ can then become inactive in its turn, c can later be accessed
once again and added to Ti′′ .

.

Order Statistic Problems on Suffixes – p. 26

Suffix selection, third attempt: reusing inactive suffixes

This “limited” way to enlarge the extents implies that c may be
accessed again ω(1) times in the subsequent phase transitions:

(1) Ti can later become inactive, c can then be accessed again and
added to the extent of another active suffix Ti′ .

(2) Ti′ can then become inactive in its turn, c can later be accessed
once again and added to Ti′′ .

.

(?) Over time, this causes the extra log n factor in the complexity
bound of the second solution.

Order Statistic Problems on Suffixes – p. 26

Suffix selection, third attempt: reusing inactive suffixes

This “limited” way to enlarge the extents implies that c may be
accessed again ω(1) times in the subsequent phase transitions:

(1) Ti can later become inactive, c can then be accessed again and
added to the extent of another active suffix Ti′ .

(2) Ti′ can then become inactive in its turn, c can later be accessed
once again and added to Ti′′ .

.

(?) Over time, this causes the extra log n factor in the complexity
bound of the second solution.

The challenge now is to avoid these multiple accesses.

Order Statistic Problems on Suffixes – p. 26

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 27

Suffix selection, third attempt: reusing inactive suffixes

Let’s consider an active suffix Ti in phase t that remains active after
the transition to phase t + 1.

Order Statistic Problems on Suffixes – p. 27

Suffix selection, third attempt: reusing inactive suffixes

Let’s consider an active suffix Ti in phase t that remains active after
the transition to phase t + 1.

The forward suffix of a suffix Tj

is the inactive suffix starting within the extent of Tj or right after it
whose extent goes the farthest from the right end of Tj ’s extent.

Order Statistic Problems on Suffixes – p. 27

Suffix selection, third attempt: reusing inactive suffixes

Let’s consider an active suffix Ti in phase t that remains active after
the transition to phase t + 1.

The forward suffix of a suffix Tj

is the inactive suffix starting within the extent of Tj or right after it
whose extent goes the farthest from the right end of Tj ’s extent.

In the third solution the prospective extent of Ti is composed by the
following:

Order Statistic Problems on Suffixes – p. 27

Suffix selection, third attempt: reusing inactive suffixes

Let’s consider an active suffix Ti in phase t that remains active after
the transition to phase t + 1.

The forward suffix of a suffix Tj

is the inactive suffix starting within the extent of Tj or right after it
whose extent goes the farthest from the right end of Tj ’s extent.

In the third solution the prospective extent of Ti is composed by the
following:

(a) All the extents of the active suffixes following Ti and colliding with
it

Order Statistic Problems on Suffixes – p. 27

Suffix selection, third attempt: reusing inactive suffixes

Let’s consider an active suffix Ti in phase t that remains active after
the transition to phase t + 1.

The forward suffix of a suffix Tj

is the inactive suffix starting within the extent of Tj or right after it
whose extent goes the farthest from the right end of Tj ’s extent.

In the third solution the prospective extent of Ti is composed by the
following:

(a) All the extents of the active suffixes following Ti and colliding with
it (although they don’t collide as nicely as in the second solution, as we will see).

Order Statistic Problems on Suffixes – p. 27

Suffix selection, third attempt: reusing inactive suffixes

Let’s consider an active suffix Ti in phase t that remains active after
the transition to phase t + 1.

The forward suffix of a suffix Tj

is the inactive suffix starting within the extent of Tj or right after it
whose extent goes the farthest from the right end of Tj ’s extent.

In the third solution the prospective extent of Ti is composed by the
following:

(a) All the extents of the active suffixes following Ti and colliding with
it (although they don’t collide as nicely as in the second solution, as we will see).

(b) The extent of the forward suffix f of the rightmost suffix r in
collision with Ti (r is Ti itself if Ti is not in a collision).

Order Statistic Problems on Suffixes – p. 27

Suffix selection, third attempt: reusing inactive suffixes

Let’s consider an active suffix Ti in phase t that remains active after
the transition to phase t + 1.

The forward suffix of a suffix Tj

is the inactive suffix starting within the extent of Tj or right after it
whose extent goes the farthest from the right end of Tj ’s extent.

In the third solution the prospective extent of Ti is composed by the
following:

(a) All the extents of the active suffixes following Ti and colliding with
it (although they don’t collide as nicely as in the second solution, as we will see).

(b) The extent of the forward suffix f of the rightmost suffix r in
collision with Ti (r is Ti itself if Ti is not in a collision).

(c) The element c next to the extent of f

Order Statistic Problems on Suffixes – p. 27

Suffix selection, third attempt: reusing inactive suffixes

A0

k = 10, l0 = 0, Phase 0

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A0

k = 10, l0 = 0, Phase 0

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A1

k = 10, l1 = 8, Phase 1

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A1

k = 10, l1 = 8, Phase 1

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A2

k = 10, l2 = 8, Phase 2

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A2

k = 10, l2 = 8, Phase 2

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A3

k = 10, l3 = 8, Phase 3

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A3

k = 10, l3 = 8, Phase 3

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A3

k = 10, l3 = 8, Phase 3

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A3

k = 10, l3 = 8, Phase 3

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A3

k = 10, l3 = 8, Phase 3

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A3

k = 10, l3 = 8, Phase 3

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A4

k = 10, l4 = 8, Phase 4

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A5

k = 10, l5 = 9, Phase 5

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A5

k = 10, l5 = 9, Phase 5

• By reusing the work done on inactive suffixes, the computation ended in 5

phases. . .

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A5

k = 10, l5 = 9, Phase 5

• By reusing the work done on inactive suffixes, the computation ended in 5

phases. . . one phase less than the second attempt.

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A5

k = 10, l5 = 9, Phase 5

• By reusing the work done on inactive suffixes, the computation ended in 5

phases. . . one phase less than the second attempt.

• This is a particularly lucky example. . .

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

A5

k = 10, l5 = 9, Phase 5

• By reusing the work done on inactive suffixes, the computation ended in 5

phases. . . one phase less than the second attempt.

• This is a particularly lucky example. . . in the general case the exploiting of
collisions of active suffixes and the reuse of the extents of inactive suffixes do not
play along so nicely, as we will see.

Order Statistic Problems on Suffixes – p. 28

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 29

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently
(i.e. in O (1) time).

Order Statistic Problems on Suffixes – p. 29

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently
(i.e. in O (1) time).

(ii) Assuming that we can find the forward suffixes efficiently
(that is with a total cost O (n) for the entire computation).

Order Statistic Problems on Suffixes – p. 29

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently
(i.e. in O (1) time).

(ii) Assuming that we can find the forward suffixes efficiently
(that is with a total cost O (n) for the entire computation).

(iii) Assuming that all the above “querying machineries” can be maintained efficiently
(again, with a total cost O (n)).

Order Statistic Problems on Suffixes – p. 29

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently
(i.e. in O (1) time).

(ii) Assuming that we can find the forward suffixes efficiently
(that is with a total cost O (n) for the entire computation).

(iii) Assuming that all the above “querying machineries” can be maintained efficiently
(again, with a total cost O (n)).

The new way to enlarge extents guarantees that O(n)

comparisons are made during the computation.

Order Statistic Problems on Suffixes – p. 29

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently
(i.e. in O (1) time).

(ii) Assuming that we can find the forward suffixes efficiently
(that is with a total cost O (n) for the entire computation).

(iii) Assuming that all the above “querying machineries” can be maintained efficiently
(again, with a total cost O (n)).

The new way to enlarge extents guarantees that O(n)

comparisons are made during the computation.

• An element c of T will not be accessed again once it is inside an extent (i.e. c is
not in the rightmost position of the extent).

Order Statistic Problems on Suffixes – p. 29

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently
(i.e. in O (1) time).

(ii) Assuming that we can find the forward suffixes efficiently
(that is with a total cost O (n) for the entire computation).

(iii) Assuming that all the above “querying machineries” can be maintained efficiently
(again, with a total cost O (n)).

The new way to enlarge extents guarantees that O(n)

comparisons are made during the computation.

• An element c of T will not be accessed again once it is inside an extent (i.e. c is
not in the rightmost position of the extent).

• As long as an element c of T is in the rightmost position of an extent, there can be
multiple accesses to it . . .

Order Statistic Problems on Suffixes – p. 29

Suffix selection, third attempt: reusing inactive suffixes

(i) Assuming that we are able to compare prospective extents efficiently
(i.e. in O (1) time).

(ii) Assuming that we can find the forward suffixes efficiently
(that is with a total cost O (n) for the entire computation).

(iii) Assuming that all the above “querying machineries” can be maintained efficiently
(again, with a total cost O (n)).

The new way to enlarge extents guarantees that O(n)

comparisons are made during the computation.

• An element c of T will not be accessed again once it is inside an extent (i.e. c is
not in the rightmost position of the extent).

• As long as an element c of T is in the rightmost position of an extent, there can be
multiple accesses to it . . .

• . . . but any of those accesses to c can be charged on an active suffix becoming
inactive during the current phase transition.

Order Statistic Problems on Suffixes – p. 29

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 30

Suffix selection, third attempt: reusing inactive suffixes

Let’s deal with the prospective extents first.

Order Statistic Problems on Suffixes – p. 30

Suffix selection, third attempt: reusing inactive suffixes

Let’s deal with the prospective extents first.

During any phase t, two suffixes Ti, Tj collide when their extents are either adja-
cent or overlapping.

Order Statistic Problems on Suffixes – p. 30

Suffix selection, third attempt: reusing inactive suffixes

Let’s deal with the prospective extents first.

During any phase t, two suffixes Ti, Tj collide when their extents are either adja-
cent or overlapping.

In the second solution the extents of colliding suffixes are always adjacent .

Order Statistic Problems on Suffixes – p. 30

Suffix selection, third attempt: reusing inactive suffixes

Let’s deal with the prospective extents first.

During any phase t, two suffixes Ti, Tj collide when their extents are either adja-
cent or overlapping.

In the second solution the extents of colliding suffixes are always adjacent .

• The prospective extent of Ti has a simple periodic form: (σt)ric.

Order Statistic Problems on Suffixes – p. 30

Suffix selection, third attempt: reusing inactive suffixes

Let’s deal with the prospective extents first.

During any phase t, two suffixes Ti, Tj collide when their extents are either adja-
cent or overlapping.

In the second solution the extents of colliding suffixes are always adjacent .

• The prospective extent of Ti has a simple periodic form: (σt)ric.

• Thus, it can be represented by the pair integer/element (ri, c), no matter how
many suffixes are in collision with Ti.

Order Statistic Problems on Suffixes – p. 30

Suffix selection, third attempt: reusing inactive suffixes

Let’s deal with the prospective extents first.

During any phase t, two suffixes Ti, Tj collide when their extents are either adja-
cent or overlapping.

In the second solution the extents of colliding suffixes are always adjacent .

• The prospective extent of Ti has a simple periodic form: (σt)ric.

• Thus, it can be represented by the pair integer/element (ri, c), no matter how
many suffixes are in collision with Ti.

Prospective Extents

| {z }

| {z }

| {z }

| {z }

= (1, c)

= (2, c)

= (3, c)

= (4, c)

Order Statistic Problems on Suffixes – p. 30

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 31

Suffix selection, third attempt: reusing inactive suffixes

In the third solution the extents of colliding suffixes overlap in generic ways.

Order Statistic Problems on Suffixes – p. 31

Suffix selection, third attempt: reusing inactive suffixes

In the third solution the extents of colliding suffixes overlap in generic ways.

• The prospective extent of Ti is a sequence σtwd1
wd2

. . . wdl−1
wudl

c

Order Statistic Problems on Suffixes – p. 31

Suffix selection, third attempt: reusing inactive suffixes

In the third solution the extents of colliding suffixes overlap in generic ways.

• The prospective extent of Ti is a sequence σtwd1
wd2

. . . wdl−1
wudl

c

◦ wdj
is the dj -th suffix of σt,

◦ udl
is the dl-th suffix of the extent of the forward suffix ,

◦ c is the element following udl
in T .

Order Statistic Problems on Suffixes – p. 31

Suffix selection, third attempt: reusing inactive suffixes

In the third solution the extents of colliding suffixes overlap in generic ways.

• The prospective extent of Ti is a sequence σtwd1
wd2

. . . wdl−1
wudl

c

◦ wdj
is the dj -th suffix of σt,

◦ udl
is the dl-th suffix of the extent of the forward suffix ,

◦ c is the element following udl
in T .

• The overlapping is limited : 1 ≤ wdj
≤ |σt| /2.

Order Statistic Problems on Suffixes – p. 31

Suffix selection, third attempt: reusing inactive suffixes

In the third solution the extents of colliding suffixes overlap in generic ways.

• The prospective extent of Ti is a sequence σtwd1
wd2

. . . wdl−1
wudl

c

◦ wdj
is the dj -th suffix of σt,

◦ udl
is the dl-th suffix of the extent of the forward suffix ,

◦ c is the element following udl
in T .

• The overlapping is limited : 1 ≤ wdj
≤ |σt| /2.

• The pros. ext. must be represented by l integers and one element : (d1, . . . , dl, c).

Order Statistic Problems on Suffixes – p. 31

Suffix selection, third attempt: reusing inactive suffixes

In the third solution the extents of colliding suffixes overlap in generic ways.

• The prospective extent of Ti is a sequence σtwd1
wd2

. . . wdl−1
wudl

c

◦ wdj
is the dj -th suffix of σt,

◦ udl
is the dl-th suffix of the extent of the forward suffix ,

◦ c is the element following udl
in T .

• The overlapping is limited : 1 ≤ wdj
≤ |σt| /2.

• The pros. ext. must be represented by l integers and one element : (d1, . . . , dl, c).

• l is the number of suffixes following Ti in the collision plus the forward suffix and is
not O (1).

Order Statistic Problems on Suffixes – p. 31

Suffix selection, third attempt: reusing inactive suffixes

In the third solution the extents of colliding suffixes overlap in generic ways.

• The prospective extent of Ti is a sequence σtwd1
wd2

. . . wdl−1
wudl

c

◦ wdj
is the dj -th suffix of σt,

◦ udl
is the dl-th suffix of the extent of the forward suffix ,

◦ c is the element following udl
in T .

• The overlapping is limited : 1 ≤ wdj
≤ |σt| /2.

• The pros. ext. must be represented by l integers and one element : (d1, . . . , dl, c).

• l is the number of suffixes following Ti in the collision plus the forward suffix and is
not O (1).

wd1

wd2

wd3

Order Statistic Problems on Suffixes – p. 31

Suffix selection, third attempt: reusing inactive suffixes

In the third solution the extents of colliding suffixes overlap in generic ways.

• The prospective extent of Ti is a sequence σtwd1
wd2

. . . wdl−1
wudl

c

◦ wdj
is the dj -th suffix of σt,

◦ udl
is the dl-th suffix of the extent of the forward suffix ,

◦ c is the element following udl
in T .

• The overlapping is limited : 1 ≤ wdj
≤ |σt| /2.

• The pros. ext. must be represented by l integers and one element : (d1, . . . , dl, c).

• l is the number of suffixes following Ti in the collision plus the forward suffix and is
not O (1).

wd1

wd2

wd3
ud4

Order Statistic Problems on Suffixes – p. 31

Suffix selection, third attempt: reusing inactive suffixes

In the third solution the extents of colliding suffixes overlap in generic ways.

• The prospective extent of Ti is a sequence σtwd1
wd2

. . . wdl−1
wudl

c

◦ wdj
is the dj -th suffix of σt,

◦ udl
is the dl-th suffix of the extent of the forward suffix ,

◦ c is the element following udl
in T .

• The overlapping is limited : 1 ≤ wdj
≤ |σt| /2.

• The pros. ext. must be represented by l integers and one element : (d1, . . . , dl, c).

• l is the number of suffixes following Ti in the collision plus the forward suffix and is
not O (1).

Prospective Extents

| {z }

| {z }

| {z }

| {z }
wd1

wd2

wd3
ud4

c

= (ud4
, c)

= (wd3
, ud4

, c)

= (wd2
, wd3

, ud4
, c)

= (wd1
, wd2

, wd3
, ud4

, c)

Order Statistic Problems on Suffixes – p. 31

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 32

Suffix selection, third attempt: reusing inactive suffixes

We have the following problem to solve for any phase t:

Order Statistic Problems on Suffixes – p. 32

Suffix selection, third attempt: reusing inactive suffixes

We have the following problem to solve for any phase t:

• We have qt sequences of integers G1, . . . , Gqt
:

Order Statistic Problems on Suffixes – p. 32

Suffix selection, third attempt: reusing inactive suffixes

We have the following problem to solve for any phase t:

• We have qt sequences of integers G1, . . . , Gqt
:

◦ One sequence for each collision of active suffixes of
phase t.

Order Statistic Problems on Suffixes – p. 32

Suffix selection, third attempt: reusing inactive suffixes

We have the following problem to solve for any phase t:

• We have qt sequences of integers G1, . . . , Gqt
:

◦ One sequence for each collision of active suffixes of
phase t.

◦ Each sequence represents the overlapping pattern of its
collision.

Order Statistic Problems on Suffixes – p. 32

Suffix selection, third attempt: reusing inactive suffixes

We have the following problem to solve for any phase t:

• We have qt sequences of integers G1, . . . , Gqt
:

◦ One sequence for each collision of active suffixes of
phase t.

◦ Each sequence represents the overlapping pattern of its
collision.

• For any two suffixes hi of Gi and hj of Gj , we want to be
able to retrieve lcp(hi, hj) in O(1) time.

Order Statistic Problems on Suffixes – p. 32

Suffix selection, third attempt: reusing inactive suffixes

We have the following problem to solve for any phase t:

• We have qt sequences of integers G1, . . . , Gqt
:

◦ One sequence for each collision of active suffixes of
phase t.

◦ Each sequence represents the overlapping pattern of its
collision.

• For any two suffixes hi of Gi and hj of Gj , we want to be
able to retrieve lcp(hi, hj) in O(1) time.

If we can solve this problem then

The comparison of any two prospective extents of phase t

is reduced to one lcp query and one element comparison.

Order Statistic Problems on Suffixes – p. 32

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 33

Suffix selection, third attempt: reusing inactive suffixes

A partial solution to the problem.
Before the phase transition from t to t + 1 we do the following:

Order Statistic Problems on Suffixes – p. 33

Suffix selection, third attempt: reusing inactive suffixes

A partial solution to the problem.
Before the phase transition from t to t + 1 we do the following:

(1) We concatenate the Gp’s into a single sequence

G = G10G20 . . . 0Gqt

of O (|At|) integers.

Order Statistic Problems on Suffixes – p. 33

Suffix selection, third attempt: reusing inactive suffixes

A partial solution to the problem.
Before the phase transition from t to t + 1 we do the following:

(1) We concatenate the Gp’s into a single sequence

G = G10G20 . . . 0Gqt

of O (|At|) integers.

(2) We sort the suffixes of G.

Order Statistic Problems on Suffixes – p. 33

Suffix selection, third attempt: reusing inactive suffixes

A partial solution to the problem.
Before the phase transition from t to t + 1 we do the following:

(1) We concatenate the Gp’s into a single sequence

G = G10G20 . . . 0Gqt

of O (|At|) integers.

(2) We sort the suffixes of G.
Since we are dealing with a sequence of integers, we can use a linear-time integer

suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]).

Order Statistic Problems on Suffixes – p. 33

Suffix selection, third attempt: reusing inactive suffixes

A partial solution to the problem.
Before the phase transition from t to t + 1 we do the following:

(1) We concatenate the Gp’s into a single sequence

G = G10G20 . . . 0Gqt

of O (|At|) integers.

(2) We sort the suffixes of G.
Since we are dealing with a sequence of integers, we can use a linear-time integer

suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]).

(3) We process the suffix array of G so that lcp queries on the suffixes
of G can be answered in O (1) time.

Order Statistic Problems on Suffixes – p. 33

Suffix selection, third attempt: reusing inactive suffixes

A partial solution to the problem.
Before the phase transition from t to t + 1 we do the following:

(1) We concatenate the Gp’s into a single sequence

G = G10G20 . . . 0Gqt

of O (|At|) integers.

(2) We sort the suffixes of G.
Since we are dealing with a sequence of integers, we can use a linear-time integer

suffix sorting algorithm (e.g. [Karkkainen and Sanders, ICALP 2003]).

(3) We process the suffix array of G so that lcp queries on the suffixes
of G can be answered in O (1) time.
We can use [Kasai, et al, CPM 2001] and [Harel, Tarjan, SICOMP 13, 1984].

Order Statistic Problems on Suffixes – p. 33

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 34

Suffix selection, third attempt: reusing inactive suffixes

Why is it a partial solution?

Order Statistic Problems on Suffixes – p. 34

Suffix selection, third attempt: reusing inactive suffixes

Why is it a partial solution?
• In order to have a total cost O (n), the cost of the preprocessing for phase t has to

be O (|At|).

Order Statistic Problems on Suffixes – p. 34

Suffix selection, third attempt: reusing inactive suffixes

Why is it a partial solution?
• In order to have a total cost O (n), the cost of the preprocessing for phase t has to

be O (|At|).

• Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders,
ICALP 2003]) requires the size of the alphabet of G to be linear in the length of G.

Order Statistic Problems on Suffixes – p. 34

Suffix selection, third attempt: reusing inactive suffixes

Why is it a partial solution?
• In order to have a total cost O (n), the cost of the preprocessing for phase t has to

be O (|At|).

• Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders,
ICALP 2003]) requires the size of the alphabet of G to be linear in the length of G.

• Unfortunately, the integers in G are suffix indexes of σt (requiring log n bits to be
represented) while |G| = O(|At|) and tends to 1 over time.

Order Statistic Problems on Suffixes – p. 34

Suffix selection, third attempt: reusing inactive suffixes

Why is it a partial solution?
• In order to have a total cost O (n), the cost of the preprocessing for phase t has to

be O (|At|).

• Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders,
ICALP 2003]) requires the size of the alphabet of G to be linear in the length of G.

• Unfortunately, the integers in G are suffix indexes of σt (requiring log n bits to be
represented) while |G| = O(|At|) and tends to 1 over time.

The complete solution

Order Statistic Problems on Suffixes – p. 34

Suffix selection, third attempt: reusing inactive suffixes

Why is it a partial solution?
• In order to have a total cost O (n), the cost of the preprocessing for phase t has to

be O (|At|).

• Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders,
ICALP 2003]) requires the size of the alphabet of G to be linear in the length of G.

• Unfortunately, the integers in G are suffix indexes of σt (requiring log n bits to be
represented) while |G| = O(|At|) and tends to 1 over time.

The complete solution
• Before we proceed with the second and third step, we change the range of the

integers in G from [1 . . . n] to [1 . . . |At|].

Order Statistic Problems on Suffixes – p. 34

Suffix selection, third attempt: reusing inactive suffixes

Why is it a partial solution?
• In order to have a total cost O (n), the cost of the preprocessing for phase t has to

be O (|At|).

• Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders,
ICALP 2003]) requires the size of the alphabet of G to be linear in the length of G.

• Unfortunately, the integers in G are suffix indexes of σt (requiring log n bits to be
represented) while |G| = O(|At|) and tends to 1 over time.

The complete solution
• Before we proceed with the second and third step, we change the range of the

integers in G from [1 . . . n] to [1 . . . |At|].

• This is possible because the range change does not need to maintain the
lexicographical order of the suffixes of G.

Order Statistic Problems on Suffixes – p. 34

Suffix selection, third attempt: reusing inactive suffixes

Why is it a partial solution?
• In order to have a total cost O (n), the cost of the preprocessing for phase t has to

be O (|At|).

• Any linear-time integer suffix sorting algorithm (e.g. [Karkkainen and Sanders,
ICALP 2003]) requires the size of the alphabet of G to be linear in the length of G.

• Unfortunately, the integers in G are suffix indexes of σt (requiring log n bits to be
represented) while |G| = O(|At|) and tends to 1 over time.

The complete solution
• Before we proceed with the second and third step, we change the range of the

integers in G from [1 . . . n] to [1 . . . |At|].

• This is possible because the range change does not need to maintain the
lexicographical order of the suffixes of G.

• We only need to preserve the length of the longest common prefix of any two
suffixes of G.

Order Statistic Problems on Suffixes – p. 34

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 35

Suffix selection, third attempt: reusing inactive suffixes

Finally, let’s deal with the forward suffixes.

The forward suffix of a suffix Tj is the inactive suffix starting within the extent of
Tj or right after it whose extent goes the farthest from the right end of Tj ’s extent.

Order Statistic Problems on Suffixes – p. 35

Suffix selection, third attempt: reusing inactive suffixes

Finally, let’s deal with the forward suffixes.

The forward suffix of a suffix Tj is the inactive suffix starting within the extent of
Tj or right after it whose extent goes the farthest from the right end of Tj ’s extent.

We want to maintain the following invariant:

During any phase t, for any suffix Ti, active or inactive, the for-
ward suffix of Ti is known (i.e. its index is explicitly stored and
accessible in O(1) time).

Order Statistic Problems on Suffixes – p. 35

Suffix selection, third attempt: reusing inactive suffixes

Finally, let’s deal with the forward suffixes.

The forward suffix of a suffix Tj is the inactive suffix starting within the extent of
Tj or right after it whose extent goes the farthest from the right end of Tj ’s extent.

We want to maintain the following invariant:

During any phase t, for any suffix Ti, active or inactive, the for-
ward suffix of Ti is known (i.e. its index is explicitly stored and
accessible in O(1) time).

For any phase t, during the phase transition from t to t + 1 we have the following:

Order Statistic Problems on Suffixes – p. 35

Suffix selection, third attempt: reusing inactive suffixes

Finally, let’s deal with the forward suffixes.

The forward suffix of a suffix Tj is the inactive suffix starting within the extent of
Tj or right after it whose extent goes the farthest from the right end of Tj ’s extent.

We want to maintain the following invariant:

During any phase t, for any suffix Ti, active or inactive, the for-
ward suffix of Ti is known (i.e. its index is explicitly stored and
accessible in O(1) time).

For any phase t, during the phase transition from t to t + 1 we have the following:

• The forward suffix of any Ti ∈ It does not change.

Order Statistic Problems on Suffixes – p. 35

Suffix selection, third attempt: reusing inactive suffixes

Finally, let’s deal with the forward suffixes.

The forward suffix of a suffix Tj is the inactive suffix starting within the extent of
Tj or right after it whose extent goes the farthest from the right end of Tj ’s extent.

We want to maintain the following invariant:

During any phase t, for any suffix Ti, active or inactive, the for-
ward suffix of Ti is known (i.e. its index is explicitly stored and
accessible in O(1) time).

For any phase t, during the phase transition from t to t + 1 we have the following:

• The forward suffix of any Ti ∈ It does not change.

• The extent of any suffix Ti ∈ At is enlarged and so the forward suffix of Ti must
be updated .

Order Statistic Problems on Suffixes – p. 35

Suffix selection, third attempt: reusing inactive suffixes

Finally, let’s deal with the forward suffixes.

The forward suffix of a suffix Tj is the inactive suffix starting within the extent of
Tj or right after it whose extent goes the farthest from the right end of Tj ’s extent.

We want to maintain the following invariant:

During any phase t, for any suffix Ti, active or inactive, the for-
ward suffix of Ti is known (i.e. its index is explicitly stored and
accessible in O(1) time).

For any phase t, during the phase transition from t to t + 1 we have the following:

• The forward suffix of any Ti ∈ It does not change.

• The extent of any suffix Ti ∈ At is enlarged and so the forward suffix of Ti must
be updated .

Therefore:

To maintain the forward suffixes, we have to solve a
Dynamic Range Maximum Query problem

Order Statistic Problems on Suffixes – p. 35

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 36

Suffix selection, third attempt: reusing inactive suffixes

According to the length of σt, the computation is divided into
two epochs:

Order Statistic Problems on Suffixes – p. 36

Suffix selection, third attempt: reusing inactive suffixes

According to the length of σt, the computation is divided into
two epochs:

Early Phases, where |σt| = O
(
log2 n

)
.

Order Statistic Problems on Suffixes – p. 36

Suffix selection, third attempt: reusing inactive suffixes

According to the length of σt, the computation is divided into
two epochs:

Early Phases, where |σt| = O
(
log2 n

)
.

• For the early phases we develop a Dynamic Range Maximum
Query structure that can be
◦ built in linear time
◦ queried in O(1) time
◦ updated in O(1) time.

Order Statistic Problems on Suffixes – p. 36

Suffix selection, third attempt: reusing inactive suffixes

According to the length of σt, the computation is divided into
two epochs:

Early Phases, where |σt| = O
(
log2 n

)
.

• For the early phases we develop a Dynamic Range Maximum
Query structure that can be
◦ built in linear time
◦ queried in O(1) time
◦ updated in O(1) time.

• The structure exploits the following crucial fact:

Both the integer values stored in the structure and the
length of the query intervals are O

(
log2 n

)
.

Order Statistic Problems on Suffixes – p. 36

Suffix selection, third attempt: reusing inactive suffixes

Order Statistic Problems on Suffixes – p. 37

Suffix selection, third attempt: reusing inactive suffixes

Late Phases, where |σt| = Ω
(
log2 n

)
.

Order Statistic Problems on Suffixes – p. 37

Suffix selection, third attempt: reusing inactive suffixes

Late Phases, where |σt| = Ω
(
log2 n

)
.

• For the late phases we use a much simpler Dynamic Range
Maximum Query structure that can be
◦ built in linear time,
◦ queried in O(log2 n) time
◦ updated in O(log n) time.

Order Statistic Problems on Suffixes – p. 37

Suffix selection, third attempt: reusing inactive suffixes

Late Phases, where |σt| = Ω
(
log2 n

)
.

• For the late phases we use a much simpler Dynamic Range
Maximum Query structure that can be
◦ built in linear time,
◦ queried in O(log2 n) time
◦ updated in O(log n) time.

• In the late phases we cannot exploit the hypothesis on the
length of σt. . .

Order Statistic Problems on Suffixes – p. 37

Suffix selection, third attempt: reusing inactive suffixes

Late Phases, where |σt| = Ω
(
log2 n

)
.

• For the late phases we use a much simpler Dynamic Range
Maximum Query structure that can be
◦ built in linear time,
◦ queried in O(log2 n) time
◦ updated in O(log n) time.

• In the late phases we cannot exploit the hypothesis on the
length of σt. . .

• . . . but we know that from the first late phase t′ to the last one
there will be O (n/ |σt′ |) = O

(
n/ log2 n

)
active suffixes.

Order Statistic Problems on Suffixes – p. 37

Suffix selection, third attempt: reusing inactive suffixes

Late Phases, where |σt| = Ω
(
log2 n

)
.

• For the late phases we use a much simpler Dynamic Range
Maximum Query structure that can be
◦ built in linear time,
◦ queried in O(log2 n) time
◦ updated in O(log n) time.

• In the late phases we cannot exploit the hypothesis on the
length of σt. . .

• . . . but we know that from the first late phase t′ to the last one
there will be O (n/ |σt′ |) = O

(
n/ log2 n

)
active suffixes.

Therefore,

The total cost for maintaining the forward suffixes during
both early and late phases is O (n).

Order Statistic Problems on Suffixes – p. 37

Selection of Extreme Suffixes

Order Statistic Problems on Suffixes – p. 38

Selection of Extreme Suffixes

Order Statistic Problems on Suffixes – p. 39

Selection of Extreme Suffixes

• Same settings seen in the Suffix Selection problem (sequence T ,
each T [i] drawn from (U , <), comparison model, lexicographical
order. . .)

Order Statistic Problems on Suffixes – p. 39

Selection of Extreme Suffixes

• Same settings seen in the Suffix Selection problem (sequence T ,
each T [i] drawn from (U , <), comparison model, lexicographical
order. . .)

• But this time we want to find. . .
◦ maximum suffix
◦ minimum suffix
◦ maximum suffix AND minimum suffix (i.e. simultaneously).

Order Statistic Problems on Suffixes – p. 39

Selection of Extreme Suffixes

• Same settings seen in the Suffix Selection problem (sequence T ,
each T [i] drawn from (U , <), comparison model, lexicographical
order. . .)

• But this time we want to find. . .
◦ maximum suffix
◦ minimum suffix
◦ maximum suffix AND minimum suffix (i.e. simultaneously).

• . . . and we want the exact complexities (i.e. including the constant
factors).

Order Statistic Problems on Suffixes – p. 39

Selection of Extreme Suffixes

• Same settings seen in the Suffix Selection problem (sequence T ,
each T [i] drawn from (U , <), comparison model, lexicographical
order. . .)

• But this time we want to find. . .
◦ maximum suffix
◦ minimum suffix
◦ maximum suffix AND minimum suffix (i.e. simultaneously).

• . . . and we want the exact complexities (i.e. including the constant
factors).

• Surprisingly, the exact complexities of such basic problems were
not known. . .

Order Statistic Problems on Suffixes – p. 39

Selection of Extreme Suffixes

• Same settings seen in the Suffix Selection problem (sequence T ,
each T [i] drawn from (U , <), comparison model, lexicographical
order. . .)

• But this time we want to find. . .
◦ maximum suffix
◦ minimum suffix
◦ maximum suffix AND minimum suffix (i.e. simultaneously).

• . . . and we want the exact complexities (i.e. including the constant
factors).

• Surprisingly, the exact complexities of such basic problems were
not known. . .

• . . . and still aren’t , since we don’t have matching lower bounds
for the new upper bounds.

Order Statistic Problems on Suffixes – p. 39

Selection of Extreme Suffixes

Order Statistic Problems on Suffixes – p. 40

Selection of Extreme Suffixes

Previous best upper bounds:

Order Statistic Problems on Suffixes – p. 40

Selection of Extreme Suffixes

Previous best upper bounds:

• For finding the maximum suffix or the minimum suffix

≤
3
2n comparisons

Order Statistic Problems on Suffixes – p. 40

Selection of Extreme Suffixes

Previous best upper bounds:

• For finding the maximum suffix or the minimum suffix

≤
3
2n comparisons

[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]

Order Statistic Problems on Suffixes – p. 40

Selection of Extreme Suffixes

Previous best upper bounds:

• For finding the maximum suffix or the minimum suffix

≤
3
2n comparisons

[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]

• Maximum AND minimum: ≤3n (just apply two times).

Order Statistic Problems on Suffixes – p. 40

Selection of Extreme Suffixes

Previous best upper bounds:

• For finding the maximum suffix or the minimum suffix

≤
3
2n comparisons

[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]

• Maximum AND minimum: ≤3n (just apply two times).

New upper bounds:

Order Statistic Problems on Suffixes – p. 40

Selection of Extreme Suffixes

Previous best upper bounds:

• For finding the maximum suffix or the minimum suffix

≤
3
2n comparisons

[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]

• Maximum AND minimum: ≤3n (just apply two times).

New upper bounds:

• Maximum or minimum:

≤
4
3n comparisons

Order Statistic Problems on Suffixes – p. 40

Selection of Extreme Suffixes

Previous best upper bounds:

• For finding the maximum suffix or the minimum suffix

≤
3
2n comparisons

[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]

• Maximum AND minimum: ≤3n (just apply two times).

New upper bounds:

• Maximum or minimum:

≤
4
3n comparisons

[Franceschini, Hagerup, 2007]

Order Statistic Problems on Suffixes – p. 40

Selection of Extreme Suffixes

Previous best upper bounds:

• For finding the maximum suffix or the minimum suffix

≤
3
2n comparisons

[Shiloach, J. Algorithms 2, 1981] or [Duval, J. Algorithms 4, 1983]

• Maximum AND minimum: ≤3n (just apply two times).

New upper bounds:

• Maximum or minimum:

≤
4
3n comparisons

[Franceschini, Hagerup, 2007]

• Maximum AND minimum: ≤
5
2n.

Order Statistic Problems on Suffixes – p. 40

Selection of the Maximum Suffix

Order Statistic Problems on Suffixes – p. 41

Selection of the Maximum Suffix

Let’s focus on finding the maximum suffix and let’s consider Duval’s algorithm:

Order Statistic Problems on Suffixes – p. 41

Selection of the Maximum Suffix

Let’s focus on finding the maximum suffix and let’s consider Duval’s algorithm:

• The algorithm does one pass over T from left to right, going through phases and
transitions where the knowledge about the maximum suffix is increased/changed .

Order Statistic Problems on Suffixes – p. 41

Selection of the Maximum Suffix

Let’s focus on finding the maximum suffix and let’s consider Duval’s algorithm:

• The algorithm does one pass over T from left to right, going through phases and
transitions where the knowledge about the maximum suffix is increased/changed .

• At any phase we have the following:

T

Order Statistic Problems on Suffixes – p. 41

Selection of the Maximum Suffix

Let’s focus on finding the maximum suffix and let’s consider Duval’s algorithm:

• The algorithm does one pass over T from left to right, going through phases and
transitions where the knowledge about the maximum suffix is increased/changed .

• At any phase we have the following:
◦ The candidate suffix m.

T

m

Order Statistic Problems on Suffixes – p. 41

Selection of the Maximum Suffix

Let’s focus on finding the maximum suffix and let’s consider Duval’s algorithm:

• The algorithm does one pass over T from left to right, going through phases and
transitions where the knowledge about the maximum suffix is increased/changed .

• At any phase we have the following:
◦ The candidate suffix m.
◦ A prefix α of m, the known zone.

T

m α

Order Statistic Problems on Suffixes – p. 41

Selection of the Maximum Suffix

Let’s focus on finding the maximum suffix and let’s consider Duval’s algorithm:

• The algorithm does one pass over T from left to right, going through phases and
transitions where the knowledge about the maximum suffix is increased/changed .

• At any phase we have the following:
◦ The candidate suffix m.
◦ A prefix α of m, the known zone.
◦ The period p of α (i.e. α = pl for an integer l).

T

m α

p

Order Statistic Problems on Suffixes – p. 41

Selection of the Maximum Suffix

Let’s focus on finding the maximum suffix and let’s consider Duval’s algorithm:

• The algorithm does one pass over T from left to right, going through phases and
transitions where the knowledge about the maximum suffix is increased/changed .

• At any phase we have the following:
◦ The candidate suffix m.
◦ A prefix α of m, the known zone.
◦ The period p of α (i.e. α = pl for an integer l).
◦ A prefix β of p, the expansion zone.

T

m α

p β

Order Statistic Problems on Suffixes – p. 41

Selection of the Maximum Suffix

Let’s focus on finding the maximum suffix and let’s consider Duval’s algorithm:

• The algorithm does one pass over T from left to right, going through phases and
transitions where the knowledge about the maximum suffix is increased/changed .

• At any phase we have the following:
◦ The candidate suffix m.
◦ A prefix α of m, the known zone.
◦ The period p of α (i.e. α = pl for an integer l).
◦ A prefix β of p, the expansion zone.
◦ The currently examined element e.

T

m α

p β

e

Order Statistic Problems on Suffixes – p. 41

Selection of the Maximum Suffix

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p β

e

e′

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p β

e

e′

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p β

e

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p β

e

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p

e

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p

e

(2) e < e′

T

m
α

p β

e

e′

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p

e

(2) e < e′

T

m
α

p β

e

e′

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p

e

(2) e < e′

T

m
α

p

e

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p

e

(2) e < e′

T

m
α

p

e

(3) e > e′

T

m
α

p β

e

e′

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p

e

(2) e < e′

T

m
α

p

e

(3) e > e′

T

m
α

p β

e

e′

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Then, e is compared to the corresponding element e′ in p.
We have three types of transitions:

(1) e = e′

T

m
α

p

e

(2) e < e′

T

m
α

p

e

(3) e > e′

T

m α

p β

e

Order Statistic Problems on Suffixes – p. 42

Selection of the Maximum Suffix

Order Statistic Problems on Suffixes – p. 43

Selection of the Maximum Suffix

Duval’s algorithm finds the maximum suffix with at most
3
2n comparisons

Order Statistic Problems on Suffixes – p. 43

Selection of the Maximum Suffix

Duval’s algorithm finds the maximum suffix with at most
3
2n comparisons

Why?
• During any transition element e is compared one time.

Order Statistic Problems on Suffixes – p. 43

Selection of the Maximum Suffix

Duval’s algorithm finds the maximum suffix with at most
3
2n comparisons

Why?
• During any transition element e is compared one time.

• During transitions of type 1 and 2 we move to the next unseen element . . .

Order Statistic Problems on Suffixes – p. 43

Selection of the Maximum Suffix

Duval’s algorithm finds the maximum suffix with at most
3
2n comparisons

Why?
• During any transition element e is compared one time.

• During transitions of type 1 and 2 we move to the next unseen element . . .

• . . . but that does not happen with type 3 transitions in which we stay on the current
e.

Order Statistic Problems on Suffixes – p. 43

Selection of the Maximum Suffix

Duval’s algorithm finds the maximum suffix with at most
3
2n comparisons

Why?
• During any transition element e is compared one time.

• During transitions of type 1 and 2 we move to the next unseen element . . .

• . . . but that does not happen with type 3 transitions in which we stay on the current
e.

• However, there cannot be two consecutive type 3 transitions. . .

Order Statistic Problems on Suffixes – p. 43

Selection of the Maximum Suffix

Duval’s algorithm finds the maximum suffix with at most
3
2n comparisons

Why?
• During any transition element e is compared one time.

• During transitions of type 1 and 2 we move to the next unseen element . . .

• . . . but that does not happen with type 3 transitions in which we stay on the current
e.

• However, there cannot be two consecutive type 3 transitions. . .

• . . . unless e has been compared to the first element of a the period p but this is a
particular case that does not need the extra comparison.

Order Statistic Problems on Suffixes – p. 43

Selection of the Maximum Suffix

Duval’s algorithm finds the maximum suffix with at most
3
2n comparisons

Why?
• During any transition element e is compared one time.

• During transitions of type 1 and 2 we move to the next unseen element . . .

• . . . but that does not happen with type 3 transitions in which we stay on the current
e.

• However, there cannot be two consecutive type 3 transitions. . .

• . . . unless e has been compared to the first element of a the period p but this is a
particular case that does not need the extra comparison.

Worst case scenario for Duval’s algorithm:

9 9 98765421 3 999999 9

Order Statistic Problems on Suffixes – p. 43

Maximum Suffix Selection: Uncertainty Approach

Order Statistic Problems on Suffixes – p. 44

Maximum Suffix Selection: Uncertainty Approach

The reasons for remaining on e after a type 3 transition:

Order Statistic Problems on Suffixes – p. 44

Maximum Suffix Selection: Uncertainty Approach

The reasons for remaining on e after a type 3 transition:

T

m
α

p β

e

e′

Order Statistic Problems on Suffixes – p. 44

Maximum Suffix Selection: Uncertainty Approach

The reasons for remaining on e after a type 3 transition:

T

m
α

p β

e

e′

• e could be the start of the actual maximum suffix.

Order Statistic Problems on Suffixes – p. 44

Maximum Suffix Selection: Uncertainty Approach

The reasons for remaining on e after a type 3 transition:

T

m
α

p β

e

e′

• e could be the start of the actual maximum suffix.

• the actual maximum suffix could start somewhere within β (thanks to e being
greater than e′).

Order Statistic Problems on Suffixes – p. 44

Maximum Suffix Selection: Uncertainty Approach

The reasons for remaining on e after a type 3 transition:

T

m
α

p β

e

e′

• e could be the start of the actual maximum suffix.

• the actual maximum suffix could start somewhere within β (thanks to e being
greater than e′).

The uncertainty approach:

T

m
α

p β

e

e′

Order Statistic Problems on Suffixes – p. 44

Maximum Suffix Selection: Uncertainty Approach

The reasons for remaining on e after a type 3 transition:

T

m
α

p β

e

e′

• e could be the start of the actual maximum suffix.

• the actual maximum suffix could start somewhere within β (thanks to e being
greater than e′).

The uncertainty approach:

T

m e

Uncertainty area
• Obviously, we still move m (the current m cannot be the maximum suffix). . .

Order Statistic Problems on Suffixes – p. 44

Maximum Suffix Selection: Uncertainty Approach

The reasons for remaining on e after a type 3 transition:

T

m
α

p β

e

e′

• e could be the start of the actual maximum suffix.

• the actual maximum suffix could start somewhere within β (thanks to e being
greater than e′).

The uncertainty approach:

T

m e

Uncertainty area
• Obviously, we still move m (the current m cannot be the maximum suffix). . .

• . . . but we move e too and we keep an uncertainty area within which the current
maximum suffix starts (but we don’t know where exactly).

Order Statistic Problems on Suffixes – p. 44

Maximum Suffix Selection: Uncertainty Approach

Order Statistic Problems on Suffixes – p. 45

Maximum Suffix Selection: Uncertainty Approach

• The uncertainty area has a fixed size.

Order Statistic Problems on Suffixes – p. 45

Maximum Suffix Selection: Uncertainty Approach

• The uncertainty area has a fixed size.

• When, during the computation, new uncertainties appear outside the uncertainty
area we need
◦ to break the uncertainty
◦ and find where the current maximum suffix actually starts.

Order Statistic Problems on Suffixes – p. 45

Maximum Suffix Selection: Uncertainty Approach

• The uncertainty area has a fixed size.

• When, during the computation, new uncertainties appear outside the uncertainty
area we need
◦ to break the uncertainty
◦ and find where the current maximum suffix actually starts.

• But the time we waited in uncertainty allows us to save comparisons in the final
count.

Order Statistic Problems on Suffixes – p. 45

Maximum Suffix Selection: Uncertainty Approach

• The uncertainty area has a fixed size.

• When, during the computation, new uncertainties appear outside the uncertainty
area we need
◦ to break the uncertainty
◦ and find where the current maximum suffix actually starts.

• But the time we waited in uncertainty allows us to save comparisons in the final
count.

Unfortunately,

this approach does not seem to work with
uncertainty areas larger than two positions

Order Statistic Problems on Suffixes – p. 45

Maximum Suffix Selection: Uncertainty Approach

• The uncertainty area has a fixed size.

• When, during the computation, new uncertainties appear outside the uncertainty
area we need
◦ to break the uncertainty
◦ and find where the current maximum suffix actually starts.

• But the time we waited in uncertainty allows us to save comparisons in the final
count.

Unfortunately,

this approach does not seem to work with
uncertainty areas larger than two positions

But this is enough to deal with Duval’s worst case scenarios

9 9 98765421 3 999999 9

with less than
4
3n comparisons.

Order Statistic Problems on Suffixes – p. 45

		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems

		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems
		itolo {}Order Statistic Problems

	
ormalsize {}Generic Suffix Selection
		itolo {}Generic Selection
		itolo {}Generic Selection
		itolo {}Generic Selection
		itolo {}Generic Selection
		itolo {}Generic Selection
		itolo {}Generic Selection
		itolo {}Generic Selection
		itolo {}Generic Selection

		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}
		itolo {}Selection in $O(n)$ time: {scriptsize �cite {Blum, Floyd, Pratt, Rivest, Tarjan, 1973}}

		itolo {}The Lexicographical Order
		itolo {}The Lexicographical Order
		itolo {}The Lexicographical Order
		itolo {}The Lexicographical Order
		itolo {}The Lexicographical Order
		itolo {}The Lexicographical Order

		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection

		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection
		itolo {}Generic Suffix Selection

		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt

		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt

		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt

		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt
		itolo {}Suffix selection, first attempt

		itolo {}Suffix selection: collisions of active suffixes
		itolo {}Suffix selection: collisions of active suffixes
		itolo {}Suffix selection: collisions of active suffixes
		itolo {}Suffix selection: collisions of active suffixes

		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions

		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions

		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions

		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions

		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions

		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions

		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions

		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions

		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions

		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions
		itolo {}Suffix selection, second attempt: exploiting collisions

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes
		itolo {}Suffix selection, third attempt: reusing inactive suffixes

	
ormalsize {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes

		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes
		itolo {}Selection of Extreme Suffixes

		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix

		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix

		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix
		itolo {}Selection of the Maximum Suffix

		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach

		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach
		itolo {}Maximum Suffix Selection: Uncertainty Approach

